正弦定理和余弦定理习题及答案讲课教案

正弦定理和余弦定理习题及答案讲课教案
正弦定理和余弦定理习题及答案讲课教案

正弦定理和余弦定理习题及答案

正弦定理和余弦定理 测试题

一、选择题:

1.在△ABC 中,a =15,b =10,A =60°,则cos B =( )

A .-223

B.223 C .-6

3

D.63

2.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c .若a 2-b 2

=3bc ,sin C =23sin B ,则A =( )

A .30°

B .60°

C .120°

D .150°

3.E ,F 是等腰直角△ABC 斜边AB 上的三等分点,则tan ∠ECF =( )

A.1627

B.23

C.3

3

D.3

4

4.△ABC

中,若lg a -lg c =lgsin B =-lg 2且B ∈?

????

0,π2,则△

ABC 的形状是( )

A .等边三角形

B .直角三角形

C .等腰三角形

D .等腰直角三角形

5.△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边,如果a 、b 、c 成等差数列,∠B =30°,△ABC 的面积为0.5,那么b 为( )

A .1+ 3

B .3+ 3 C.3+3

3 D .2+ 3

6.已知锐角A 是△ABC 的一个内角,a 、b 、c 是三角形中各内角的对应边,若sin 2

A -cos 2

A =1

2

,则( )

A .b +c =2a

B .b +c <2a

C .b +c ≤2a

D .b +c ≥2a

7、若ABC ?的内角A 满足2sin 23

A =,则sin cos A A +=

B ..53 D .53

-

8、如果111A B C ?的三个内角的余弦值分别等于222A B C ?的三个内角的正弦值,则

A .111A

B

C ?和222A B C ?都是锐角三角形 B .111A B C ?和222A B C ?都是钝角三角形

C .111A B C ?是钝角三角形,222A B C ?是锐角三角形

D .111A B C ?是锐角三角形,222A B C ?是钝角三角形

9、ABC V 的三内角,,A B C 所对边的长分别为,,a b c 设向量

(,)p a c b =+u r ,(,)q b a c a =--r ,若//p q u r r

,则角C 的大小为

(A)6π (B)3π (C) 2π (D) 23

π

10、已知等腰ABC △的腰为底的2倍,则顶角A 的正切值是( )

D.

7

11、ABC ?的内角A 、B 、C 的对边分别为a 、b 、c ,若a 、b 、c 成等比数列,且2c a =,则cos B =

A .14

B .34 C

D .3

12、在△ABC 中,角A 、B 、C 的对边分别为a 、b 、

c ,A =3

π,a =

3,b =1,则c =

(A) 1 (B )2 (C )3—1

(D )3 二、填空题:

13、在ABC ?中,若sin :sin :sin 5:7:8A B C =,则B ∠的大小是___________.

14、在?ABC 中,已知4

3

3=a ,b =4,A =30°,则sinB = .

15、在△ABC 中,已知BC =12,A =60°,B =45°,则AC =

16、已知△ABC的三个内角A、B、C成等差数列,且AB=1,BC=

4,则边BC上的中线AD的长为.

三、解答题:

17。、已知△ABC的内角A,B及其对边a,b满足a+b=a 1

tan A

b 1

tan B

,求内角C.

18、在△ABC中,a,b,c分别为内角A,B,C的对边,且2a sin A =(2b+c)sin B+(2c+b)sin C.(1)求A的大小;(2)若sin B+sin C =1,试判断△ABC的形状.

19、如图,在△ABC中,已知B=45°,D是BC边上的一点,AD=

10,AC =14,DC =6,求AB 的长.

20、已知ABC △1,且sin sin A B C +=.(I )求边

AB 的长;(II )若ABC △的面积为1

sin 6

C ,求角C 的度数.

21、△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知a ,b ,c 成等比数列,.4

3cos =B

(Ⅰ)求cot A +cot C 的值; (Ⅱ)设3

2

BA BC ?=u u u r u u u r ,求a +c 的值.

22、 某海轮以30海里/小时的速度航行,在A 点测得海面上油井P 在南偏东?60,向北航行40分钟后到达B 点,测得油井P 在南偏东

?30,海轮改为北偏东?60的航向再行驶80分钟到达C 点,求P 、C

间的距离.

答案

1.解析:依题意得0°

sin B

得sin B =

b sin A a =33,cos B =1-sin 2

B =63

,选D. 2.解析:由sin C =23sin B 可得c =23b ,由余弦定理得cos A =

b 2+

c 2-a 22bc =-3bc +c 22bc =3

2

,于是A =30°,故选A. 3.解析:设AC =1,则AE =EF =FB =13AB =2

3

,由余弦定理得CE =

CF =

AE 2

+AC 2

-2AC ·AE cos45°=5

3

,所以cos ∠ECF =

CE 2+CF 2-EF 22CE ·CF =4

5

所以tan ∠ECF =sin ∠ECF cos ∠ECF =

1-? ??

?

?452

45

=3

4

. 答案:D

4.解析:∵lg a -lg c =lgsin B =-lg 2,∴lg a c =lgsin B =lg 2

2

.∴

a c =sin B =22

. ∵B ∈?

????0,π2,∴B =π

4,由

c =2a , 得cos B =a 2+c 2-b 2

2ac

3a 2-b 222a

2=2

2. ∴a 2=b 2,∴a =b . 答案:D

5.解析:2b =a +c ,12ac ·12=1

2?ac =2,a 2+c 2=4b 2-4,b 2=a 2+c 2

-2ac ·

32?b 2=4+233?b =3+3

3

. 答案:C 6.解析:由sin 2

A -cos 2

A =12,得cos2A =-1

2

, 又A 是锐角,所

以A =60°,于是B +C =120°. 所以b +c 2a =sin B +sin C

2sin A

2sin

B +C

2

cos

B -C

23

=cos

B -C

2

≤1,b +c ≤2a . 答案:c

7.解:由sin2A =2sinAcosA >0,可知A 这锐角,所以sinA +cosA >0,

又25

(sin cos )1sin 23

A A A +=+=,故选A

8.解:111A B C ?的三个内角的余弦值均大于0,则111A B C ?是锐角三角

形,若222A B C ?是锐角三角形,由211211211sin cos sin()2sin cos sin()2sin cos sin()2A A A B B B C C C πππ?

