高等数学第一章课件-数 域

高等数学同济第七版上册知识点总结

高等数学(同济第七版)上册-知识点总结 第一章 函数与极限 一.函数的概念 1.两个无穷小的比较 设0)(lim ,0)(lim ==x g x f 且l x g x f =) () (lim (1)l=0,称f(x)是比g(x)高阶的无穷小,记以f(x)=0[)(x g ],称g(x)是比f(x)低阶的无穷小。 (2)l ≠0,称f(x)与g(x)是同阶无穷小。 (3)l=1,称f(x)与g(x)是等价无穷小,记以f(x)~g(x) 2.常见的等价无穷小 当x →0时 sin x ~x ,tan x ~x ,x arcsin ~x ,x arccos ~x , 1?cos x ~2/2^x ,x e ?1~x ,)1ln(x +~x ,1)1(-+αx ~x α 二.求极限的方法 1.两个准则 准则1.单调有界数列极限一定存在 准则2.(夹逼定理)设g (x )≤f (x )≤h (x ) 若A x h A x g ==)(lim ,)(lim ,则A x f =)(lim 2.两个重要公式 公式11sin lim 0=→x x x 公式2e x x x =+→/10 )1(lim 3.用无穷小重要性质和等价无穷小代换 4.用泰勒公式 当x 0→时,有以下公式,可当做等价无穷小更深层次 5.洛必达法则 定理1设函数)(x f 、)(x F 满足下列条件: (1)0)(lim 0 =→x f x x ,0)(lim 0 =→x F x x ; (2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ;

(3))()(lim 0x F x f x x ''→存在(或为无穷大),则 这个定理说明:当)()(lim 0x F x f x x ''→存在时,)()(lim 0x F x f x x →也存在且等于)()(lim 0x F x f x x ''→;当)() (lim 0x F x f x x ''→为无穷大时,) () (lim 0x F x f x x →也是无穷大. 这种在一定条件下通过分子分母分别求导再求极限来确定未定式的极限值的方法称为洛必达(H L 'ospital )法则. ∞ ∞ 型未定式 定理2设函数)(x f 、)(x F 满足下列条件: (1)∞=→)(lim 0 x f x x ,∞=→)(lim 0 x F x x ; (2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ; (3)) () (lim 0x F x f x x ''→存在(或为无穷大),则 注:上述关于0x x →时未定式∞∞ 型的洛必达法则,对于∞→x 时未定式∞ ∞ 型同样适用. 使用洛必达法则时必须注意以下几点: (1)洛必达法则只能适用于“00 ”和“∞ ∞ ”型的未定式,其它的未定式须先化简变形成“0 ”或“ ∞ ∞ ”型才能运用该法则; (2)只要条件具备,可以连续应用洛必达法则; (3)洛必达法则的条件是充分的,但不必要.因此,在该法则失效时并不能断定原极限不存在. 6.利用导数定义求极限 基本公式)() ()(lim 0'000x f x x f x x f x =?-?+→?(如果存在) 7.利用定积分定义求极限 基本格式?∑==∞→1 1)()(1lim dx x f n k f n n k n (如果存在) 三.函数的间断点的分类 函数的间断点分为两类: (1)第一类间断点 设0x 是函数y =f (x )的间断点。如果f (x )在间断点0x 处的左、右极限都存在,则称0x 是f (x )的第一类间断点。左右极限存在且相同但不等于该点的函数值为可去间断点。左右极限不存在为跳跃间断点。第一类间断点包括可去间断点和跳跃间断点。 (2)第二类间断点 第一类间断点以外的其他间断点统称为第二类间断点。常见的第二类间断点有无穷间断点和振荡间断点。 四.闭区间上连续函数的性质 ) () (lim )()(lim 00x F x f x F x f x x x x ''=→→)()(lim )()(lim 00x F x f x F x f x x x x ''=→→

