桥梁转体施工方法及应用

桥梁转体施工方法及应用
桥梁转体施工方法及应用

编订:__________________

审核:__________________

单位:__________________

桥梁转体施工方法及应用

Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level.

Word格式 / 完整 / 可编辑

文件编号:KG-AO-7746-77 桥梁转体施工方法及应用

使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。

1.0 概述

桥梁转体施工是指将桥梁结构在非设计轴线位置制作(浇注或拼接)成形后,通过转体就位的一种施工方法。它可以将在障碍上空的作业转化为岸上或近地面的作业。根据桥梁结构的转动方向,它可分为竖向转体施工法、水平转体施工法(简称竖转法和平转法)以及平转与竖转相结合的方法,其中以平转法应用最多。

桥梁转体法施工与传统施工方法相比,具有如下优点:

(1)施工所需的机具设备少、工艺简单、操作安全。

(2)具有结构合理,受力明确,力学性能好。

(3)转体法能较好地克服在高山峡谷、水深流急

或经常通航的河道上架设大跨度构造物的困难,尤其是对修建处于交通运输繁忙的城市立交桥和铁路跨线桥,其优势更加明显。

(4)施工速度快、造价低、节约投资。在相同条件下,拱桥采用转体法与传统的悬吊拼装法、桁架伸臂法、搭架法相比,经济效益和社会效益十分显著。如用转体法修建的湖南资兴市游垅桥,与用悬吊拼装法和搭架法相比,造价降低了11.5~17.4%。

2.0 转体施工法的关键技术

转体施工法的关键技术问题是转动设备与转动能力,施工过程中的结构稳定和强度保证,结构的合拢与体系的转换。

2.1 竖转法

竖转法主要用于肋拱桥,拱肋通常在低位浇筑或拼装,然后向上拉升达到设计位置,再合拢。

竖转体系一般由牵引系统、索塔、拉索组成。竖转的拉索索力在脱架时最大,因为此时拉索的水平角最小,产生的竖向分力也最小,而且拱肋要实现从多

跨支承到铰支承和扣点处索支承的过渡,脱架时要完成结构自身的变形与受力的转化。为使竖转脱架顺利,有时需在提升索点安置助升千斤顶。

竖转施工方案设计时,要合理安排竖转体系。索塔高、支架高(拼装位置高),则水平交角也大,脱架提升力也相对小,但索塔、拼装支架受力(特别是受压稳定问题)也大,材料用量也多;反之亦然。在竖转过程中,主要要考虑索塔的受力和拱肋的受力,尤其是风力的作用。

在施工工艺上,竖转铰的构造与安装精度,索鞍与牵转动力装置,索塔和锚固系统是保证竖转质量、转动顺利和安全的关键所在。国内的拱桥基本上为无铰拱,竖转铰是施工临时构造,所以,竖转铰的结构与精度应综合考虑满足施工要求和降低造价。跨径较小时,可采用插销式,跨径较大时可采用滚轴。拉索的牵引系统当跨径较小时,可采用卷扬机牵引;跨径较大,要求牵引力较大,牵引索也较多时,则应采用千斤顶液压同步系统。

2.2 平转法

平转法的转动体系主要有转动支承系统、转动牵引系统和平衡系统。

转动支承系统是平转法施工的关键设备,由上转盘和下转盘构成。上转盘支承转动结构,下转盘与基础相联。通过上转盘相对于下转盘转动,达到转体目的。转动支承系统必须兼顾转体、承重及平衡等多种功能。按转动支承时的平衡条件,转动支承可分为磨心支承、撑脚支承和磨心与撑脚共同支承三种类型。

磨心支承由中心撑压面承受全部转动重量,通常在磨心插有定位转轴。为了保证安全,通常在支承转盘周围设有支重轮或支撑脚正常转动时,支重轮或承重脚不与滑道面接触,一旦有倾覆倾向则起支承作用。在已转体施工的桥梁中,一般要求此间隙从2~20mm,间隙越小对滑道面的高差要求越高。磨心支承有钢结构和钢筋混凝土结构。在我国以采用钢筋混凝土结构为主。上下转盘弧形接触面的混凝土均应打磨光滑,再涂以二硫化铜或黄油四氟粉等润滑剂,以减小摩擦