==-??

?

==-??

?

==-??

,得

212121222A A B B C C πππ?=-??

?

=-??

?=-??

,那么,222

2A B C π++=,所以222A B C ?是钝角三角形。故选D 。

9.【解析】222//()()()p q a c c a b b a b a c ab ?+-=-?+-=u r r

,利用余弦定

理可得2cos 1C =,即1cos 2

3

C C π

=?=

,故选择答案B 。

【点评】本题考查了两向量平行的坐标形式的重要条件及余弦定理和三角函数,同时着重考查了同学们的运算能力。 10.解:

依题意,结合图形可得tan

2A =

,故222tan

2tan 71tan 2A

A A ?

=

==-,选D 11.解:ABC ?中,a 、b 、c 成等比数列,且2c a =,则b =2a ,

222cos 2a c b B ac +-==2222

423

44

a a a a +-=,选B. 12.解:由正弦定理得sinB =12

,又a >b ,所以A >B ,故B =30?,所以C =90?,故c =2,选B

二、填空

13.解: sin :sin :sin 5:7:8A B C =?a :b :c =5:7:8设a =5k ,b =7k ,c =8k 由余弦定理可解得B ∠的大小为3

π. 14.解:由正弦定理易得结论sinB

2

15.【正确解答】由正弦定理得,

sin 45sin 60AC BC

=

o o

解得AC = 【解后反思】解三角形:已知两角及任一边运用正弦定理,已知两

边及其夹角运用余弦定理

16.解析: 由ABC ?的三个内角A 、B 、C 成等差数列可得A+C=2B 而A+B+C=π可得3

B π

∠=

AD 为边BC 上的中线可知BD=2,由余弦定理定理可得

AD = 本题主要考察等差中项和余弦定理,涉及三角形的内角和定理,难度中等。

三、解答题:(17-21题12分,22题14分,写出证明过程或推演步骤.)

17。、已知△ABC 的内角A ,B 及其对边a ,b 满足a +b =a

1

tan A +b 1tan B

,求内角C . 解:由a +b =a 1tan A +b 1

tan B

及正弦定理得 sin A +sin B =cos A +cos B ,

即sin A -cos A =cos B -sin B , 从而sin A cos π4-cos A sin π

4=

cos B sin π4-sin B cos π

4

即sin ? ????A -π4=sin ? ??

??π4-B . 又0

π4-B ,A +B =π2, 所以C =π

2

.

18、在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且

2a sin A =(2b +c )sin B +(2c +b )sin C .(1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.

解:(1)由已知,根据正弦定理得2a 2=(2b +c )b +(2c +b )c ,即a 2=b 2+c 2+bc .

由余弦定理得a 2=b 2+c 2-2bc cos A ,故cos A =-1

2,又A ∈(0,

π),故A =120°.

(2)由(1)得sin 2A =sin 2B +sin 2C +sin B sin C . 又sin B +sin C =1,得sin B =sin C =1

2

.

因为0°

19、如图,在△ABC 中,已知B =45°,D 是BC 边上的一点,

AD =10,AC =14,DC =6,求AB 的长.

解:在△ADC 中,AD =10,AC =14,DC =6,由余弦定理得

cos ∠ADC =AD 2+DC 2-AC 22AD ·DC =100+36-1962×10×6=-1

2

∴∠ADC =120°,∠ADB =60°. 在△ABD 中,AD =10,B =45°,∠ADB =60°,

由正弦定理得AB sin ∠ADB =AD sin B ,∴AB =AD ·sin ∠ADB

sin B

10sin60°

sin45°=10×

3

22

2

=5 6.

20、已知ABC △21,且sin sin 2A B C +=.(I )求边

AB 的长;(II )若ABC △的面积为1

sin 6

C ,求角C 的度数.

解:(I )由题意及正弦定理,得1AB BC AC ++=,

BC AC +=,两式相减,得1AB =.

(II )由ABC △的面积1

1sin sin 26BC AC C C =g g ,得13

BC AC =g ,由余弦定理,得

222

cos 2AC BC AB C AC BC

+-=g

22()2122

AC BC AC BC AB AC BC +--==g g ,所以

60C =o .

21、△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知a ,b ,c 成等比数列,.4

3cos =B

(Ⅰ)求cot A +cot C 的值; (Ⅱ)设3

2

BA BC ?=u u u r u u u r ,求a +c 的值.

分析:本题是正、余弦定理与向量、等比数列等知识的交汇,关键是用好正弦定理、余弦定理等.

解:(Ⅰ)由,4

7)4

3(1sin ,4

3cos 2=

-==B B 得由b 2

=ac 及正弦定理得 .sin sin sin 2C A B =

则B C A C A A C A C C C A A C A C A 2

sin )

sin(sin sin sin cos cos sin sin cos sin cos tan 1tan 1cot cot +=+=+=+=

+ .774

sin 1sin sin 2==

=B B B (Ⅱ)由32

BA BC ?=u u u r u u u r ,得ca ?cos B =32,由ㄋB =3

4,可得ac =

2,即b 2

=2.

由余弦定理b 2=a 2+c 2-2a c+cosB ,得a 2+c 2=b 2+2a c ·cosB=5.

3,

9452)(222=+=+=++=+c a ac c a c a

22、 某海轮以30海里/小时的速度航行,在A 点测得海面上油井P 在南偏东?60,向北航行40分钟后到达B 点,测得油井P 在南偏东

?30,海轮改为北偏东?60的航向再行驶80分钟到达C 点,求P 、C

间的距离.