大一经典高数复习资料经典最新经典全面复习

高等数学(本科少学时类型) 第一章 函数与极限 第一节 函数 ○函数基础(高中函数部分相关知识)(★★★) ○邻域(去心邻域)(★) (){} ,|U a x x a δδ=-< (){},|0U a x x a δδ=<-, ∴()N g ε=???? 2.即对0>?ε,()N g ε?=????,当N n >时,始终有不等式n x a ε-<成立, ∴{}a x n x =∞ →lim 第三节 函数的极限 ○0x x →时函数极限的证明(★) 【题型示例】已知函数()x f ,证明()A x f x x =→0 lim 【证明示例】δε-语言 1.由()f x A ε-<化简得()00x x g ε<-<, ∴()εδg = 2.即对0>?ε,()εδg =?,当00x x δ<-<时,始终有不等式()f x A ε-<成立, ∴()A x f x x =→0 lim ○∞→x 时函数极限的证明(★) 【题型示例】已知函数()x f ,证明()A x f x =∞ →lim 【证明示例】X -ε语言 1.由()f x A ε-<化简得()x g ε>, ∴()εg X = 2.即对0>?ε,()εg X =?,当X x >时,始终有不等式()f x A ε-<成立, ∴()A x f x =∞ →lim 第四节 无穷小与无穷大 ○无穷小与无穷大的本质(★) 函数()x f 无穷小?()0lim =x f 函数()x f 无穷大?()∞=x f lim ○无穷小与无穷大的相关定理与推论(★★) (定理三)假设()x f 为有界函数,()x g 为无穷小,则()()lim 0f x g x ?=???? (定理四)在自变量的某个变化过程中,若()x f 为无穷大,则()1f x -为无穷小;反之,若()x f 为无穷小,且()0f x ≠,则()x f 1 -为无穷大 【题型示例】计算:()()0 lim x x f x g x →???? ?(或∞→x ) 1.∵()f x ≤M ∴函数()f x 在0x x =的任一去心邻域()δ,0x U ο 内是有界的; (∵()f x ≤M ,∴函数()f x 在D x ∈上有界;) 2.()0lim 0 =→x g x x 即函数()x g 是0x x →时的无穷小; (()0lim =∞→x g x 即函数()x g 是∞→x 时的无穷小;) 3.由定理可知()()0 lim 0x x f x g x →?=???? (()()lim 0x f x g x →∞ ?=????) 第五节 极限运算法则 ○极限的四则运算法则(★★) (定理一)加减法则 (定理二)乘除法则 关于多项式()p x 、()x q 商式的极限运算 设:()()?????+?++=+?++=--n n n m m m b x b x b x q a x a x a x p 1 101 10 则有()()???????∞=∞→0 lim 0 b a x q x p x m n m n m n >=< ()()() ()000lim 0 0x x f x g x f x g x →?? ??=∞????? ()()()()()0000000,00g x g x f x g x f x ≠=≠== (特别地,当()()00 lim 0 x x f x g x →=(不定型)时,通常分 子分母约去公因式即约去可去间断点便可求解出极限值,也可以用罗比达法则求解) 【题型示例】求值2 3 3 lim 9 x x x →--

高等数学第一章1

高数第一周测试题 出题人:洪义伟姜继伟贾西南马刚 一、选择题 1. 数列有界是函数收敛的() A 充要条件 B 必要条件 C 充分条件D即非充分条件又非必要条件 2.根据limXn=a的定义,对任给ε>0,存在正整数N,使得对于n>N的一切Xn,不等式|Xn—a|<ε都成立,这里的N() A 是ε的函数N(ε),且当ε减小时N(ε)增大 B 与ε有关,但ε给定时N并不唯一确定 C 是由ε所唯一确定的 D 是一个很大的常数,与ε无关 3. f(x)=在其定义域(—∞,+∞)上是() A 最小正周期为3π的周期函数 B 最小正周期为的周期函数 C 最小正周期为的周期函数D非周期函数 5.函数f(x)=(x∈R)的值域是() A (0,1) B (0,1] C [0,1) D [ 0 , 1 ]

7.函数f(x)=x2-mx+5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是增函数,则f(1)等于( ) A -7 B 1 C 17 D 25 8.下列函数是无穷小量的是() ( ) A g(2)>g(-1)>g(-3) B g(2)>g(-3)>g(-1) C g(-1)>g(-3)>g(2) D g(-3)>g(-1)>g(2)

