2018年高考数学二轮复习 第一部分 专题一 第五讲 导数的应用 第五讲 导数的应用(一)习题

2018年高考数学二轮复习 第一部分 专题一 第五讲 导数的应用 第五讲 导数的应用(一)习题
2018年高考数学二轮复习 第一部分 专题一 第五讲 导数的应用 第五讲 导数的应用(一)习题

第五讲 导数的应用(一)

限时规范训练 A 组——高考热点强化练

一、选择题

1.曲线y =e x

在点A 处的切线与直线x +y +3=0垂直,则点A 的坐标为( ) A .(-1,e -1

) B .(0,1) C .(1,e)

D .(0,2)

解析:与直线x +y +3=0垂直的直线的斜率为1,所以切线的斜率为1,因为y ′=e x

,所以由y ′=e x =1,解得x =0,此时y =e 0

=1,即点A 的坐标为(0,1),选B. 答案:B

2.已知函数f (x )=x 2

+2cos x ,若f ′(x )是f (x )的导函数,则函数f ′(x )在原点附近的图象大致是( )

解析:因为f ′(x )=2x -2sin x ,[f ′(x )]′=2-2cos x ≥0,所以函数f ′(x )在R 上单调递增,故选A. 答案:A

3.曲线f (x )=x ln x 在点(1,f (1))处的切线的倾斜角为( ) A.π6 B.π4 C.π3

D.π2

解析:因为f (x )=x ln x ,所以f ′(x )=ln x +1,所以f ′(1)=1,所以曲线f (x )=x ln x 在点(1,f (1))处的切线的倾斜角为π

4

.

答案:B

4.若函数f (x )=2x 3

-3mx 2

+6x 在(2,+∞)上为增函数,则实数m 的取值范围是( ) A .(-∞,2) B .(-∞,2] C.?

????-∞,52 D.?

????-∞,52

解析:因为f ′(x )=6x 2-6mx +6,当x ∈(2,+∞)时,令f ′(x )≥0,即6x 2

-6mx +6≥0,则m ≤x +1x ,又因为y =x +1x 在(2,+∞)上为增函数,故当x ∈(2,+∞)时,x +1x >52,故m ≤5

2,故选D. 答案:D

5.函数f (x )=12x 2

-ln x 的最小值为( )

A.12 B .1 C .0

D .不存在

解析:f ′(x )=x -1x =x 2

-1

x

,且x >0.令f ′(x )>0,得x >1;令f ′(x )<0,得0

∴f (x )在x =1处取得最小值,且f (1)=12-ln 1=12.

答案:A

6.已知常数a ,b ,c 都是实数,f (x )=ax 3

+bx 2

+cx -34的导函数为f ′(x ),f ′(x )≤0的解集为{x |-2≤x ≤3},若f (x )的极小值等于-115,则a 的值是( ) A .-81

22

B.13 C .2

D .5

解析:由题意知,f ′(x )=3ax 2

+2bx +c ≤0的解集为[-2,3],且在x =3处取得极小值-115,

故有?????

3a >0,

-2+3=-2b 3a ,-2×3=c

3a ,

f =27a +9b +3c -34=-115,

解得a =2.

答案:C

7.(2017·沈阳模拟)已知偶函数f (x )(x ≠0)的导函数为f ′(x ),且满足f (1)=0,当x >0时,

xf ′(x )<2f (x ),则使得f (x )>0成立的x 的取值范围是( )

A .(-∞,-1)∪(0,1)

B .(-∞,-1)∪(1,+∞)

C .(-1,0)∪(1,+∞)

D .(-1,0)∪(0,1)

解析:根据题意,设函数g (x )=f x x

2

(x ≠0),当x >0时,g ′(x )=f

x

x -2·f x

x 3

<0,

说明函数g (x )在

(0,+∞)上单调递减,又f (x )为偶函数,所以g (x )为偶函数,又f (1)=0,所以g (1)=0, 故g (x )在(-1,0)∪(0,1)上的函数值大于零,即f (x )在(-1,0)∪(0,1)上的函数值大于零. 答案:D

8.已知函数f (x )的导函数为f ′(x ),若x 2

f ′(x )+xf (x )=sin x (x ∈(0,6)),f (π)=2,则下列结论正确的是( ) A .xf (x )在(0,6)上单调递减 B .xf (x )在(0,6)上单调递增 C .xf (x )在(0,6)上有极小值2π

D .xf (x )在(0,6)上有极大值2π

解析:因为x 2

f ′(x )+xf (x )=sin x ,x ∈(0,6),所以xf ′(x )+f (x )=sin x x

,设g (x )=xf (x ),

x ∈(0,6),

则g ′(x )=f (x )+xf ′(x )=sin x x

,由g ′(x )>0得0

时,

函数g (x )=xf (x )取得极大值g (π)=πf (π)=2π. 答案:D 二、填空题

9.曲线y =x 2

+1x

在点(1,2)处的切线方程为________.

解析:∵y ′=2x -1

x

2,∴y ′|x =1=1,即曲线在点(1,2)处的切线的斜率k =1,∴切线方程为y

-2=x -1, 即x -y +1=0. 答案:x -y +1=0

10.设函数f (x )=x (e x

-1)-12

x 2,则函数f (x )的单调增区间为________.

解析:因为f (x )=x (e x -1)-12x 2,所以f ′(x )=e x -1+x e x -x =(e x

-1)(x +1).令f ′(x )>0,

即(e x

-1)·(x +1)>0,解得x ∈(-∞,-1)或x ∈(0,+∞).所以函数f (x )的单调增区间为(-∞,-1)和(0,+∞). 答案:(-∞,-1)和(0,+∞)

11.函数f (x )=x 3

-3x 2

+6在x =________时取得极小值.

解析:依题意得f ′(x )=3x (x -2).当x <0或x >2时,f ′(x )>0;当0

函数f (x )在x =2时取得极小值. 答案:2

12.(2017·高考全国卷Ⅰ)如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O .D ,E ,F 为圆O 上的点,△DBC ,△ECA ,△FAB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA, △FAB ,使得D ,E ,F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3

)的最大值为________.

解析:如图,连接OD ,交BC 于点G ,

由题意,知OD ⊥BC ,OG =

3

6

BC . 设OG =x ,则BC =23x ,DG =5-x ,

三棱锥的高h =DG 2

-OG 2

=25-10x +x 2

-x 2

=25-10x ,

S △ABC =12×23x ×3x =33x 2,则三棱锥的体积V =13

S △ABC ·h =3x 2·25-10x =

3·25x 4

-10x 5

.

令f (x )=25x 4-10x 5,x ∈? ??

??0,52,则f ′(x )=100x 3-50x 4

.

令f ′(x )=0得x =2.当x ∈(0,2)时,f ′(x )>0,f (x )单调递增,当x ∈? ??

??2,52时,f ′(x )<0,f (x )单调递减,故当x =2时,f (x )取得最大值80,则V ≤3×80=415.

∴三棱锥体积的最大值为415 cm 3

. 答案:415 cm 3

三、解答题

13.已知函数f (x )=x 4+a x -ln x -3

2

,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于

直线y =1

2x .

(1)求a 的值;

(2)求函数f (x )的单调区间与极值.

解析:(1)对f (x )求导得f ′(x )=14-a x 2-1x ,由f (x )在点(1,f (1))处的切线垂直于直线y =1

2x

知f ′(1)=-34-a =-2,解得a =5

4

.

(2)由(1)知f (x )=x

4+54x -ln x -32,则f ′(x )=x 2

-4x -5

4x 2

, 令f ′(x )=0,解得x =-1或x =5.