解:如图,在△ABP 中,AB = 30×60

40

= 20, ∠APB =?30,∠BAP =?120, 由正弦定理,得:

BPA AB ∠sin =BAP BP

∠sin ,即2120=2

3BP ,解得BP

=320.

在△BPC 中,BC = 30×

60

80

= 40, 由已知∠PBC =?90,∴PC =22BC PB +=2220)320(+=720 (海里).

所以P 、C 间的距离为720海里.

评析:上述两例是在准确理解方位角的前提下,合理运用正弦定理把问题解决,因此,用正弦定理解有关应用问题时,要注意问题中的一些名称、术语,如仰角、俯角、视角、象限角、方位角等.

1正弦定理和余弦定理-教学设计-教案

教学准备 教学目标 1. 知识目标:理解并掌握正弦定理,能初步运用正弦定理解斜三角形;技能目标:理解用向量方法推导正弦定理的过程,进一步巩固向量知识,体现向量的工具性情感态度价值观:培养学生 在方程思想指导下处理解三角形问题的运算能力; /难点教学重点2. 重点:正弦定理的探索和证明及其基本应用。难点:已知两边和其中一边的对角解三角形时判 断解的个数。教学用具 3. 多媒体标签 4. 正弦定理 教学过程 讲授新课在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角 根据锐BC=a,AC=b,AB=c, ABC.与边的等式关系。如图11-2,在Rt中,设角三角函数中正弦函数的定义,有 . ,又,则,中,ABC从而在直角三角 形.

思考:那么对于任意的三角形,以上关系式是否仍然成立?(由学生讨论、分析)可分为锐角三角形和钝角三角形两种情况: ,根上的高是CDABC1(证法一)如图.1-3,当是锐角三角形时,设边AB CD=据任意角三角函数的定义,有,则. . 同理可得,从而

是钝角三角形时,以上关系式仍然成立。(由学生课后ABC类似可推出,当自己推导)从上面的研探过程,可得以下定理正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即 ] 理解定理[)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系 数为同1 ( ;使一正数,即存在正数k,,

等价于2(),,。从而知正弦定理的基本作用为: ;①已知三角形的任意两角及其一边可以求其他边,如②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如 . 一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形。. 评述:应注意已知两边和其中一边的对角解三角形时,可能有两解的情形。 2(1)题。)、(页练习第第随堂练习[]511

余弦定理知识点+经典题(有答案)

余弦定理 余弦定理:三角形中任意一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的两倍。即: 2222cos a b c bc A =+- 2222cos b a c ac B =+- 2222cos c a b ab C =+- 2.利用余弦定理解三角形: (1)已知两边和它们所夹的角: (2)已知三边: 余弦定理 1.在△ABC 中,如果BC =6,AB =4,cos B =1 3 ,那么AC 等于( )A .6 B .2 6 C .3 6 D .4 6 3.在△ABC 中,a 2=b 2+c 2+3bc ,则∠A 等于( ) A .60° B .45° C .120° D .150° 4.在△ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tan B = 3ac , 则∠B 的值为( ) A.π6 B.π3 C.π6或5π6 D.π3或2π3 5.如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .由增加的长度决定 6.已知锐角三角形ABC 中,|AB →|=4,|AC →|=1,△ABC 的面积为3,则AB →·AC →的值为( ) A .2 B .-2 C .4 D .-4

7.在△ABC中,b=3,c=3,B=30°,则a为( ) A. 3 B.2 3 C.3或2 3 D.2 8.已知△ABC的三个内角满足2B=A+C,且AB=1,BC=4,则边BC上的中线AD的长为________. 9.△ABC中,sin A∶sin B∶sin C=(3-1)∶(3+1)∶10,求最大角的度数.10.已知a、b、c是△ABC的三边,S是△ABC的面积,若a=4,b=5,S=53,则边c 的值为________. 11.在△ABC中,a=32,cos C=1 3 ,S△ABC=43,则b=________. 12.已知△ABC的三边长分别为AB=7,BC=5,AC=6,则AB→·BC→的值为________. 13.已知△ABC的三边长分别是a、b、c,且面积S=a2+b2-c2 4 ,则角C=________. 14.(2015年广州调研)三角形的三边为连续的自然数,且最大角为钝角,则最小角的余弦值为________. 15.在△ABC中,BC=a,AC=b,a,b是方程x2-23x+2=0的两根,且2cos(A+B)=1,求AB的长.

人教版高中数学必修5正弦定理和余弦定理测试题及答案教学内容

人教版高中数学必修5正弦定理和余弦定理测试题及答案

人教版高中数学必修5正弦定理和余弦定理测试题及答案 一、选择题 1.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =2,b =3, cos C =- 41,则c 等于( ) (A)2 (B)3 (C)4 (D)5 2.在△ABC 中,若BC =2,AC =2,B =45°,则角A 等于( ) (A)60° (B)30° (C)60°或120° (D)30°或150° 3.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,已知B =30°,c = 150,b =503,那么这个三角形是( ) (A)等边三角形 (B)等腰三角形 (C)直角三角形 (D)等腰三角形或直角三角形 4.在△ABC 中,已知3 2sin ,53cos ==C B ,AC =2,那么边AB 等于( ) (A )45 (B)35 (C)920 (D)5 12 5.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,如果A ∶B ∶C = 1∶2∶3,那么a ∶b ∶c 等于( ) (A)1∶2∶3 (B)1∶3∶2 (C)1∶4∶9 (D)1∶2∶3 二、填空题 6.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =2,B = 45°,C =75°,则b =________. 7.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =2,b =23,c =4,则A =________.