系数(一般在0.03~0.06之间)。

撑脚支撑形式下转盘为一环道,上转盘的撑脚有4个或4个以上,以保持平转时的稳定。转动过程支撑范围大,抗倾稳定性能好,但阻力力矩也随之增大,而且环道与撑脚的施工精度要求较高,撑脚形式有采用滚轮,也有采用柱脚的。滚轮平转时为滚动摩擦,摩阻力小,但加工困难,而且常因加工精度不够或变形使滚轮不滚。采用柱脚平转时为滑动摩擦,通常用不锈钢板加四氟板再涂黄油等润滑剂,其加工精度比滚轮容易保证,通过精心施工,已有较多成功的例子。当转体结构悬臂较大,抗倾覆稳定要求突出时,往往采用此种结构,广州丫髻沙大桥平转就采用了此体系。

第三类支承为磨心与撑脚共同支承。大里营立交桥采用一个撑脚与磨心共同作用的转动体系,在撑脚与磨心连线的垂直方向设有保护撑脚。如果撑脚多于一个,则支承点多于2个,上转盘类似于超静定结构,在施工工艺上保证各支撑点受力基本符合设计要求比较困难。广州丫髻沙大桥原采用多撑脚与磨心共同受

力体系,后考虑到这种困难,减小了磨心受压的比例,使其蜕化为撑脚体系。

水平转体施工中,能否转动是一个很关键的技术问题。一般情况下可把启动摩擦系数设在0.06~0.08之问,有时为保证有足够的启动力,按0.1配置启动力。因此减小摩阻力,提高转动力矩是保证平转顺利实施的两个关键。转动力通常安排在上转盘的外侧,以获得较大的力臂。转动力可以是推力,也可以是拉力。推力由千斤顶施加,但千斤顶行程短,转动过程中千斤顶安装的工作量又很大,为保证平转过程的连续性,所以单独采用千斤顶顶推平转的较少。转动力通常为拉力,转动重量小时,采用卷扬机,转体重量大时采用牵引千斤顶,有时还辅以助推千斤顶,用于克服启动时静摩阻力与动摩阻力之间的增量。

平转过程中的平衡问题也是一个关键问题。对于斜拉桥、T构桥以及带悬臂的中承式拱桥等上部恒载在墩轴线方向基本对称的结构,一般以桥墩轴心为转动中心,为使重心降低,通常将转盘设于墩底。对于

单跨拱桥、斜腿刚构等,平转施工分为有平衡重与无平衡重转体两种。有平衡重时,上部结构与桥台一起作为转体结构,上部结构悬臂长,重量轻,桥台则相反,在设置转轴中心时,尽可能远离上部结构方向,以求得平衡,如果还不平衡,则需在台后加平衡重;无平衡重转体,只转动上部结构部分,利用背索平衡,使结构转体过程中被转体部分始终为索和转铰处两点支承的简支结构。

2.3 转体施工受力

转体施工的受力分析目的是保证结构的平衡,以防倾覆;保证受力在容许值内,以防结构破坏;保证锚固体系的可靠性。转体过程历时较短,少则几十分钟,最多不超过一天,所以主要考虑施工荷载。在大风地区按常见的风力考虑,通常不考虑地震荷载和台风影响,这主要从工期选择来保证。此外,转体结构的变形控制、合拢构造与体系转换也是转体施工应考虑的重要问题。 3.0 桥梁转体施工的应用

3.1 国外应用情况

转体施工法最先出现的是竖转法。50年代意大利曾用此法修建了多姆斯河桥,跨径达70m;德国的Argentobel桥,跨径达150m,是采用此法修建的跨径最大的桥梁。它在竖向位置利用地形或搭支架浇筑混凝土拱肋,然后再从两边将拱肋逐渐放倒,搭接成拱。20xx年底日本神原溪谷大桥采用竖转法施工建成,该桥为混凝土拱桥,跨度135米。这种竖转法主要应用于钢筋混凝土肋拱桥中,当跨径增大以后,拱肋过长,竖向搭架过高,转动也不易控制,因此一般只在中小跨径中应用。