因x =-1不在f (x )的定义域(0,+∞)内,故舍去. 当x ∈(0,5)时,f ′(x )<0,故f (x )在(0,5)内为减函数; 当x ∈(5,+∞)时,f ′(x )>0,故f (x )在(5,+∞)内为增函数. 由此知函数f (x )在x =5时取得极小值f (5)=-ln 5. 14.设函数f (x )=3x 2

+ax

e

x

(a ∈R). (1)若f (x )在x =0处取得极值,确定a 的值,并求此时曲线y =f (x )在点(1,f (1))处的切线方程;

(2)若f (x )在[3,+∞)上为减函数,求a 的取值范围. 解析:(1)对f (x )求导得f ′(x )=

x +a

x

x 2+ax

x

x

2

-3x 2

-a x +a

e

x

因为f (x )在x =0处取得极值,所以f ′(0)=0,即a =0. 当a =0时,f (x )=3x 2

e x ,

f ′(x )=-3x 2

+6x

e x

, 故f (1)=3e ,f ′(1)=3

e

从而f (x )在点(1,f (1))处的切线方程为y -3e =3

e (x -1),化简得3x -e y =0.

(2)由(1)知f ′(x )=

-3x 2

-a x +a

e

x

令g (x )=-3x 2

+(6-a )x +a ,

由g (x )=0解得x 1=6-a -a 2

+366,x 2=6-a +a 2

+36

6.

当x 0,即f ′(x )>0,故f (x )为增函数; 当x >x 2时,g (x )<0,即f ′(x )<0,故f (x )为减函数.

由f (x )在[3,+∞)上为减函数,知x 2=6-a +a 2

+366≤3,解得a ≥-9

2

,故a 的取值范围为

????

??-92,+∞.

15.(2017·高考北京卷)已知函数f (x )=e x

cos x -x . (1)求曲线y =f (x )在点(0,f (0))处的切线方程;

(2)求函数f (x )在区间?

?????0,π2上的最大值和最小值.

解析:(1)因为f (x )=e x

cos x -x ,所以f ′(x )=e x

(cos x -sin x )-1,f ′(0)=0. 又因为f (0)=1,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =1.

(2)设h (x )=e x

(cos x -sin x )-1,则h ′(x )=e x

(cos x -sin x -sin x -cos x )=-2e x

sin x .

当x ∈? ????0,π2时,h ′(x )<0,所以h (x )在区间?

?????0,π2上单调递减.

所以对任意x ∈? ????0,π2有h (x )<h (0)=0,即f ′(x )<0.所以函数f (x )在区间?

?????0,π2上单调递

减.

因此f (x )在区间??????0,π2上的最大值为f (0)=1,最小值为f ? ??

??π2=-π2. B 组——高考能力提速练

一、选择题

1.函数f (x )=ax 3

+bx 2

+cx +d 的图象如图所示,则下列结论成立的是( )

A .a >0,b <0,c >0,d >0

B .a >0,b <0,c <0,d >0

C .a <0,b <0,c >0,d >0

D .a >0,b >0,c >0,d <0

解析:∵函数f (x )的图象在y 轴上的截距为正值,∴d >0.∵f ′(x )=3ax 2

+2bx +c ,且函数

f (x )=ax 3+bx 2+cx +d 在(-∞,x 1)上单调递增,(x 1,x 2)上单调递减,(x 2,+∞)上单调递增, ∴f ′(x )<0的解集为(x 1,x 2),∴a >0,又x 1,x 2均为正数,∴c 3a >0,-2b

6a

>0,可得c >0,b <0.

答案:A

2.设函数f (x )=x -2sin x 是区间??????t ,t +π2上的减函数,则实数t 的取值范围是( )

A.?

?????2k π-π3,2k π-π6(k ∈Z)

B.??????2k π+π3,2k π+11π6(k ∈Z)

C.?

?????2k π-π6,2k π+π3(k ∈Z) D.?

?????2k π+π3,2k π+7π6(k ∈Z) 解析:由题意得f ′(x )=1-2cos x ≤0,即cos x ≥12,解得2k π-π3≤x ≤2k π+π

3

(k ∈Z),∵

f (x )=x -2sin x 是区间?

??

?

??

t ,t +π2上的减函数,∴?

?????t ,t +π2??

??

?

??

2k π-π

3,2k π+π3

,∴2k π

-π3≤t ≤2k π-π

6(k ∈Z),故选A. 答案:A

3.(2017·重庆模拟)若直线y =ax 是曲线y =2ln x +1的一条切线,则实数a =( ) A .e -12

B .2e -1

2

C .e 12

D .2e 12

解析:依题意,设直线y =ax 与曲线y =2ln x +1的切点的横坐标为x 0,则有y ′|x =x 0=2

x 0

,于

是有?????

a =2x 0

,ax 0=2ln x 0+1,解得x 0=e ,a =2x 0=2e -1

2

,选B.

答案:B

4.已知函数f (x )=x 3

+3x 2

-9x +1,若f (x )在区间[k,2]上的最大值为28,则实数k 的取值范围为( ) A .[-3,+∞) B .(-3,+∞) C .(-∞,-3)

D .(-∞,-3]

解析:由题意知f ′(x )=3x 2

+6x -9,令f ′(x )=0,解得x =1或x =-3,所以f ′(x ),f (x )随x 的变化情况如下表:

又答案:D

5.对?x ∈R ,函数f (x )的导数存在,若f ′(x )>f (x ),且a >0,则以下说法正确的是( ) A .f (a )>e a

·f (0) B .f (a )

·f (0) C .f (a )>f (0) D .f (a )

解析:设g (x )=

f x

e

x

,则g ′(x )=

f x -f x

e

x

>0,故g (x )=

f x

e

x

为R 上的单调递增

函数,因此g (a )>g (0), 即

f a

e

a

>

f

e

=f (0),所以f (a )>e a

·f (0),选A.

答案:A

6.若函数f (x )=x e x

-a 有两个零点,则实数a 的取值范围为( ) A .-1

e

B .a >-1

e

C .-e

D .0

解析:构造函数g (x )=x e x

,则g ′(x )=e x

(x +1),因为e x

>0,所以由g ′(x )=0,解得x =-1, 当x >-1时,g ′(x )>0,函数g (x )为增函数;当x <-1时,g ′(x )<0,函数g (x )为减函数, 所以当x =-1时函数g (x )有最小值:g (-1)=-e -1=-1e

.画出函数y =x e x

的图象,如图所示,

显然当-1e

-a 有两个零点,故选A.

答案:A

7.设函数f (x )=?

????

2x 3

+3x 2

x

e ax

x 在[-2,2]上的最大值为2,则实数a 的取值范围是

( )

A.????

??12ln 2,+∞

B.????

??0,12ln 2

C .(-∞,0)

D.? ??

??-∞,12ln 2

解析:设y =2x 3

+3x 2

+1(-2≤x ≤0),则y ′=6x (x +1)(-2≤x ≤0),所以-2≤x <-1时y ′>0,-1

+3x 2

+1在[-2,0]上的最大值为2,所以函数y =e ax

在(0,2]上的最大值不超过2,当a >0时,y =e ax 在(0,2]上的最大值e 2a

≤2,所以0

=1≤2,当a <0时,y =e ax

在(0,2]上的最大值小于1,所以实数a 的取值范围是? ????-∞,12ln 2.

答案:D

8.定义在R 上的函数f (x )的导函数为f ′(x ),已知f (x +1)是偶函数,且(x -1)f ′(x )<0.若

x 12,则f (x 1)与f (x 2)的大小关系是( )

A .f (x 1)

B .f (x 1)=f (x 2)

C .f (x 1)>f (x 2)

D .不确定

解析:由(x -1)f ′(x )<0可知,当x >1时,f ′(x )<0,函数单调递减.当x <1时,f ′(x )>0,函数单调递增.