8.在△ABC中,三个内角A,B,C的对边分别是a,b,c,若2cos B cos C=1-cos A,则△ABC形状是________三角形. 9.在△ABC中,三个内角A,B,C的对边分别是a,b,c,若a=3,b=4,B =60°,则c=________. 10.在△ABC中,若tan A=2,B=45°,BC=5,则AC=________. 三、解答题 11.在△ABC中,三个内角A,B,C的对边分别是a,b,c, 若a=2,b=4,C=60°,试解△ABC. 12.在△ABC中,已知AB=3,BC=4,AC=13. (1)求角B的大小; (2)若D是BC的中点,求中线AD的长. 13.如图,△OAB的顶点为O(0,0),A(5,2)和B(-9,8),求角A的大小.

正弦定理和余弦定理

正弦定理和余弦定理 高考风向 1.考查正弦定理、余弦定理的推导;2.利用正、余弦定理判断三角形的形状和解三角形;3.在解答题中对正弦定理、余弦定理、面积公式以及三角函数中恒等变换、诱导公式等知识点进行综合考查. 学习要领 1.理解正弦定理、余弦定理的意义和作用;2.通过正弦、余弦定理实现三角形中的边角转换,和三角函数性质相结合. 1. 正弦定理:a sin A =b sin B =c sin C =2R ,其中R 是三角形外接圆的半径.由正弦定理可以变形:(1)a ∶b ∶c =sin_A ∶sin_B ∶sin_C ;(2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(3)sin A =a 2R ,sin B =b 2R ,sin C = c 2R 等形式,解决不同的三角形问题. 2. 余弦定理:a 2=b 2+c 2-2bc cos_A ,b 2=a 2+c 2-2ac cos_B ,c 2=a 2+b 2-2ab cos_C .余弦定理可以变形: cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 2 2ab . 3. S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =1 2 (a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R 、 r . 4. 在△ABC 中,已知a 、b 和A 时,解的情况如下: [1.在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC 中,A >B ?a >b ?sin A >sin B ;tanA+tanB+tanC=tanA·tanB·tanC ;在锐角三角形中,cos A

《正弦定理和余弦定理》典型例题.

《正弦定理和余弦定理》典型例题透析 类型一:正弦定理的应用: 例1.已知在ABC ?中,10c =,45A = ,30C = ,解三角形. 思路点拨:先将已知条件表示在示意图形上(如图),可以确定先用正弦定理求出边a ,然后用三角形内角和求出角B ,最后用正弦定理求出边b . 解析:sin sin a c A C = , ∴sin 10sin 45sin sin 30c A a C ?=== ∴ 180()105B A C =-+= , 又sin sin b c B C =, ∴sin 10sin10520sin 7520sin sin 304 c B b C ?====?= 总结升华: 1. 正弦定理可以用于解决已知两角和一边求另两边和一角的问题; 2. 数形结合将已知条件表示在示意图形上,可以清楚地看出已知与求之间的关系,从而恰当地选择解答方式. 举一反三: 【变式1】在?ABC 中,已知032.0=A ,081.8=B ,42.9a cm =,解三角形。 【答案】根据三角形内角和定理,0180()=-+C A B 000180(32.081.8)=-+066.2=; 根据正弦定理,0 sin 42.9sin81.880.1()sin sin32.0==≈a B b cm A ; 根据正弦定理,0 sin 42.9sin66.274.1().sin sin32.0==≈a C c cm A 【变式2】在?ABC 中,已知075B =,0 60C =,5c =,求a 、A . 【答案】00000180()180(7560)45A B C =-+=-+=, 根据正弦定理5sin 45sin 60o o a =,∴a =【变式3】在?ABC 中,已知sin :sin :sin 1:2:3A B C =,求::a b c 【答案】根据正弦定理sin sin sin a b c A B C ==,得::sin :sin :sin 1:2:3a b c A B C ==. 例2.在60,1ABC b B c ?=== 中,,求:a 和A ,C . 思路点拨: 先将已知条件表示在示意图形上(如图),可以确定先用正弦定理求出角C ,然后用三角形内角和求出角A ,最后用正弦定理求出边a .

2018年必修五《正弦定理》教案

§1.1.2 正弦定理 一、知识与技能 1会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题 2通过三角函数、正弦定理等多处知识间联系来体现事物之间的普遍联系与辩证统一. 3.在问题解决中,培养学生的自主学习和自主探索能力. 二、过程与方法 让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。 三、教学重点与难点: 重点:正弦定理的探索及其基本应用。 难点:已知两边和其中一边的对角解三角形时判断解的个数。 【授课类型】:习题拔高课 四、教学过程 一、知识回顾 1正弦定理的内容是什么? 二、例题讲解 例 1试推导在三角形中 A a s i n =B b sin =C c sin =2R 其中R 是外接圆半径. 证明 如图所示,∠A =∠D ∴R CD D a A a 2sin sin === 同理B b sin R 2=,C c sin R 2= ∴ A a sin = B b sin =C c sin =2R a b c O B C A D

例2 在C A a c B b ABC ,,1,60,30和求中,===? 解:∵213 60sin 1sin sin ,sin sin 0=?==∴=b B c C C c B b ,C B C B c b ,,60,0<∴=> 为锐角, 0090,30==∴B C ∴222=+=c b a 例3 C B b a A c ABC ,,2,45,60和求中,===? 解2 3245sin 6sin sin ,sin sin 0=?==∴=a A c C C c A a 0012060,sin 或=∴<