A 1 B ∞ C 2 D 0 二、填空题 13.求 的定义域____________。 14. 已知求f (5)____________。 15.数列 的极限______。 16.求函数 的极限______。 三、 解答题 17.求函数 在指定定义域下的单调性。 18.求 的极限。 19.用数列极限的定义证明 。 20.用函数极限的定义证明 。 21.根据定义证明 22.求 的极限。 ???<+≥-=8,)]5([8 ,3)(x x f f x x x f

大一高数第一章 函数、极限与连续

第一章 函数、极限与连续 由于社会和科学发展的需要,到了17世纪,对物体运动的研究成为自然科学的中心问题.与之相适应,数学在经历了两千多年的发展之后进入了一个被称为“高等数学时期”的新时代,这一时代集中的特点是超越了希腊数学传统的观点,认识到“数”的研究比“形”更重要,以积极的态度开展对“无限”的研究,由常量数学发展为变量数学,微积分的创立更是这一时期最突出的成就之一.微积分研究的基本对象是定义在实数集上的函数. 极限是研究函数的一种基本方法,而连续性则是函数的一种重要属性.因此,本章内容是整个微积分学的基础.本章将简要地介绍高等数学的一些基本概念,其中重点介绍极限的概念、性质和运算性质,以及与极限概念密切相关的,并且在微积分运算中起重要作用的无穷小量的概念和性质.此外,还给出了两个极其重要的极限.随后,运用极限的概念引入函数的连续性概念,它是客观世界中广泛存在的连续变化这一现象的数学描述. 第一节 变量与函数 一、变量及其变化范围的常用表示法 在自然现象或工程技术中,常常会遇到各种各样的量.有一种量,在考察过程中是不断变化的,可以取得各种不同的数值,我们把这一类量叫做变量;另一类量在考察过程中保持不变,它取同样的数值,我们把这一类量叫做常量.变量的变化有跳跃性的,如自然数由小到大变化、数列的变化等,而更多的则是在某个范围内变化,即该变量的取值可以是某个范围内的任何一个数.变量取值范围常用区间来表示.满足不等式a x b ≤≤的实数的全体组成的集合叫做闭区间,记为,a b ????,即 ,{|}a b x a x b =≤≤????; 满足不等式a x b <<的实数的全体组成的集合叫做开区间,记为(,)a b ,即 (,){|}a b x a x b =<<; 满足不等式a x b <≤(或a x b ≤<)的实数的全体组成的集合叫做左(右)开右(左)闭区间,记为 (,a b ?? (或),a b ??),即 (,{|}a b x a x b =<≤?? (或),{|}a b x a x b =≤

(完整版)大一高数复习资料(免费)

高等数学 第一章 函数与极限 第一节 函数 ●函数基础(高中函数部分相关知识)(▲▲▲) ●邻域(去心邻域)(▲) (){} ,|U a x x a δδ=-< (){},|0U a x x a δδ=<-, ∴()N g ε=???? 2.即对0>?ε,()N g ε?=????,当N n >时,始终有不等式n x a ε-<成立, ∴{}a x n x =∞ →lim 第三节 函数的极限 ●0x x →时函数极限的证明(▲) 〖題型 〗已知函数()x f ,证明()A x f x x =→0 lim 〖证明 〗δε-语言 1.由()f x A ε-<化簡得()00x x g ε<-<, ∴()εδg = 2.即对0>?ε,()εδg =?,当00x x δ<-<时,始终有不等式()f x A ε-<成立, ∴()A x f x x =→0 lim ●∞→x 时函数极限的证明(▲) 〖題型 〗已知函数()x f ,证明()A x f x =∞ →lim 〖证明 〗X -ε语言 1.由()f x A ε-<化簡得()x g ε>, ∴()εg X = 2.即对0>?ε,()εg X =?,当X x >时,始终有不等式()f x A ε-<成立, ∴()A x f x =∞ →lim 第四节 无穷小与无穷大 ●无穷小与无穷大的本质(▲) 函数()x f 无穷小?()0lim =x f 函数()x f 无穷大?()∞=x f lim ●无穷小与无穷大的相关定理与推论(▲▲) (定理三)假设()x f 为有界函数,()x g 为无穷小,则()()lim 0f x g x ?=???? (定理四)在自变量的某个变化过程中,若()x f 为无穷大,则()1f x -为无穷小;反之,若()x f 为无穷小,且()0f x ≠,则()x f 1 -为无穷大 〖題型 〗計算:()()0 lim x x f x g x →???? ?(或∞→x ) 1.∵()f x ≤M ∴函数()f x 在0x x =的任一去心邻域()δ,0x U ο 内是有界的; (∵()f x ≤M ,∴函数()f x 在D x ∈上有界;) 2.()0lim 0 =→x g x x 即函数()x g 是0x x →时的无穷小; (()0lim =∞→x g x 即函数()x g 是∞→x 时的无穷小;) 3.由定理可知()()0 lim 0x x f x g x →?=???? (()()lim 0x f x g x →∞ ?=????) 第五节 极限运算法则 ●极限的四则运算法则(▲▲) (定理一)加减法则 (定理二)乘除法则 关于多项式()p x 、()x q 商式的极限运算 设:()()?????+?++=+?++=--n n n m m m b x b x b x q a x a x a x p 1 101 10 则有()()???????∞=∞→0 lim 0 b a x q x p x m n m n m n >=< ()()() ()000lim 0 0x x f x g x f x g x →?? ??=∞????? ()()()()()0000000,00g x g x f x g x f x ≠=≠== (特别地,当()()00 lim 0 x x f x g x →=(不定型)时,通常分 子分母约去公因式即约去可去间断点便可求解出极限值,也可以用罗比达法则求解) 〖題型 〗求值2 3 3 lim 9 x x x →--