因为函数f (x +1)是偶函数,所以f (x +1)=f (1-x ),f (x )=f (2-x ),即函数f (x )图象的对称轴为x =1.所以,若1≤x 1f (x 2);若x 1<1,则x 2>2-x 1>1,此时有f (x 2)

又f (2-x 1)=f (x 1),所以f (x 1)>f (x 2). 综上,必有f (x 1)>f (x 2),选C. 答案:C 二、填空题

9.曲线y =x (3ln x +1)在点(1,1)处的切线方程为______.

解析:y ′=3ln x +1+x ·3

x

=3ln x +4,k =y ′|x =1=4,切线方程为y -1=4(x -1),即y =4x

-3.

答案:y =4x -3

10.已知函数f (x )=12x 2+2ax -ln x ,若f (x )在区间??????13,2上是增函数,则实数a 的取值范围为________.

解析:由题意知f ′(x )=x +2a -1x ≥0在??????13,2上恒成立,即2a ≥-x +1x 在??????13,2上恒成立.

又∵y =-x +1x 在??????13,2上单调递减,∴?

????-x +1x max =83,∴2a ≥83,即a ≥43.

答案:????

??43,+∞

11.已知函数f (x )=ln x ,则函数g (x )=f (x )-f ′(x )在区间[2,e]上的最大值为________. 解析:因为f (x )=ln x ,所以f ′(x )=1x ,则g (x )=f (x )-f ′(x )=ln x -1

x

,函数g (x )的定义

域为(0,+∞),

g ′(x )=1x +1

x

2>0在x ∈(0,+∞)上恒成立,所以函数g (x )在(0,+∞)上是增函数,所以g (x )

在区间[2,e]上的最大值g (x )max =g (e)=ln e -1e =1-1

e .

答案:1-1

e

12.已知y =f (x )为R 上的连续可导函数,且xf ′(x )+f (x )>0,则函数g (x )=xf (x )+1(x >0)的零点个数为________.

解析:本题考查导数在函数中的应用,考查考生的构造思想.设F (x )=xf (x ),则F ′(x )=f (x )+xf ′(x )>0在R 上恒成立,且F (0)=0,所以F (x )=xf (x )>0在(0,+∞)上恒成立,所以在(0,+∞)上g (x )=xf (x )+1>1恒成立,则函数g (x )=xf (x )+1的零点个数为0. 答案:0 三、解答题

13.已知函数f (x )=ln x -a x

.

(1)若a >0,试判断f (x )在定义域内的单调性; (2)若f (x )在[1,e]上的最小值为3

2,求a 的值.

解析:(1)x ∈(0,+∞),f ′(x )=1x +a x 2=x +a

x

2(a >0),

显然f ′(x )>0,故f (x )在(0,+∞)上是单调递增函数. (2)由(1)可知,f ′(x )=

x +a

x 2

. ①若a ≥-1,则当x ∈(1,e)时,x +a >0,即f ′(x )>0,故f (x )在[1,e]上为增函数, ∴f (x )min =f (1)=-a =32,∴a =-3

2

(舍去).

②若a ≤-e ,则当x ∈(1,e)时,x +a <0,即f ′(x )<0,故f (x )在[1,e]上为减函数,

∴f (x )min =f (e)=1-a e =32,∴a =-e

2

(舍去).

③若-e

当10,f (x )在(-a ,e)上为增函数. ∴f (x )min =f (-a )=ln(-a )+1=3

2,∴a =- e.

综上所述,a =- e.

14.(2017·潍坊模拟)已知函数f (x )=a x

+b ln x ,曲线y =f (x )在点(1,f (1))处的切线方程为y =x .

(1)求函数f (x )的单调区间及极值;

(2)若?x ≥1,f (x )≤kx 恒成立,求k 的取值范围. 解析:(1)f (x )的定义域为(0,+∞),f ′(x )=bx -a

x 2

,故f ′(1)=b -a =1, 又f (1)=a ,点(1,a )在直线y =x 上, ∴a =1,则b =2.

∴f (x )=1x +2ln x 且f ′(x )=2x -1x

2,

当01

2

时,f ′(x )>0.

故函数f (x )的单调增区间为? ????12,+∞,单调减区间为? ??

??0,12,

f (x )极小值=f ? ??

??

12=2-2ln 2,无极大值.

(2)由题意知,k ≥

f x x =2ln x x +1

x

2(x ≥1)恒成立, 令g (x )=2ln x x +1

x

2(x ≥1),

则g ′(x )=2-2ln x x 2

-2x

3=x -x ln x -

x 3

(x ≥1),

令h (x )=x -x ln x -1(x ≥1),则h ′(x )=-ln x (x ≥1),

当x ≥1时,h ′(x )≤0,h (x )在[1,+∞)上为减函数,故h (x )≤h (1)=0,故g ′(x )≤0, ∴g (x )在[1,+∞)上为减函数, 故g (x )的最大值为g (1)=1,∴k ≥1. 15.已知函数f (x )=13x 3-32

x 2

+2x +5.

(1)求函数f (x )的图象在点(3,f (3))处的切线方程;

(2)若曲线y =f (x )与y =2x +m 有三个不同的交点,求实数m 的取值范围. 解析:(1)∵f (x )=13x 3-32x 2+2x +5,∴f ′(x )=x 2

-3x +2.

易求得f ′(3)=2,f (3)=13

2

.

∴f (x )的图象在(3,f (3))处的切线方程是y -13

2=2(x -3),即4x -2y +1=0.

(2)令f (x )=2x +m ,即13x 3-32x 2+2x +5=2x +m ,得13x 3-32x 2

+5=m ,

设g (x )=13x 3-32

x 2

+5,

∵曲线y =f (x )与直线y =2x +m 有三个不同的交点, ∴曲线y =g (x )与直线y =m 有三个不同的交点,

易得g ′(x )=x 2

-3x ,令g ′(x )=0,解得x =0或x =3, 当x <0或x >3时,g ′(x )>0, 当0

∴g (x )在(-∞,0),(3,+∞)上单调递增,在(0,3)上单调递减, 又g (0)=5,g (3)=12,即g (x )极大值=5,g (x )极小值=1

2,

∴可画出如图所示的函数g (x )的大致图象.

∴实数m 的取值范围为1

2

2018年高考数学二轮复习第一部分专题一第五讲导数的应用第五讲导数的应用(一)习题

第五讲 导数的应用(一) 限时规范训练 A 组——高考热点强化练 一、选择题 1.曲线y =e x 在点A 处的切线与直线x +y +3=0垂直,则点A 的坐标为( ) A .(-1,e -1 ) B .(0,1) C .(1,e) D .(0,2) 解析:与直线x +y +3=0垂直的直线的斜率为1,所以切线的斜率为1,因为y ′=e x ,所以由y ′=e x =1,解得x =0,此时y =e 0 =1,即点A 的坐标为(0,1),选B. 答案:B 2.已知函数f (x )=x 2 +2cos x ,若f ′(x )是f (x )的导函数,则函数f ′(x )在原点附近的图象大致是( ) 解析:因为f ′(x )=2x -2sin x ,[f ′(x )]′=2-2cos x ≥0,所以函数f ′(x )在R 上单调递增,故选A. 答案:A 3.曲线f (x )=x ln x 在点(1,f (1))处的切线的倾斜角为( ) A.π6 B.π4 C.π3 D.π2 解析:因为f (x )=x ln x ,所以f ′(x )=ln x +1,所以f ′(1)=1,所以曲线f (x )=x ln x 在点(1,f (1))处的切线的倾斜角为π 4 .