正弦定理、余弦定理经典练习题

学科数学版本人教版大开本、3+x 期数2339 年级高一编稿老师梁文莉审稿教师 【同步教育信息】 一. 本周教学内容: §5.9正弦定理、余弦定理 目标:使学生理解正弦定理、余弦定理的证明和推导过程,初步运用它们解斜三角形。并会利用计算器解决解斜三角形的计算问题。培养学生观察、分析、归纳等思维能力、运算能力、逻辑推理能力,渗透数形结合思想、分类思想、化归思想,以及从特殊到一般、类比等方法,进一步提高学生分析问题和解决问题的能力。 二. 重点、难点: 重点: 正弦定理、余弦定理的推导及运用。 难点: (1)正弦定理、余弦定理的推导过程; (2)应用正弦定理、余弦定理解斜三角形。 [学法指导] 学习本节知识时可采用向量法、等积法(面积相等)等不同方法来推导正弦定理,以加深对定理的理解和记忆,由于已知两边及其中一边的对角,不能唯一确定三角形,此时三角形可能出现两解、一解、无解三种情况,因此解此类三角形时,要注意讨论。 深刻领会向量的三角形法则及平面向量的数量积是用向量法推导余弦定理的关键。注意余弦定理的每一个等式中都包含四个不同的量,它们分别是三角形的三边和一个角,知道其中的三个量,便可求得第四个量。当有一个角为90°时,即为勾股定理。因此,勾股定理可看作是余弦定理的特例。 正弦定理和余弦定理是解斜三角形和判定三角形类型的重要工具,其主要作用是将已知条件中的边、角关系转化为角的关系或边的关系。一般地,利用公式a=2RsinA,b=2RsinB,c=2RsinC(R 为ΔABC外接圆半径),可将边转化为角的三角函数关系,然后利用三角函数知识进行化简,其中往往用到三角形内角和定理A+B+C=π。 可将有关三角形中的角的余弦转化为边的关系,然后充分利用代数知识来解决问题。在三角形中,有一个角的余弦值为负值,该三角形为钝角三角形;有一个角的余弦值为零,便是直角三角形;三个角的余弦值都为正值,便是锐角三角形。 【例题分析】

《正弦定理、余弦定理》单元测试题

高一数学《正弦定理、余弦定理》单元测试题(1) 班级 姓名 1.在ABC ?中,?=∠?=∠=15,30,3B A a ,则=c ( ) A .1 B. 2 C .3 2 D. 3 2.在ABC ?中,若 B b sin 2=,则∠A 等于( ) A .30°或60° B .45°或60° C .120°或60° D .30°或150° 3.在ABC ?中,?=∠==60,10,15A b a ,则B cos =( ) A .-223 B.223 C .-63 D.63 4.在ABC ?中,角A 、B 、C 所对的边分别为a 、b 、c ,若B b A a sin cos =,则 B A A 2cos cos sin +=( ) A .-12 B.1 2 C .-1 D .1 5.在ABC ?中,若A b a sin 23=,则B 等于 ( ) A. 30 B. 60 C. 30或 150 D. 60或 1206.在ABC ?中,已知 45,1,2=== B c b ,则a 等于 ( ) A. 226- B. 2 2 6+ C. 12+ D. 23- 7.不解三角形,确定下列判断中正确的是 ( ) A. 30,14,7===A b a ,有两解 B. 150,25,30===A b a ,有一解 C. 45,9,6===A b a ,有两解 D. 60,10,9===A c b ,无解 8.在ABC ?中,?===30,3,1A b a ,则c =( ) A .1 B .2 C .1或2 D .无解 9.在ABC ?中,已知B a b sin 323=,C B cos cos =,则ABC ?的形状是( ) A. 直角三角形 B.等腰三角形 C.等边三角形 D.等腰直角三角形 10.在ABC ?中, 60=A ,3=a ,则 =++++C B A c b a sin sin sin ( ) A. 338 B.3392 C.3 3 26 D. 32 11.在ABC ?中,已知3,45,60=?=∠?=∠C ABC BAC ,则AC =________;

正弦定理与余弦定理地综合应用

正弦定理与余弦定理的综合应用 (本课时对应学生用书第页 ) 自主学习回归教材 1.(必修5P16练习1改编)在△ABC中,若sin A∶sin B∶sin C=7∶8∶13,则cos C=. 【答案】-1 2 【解析】由正弦定理知a∶b∶c=7∶8∶13,再由余弦定理得cos C= 222 78-13 278 + ??=- 1 2. 2.(必修5P24复习题1改编)在△ABC中,角A,B,C的对边分别为a,b,c.若a2-b23bc,sin C3B,则角A=. 【答案】π6 【解析】由sin C 3B得c3b,代入a2-b23得a2-b2=6b2,所以a2=7b2,a7b, 所以cos A= 222 - 2 b c a bc + = 3 ,所以角A= π 6.

3.(必修5P20练习3改编)如图,一船自西向东匀速航行,上午10时到达一座灯塔P的南偏西75°方向、距塔68 n mile的M处,下午2时到达这座灯塔的东南方向的N处,则这只船的航行速度 为n mile/h. (第3题) 【答案】 176 4.(必修5P26本章测试7改编)设△ABC的角A,B,C的对边分别为a,b,c.若a sin A+c sin C2sin C=b sin B,则角B=. 【答案】45° 【解析】由正弦定理得a2+c22ac=b2,再由余弦定理得b2=a2+c2-2ac cos B,故cos B=2 , 因此B=45°. 5.(必修5P19例4改编)在△ABC中,角A,B,C所对的边分别为a,b,c,若a,b,c成等比数列,则角B的取值围为. 【答案】 π0 3?? ???,

正弦定理应用教案

正弦定理应用教案 【篇一:正弦定理、余弦定理应用举例教案】 第7讲正弦定理、余弦定理应用举例 【考查要点】利用正弦定理、余弦定理解决实际问题中的角度、方向、距离及测量问题. 【基础梳理】 1.用正弦定理和余弦定理解三角形的常见题型。如测量距离问题、高度问题、角度问题、计算面积问题、航海问题、 物理问题等. 2.实际问题中的常用角 (1)仰角和俯角:在视线和水平线所成的角中,视线在水平线上方的 角叫仰角,在水平线下方的角叫俯角(如图(1)). (2)方位角:指从正北方向顺时针转到目标方向线的水平角,如b点 的方 (4)坡度:坡面与水平面所成的二面角的度数. 3、解三角形应用题的一般步骤: (1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量 与量 之间的关系. (2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型. (3)根据题意选择正弦定理或余弦定理求解. (4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近 似计算的要求等. 4、解三角形应用题常有以下两种情形 (1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解. (2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上 的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐 步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解. 【例题分析】 一、基础理解 a..3 m c. m 2