平转法于1976年首次在奥地利维也纳的多瑙河运河桥上应用。该桥为斜拉桥,跨径布置为55.7m+119m+55.7m,转体重量达4000t。此后平转法在法国、德国、日本、比利时、中国等国家得到应用。采用平转法施工的桥梁除斜拉桥外,还有T构桥、钢桁梁桥、预应力连续梁桥和拱桥。迄今为止,转体重量最大的是比利时的本•艾因桥。该桥为斜拉桥,跨径布置为3×42m+168m,转体重量达1.95万t,

于1991年建成。

3.2 国内应用情况

1975年我国桥梁工作者开始进行拱桥转体施工工艺的研究,并于1977年首次在四川省遂宁县采用平转法建成跨径为70m的钢筋混凝土箱肋拱。此后,平转法在山区的钢筋混凝土拱桥中得到推广应用。

70年代末80年代初我国平转法施工的拱桥,跨径均在100m以下,且均为有平衡重转体施工。为解决大跨径拱桥转体重量大的问题,我国桥梁专家提出无平衡重转体施工法,并于.1987年成功地进行了跨径为122m的四川巫山龙门桥试验桥的施1。1988年四川涪陵乌江大桥采用该法转体成功,使我国拱桥的跨径首次跃上200m大关。

随着转体施工工艺的进步,主要是转动构造中磨擦系数的降低和牵引能力的提高,这一方法在我国的斜拉桥和刚构桥中也得到应用,并且使其从山区推广至平原,尤其是跨线桥的施工。例如,1980年四川金川县的曾达桥(独塔斜拉桥,转体重量l344t);1985

年江西贵溪跨线桥(斜脚刚构桥,转体重量1100t);1990年四川绵阳桥(T构桥,转体重量2350t);1997年山东大里营立交桥(刚性索斜拉桥,转体重量3040t);1998年贵州都拉营桥(T构桥,转体重量7100t)。

20xx年8月6日北京石景山混凝土斜拉桥建成,该桥是北京市五环路的标志性工程,位于北京石景山南站咽喉区,现有电气化铁路7股道,远期规划为1l 股道,行车密度大,平均每3分钟就有一趟列车通过,为避免对铁路产生频繁的干扰,采用了转体法施工的预应力混凝土曲线斜拉桥方案。该桥主桥为45m+65m+95m+40m四跨连续独塔单索面的预应力混凝土部分斜拉桥,转体结构总重140000kN,直接依靠主牵引系统实现转体并精确定位,最终合拢误差2mm。

钢管混凝土拱桥近10年来在我国的应用与发展迅猛。为拱桥的轻型化和向大跨度发展提供了可能,转体施工方法也被广泛应用于这种桥型之中。在竖转方面,虽然我国在80年代初期就应用该法进行了钢筋

混凝土桁架拱的施工,但其应用一直没有得到推广。1996年施工的三峡莲沱钢管混凝土拱桥(主跨114m)和1999年施工的广西鸳江钢管混凝土拱桥(主跨175m)采用竖转法,后者的竖转体系采用了液压同步提升技术,使竖转技术跃上了新的台阶,徐州京杭运河钢管混凝土提篮拱桥(主跨235m)也将采用这一技术进行竖转施工。20xx年贵州北盘江大桥是铁路桥梁上第一次采用钢管拱结构,跨度236m,转体重量达到102300kNo在平转方面,1996年施工的三峡黄柏河和下牢溪两座钢管混凝土上承式拱桥采用该法施工,两桥主跨均为160m,转体重量达3500t。

更为重要的是,竖向转体与平面转体结合应用的方法在钢管混凝土拱桥中的应用,使桥梁转体施工法进入了一个新的发展时期。1995年安阳文峰路135m 钢管混凝土拱桥首次采用这一方法转体成功。