答案:B 4.若函数f (x )=2x 3 -3mx 2 +6x 在(2,+∞)上为增函数,则实数m 的取值范围是( ) A .(-∞,2) B .(-∞,2] C.? ????-∞,52 D.? ????-∞,52 解析:因为f ′(x )=6x 2-6mx +6,当x ∈(2,+∞)时,令f ′(x )≥0,即6x 2 -6mx +6≥0,则m ≤x +1x ,又因为y =x +1x 在(2,+∞)上为增函数,故当x ∈(2,+∞)时,x +1x >52,故m ≤5 2,故选D. 答案:D 5.函数f (x )=12x 2 -ln x 的最小值为( ) A.12 B .1 C .0 D .不存在 解析:f ′(x )=x -1x =x 2 -1 x ,且x >0.令f ′(x )>0,得x >1;令f ′(x )<0,得00, -2+3=-2b 3a ,-2×3=c 3a , f 3=27a +9b +3c -34=-115, 解得a =2. 答案:C 7.(2017·沈阳模拟)已知偶函数f (x )(x ≠0)的导函数为f ′(x ),且满足f (1)=0,当x >0时, xf ′(x )<2f (x ),则使得f (x )>0成立的x 的取值范围是( ) A .(-∞,-1)∪(0,1) B .(-∞,-1)∪(1,+∞)

2018年高考理科数学全国卷二导数压轴题解析

2018年高考理科数学全国卷二导数压轴题解析 已知函数2()x f x e ax =-. (1) 若1a =,证明:当0x ≥时,()1f x ≥. (2) 若()f x 在(0,)+∞只有一个零点,求a . 题目分析: 本题主要通过函数的性质证明不等式以及判断函数零点的问题考察学生对于函数单调性以及零点存在定理性的应用,综合考察学生化归与分类讨论的数学思想,题目设置相对较易,利于选拔不同能力层次的学生。第1小问,通过对函数以及其导函数的单调性以及值域判断即可求解。官方标准答案中通过()()x g x e f x -=的变形化成2()x ax bx c e C -+++的形式,这种形式的函数求导之后仍为2()x ax bx c e -++这种形式的函数,指数函数的系数为代数函数,非常容易求解零点,并且这种变形并不影响函数零点的变化。这种变形思想值得引起注意,对以后导数命题有着很大的指引作用。但是,这种变形对大多数高考考生而言很难想到。因此,以下求解针对函数()f x 本身以及其导函数的单调性和零点问题进行讨论,始终贯穿最基本的导函数正负号与原函数单调性的关系以及零点存在性定理这些高中阶段的知识点,力求完整的解答该类题目。 题目解答: (1)若1a =,2()x f x e x =-,()2x f x e x '=-,()2x f x e ''=-. 当[0,ln 2)x ∈时,()0f x ''<,()f x '单调递减;当(ln 2,)x ∈+∞时,()0f x ''>,()f x '单调递增; 所以()(ln 2)22ln 20f x f ''≥=->,从而()f x 在[0,)+∞单调递增;所以()(0)1f x f ≥=,得证. (2)当0a ≤时,()0f x >恒成立,无零点,不合题意. 当0a >时,()2x f x e ax '=-,()2x f x e a ''=-. 当[0,ln 2)x a ∈时,()0f x ''<,()f x '单调递减;当(ln 2,)x a ∈+∞时,()0f x ''>,()f x '单调递增;所以()(ln 2)2(1ln 2)f x f a a a ''≥=-. 当02 e a <≤ 时,()0f x '≥,从而()f x 在[0,)+∞单调递增,()(0)1f x f ≥=,在(0,)+∞无零点,不合题意.

高考数学导数题型归纳

导数题型归纳 请同学们高度重视: 首先,关于二次函数的不等式恒成立的主要解法: 1、分离变量;2变更主元;3根分布;4判别式法 5、二次函数区间最值求法:(1)对称轴(重视单调区间) 与定义域的关系 (2)端点处和顶点是最值所在 其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题”以及“充分应用数形结合思想”,创建不等关系求出取值范围。 最后,同学们在看例题时,请注意寻找关键的等价变形和回归的基础 一、基础题型:函数的单调区间、极值、最值;不等式恒成立; 1、此类问题提倡按以下三个步骤进行解决: 第一步:令0)(' =x f 得到两个根; 第二步:画两图或列表; 第三步:由图表可知; 其中不等式恒成立问题的实质是函数的最值问题, 2、常见处理方法有三种: 第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0) 第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元); 例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上, ()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数,432 3()1262 x mx x f x =-- (1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围; (2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值. 解:由函数4323()1262x mx x f x =-- 得32 ()332 x mx f x x '=-- (1) ()y f x =在区间[]0,3上为“凸函数”, 则 2 ()30g x x mx ∴=--< 在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于max ()0g x < 解法二:分离变量法: ∵ 当0x =时, 2 ()330g x x mx ∴=--=-<恒成立, 当03x <≤时, 2 ()30g x x mx =--<恒成立 等价于233 x m x x x ->=-的最大值(03x <≤)恒成立, 而3 ()h x x x =-(03x <≤)是增函数,则max ()(3)2h x h == (2)∵当2m ≤时()f x 在区间(),a b 上都为“凸函数” 则等价于当2m ≤时2 ()30g x x mx =--< 恒成立 解法三:变更主元法 再等价于2 ()30F m mx x =-+>在2m ≤恒成立(视为关于m 的一次函数最值问题) 2 2 (2)0230 11(2)0230 F x x x F x x ?->--+>?????-<-+>??? 例2),10(32 R b a b x a ∈<<+- ],2不等式()f x a '≤恒成立,求a 的取值范围.

2007——2014高考数学新课标卷(理)函数与导数压轴题汇总

2007——2014高考数学新课标卷(理)函数与导数综合大题 【2007新课标卷(海南宁夏卷)】 21.(本小题满分12分) 设函数2()ln()f x x a x =++ (I )若当1x =-时,()f x 取得极值,求a 的值,并讨论()f x 的单调性; (II )若()f x 存在极值,求a 的取值范围,并证明所有极值之和大于e ln 2 . 【解析】(Ⅰ)1()2f x x x a '= ++,依题意有(1)0f '-=,故32a =. 从而2231(21)(1) ()3322 x x x x f x x x ++++'==++. ()f x 的定义域为32?? -+ ??? ,∞,当312x -<<-时,()0f x '>; 当1 12 x -<<-时,()0f x '<; 当1 2 x >- 时,()0f x '>. 从而,()f x 分别在区间3 1122????---+ ? ?????,,, ∞单调增加,在区间112?? -- ??? ,单调减少. (Ⅱ)()f x 的定义域为()a -+,∞,2221 ()x ax f x x a ++'=+. 方程2 2210x ax ++=的判别式2 48a ?=-. (ⅰ)若0?< ,即a << ()f x 的定义域内()0f x '>,故()f x 的极值. (ⅱ)若0?= ,则a a = 若a = ()x ∈+ ,2 ()f x '= . 当x =时,()0f x '=,

当2 x ? ??∈-+ ? ????? ,∞时, ()0f x '>,所以()f x 无极值. 若a =)x ∈+,()0f x '= >,()f x 也无极值. (ⅲ)若0?>,即a > a <22210x ax ++=有两个不同的实根 1x = 2x = 当a <12x a x a <-<-,,从而()f x '有()f x 的定义域内没有零点, 故()f x 无极值. 当a > 1x a >-,2x a >-,()f x '在()f x 的定义域内有两个不同的零点, 由根值判别方法知()f x 在12x x x x ==,取得极值. 综上,()f x 存在极值时,a 的取值范围为)+. ()f x 的极值之和为 2221211221()()ln()ln()ln 11ln 2ln 22 e f x f x x a x x a x a +=+++++=+->-=. 【2008新课标卷(海南宁夏卷)】 21.(本小题满分12分) 设函数1 ()()f x ax a b x b =+ ∈+Z ,,曲线()y f x =在点(2(2))f ,处的切线方程为y =3. (Ⅰ)求()f x 的解析式: (Ⅱ)证明:函数()y f x =的图像是一个中心对称图形,并求其对称中心; (Ⅲ)证明:曲线()y f x =上任一点的切线与直线x =1和直线y =x 所围三角形的面积为定值,并求出此定值. 21.解:(Ⅰ)2 1 ()() f x a x b '=- +,