解:如图.答案 b 例4.一船向正北航行,看见正西方向相距10海里的两个灯塔 恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船 a.5海里 b.3海里 c.10海里 d.海里 5里),于是这艘船的速度是=10(海里/时).答案 c 0.5 二、测量距离问题 例1、如图所示,为了测量河对岸a,b两点间的距离,在这岸 [分析] 在△bcd中,求出bc,在△abc中,求出ab. 例2、如图,a,b,c,d 都在同一个与水平面垂直的平面内, b、d为两岛上的 试探究图中b、d间距离与另外哪两点间距离相等,然后求b, d的距离. 故cb是△cad底边ad的中垂线,所以bd=ba. 2+同理,bd(km).故b、d km. 2020 三、测量高度问题 [分析] 过点c作ce∥db,延长ba交ce于点e,在△aec中 解得x=10(33) m.故山高cd为10(33 ) m. 总结:(1)测量高度时,要准确理解仰、俯角的概念;(2)分清已知和待求,分析(画出)示意图,明确在哪个三角形内应用正、余弦定理., cd cdx ab解:在△abc中,ab=5,ac=9,∠bca=sin∠acb 9同理,在△abd中,ab=5,sin∠bad 10 abbd∠adb=, sin∠bdasin∠bad 22解得bd故bd的长为22 总结:要利用正、余弦定理解决问题,需将多边形分割成若干个三角形,在分割时,要注意有利于应用正、余弦定理. 点,ad=10,ac=14,dc=6,求ab的长. 解:在△adc中,ad=10,ac = 14,dc=6, 【篇二:《正弦定理》教学设计】

正弦定理、余弦定理综合应用典型例题

正弦定理、余弦定理综合应用 例1.设锐角三角形ABC 的内角A B C ,,的对边分别为a b c ,,,2sin a b A =. (Ⅰ)求B 的大小;(Ⅱ)求cos sin A C +的取值范围. 解:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1 sin 2 B = , 由ABC △为锐角三角形得π6B = . (Ⅱ)cos sin cos sin A C A A π?? +=+π-- ?6?? cos sin 6A A π??=++ ???1cos cos 2A A A =++ 3A π? ?=+ ???. 由ABC △为锐角三角形知,22A B ππ->-,2263B ππππ-=-=. 2336 A πππ <+<, 所以1sin 23A π??+< ???. 3A π??<+< ?? ? 所以,cos sin A C +的取值范围为322?? ? ?? ?,. 例2.已知ABC △1,且sin sin A B C +=. (I )求边AB 的长; (II )若ABC △的面积为1 sin 6 C ,求角C 的度数. 解:(I )由题意及正弦定理,得1AB BC AC ++=, BC AC +=, 两式相减,得1AB =. (II )由ABC △的面积11sin sin 26BC AC C C =g g ,得1 3 BC AC =g , 由余弦定理,得222cos 2AC BC AB C AC BC +-=g 22()21 22 AC BC AC BC AB AC BC +--= =g g , 所以60C =o . 例3.已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m =(1,3-),n =(cos A ,sin A ).若m ⊥n , 且a cos B +b cos A =c sin C ,则角B = 6 π . 例4.设ABC ?的内角A ,B ,C 的对边分别为a ,b ,c ,且A =60o ,c =3b.求a c 的值; 解:由余弦定理得2222cos a b c b A =+-=2221117 ()2,3329 c c c c c +-=g g g 故3a c = 例5.在△ABC 中,三个角,,A B C 的对边边长分别为3,4,6a b c ===, 则cos cos cos bc A ca B ab C ++的值为 . 61 2 例6.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若() C a A c b cos cos 3=-, 则=A cos _________________. 3 例7.(2009年广东卷文)已知ABC ?中, C B A ∠∠∠,,的对边分别为,,a b c 若a c ==75A ∠=o ,则b = 【解析】0000000 sin sin 75sin(3045)sin 30cos 45sin 45cos30A ==+=+=

(完整版)正弦定理余弦定理应用实例练习含答案

课时作业3应用举例 时间:45分钟满分:100分 课堂训练 1.海上有A、B两个小岛相距10海里,从A岛望C岛和B岛成60°的视角,从B岛望C岛和A岛成75°的视角,则B、C间的距离是() A.103海里B.106海里 C.52海里D.56海里 【答案】 D 【解析】如图,∠A=60°,∠B=75°, 则∠C=45°, 由正弦定理得: BC=AB·sin A sin C =10×sin60° sin45° =5 6. 2.如图所示,设A、B两点在河的两岸,一测量者在A所在的河岸边选定一点C,测出AC的距离为50m,∠ACB=45°,∠CAB=105°后,就可以计算出A、B两点的距离为()

A .502m B .503m C .252m D.2522m 【答案】 A 【解析】 因为∠ACB =45°,∠CAB =105°,所以∠ABC =30°,根 据正弦定理可知,AC sin ∠ABC =AB sin ∠ACB ,即50sin30°=AB sin45°,解得AB =502m ,选A. 3.从某电视塔的正东方向的A 处,测得塔顶仰角是60°;从电视塔的西偏南30°的B 处,测得塔顶仰角为45°,A ,B 间距离是35m ,则此电视塔的高度是________m. 【答案】 521 【解析】 如图所示,塔高为OC ,则∠OAC =60°,∠AOB =180°-30°=150°,∠CBO =45°,AB =35,

设电视塔高度为h m,则OA=3 3h,OB=h,在△AOB中由余弦定理可得AB2=OA2+OB2-2OA·OB·cos∠AOB, 即352=(3 2+h2-2×33h×h×(-32) 3h) 解得h=521. 4.如图所示,海中小岛A周围38海里内有暗礁,一船正向南航行,在B处测得小岛A在船的南偏东30°,航行30海里后,在C处测得小岛在船的南偏东45°,如果此船不改变航向,继续向南航行,有无触礁的危险? 【分析】船继续向南航行,有无触礁的危险,取决于A到直线BC的距离与38海里的大小,于是我们只要先求出AC或AB的大小,再计算出A到BC的距离,将它与38海里比较大小即可.