《高等数学》第七版课后练习题

第一章、函数、极限与连续 1、已知函数2,02 ()2,24 x f x x ≤≤?=? -<≤?,试求函数g()(2)(5)x f x f x =+-的定义域。 2、设函数()y f x =的定义域是[]0,8,试求3 ()f x 的定义域。 3、已知函数[]()12f x 的定义域,,试求下列函数的定义域。 (1)(1)f x + (2)()(0f a x a ≠ (3)(sin )f x (4)(s i n 1 f x + 4、要使下列式子有意义,函数()f x 应满足什么条件? 1 (1)() y f x = (2))y = (3)l o g ()(0a a y f x a =>≠且 (4)a r c c o s (y f x = 5、求下列函数的定义域。 22(1)16x y x = +- 2 (2)a r c s i n 3x y -= (3)a r c 4 y =+ 6、在下列各对函数中,哪对函数是相同的函数。 211(1)()ln ;()2ln f x x g x x == 2222(2)()1;()sin cos f x g x x x ==+ 33(2)(3)(3)()3;()2 x x f x x g x x -+=+= - 44(4)()()1f x g x x ==- 7、设函数()2,()55x f x g x x ==+,求1(1),(),(()),(())f x g f g x g f x x x +-的表达式。 8、设2 ()23,()45f x x g x x =+=-,求(()),(()),(())f g x g f x f f x 的表达式。 9、设2 211 (),()f x x f x x x +=+ 求。 10、设(1)(1),()f x x x f x -=-求。 11、下列函数中,那哪些是奇函数,哪些是偶函数?哪些是非奇非偶函数。 (1)()sin f x x x = (2)() s i n f x x t g x =+ (3)()f x = (4)()ln(f x x = 2(5) ()f x x x =- 12、判断下列函数的奇偶性。 3(1)()f x x x =+ (2)()c o s f x x x =? (3)()(0)tgx f x x x = ≠ (4)()ln(f x x x =- 13、求下列函数的周期。