1999年10月广州丫髻沙大桥也采用此法顺利合拢,并于20xx年6月建成通车,丫髻沙大桥主跨达360m(净跨344m),平转重量达13685t。

桥梁工程施工方案14784

xxx桥施工方案 一、工程简介 xxx桥,全长26米,宽21m。上部采用5×30米预应力钢筋混凝土连续箱梁,下部采用薄壁空心墩、柱式墩,桩式桥台,钻孔桩基础。 桥址处地质情况主要为:碎石土、角跞土、泥岩、强弱风化玄武岩。 主要工程量为:混凝土计5917.2m3,钢筋计785.5t,钢绞线计54.6t。 二、施工准备 (一)、施工便道 本合同段207国道可作为材料运输主干线,由207国道向桥位引入横向施工便道已完成。便道设专人看管与疏导交通,经常洒水除尘、养护维修。 (二)、生产、生活临时设施 办公、生活房屋:办公、生活用房采取租用民房和自建房屋相结合,部分房屋采用帐篷和其它简易房屋。 拌和站、钢筋加工场地:地面进行部分硬化处理,防止污染材料。拌和站机械设备均已进场,现已安装调试完毕,能正式投入使用。 用水、用电:生产生活用水采用接入地方水源。工程用电采用网电与发电机自发电相结合。 通信联络:项目经理部办公室安装程控电话和传真机并配备电脑,安装宽带,设电子邮箱;管理人员及施工队长配备移动电话,便于相互之间及跟项目部等部门间相互联系。 三、工期(2004年11月30日-2005年3月15日为冬休期,暂不施工。) 1、预制梁:2005年4月1日开工至2005年7月25日完工。 2、桩基:2004年10月18日开工至2004年11月10日完工。 3、墩柱及系梁:2005年3月15日开工至2005年6月3日完工。 4、薄壁墩:2005年3月15日开工至2005年6月3日完工。 5、盖梁:2005年4月1日开工至2005年6月20日完工。 6、架梁:2005年6月20日开工至2005年7月10日完工。

桥梁转体施工方案

球铰法转体施工方法及工艺 ⑴概况 XXXX立交特大桥左线桥在HK21+497.91~HK21+561.91上跨既有兰武铁路,其上部结构采用(40+64+40)m单线预应力混凝土连续梁。该桥与既有兰武线夹角约为30°。为保证既要兰武铁路运营安全,减少施工过程中对既有线运营干扰,连续梁采用转体施工。转体前在连续梁两主墩处平行于既有兰武铁路挂篮浇筑悬灌段施工,待施工到最大悬臂状态后,结合既有铁路运营、施工天气等因素,择机实施转体施工。将连续梁梁体逆时针旋转30°,转体到位后再进行合龙段施工。连续梁旋转前位置详见图2.5.5-26旋转前平面示意图。 ⑵转体结构 钢球铰平转体系主要有承重系统、顶推牵引系统和平衡系统三大部分构成,转体结构侧面示意图详见图2.5.5-27。承重系统由上转盘、下转盘和转动球铰构成,上转盘支承转体结构,下转盘与桩基础相连,通过上转盘相对于下转盘转动,达到转体目的,上转盘平面示意图详见图2.5.5-28。顶推牵引系统由牵引设备二台ZLDl00型100t连续千斤顶及二台普通YCWl00型100t助推千斤顶构成、牵引反力支座、顶推反力支座构成;平衡系统由结构本身、上承台的钢管混凝土圆形撑脚、大吨位千斤顶及梁顶放置的四个容积5方备用水箱构成。转体结构施工过程图详见图2.5.5-29转体结构施工工艺流程图。

图2.5.5-26 旋转前平面示意图 图2.5.5-27 转体结构侧面示意图 图2.5.5-28 上转盘平面示意图 武威 兰 武 铁 路 逆时 针旋转 逆时针旋 转 助推反力支座 助推反力支座 后封C50微膨胀混凝土 转动中心线结构中心线 桥墩 环形滑道撑脚 环形滑道撑脚上转盘 下转盘 牵引反力A支座 牵引反力B支座 助推反力支座 索2 索1 转体球铰 环形滑道