正弦定理和余弦定理的应用举例(解析版)

正弦定理和余弦定理的应用举例 考点梳理 1.用正弦定理和余弦定理解三角形的常见题型 测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等.2.实际问题中的常用角 (1)仰角和俯角 与目标线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方的角叫仰角,目标视线在水平视线下方的角叫俯角(如图①). (2)方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°,西偏北60°等; (3)方位角 指从正北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图②).(4)坡度:坡面与水平面所成的二面角的度数. 【助学·微博】 解三角形应用题的一般步骤 (1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系.侧重考查从实际问题中提炼数学问题的能力. (2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型. (3)根据题意选择正弦定理或余弦定理求解. (4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等. 解三角形应用题常有以下两种情形 (1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解. (2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有

时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解. 考点自测 1.(2012·江苏金陵中学)已知△ABC 的一个内角为120°,并且三边长构成公差为4的等差数列,则三角形的面积等于________. 解析 记三角形三边长为a -4,a ,a +4,则(a +4)2=(a -4)2+a 2-2a (a -4)cos 120°,解得a =10,故S =12×10×6×sin 120°=15 3. 答案 15 3 2.若海上有A ,B ,C 三个小岛,测得A ,B 两岛相距10海里,∠BAC =60°,∠ABC =75°,则B ,C 间的距离是________海里. 解析 由正弦定理,知BC sin 60°=AB sin (180°-60°-75°) .解得BC =56(海里). 答案 5 6 3.(2013·日照调研)如图,一船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°距塔68海里的M 处,下午2时到达这座灯塔的东南方向的N 处,则这只船的航行速度为________海里/时. 解析 由正弦定理,得MN =68sin 120°sin 45°=346(海里),船的航行速度为3464= 176 2(海里/时). 答案 176 2 4.在△ABC 中,若23ab sin C =a 2+b 2+c 2,则△ABC 的形状是________. 解析 由23ab sin C =a 2+b 2+c 2,a 2+b 2-c 2=2ab cos C 相加,得a 2+b 2= 2ab sin ? ????C +π6.又a 2+b 2≥2ab ,所以 sin ? ????C +π6≥1,从而sin ? ????C +π6=1,且a =b ,C =π3时等号成立,所以△ABC 是等边三角形. 答案 等边三角形

高中数学《正弦定理》教案北师大版必修

江苏省邳州市第二中学高二数学 1.1.1《正弦定理》教案 北师大版 必修5 情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。 ●教学重点 正弦定理的探索和证明及其基本应用。 ●教学难点 已知两边和其中一边的对角解三角形时判断解的个数。 ●教学过程 Ⅰ.课题导入 如图1.1-1,固定?ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。 A 思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 显然,边AB 的长度随着其对角∠C 的大小的增大而增大。能否 用一个等式把这种关系精确地表示出来? C B Ⅱ.讲授新课 [探索研究] (图1.1-1) 在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。如图1.1-2,在Rt ?ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数 的定义,有sin a A c =,sin b B c =,又sin 1c C c ==, A 则sin sin sin a b c c A B C === b c 从而在直角三角形ABC 中,sin sin sin a b c A B C == C a B (图1.1-2) 思考:那么对于任意的三角形,以上关系式是否仍然成立? (由学生讨论、分析) 可分为锐角三角形和钝角三角形两种情况: 如图1.1-3,当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则sin sin a b A B =, C

正弦定理、余弦定理单元测试及答案

正弦定理、余弦定理 一、选择题 1.在△ABC 中,已知,30,10,25?===A c a 则B= ( ) (A )105° (B )60° (C )15° (D )105°或15° 2.在△ABC 中,已知a=6,b=4,C=120°,则sinB 的值是 ( ) (A ) 7 21 (B ) 19 57 (C ) 383 (D )19 57- 3.在△ABC 中,有a=2b ,且C=30°,则这个三角形一定是 ( ) (A )直角三角形 (B )钝角三角形 (C )锐角三角形 (D )以上都有可能 4.△ABC 中,已知b=30,c=15,C=26°,则此三角形的解的情况是 ( ) (A )一解 (B )二解 (C )无解 (D )无法确定 5.在△ABC 中,中,若2 cos sin sin 2 A C B =,则△ABC 是 ( ) (A )等边三角形 (B )等腰三角形 (C )直角三角形 (D )等腰直角三角形 6.在△ABC 中,已知13 5 cos ,53sin == B A ,则 C cos 等于 ( ) (A ) 6556 (B ) 65 16 (C ) 6516或65 56 (D ) 65 33 7.直角△ABC 的斜边AB=2,内切圆的半径为r ,则r 的最大值是 ( )

(A )2 (B )1 (C ) 2 2 (D )12- 8.若△ABC 的三边长为a ,b ,c ,且,)()(2 2 2 2 2 2 c x a c b x b x f +-++=则f (x )的图 象是 ( ) (A )在x 轴的上方 (B )在x 轴的下方 (C )与x 轴相切 (D )与x 轴交于两点 二、填空题 9.在△ABC 中,∠C=60°,c=22,周长为),321(2++则∠A= . 10.三角形中有∠A=60°,b ∶c=8∶5,这个三角形内切圆的面积为12π,则这个三角形 面积为 . 11.平行四边形ABCD 中,∠B=120°,AB=6,BC=4,则两条对角线的长分别是 . 12.在60°角内有一点P ,到两边的距离分别为1cm 和2cm ,则P 到角顶点的距离为 . 三、解答题 13.在锐角△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,A <B <C ,B=60°,且满足 ).13(2 1 )2cos 1)(2cos 1(-= ++C A 求:(1)A 、B 、C 的大小; (2)c b a 2+的值.