高三数学一轮复习 导数的综合应用

导数的综合应用 一、选择题 1.已知函数f(x)=x2+mx+ln x是单调递增函数,则m的取值范围是( B ) (A)m>-2(B)m≥-2 (C)m<2 (D)m≤2 解析:函数定义域为(0,+∞), 又f'(x)=2x+m+. 依题意有f'(x)=2x+m+≥0在(0,+∞)上恒成立, ∴m≥-恒成立,设g(x)=-, 则g(x)=-≤-2, 当且仅当x=时等号成立. 故m≥-2, 故选B. 2.(2013洛阳统考)函数f(x)的定义域是R,f(0)=2,对任意x∈R,f(x)+f'(x)>1,则不等式 e x·f(x)>e x+1的解集为( A ) (A){x|x>0} (B){x|x<0} (C){x|x<-1或x>1} (D){x|x<-1或0e x-e x=0, 所以g(x)=e x·f(x)-e x为R上的增函数. 又因为g(0)=e0·f(0)-e0=1, 所以原不等式转化为g(x)>g(0), 解得x>0. 故选A. 3.如图所示,一个正五角星薄片(其对称轴与水面垂直)匀速地升出水面,记t时刻五角星露出水面部分的图形面积为S(t)(S(0)=0),则导函数y=S'(t)的图象大致为( A )

解析:由导数的定义知,S'(t0)表示面积函数S(t0)在t0时刻的瞬时变化率.如图所示,正五角星薄片中首先露出水面的是区域Ⅰ,此时其面积S(t)在逐渐增大,且增长速度越来越快,故其瞬时变化率S'(t)也应逐渐增大;当露出的是区域Ⅱ时,此时的S(t)应突然增大,然后增长速度减慢,但仍为增函数,故其瞬时变化率S'(t)也随之突然变大,再逐渐变小,但S'(t)>0(故可排除选项B);当五角星薄片全部露出水面后,S(t)的值不再变化,故其导数值S'(t)最终应等于0,符合上述特征的只有选项A. 4.已知f(x)是定义域为R的奇函数,f(-4)=-1,f(x)的导函数f'(x)的图象如图所示.若两正 数a,b满足f(a+2b)<1,则的取值范围是( B ) (A)(B) (C)(-1,0) (D)(-∞,-1) 解析:因为f(x)是定义域为R的奇函数,f(-4)=-1,所以f(-4)=-f(4),所以f(4)=1,所以f(a+2b)

函数与导数大题部分-高考数学解题方法归纳总结专题训练

专题03 函数与导数大题部分 【训练目标】 1、 理解函数的概念,会求函数的定义域,值域和解析式,特别是定义域的求法; 2、 掌握函数单调性,奇偶性,周期性的判断方法及相互之间的关系,会解决它们之间的综合问题; 3、 掌握指数和对数的运算性质,对数的换底公式; 4、 掌握指数函数和对数函数的图像与性质; 5、 掌握函数的零点存在定理,函数与方程的关系; 6、 熟练数形结合的数学思想在解决函数问题的运用; 7、 熟练掌握导数的计算,导数的几何意义求切线问题; 8、 理解并掌握导数与函数单调性之间的关系,会利用导数分析函数的单调性,会根据单调性确定参数的取 值范围; 9、 会利用导数求函数的极值和最值,掌握构造函数的方法解决问题。 【温馨小提示】 本章内容既是高考的重点,又是难点,再备考过程中应该大量解出各种题型,总结其解题方法,积累一些常用的小结论,会给解题带来极大的方便。 【名校试题荟萃】 1、(2019届新余四中、上高二中高三第一次联考)已知函数 .,R n m ∈ (1)若函数()x f 在()()2,2f 处的切线与直线0=-y x 平行,求实数n 的值; (2)试讨论函数()x f 在区间[)+∞,1上最大值; (3)若1=n 时,函数()x f 恰有两个零点,求证:221>+x x 【答案】(1)6n =(2)1ln m n --(3)见解析 【解析】(1)由, ,由于函数()f x 在(2,(2))f 处的切线与直线0x y -=平行, 故 2 14 n -=,解得6n =。 (2) ,由()0f x '<时,x n >;()0f x '>时,x n <,所以 ①当1n ≤时,()f x 在[)1,+∞上单调递减,故()f x 在[)1,+∞上的最大值为 ;

高考数学真题汇编——函数与导数

高考数学真题汇编——函数与导数 1.【2018年浙江卷】函数y=sin2x的图象可能是 A. B. C. D. 【答案】D 点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复. 2.【2018年理天津卷】已知,,,则a,b,c的大小关系为A. B. C. D. 【答案】D

【解析】分析:由题意结合对数函数的性质整理计算即可求得最终结果. 详解:由题意结合对数函数的性质可知:,, , 据此可得:.本题选择D选项. 点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确. 3.【2018年理新课标I卷】已知函数.若g(x)存在2个零点,则a的取值范围是 A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞) 【答案】C 详解:画出函数的图像,在y轴右侧的去掉,再画出直线,之后上下移动,可以发现当直线过点A时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C.

点睛:该题考查的是有关已知函数零点个数求有关参数的取值范围问题,在求解的过程中,解题的思路是将函数零点个数问题转化为方程解的个数问题,将式子移项变形,转化为两条曲线交点的问题,画出函数的图像以及相应的直线,在直线移动的过程中,利用数形结合思想,求得相应的结果. 4.【2018年理新课标I卷】设函数,若为奇函数,则曲线在点处的切线方程为 A. B. C. D. 【答案】D 点睛:该题考查的是有关曲线在某个点处的切线方程的问题,在求解的过程中,首先需要确定函数解析式,此时利用到结论多项式函数中,奇函数不存在偶次项,偶函数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得,借助于导数的几何意义,结合直线方程的点斜式求得结果. 5.【2018年全国卷Ⅲ理】设,,则

高三数学导数压轴题

导数压轴 一.解答题(共20小题) 1.已知函数f(x)=e x(1+alnx),设f'(x)为f(x)的导函数. (1)设g(x)=e﹣x f(x)+x2﹣x在区间[1,2]上单调递增,求a的取值范围; (2)若a>2时,函数f(x)的零点为x0,函f′(x)的极小值点为x1,求证:x0>x1. 2.设. (1)求证:当x≥1时,f(x)≥0恒成立; (2)讨论关于x的方程根的个数. 3.已知函数f(x)=﹣x2+ax+a﹣e﹣x+1(a∈R).

(1)当a=1时,判断g(x)=e x f(x)的单调性; (2)若函数f(x)无零点,求a的取值范围. 4.已知函数. (1)求函数f(x)的单调区间; (2)若存在成立,求整数a的最小值.5.已知函数f(x)=e x﹣lnx+ax(a∈R).

(Ⅰ)当a=﹣e+1时,求函数f(x)的单调区间; (Ⅱ)当a≥﹣1时,求证:f(x)>0. 6.已知函数f(x)=e x﹣x2﹣ax﹣1. (Ⅰ)若f(x)在定义域内单调递增,求实数a的范围; (Ⅱ)设函数g(x)=xf(x)﹣e x+x3+x,若g(x)至多有一个极值点,求a的取值集合.7.已知函数f(x)=x﹣1﹣lnx﹣a(x﹣1)2(a∈R).