桥梁工程施工方法及其措施

桥梁工程施工方法及其措施 本合同段共有中桥4座、小桥1座,其中有两座为整修加固工程。上部构造为后张法预应力钢筋砼简支空心板梁,下部构造为重力式U型砼桥台,明挖扩大基础;柱式墩,明挖扩大基础。扩大基础采用机械明挖法施工,墩柱及盖梁混凝土均采用定型钢模浇筑,钢筋骨架、模板及混凝土采用8t吊车提升就位,混凝土由拌和站拌和,小型运输车运输进行浇筑,梁板在预制场集中预制后用轨道运梁车运至吊装现场,架桥机吊装就位。 具体的施工方案及工艺如下: 1.基础工程 1.1 扩大基础 1.1.1基坑开挖 ①开挖范围确定 对基础周围的地形进行详细的测量,对该范围的地质情况认真考察以确定基坑边坡的斜度;再根据基底的平面尺寸及标高来确定基坑的开挖范围。同时确定出渣口的位置。 ②开挖方法 采用人工配合机械开挖。 ③边坡支护 根据现有的地质资料及基坑开挖深度判断,只要边坡斜度选择适当,边坡自身可以稳定,不用采取特别的支护方法。但在施工中要加强观测,预防万一。

④排水措施 在基坑开挖范围边缘设排水沟,防止地表水流入基坑。对于渗入基坑的地下水,根据渗入量的大小,采取相应的措施。根据现场考察情况判断,地下水渗入量不大,主要防止地表水流入基坑。基坑开挖如下图所示: 1.1.2基底处理 当基坑开挖达到设计标高时,向监理工程师提出检查申请,监理工程师检查合格后进行基底处理。 ①基底处理 根据设计图纸,采用砂砾垫层满足基底承载力的要求。填筑时采用打夯机夯实。 ②基底防水处理 当垫层检验合格后,在表面上铺薄层砂浆,在浇筑基础时能防止混凝土漏浆和地下水降低混凝土强度。

1.1.3混凝土浇筑 基础混凝土浇筑,用组合标准钢模板作外模,对于混凝土露出地面部分采用单块面积不小于2m2表面平整的整体钢模板作外模。经监理工程师确认基底合格后,浇筑混凝土。浇筑完成后对与下步承接砼的接触面按《规范》要求进行凿毛处理,其它则收光抹面。 混凝土终凝后即对混凝土表面进行洒水养生,养生期约5~7天。 2.下部工程 2.1 墩柱施工 施工时采用定型钢模板吊车配合浇筑混凝土,严格遵循技术规范和招标文件的要求进行。 桥墩柱施工前首先根据设计文件提供墩柱平面位置进行施工放样,模板采用专用钢模板组拼,模板节高2m,在墩柱钢筋绑扎焊接完毕经检验符合要求后,按照设计文件提供平面位置和相应墩台位进行模板安装,安装时用轮式起重车提升就位,拼装成整体,接缝用密封胶填密实,四边对角埋地锚用揽风绳和花蓝螺栓对拉调整其平面位置,以保证墩柱的垂直度。墩帽、台帽模板采用单块面积不小于2m2,表面平整的整体钢模板制作。施工过程中墩柱钢筋笼、墩帽、台帽钢筋、模板采用轮式起重车或提升架提升就位,混凝土用小型砼翻斗运输车运输,轮式起重车提升浇筑,插入式振捣器捣实的方法进行施工。并根据质量检验标

转体桥梁施工方案、工艺、措施

转体桥梁施工方案、工艺、措施 南河川渭河特大桥(72.5+120+72.5)m连续梁跨越陇海线,采用转体施工,转体重量约12000t。 进行承台施工时完成转体系统的安装,转体系统主要由下转盘、球铰、上转盘以及转体动力系统组成。在施工承台时精确安装球铰,然后进行墩身施工。 按照挂篮悬臂浇筑法完成梁体的施工。待最后节段强度和弹模达到设计要求,进行张拉压浆,达到强度后,拆除墩旁托架,进行转体施工。 转体分试转、正式转体和精调对位三个过程。 调试牵引系统,清理、润滑滑道。拆除有碍平转的障碍物。先让辅助千斤顶达到预定吨位,再启动牵引千斤顶使转动体系起动,牵引牵引索平转;在平转就位处设置限位装置,避免过转,平转基本到位后降低平转速率,采用点动迁移进行精确就位;焊接上下转盘钢筋进行固定,清理杂物后浇筑上下转盘混凝土。 转体就位后,拆除主墩临时垫块,拆除多余水平约束,同时进行两边跨合拢段施工,然后进行中跨合拢段段施工。 转体施工工艺流程框图见图2.5.3.14。