正弦定理与余弦定理

第28讲 正弦定理与余弦定理 1.在△ABC 中,a 2=b 2+c 2+bc ,则角A 等于(C) A .60° B .45° C .120° D .30° 因为cos A =b 2+c 2-a 22bc =-12, 又因为0°

正弦定理教案

课题:§2.1.1正弦定理 教学目标: 1.知识目标:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。 2. 能力目标:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。 3.情感目标:培养学生在方程思想指导下处理解三角形问题的运算能力 教学重点:正弦定理的探索和证明及其基本应用。 教学难点:已知两边和其中一边的对角解三角形时判断解的个数。 教材版本:北师大必修5 教学课时:1 教学过程: 一、新课引入: 如左图,在ABC Rt ?中,有 s i n ,s i n ,s i n 1 a b A B C c c ===。 经过变形有,,sin sin sin a b c c c c A B C ===, 所以在ABC Rt ?中有:c C c B b A a ===sin sin sin 思考:在其他任意三角形中是否也有 s i n s i n s i n a b c A B C ==等式成立呢,这个时候 ?sin sin sin ===C c B b A a 观察下图,无论怎么移动B ’,都会有角B ’=B,所以在C AB '?中,c B b B b ==sin sin ', c

C 是ABC Rt ?,C AB ' ?外接圆的直径。所以对任意ABC ?,均有R C c B b A a 2s i n s i n s i n ===(R 为ABC ?外接圆的半径) 这就是我们这节课所探讨的内容:正弦定理 二、新课讲解 (一)正弦定理及变形: R C c B b A a 2sin sin sin === 定理变形:⑴C R c B R b A R a sin 2,sin 2,sin 2=== ⑵R c C R b B R a A 2sin ,2sin ,2sin === ⑶C B c b C A c a B A b a sin :sin :,sin :sin :,sin :sin :=== (二)定理应用 例1、在△ABC 中,BC =3,A =45°,B =60°,求AC ,AB,c 解:【分析】 由三角形内角和定理得 B A C --=0180 由正弦定理A BC B AC C AB sin sin sin = = 得A B BC AC sin sin = ,A C BC AB sin sin = 【点评】:已知两角一边,通过正弦定理求剩下的三个量:两边一角。 例2、已知:△ABC 中,a =3,b =2,B =45°,求A 、C 及c. 解:【分析】 根据正弦定理,得 sin A =asin B b =3sin 45°2 =32, ∵b

余弦定理教学设计经典

1.1.2余弦定理教学设计 一、教学目标 认知目标:在创设的问题情境中,引导学生发现余弦定理的内容,推证余弦定理,并简单运用余弦定理解三角形; 能力目标:引导学生通过观察,推导,比较,由特殊到一般归纳出余弦定理,培养学生的创新意识和观察与逻辑思维能力,能体会用向量作为数形结合的工具,将几何问题转化为代数问题;情感目标:面向全体学生,创造平等的教学氛围,通过学生之间、师生之间的交流、合作和评价,调动学生的主动性和积极性,给学生成功的体验,培养学生学习数学兴趣和热爱科学、勇于创新的精神。 二、教学重难点 重点:探究和证明余弦定理的过程;理解掌握余弦定理的内容;初步对余弦定理进行应用。 难点:利用向量法证明余弦定理的思路;对余弦定理的熟练应用。 探究和证明余弦定理过程既是本节课的重点,也是本节课的难点。学生已经具备了勾股02220定理的知识,即当∠C=90时,有c=a+b。作为一般的情况,当∠C≠90时,三角形的三边满足什么关系呢?学生一时很难找到思路。最容易想到的思路就是构造直角三角形,尝试应用勾股定理去探究这个三角形的边角关系;用向量的数量积证明余弦定理更是学生想不到的,原因是学生很难将向量的知识与解三角形的知识相结合。因而教师在授课时可以适当的点拨、启发,鼓励学生大胆的探索。在教学中引导学生从不同的途径去探索余弦定理的证明,这样既能开拓学生的视野,加强学生对余弦定理的理解,又能培养学生形成良好的思维习惯,激发学生学习兴趣,这是本节课教学的重点,也是难点。 三、学情分析和教学内容分析 本节内容是人教B版普通高中课程标准实验教科书必修5第一章第一节余弦定理的第一课时。余弦定理是关于任意三角形边角之间的另一定理,是解决有关三角形问题与实际应用问题(如测量等)的重要定理,它将三角形的边和角有机的结合起来,实现了“边”和“角”的互化,从而使“三角”与“几何”有机的结合起来,为求与三角形有关的问题提供了理论依据,同时也为判断三角形的形状和证明三角形中的等式提供了重要的依据。教科书首先通过设问的方式,指出了“已知三角形的两边和夹角,无法用正弦定理去解三角形”,进而通过直角三角形中的勾股定理引导学生去探究一般三角形中的边角关系,然后通过构造直角三角形去完成对余弦定理的推证过程,教科书上还进一步的启发学生用向量的方法去证明余弦定理,最后通过3个例题巩固学生对余弦定理的应用。 在学习本节课之前,学生已经学习了正弦定理的内容,初步掌握了正弦定理的证明及应用,并明确了用正弦定理可以来解哪些类型的三角形。在此基础上,教师可以创设一个“已知三角形两边及夹角”来解三角形的实际例子,学生发现不能用上一节所学的知识来解决这一问题,从而引发学生的学习兴趣,引出这一节的内容。在对余弦定理教学中时,考虑到它比正弦定理形式上更加复杂,教师可以有目的的提供一些供研究的素材,并作必要的启发和引导,让学生进行思考,通过类比、联想、质疑、探究等步骤,辅以小组合作学习,建立猜想,获得命题,再想方设法去证明。在用两种不同的方法证明余弦定理时,学生可能会遇到证明思路上的困难,教师可以适当的点拨。

相关文档
最新文档