(2)若对?x∈(0,+∞),f(x)≥0,求实数a的取值范围. 8.设f′(x)是函数f(x)的导函数,我们把使f′(x)=x的实数x叫做函数y=f(x)的好点.已知函数f(x)=. (Ⅰ)若0是函数f(x)的好点,求a; (Ⅱ)若函数f(x)不存在好点,求a的取值范围. 9.已知函数f(x)=lnx+ax2+(a+2)x+2(a为常数).

高考数学 导数及其应用的典型例题

第二部分 导数、微分及其导数的应用 知识汇总 一、求导数方法 1.利用定义求导数 2.导数的四则运算法则 3.复合函数的求导法则 若)(u f y =与)(x u φ=均可导,则[])(x f y φ=也可导,且dx du du dy dx dy ? = 即 [])()(x x f y φφ'?'=' 4.反函数的求导法则 若)(x f y =与)(y x φ=互为反函数,且)(y φ单调、可导,则 )(1)(y x f φ'= ',即dy dx dx dy 1 = 5.隐函数求导法 求由方程0),(=y x F 确定的隐函数 )(x f y =的导数dx dy 。只需将方程0),(=y x F 两边同时对x 求导(注意其中变量y 是x 的函数),然后解出 dx dy 即可。 6.对数求导法 对数求导法是先取对数,然后按隐函数求导数的方法来求导数。对数求导法主要解决两类函数的求导数问题: (1)幂指数函数y=)()(x v x u ;(2)由若干个因子的乘积或商的显函数,如 y= 3 4 )3(52)2)(1(---++x x x x x ,3 ) 2)(53() 32)(1(--+-=x x x x y ,5 5 2 2 5 +-=x x y 等等。 7.由参数方程所确定函数的求导法则 设由参数方程 ? ? ?==)() (t y t x ?φ ),(βα∈t 确定的函数为y=f(x),其中)(),(t t ?φ

可导,且)(t φ'≠0,则y=f(x)可导,且 dt dx dt dy t t dx dy =''=)()(φ? 8.求高阶导数的方法 二、求导数公式 1.基本初等函数求导公式 (1) 0)(='C (2) 1 )(-='μμμx x (3) x x cos )(sin =' (4) x x sin )(cos -=' (5) x x 2 sec )(tan =' (6) x x 2csc )(cot -=' (7) x x x tan sec )(sec =' (8) x x x cot csc )(csc -=' (9) a a a x x ln )(=' (10) (e )e x x '= (11) a x x a ln 1 )(log = ' (12) x x 1)(ln = ', (13) 211)(arcsin x x -= ' (14) 211)(arccos x x -- =' (15) 21(arctan )1x x '= + (16) 21(arccot )1x x '=- + 2.常见函数的高阶导数 (1) n n x n x -+-?-?-?=αα αααα)1()2()1()() ( (2) x n x e e =) () ( (3) ()()ln x n x n a a a = (4) () (sin ) sin 2n x x n π? ?=+? ??? (5) ??? ? ??+=2cos )(cos )(πn x x n (6) () 1 (1)!ln()(1) ()n n n n a x a x --+=-+ (7) 1 )() (!)1()1(++-=+n n n n b ax a n b ax

2018年高考数学—导数专题

导数 (选修2-2P18A7改编)曲线y=sin x x在x= π 2处的切线方程为() A.y=0 B.y=2π C.y=- 4 π2 x+ 4 π D.y= 4 π2 x 解析∵y′=x cos x-sin x x2,∴y′|x= π 2=- 4 π2 , 当x=π 2时,y= 2 π , ∴切线方程为y-2 π =- 4 π2? ? ? ? ? x- π 2 ,即y=- 4 π2 x+ 4 π . (2016·天津卷)已知函数f(x)=(2x+1)e x,f′(x)为f(x)的导函数,则f′(0)的值为________. 解析因为f(x)=(2x+1)e x, 所以f′(x)=2e x+(2x+1)e x=(2x+3)e x, 所以f′(0)=3e0=3. (2017·西安月考)设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x,则a=________. 解析y′=a- 1 x+1 ,由题意得y′|x=0=2,即a-1=2, 所以a=3. (2017·威海质检)已知函数f(x)=x ln x,若直线l过点(0,-1),并且与曲线y=f(x)相切,则直线l的方程为() A.x+y-1=0 B.x-y-1=0 C.x+y+1=0 D.x-y+1=0

解析 ∵点(0,-1)不在曲线f (x )=x ln x 上, ∴设切点为(x 0,y 0). 又∵f ′(x )=1+ln x ,∴?????y 0=x 0ln x 0, y 0+1=(1+ln x 0)x 0, 解得x 0=1,y 0=0. ∴切点为(1,0),∴f ′(1)=1+ln 1=1. ∴直线l 的方程为y =x -1,即x -y -1=0. (2015·全国Ⅱ卷)已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =________. 解析 法一 ∵y =x +ln x ,∴y ′=1+1 x ,y ′|x =1=2. ∴曲线y =x +ln x 在点(1,1)处的切线方程为y -1=2(x -1),即y =2x -1. ∵y =2x -1与曲线y =ax 2+(a +2)x +1相切, ∴a ≠0(当a =0时曲线变为y =2x +1与已知直线平行). 由?????y =2x -1,y =ax 2 +(a +2)x +1消去y ,得ax 2+ax +2=0. 由Δ=a 2-8a =0,解得a =8. 法二 同法一得切线方程为y =2x -1. 设y =2x -1与曲线y =ax 2+(a +2)x +1相切于点(x 0,ax 20+(a +2)x 0+1). ∵y ′=2ax +(a +2),∴y ′|x =x 0=2ax 0+(a +2). 由?????2ax 0+(a +2)=2,ax 20+(a +2)x 0+1=2x 0-1,解得???x 0=-12,a =8. 答案 8 (2017·西安质测)曲线f (x )=x 3-x +3在点P 处的切线平行于直线y =2x -1,则P

高中数学导数的应用——极值与最值专项训练题(全)

高中数学专题训练 导数的应用——极值与最值一、选择题 1.函数y=ax3+bx2取得极大值和极小值时的x的值分别为0和1 3,则() A.a-2b=0B.2a-b=0 C.2a+b=0 D.a+2b=0 答案 D 解析y′=3ax2+2bx,据题意, 0、1 3是方程3ax 2+2bx=0的两根 ∴-2b 3a= 1 3,∴a+2b=0. 2.当函数y=x·2x取极小值时,x=() A. 1 ln2B.- 1 ln2 C.-ln2 D.ln2 答案 B 解析由y=x·2x得y′=2x+x·2x·ln2 令y′=0得2x(1+x·ln2)=0 ∵2x>0,∴x=- 1 ln2 3.函数f(x)=x3-3bx+3b在(0,1)内有极小值,则() A.0<b<1 B.b<1 C.b>0 D.b<1 2 答案 A 解析f(x)在(0,1)内有极小值,则f′(x)=3x2-3b在(0,1)上先负后正,∴f′(0)=-3b<0, ∴b>0,f′(1)=3-3b>0,∴b<1 综上,b的范围为0<b<1 4.连续函数f(x)的导函数为f′(x),若(x+1)·f′(x)>0,则下列结论中正确的是() A.x=-1一定是函数f(x)的极大值点 B.x=-1一定是函数f(x)的极小值点 C.x=-1不是函数f(x)的极值点 D.x=-1不一定是函数f(x)的极值点 答案 B 解析x>-1时,f′(x)>0 x<-1时,f′(x)<0 ∴连续函数f(x)在(-∞,-1)单减,在(-1,+∞)单增,∴x=-1为极小值点.