大一高数复习资料

第一章 函数与极限 第一节 函数 ○邻域(去心邻域) (){} ,|U a x x a δδ=-< (){},|0U a x x a δδ=<-< 第二节 数列的极限 ○数列极限的证明 【题型示例】已知数列{}n x ,证明{}lim n x x a →∞ = 【证明示例】N -ε语言 1.由n x a ε-<化简得()εg n >, ∴()N g ε=???? 2.即对0>?ε,()N g ε?=????,当N n >时,始终有不等式n x a ε-<成立, ∴{}a x n x =∞ →lim 第三节 函数的极限 ○0x x →时函数极限的证明 【题型示例】已知函数()x f ,证明()A x f x x =→0 lim 【证明示例】δε-语言 1.由()f x A ε-<化简得()00x x g ε<-<, ∴()εδg = 2.即对0>?ε,()εδg =?,当00x x δ<-<时,始终有不等式()f x A ε-<成立, ∴()A x f x x =→0 lim ○∞→x 时函数极限的证明 【题型示例】已知函数()x f ,证明()A x f x =∞ →lim 【证明示例】X -ε语言 1.由()f x A ε-<化简得()x g ε>, ∴()εg X = 2.即对0>?ε,()εg X =?,当X x >时,始终有不等式()f x A ε-<成立, ∴()A x f x =∞ →lim 极限存在准则及两个重要极限 ○夹逼准则 第一个重要极限:1sin lim 0=→x x x ∵?? ? ??∈?2, 0πx ,x x x tan sin <<∴1sin lim 0=→x x x 0 000lim11lim lim 1sin sin sin lim x x x x x x x x x x →→→→===?? ??? (特别地,000 sin() lim 1x x x x x x →-=-) ○单调有界收敛准则 第二个重要极限:e x x x =?? ? ??+∞ →11lim (一般地,()() ()() lim lim lim g x g x f x f x =???????? ,其中 ()0lim >x f ) 【题型示例】求值:1 1232lim +∞→?? ? ??++x x x x 【求解示例】 ()()2111 212 1212 2121 1221 2 2121lim 212 21232122lim lim lim 121212122lim 1lim 121212lim 121x x x x x x x x x x x x x x x x x x x x x x x x +++→∞→∞+→∞?++++??+++→∞ +→∞++→∞+++????? ?==+ ? ? ?+++?????? ? ???? ???=+=+ ? ???++?? ?? ? ? ? ?? ???=+ ???+???? 解:()()12lim 121 21212 121 22lim 121x x x x x x x x x e e e e +→∞?? ?+?? +??+→∞+→∞???+?? +?? +?? ? +? ? ==== 第四节 无穷小量与无穷大量 ○无穷小与无穷大的本质 函数()x f 无穷小?()0lim =x f 函数()x f 无穷大?()∞=x f lim ○无穷小与无穷大的相关定理与推论 (定理三)假设()x f 为有界函数,()x g 为无穷小,则()()lim 0f x g x ?=???? (定理四)在自变量的某个变化过程中,若()x f 为 无穷大,则()1 f x -为无穷小;反之,若()x f 为无 穷小,且()0f x ≠,则()x f 1 -为无穷大 【题型示例】计算:()()0 lim x x f x g x →???? ?(或∞→x ) 1.∵()f x ≤M ∴函数()f x 在0x x =的任一去心邻域()δ,0x U 内是有界的; (∵()f x ≤M ,∴函数()f x 在D x ∈上有界;) 2.()0lim 0 =→x g x x 即函数()x g 是0x x →时的无穷小;

高等数学(同济大学版)第一章练习(含答案)

第一章 函数与极限 一、要求: 函数定义域,奇偶性判定,反函数,复合函数分解,渐近线,求极限, 间断点类型判定,分段函数分段点连续性判定及求未知参数,零点定理应用. 二、练习: 1.函数 2112 ++-=x x y 的定义域 ;答:2x ≥-且1x ≠±; 2. 函数y = 是由: 复合而成的; 答:2 ln ,,sin y u v v w w x ====; 3. 设 ,112 2 x x x x f +=??? ? ?+ 则()f x = ;答:22x -; 4. 已知)10f x x x ?? =+≠ ??? ,则()f x = ; 答: ( )11f x x x = +=+ ()0x ≠; 5.11lim 1 n x x x →--= ,答:n ; !lim 1 n n n →∞ += ;答: 0; 6. 当a = 时,函数(), 0, x e x f x a x x ?<=? +≥?在(,)-∞+∞上连续;答:1a =; 7.设(3)(3)f x x x +=+,则(3)f x -=( B ); A.(3)x x -, B.()6(3)x x --, C.()6(3)x x +-, D.(3)(3)x x -+; 8. 1lim sin n n n →∞ =( B ); A.0 , B.1, C.+∞, D.-∞; 9.1x =是函数2 2 1 ()32 x f x x x -= -+的(A ); A.可去间断点,B.跳跃间断点, C.第二类间断点, D.连续点; 10. |sin | ()cos x f x x xe -=是( A ); A.奇函数, B.周期函数, C.有界函数, D.单调函数; 11.下列正确的是( A ) A.1lim sin 0x x x →∞ =,B.1lim sin 0x x x →∞ =, C.0 1lim sin 1x x x →=, D.11lim sin 1x x x →∞ =; 12. 1x =是函数)1,13, 1 x x f x x x -≤?=? ->?的( D )