5.函数y =x 33+x 2-3x -4在[0,2]上的最小值是( ) A .-173 B .-103 C .-4 D .-643 答案 A 解析 y ′=x 2+2x -3. 令y ′=x 2+2x -3=0,x =-3或x =1为极值点. 当x ∈[0,1]时,y ′<0.当x ∈[1,2]时,y ′>0,所以当x =1时,函数取得极小值,也为最小值. ∴当x =1时,y min =-173. 6.函数f (x )的导函数f ′(x )的图象,如右图所示,则( ) A .x =1是最小值点 B .x =0是极小值点 C .x =2是极小值点 D .函数f (x )在(1,2)上单增 答案 C 解析 由导数图象可知,x =0,x =2为两极值点,x =0为极大值点,x =2为极小值点,选C. 7.已知函数f (x )=12x 3-x 2-72x ,则f (-a 2)与f (-1)的大小关系为( ) A .f (-a 2)≤f (-1) B .f (-a 2)

高考文科数学专题复习导数训练题文

欢迎下载学习好资料 高考文科数学专题复习导数训练题(文)一、考点回顾导数的概念及其运算是导数应用的基础,是高考重点考查的内容。考查方式以客观题为主,主1. 要考查导数的基本公式和运算法则,以及导数的几何意义。导数的应用是高中数学中的重点内容,导数已由解决问题的工具上升到解决问题必不可少的工2.具,特别是利用导数来解决函数的单调性与最值问题是高考热点问题。选择填空题侧重于利用导不等式、解答题侧重于导数的综合应用,即与函数、数确定函数的单调性、单调区间和最值问题,数列的综合应用。3.应用导数解决实际问题,关键是建立恰当的数学模型(函数关系),如果函数在给定区间内只有一个极值点,此时函数在这点有极大(小)值,而此时不用和端点值进行比较,也可以得知这就是最大(小)值。 二、经典例题剖析 考点一:求导公式。 13f(x)?x?2x?1??ff(?1)(x)3的值是的导函数,则。例1. 是 ????2?1?2?1?f'32x??xf'解析:,所以 答案:3 点评:本题考查多项式的求导法则。 考点二:导数的几何意义。 1x?y?2(1?(1))f(x)My,f2,点则图数2. 例已知函的象程的处切线方在是 ??(1)(f1?)f。 115???fk?'1M(1,f(1))222,所的纵坐标为,所以,由切线过点,可得点M 解析:因为5???f1?????3'f1?f12以,所以3 答案: 学习好资料欢迎下载 32?3)(1,2??4x?yx?2x例3. 。在点曲线处的切线方程是 2?3)(1,4??4xy'?3x5?k?3?4?4??解析:,所以设切线方程,处切线的斜率为点?3)(1, ?3)y??5x?b(1,2b?,将点处的切线为带入切线方程可得,所以,过曲线上点5x?y?2?0方程为:5x?y?2?0答案:点评:以上两小题均是对导数的几何意义的考查。 考点三:导数的几何意义的应用。 ??23x?,y0x l:y?kx x?3x?2y?xl与曲线C且直线相切于点,,例,4.已知曲线C:直线000l的方程及切点坐标。求直线y??00k??x??0x y,x?0在曲析解:线直线过原点,C则。由点上, ??00232x?2x?3xy?x yx,y'?3x?6x?2??0在,处,。又 则00y20?x?3x?2 000000??222x?3x?2?3x?6x?22x?'6x??3xk?f?,整曲线C,的切线斜率为 0000000331y???k??x03x??2x x?00082400。所以,(舍),此时,,解得:理得:,或033??1,???y??x82l??4的方程为,切点坐标是直线。 33??1,???y??x82l??4的方程为,切点坐标是答案:直线点评:本小题考查导数

高考理科数学全国卷三导数压轴题解析

2018年高考理科数学全国卷三导数压轴题解析 已知函数2()(2)ln(1)2f x x ax x x =+++- (1) 若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2) 若0x =是()f x 的极大值点,求a . 考点分析 综合历年试题来看,全国卷理科数学题目中,全国卷三的题目相对容易。但在2018年全国卷三的考察中,很多考生反应其中的导数压轴题并不是非常容易上手。第1小问,主要通过函数的单调性证明不等式,第2小问以函数极值点的判断为切入点,综合考察复杂含参变量函数的单调性以及零点问题,对思维能力(化归思想与分类讨论)的要求较高。 具体而言,第1问,给定参数a 的值,证明函数值与0这一特殊值的大小关系,结合函数以及其导函数的单调性,比较容易证明,这也是大多数考生拿到题目的第一思维方式,比较常规。如果能结合给定函数中20x +>这一隐藏特点,把ln(1)x +前面的系数化为1,判断ln(1)x +与2/(2)x x +之间的大小关系,仅通过一次求导即可把超越函数化为求解零点比较容易的代数函数,解法更加容易,思维比较巧妙。总体来讲,题目设置比较灵活,不同能力层次的学生皆可上手。 理解什么是函数的极值点是解决第2问的关键。极值点与导数为0点之间有什么关系:对于任意函数,在极值点,导函数一定等于0么(存在不存在)?导函数等于0的点一定是函数的极值点么?因此,任何不结合函数的单调性而去空谈函数极值点的行为都是莽撞与武断的。在本题目中,0x =是()f x 的极大值点的充要条件是存在10δ<和20δ>使得对于任意1(,0)x δ∈都满足()(0)=0f x f <( 或者()f x 单调递增),对于任意2(0,)x δ∈都满足()(0)=0f x f <( 或者()f x 单调递减),因此解答本题的关键是讨论函数()f x 在0x =附近的单调性或者判断()f x 与(0)f 的大小关系。题目中并没有限定参数a 的取值范围,所以要对实数范围内不同a 取值时的情况都进行分类讨论。在第1小问的基础上,可以很容易判断0a =以及0a >时并不能满足极大值点的要求,难点是在于判断0a <时的情况。官方标准答案中将问题等价转化为讨论函数2 ()ln(1)/(2)h x x x x =+++在0x =点的极值情况,非常巧妙,但是思维跨度比较大,在时间相对紧张的选拔性考试中大多数考生很难想到。需要说明的是,官方答案中的函数命题等价转化思想需要引起大家的重视,这种思想在2018年全国卷2以及2011年新课标卷1的压轴题中均有体现,这可能是今后导数压轴题型的重要命题趋势,对学生概念理解以及思维变通的能力要求更高,符合高考命题的思想。 下面就a 值变化对函数()f x 本身在0x =附近的单调性以及极值点变化情况进行详细讨论。

高三数学重点知识:导数及其应用

2019年高三数学重点知识:导数及其应用查字典数学网高中频道收集和整理了2019年高三数学重点知识:导数及其应用,以便高中生在高考备考过程中更好的梳理知识,轻松备战。祝大家暑假快乐。 一基础再现 考点87简单复合函数的导数 1.曲线在点处的切线方程为____________。 2.已知函数和的图象在处的切线互相平行,则=________. 3.(宁夏、海南卷)设函数 (Ⅰ)讨论的单调性;(Ⅱ)求在区间的最大值和最小值. 考点88定积分 4.计算 5.(1);(2) 6. 计算= 7.___________ 8.求由曲线y=x3,直线x=1,x=2及y=0所围成的曲边梯形的面积. 二感悟解答 1.答案: 2.答案:6 3.解:的定义域为. 当时,;当时,;当时,.

从而,分别在区间,单调增,在区间单调减. (Ⅱ)由(Ⅰ)知在区间的最小值为. 又. 所以在区间的最大值为. 4.答案:6 5.答案:(1) 死记硬背是一种传统的教学方式,在我国有悠久的历史。但随着素质教育的开展,死记硬背被作为一种僵化的、阻碍学生能力发展的教学方式,渐渐为人们所摒弃;而另一方面,老师们又为提高学生的语文素养煞费苦心。其实,只要应用得当,“死记硬背”与提高学生素质并不矛盾。相反,它恰是提高学生语文水平的重要前提和基础。 (2)利用导数的几何意义:与x=0,x=2所围图形是以(0,0)为圆心,2为半径的四分之一个圆,其面积即为(图略) 观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。随机观察也是不可少的,是相当有趣的,如蜻蜓、蚯蚓、毛毛虫等,孩子一边观察,一边提问,兴趣很浓。我提供的观察对象,注意形象逼真,色彩鲜明,大小适中,引导幼儿多角度多层面地进行观察,保证每个幼儿看得到,看得清。看得清才能说得正确。在观察过程中指导。我注意帮助幼儿学习正确的观察方法,即按顺序观察和抓住事物的不同特征重

2018年全国卷理科数学十年真题分类汇编 导数

导数 一.基础题组 1. 【2010新课标,理3】曲线y = 在点(-1,-1)处的切线方程为( ) A .y =2x +1 B .y =2x -1 C .y =-2x -3 D .y =-2x -2 【答案】A 2. 【2008全国1,理6】若函数的图像与函数的图像关于直线 对称,则( ) A . B . C . D . 【答案】B. 【解析】由. 3. 【2012全国,理21】已知函数f (x )满足f (x )=f ′(1)e x -1 -f (0)x + x 2 . (1)求f (x )的解析式及单调区间; (2)若f (x )≥ x 2 +ax +b ,求(a +1)b 的最大值. 【解析】(1)由已知得f ′(x )=f ′(1)e x -1 -f (0)+x . 所以f ′(1)=f ′(1)-f (0)+1,即f (0)=1. 又f (0)=f ′(1)e -1 ,所以f ′(1)=e. 从而f (x )=e x -x + x 2 . 2 x + x (1)y f x = -1y =y x =()f x =21 x e -2x e 21 x e +22 x e +() ()()()212121,1,y x x y x e f x e f x e --=?=-==12 12 12

由于f ′(x )=e x -1+x , 故当x ∈(-∞,0)时,f ′(x )<0; 当x ∈(0,+∞)时,f ′(x )>0. 从而,f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增. (2)由已知条件得e x -(a +1)x ≥b .① (ⅰ)若a +1<0,则对任意常数b ,当x <0,且时,可得e x -(a +1)x <b ,因此①式不成立. (ⅱ)若a +1=0,则(a +1)b =0. 所以f (x )≥ x 2 +ax +b 等价于 b ≤a +1-(a +1)ln(a +1).② 因此(a +1)b ≤(a +1)2 -(a +1)2 ln(a +1). 设h (a )=(a +1)2 -(a +1)2 ln(a +1), 则h ′(a )=(a +1)(1-2ln(a +1)). 所以h (a )在(-1,)上单调递增,在(,+∞)上单调递减, 故h (a )在处取得最大值. 从而,即(a +1)b ≤. 当,时,②式成立, 11 b x a -< +12 12 e 1-12 e 1-12 =e 1a -e ()2h a ≤ e 2 1 2 =e 1a -12 e 2 b =

校级:高考数学试题导数内容探究

高考数学试题导数内容探究 现代中学数学组陈永生 导数是研究函数的工具,运用导数的有关知识,研究函数的性质:单调性、极值和最值;以导数为工具,通过观察、分析三次函数图像的变化趋势,寻找临界状况,并以此为出发点进行推测、论证,实现对考生创造能力的考查是高考的热点问题。在高考中考察形式多种多样,以选择题、填空题等主观题目的形式考察基本概念、运算及导数的应用,也经常把高次多项式函数,分式函数,指数型,对数型函数,以及初等基本函数的和、差、积、商知识结合起来,以解答题形式综合考察利用导数研究函数的单调性、极值、最值,切线,方程的根,参数的范围等问题,这类题难度很大,综合性强,内容新,背景新,方法新,是高考命题的丰富宝藏。解题中需用到函数与方程思想、分类讨论思想、数形结合思想、转化与划归思想。 《课程标准》中导数的内容有:导数概念及其几何意义、导数的运算、导数在研究函数中的应用、生活中的优化问题举例、(理科)定积分与微积分基本定理。文、理科考查形式略有不同。理科基本以一个解答题的形式考查。文科以一个选择题或填空题和一个解答题为主。从新课程高考分析,对导数的要求一般有三个层次:第一层次是主要考查导数的概念、求导公式和求导法则;第二层次是导数的简单应用,包括求切线方程、求函数的单调区间, 求函数的极值;第三层次是综合考查,包括解决应用问题,将导数内容和传统内容中有关不等式和函数的单调性等有机的结合在一起,设计综合试题。本文以高考试题为例,谈谈高考导数的热点问题,供鉴赏。 一、函数,导数,不等式综合在一起,解决单调性,参数的范围等问题。解决单调性问题转化为解含参数的一元二次不等式或高次不等式的问题;求解参数的取值范围问题转化为不等式的恒成立,能成立,恰成立来求解。进一步转化求函数的最值或一元二次不等式在给定区间上(或实数集 )上的恒成立问题来解决,从而达到考查分类与整合、化归与转化的数学思想。

(完整版)高中数学导数压轴题专题训练

高中数学导数尖子生辅导(填选压轴) 一.选择题(共30小题) 1.(2013?文昌模拟)如图是f(x)=x3+bx2+cx+d的图象,则x12+x22的值是() A.B.C.D. 考点:利用导数研究函数的极值;函数的图象与图象变化. 专题:计算题;压轴题;数形结合. 分析:先利用图象得:f(x)=x(x+1)(x﹣2)=x3﹣x2﹣2x,求出其导函数,利用x1,x2是原函数的极值点,求出x1+x2=,,即可求得结论. 解答:解:由图得:f(x)=x(x+1)(x﹣2)=x3﹣x2﹣2x, ∴f'(x)=3x2﹣2x﹣2 ∵x1,x2是原函数的极值点 所以有x1+x2=,, 故x12+x22=(x1+x2)2﹣2x1x2==. 故选D. 点评:本题主要考查利用函数图象找到对应结论以及利用导数研究函数的极值,是对基础知识的考查,属于基础题. 2.(2013?乐山二模)定义方程f(x)=f′(x)的实数根x0叫做函数f(x)的“新驻点”,若函数g(x)=x,h(x)=ln(x+1),φ(x)=x3﹣1的“新驻点”分别为α,β,γ,则α,β,γ的大小关系为() A.α>β>γB.β>α>γC.γ>α>βD.β>γ>α 考点:导数的运算. 专题:压轴题;新定义. 分析:分别对g(x),h(x),φ(x)求导,令g′(x)=g(x),h′(x)=h(x),φ′(x)=φ(x),则它们的根分别为α,β,γ,即α=1,ln(β+1)=,γ3﹣1=3γ2,然后分别讨论β、γ的取值范围即可. 解答: 解:∵g′(x)=1,h′(x)=,φ′(x)=3x2, 由题意得: α=1,ln(β+1)=,γ3﹣1=3γ2, ①∵ln(β+1)=, ∴(β+1)β+1=e, 当β≥1时,β+1≥2, ∴β+1≤<2, ∴β<1,这与β≥1矛盾, ∴0<β<1; ②∵γ3﹣1=3γ2,且γ=0时等式不成立,

相关文档
最新文档