高等数学第一章试题答案

高等数学(I) 第一章 试题 1. 设()() 2493lg 1 x x x f -+-= ,则()x f 的定义域 37<≤-x 且 2≠x ; 。 2. 设()???≥<+=010 1x x x x f ,则()[]x f f = ???-≥-<+1 1 1 2x x x 。 3. ??? ?+ ? ? →x x x x o x sin 11sin lim = 1 。 4、x x x x sin 1 sin lim 220 →的值为 0 5设()1 111+-= x x e e x f 则 =x 是 () x f 的第 1 类中的跳跃 间断点。 . 0 0 , s i n 0 , )( . 62 b a b a x x x bx x bx a x f ==?? ? ??>≤+=应满足的关系与处连续,则常数在设 7.设=? ? ? ??+-→1 2112lim x x x x x ____________. 答案: e x x x x x x x x x x x x x =?? ? ?? +-+=? ? ? ??+-+++?-+→-→1 21111 21111lim 111lim 8.极限).cos 1(lim 2 n n n π -∞ →= _______________.答案: 2 1)2( 2lim 1 2sin 2lim )cos 1(lim 22 2 ) 4(2 2 2 ππ π π = ==-∞→∞ →∞ →n n n n n n n n n 9.若6)3 11(lim e x kx x =+-∞→,则=k ―6 . 解:=+-+-=+-=+- ---∞→∞→∞→k x x k x x kx x x x x x ])3 11()311[(lim ])311[(lim )311(lim 33 6331])3 11(lim ])311[(lim e e x x k k x k x x =?=+-?+-=--∞→---∞→,得6-=k . 10.设()nx nx n e e x x x f ++=∞ →1lim 2,则()x f 的连续区间为____) ,(∞+∞-_______________。 11.()x x x 2 sin 11cos ln lim 1π--→= 2 2?? ? ??-π 12.设)(x f 处处连续,且5)2(=f ,则=-→)1 (3tan lim 20x e f x x x x 15 . 二、单项选择题 1.当0→x 时,变量 x x 1 sin 12 是( D )(03) (A )无穷小 (B )无穷大 (C )有界的但不是无穷小 (D )无界但不是无穷大 2.设()()(),sin ,1ln 22 x x g x x x f =-=则当0→x 时,()x f 是()x g 的( B )(03)

高等数学第一章总结

高等数学 多元函数微分法 及其应用学习总结

一.知识结构图 多元函数微分学: ● 基本概念(区域.定义.极限.连续) ● 偏导数(定义.计算.高阶偏导数) ● 全微分(定义.计算.必要条件.充分条件) ● 多元复合函数导数(链式法则.全导数) ● 隐函数求导法则(一个方程.方程组) ● 多元函数微分学的几何应用(曲线以及曲面的切线和法平面) ● 方向导数及其梯度 ● 多元函数最值及其求法 二.内容提要 1) 二次极限定义: 设f (x ,y )的区域D 内有定义,p (0x ,0y )是D 的聚点,若ε?>0,0>?δ, 当点P(x,y)满足<0|p 0p |<δ时,总有ε<-A y x f ),(成立,则称函数),(y x f 当(x ,y )趋向),(00y x 时以A 为极限,记作 A y x f o y y x x =→→),(lim ,0或 A y x f y x y x =→),(lim ) ,(),(00. 2) 二元函数连续性定义 设函数),(y x f Z =在点),(000y x p 的某个邻域),(0δP U 内有定义,若 ),(),(00,lim 0y x f y x f y y x x =→→,则称二元函数),(y x f Z =在点),(000y x p 处连续,点 ),(000y x p 称为),(y x f 的连续点。 设函数),(y x f Z =在点),(000y x p 的某个邻域),(0δP U 内有定义,分别给自变量x,y 在00,y x 处以增量△X,△y,得到全增量△Z=),(),(0000y x f y y x x f -?+?+。如果极限 0lim ,0=?→?→?Z y x ,则称),(y x f Z =在),(000y x p 处连续。

相关文档
最新文档