图2.5.3.14 转体施工工艺流程图 2.5. 3.9.1钻孔桩施工 主墩23#、24#位于铁路路基坡脚附近,基坑开挖会对铁路路基产生影响,桩基施工前对铁路路基进行防护,采用钻孔桩防护,桩径、桩长根据受力计算确定。 2.5. 3.9.2承台施工 由于转体的核心部件球铰位于承台中,承台的施工工艺流程如下: 基坑开挖→施工下承台第一次混凝土→安装球铰定位底座→浇筑下承台第二次混凝土→安装下球铰→浇筑球铰下混凝土→安装环道→浇筑环道下混凝土→浇筑反力座混凝土→安装上球铰→安装撑脚→浇筑上承台混凝土。 2.5. 3.9.3转动体系施工 进行承台施工时完成转体系统的安装,转体系统由下转盘、球铰、上转盘、转动牵引系统组成,转体完成后,上下转盘共同形成承台。 转体系统构造见下图2.5.3.15 ⑴下转盘 下转盘承台截面尺寸18m×18m×6.1m,分三次浇注成型,用于固定球铰支架、滑道支架。滑道宽1.2米,半径5米,滑道顶面为3mm厚不锈钢板,安装时任两点相对高差≯2mm,且任意3m弧长滑道高度差不大于1mm。 ⑵球铰

一建【公路】讲义第37讲-桥梁上部结构施工4(一)

2020一级建造师《公路工程管理与实务》 桥梁上部结构施工 本节重点: 1.转体施工 2.缆索吊装施工 3.刚构桥施工 4.钢桥施工 5.斜拉桥施工 6.悬索桥施工 1B413065 桥梁上部结构转体施工 一、转体施工方法概述 适用条件:跨越深谷、急流、铁路和公路等。 特点:不干扰运输、不中断交通、不需要复杂的悬臂拼装设备和技术 二、平转法施工 (一)有平衡重转体施工 特点是转体重量大,施工关键是转体。目前国内使用的转体装置主要有两种,第一种是以四氟乙烯作为滑板的环道平面承重转体;第二种是以球面转轴支承辅以滚轮(或移动千斤顶)的轴心承重转

1. 差为±3%。 2.转体合龙时应符合下列规定:

(110mm。 (2 (3)合龙时,宜先采用钢模刹尖等瞬时合龙措施。再施焊接头钢筋,浇筑接头混凝土,封固转 (二)无平衡重平转施工 主要是针对大跨度拱桥施工。无平衡重转体施工包括转动体系施工、锚锭系统施工、转体施工、合龙卸扣施工工艺。 1.是利用锚固体系、转动体系和位控体系构成平衡的转体系统。 2. 3. 方法调整拱顶高差。 4.当台座和拱顶合龙口混凝土达到设计规定强度后,可按下述要求卸除扣索: (1 (2 四、竖转法施工

(1 (2 【例题1·单选】关于桥梁上部结构竖转法施工特点的说法,正确的是()。【2018真题】 A.在桥台处设置转盘,将两岸预制的整跨或半跨转至设计合拢位置 B.转体重量大,施工中需设置转体平衡重 C.主要适用于转体重量不大的拱桥 D.主要针对大跨度拱桥施工,采用锚固体系代替平衡重 【答案】C 【解析】竖转施工主要适用于转体重量不大的拱桥或某些桥梁预制部件(塔、斜腿、劲性骨架)。竖转施工对混凝土拱肋、刚架拱、钢管混凝土拱,当地形、施工条件适合时,可选择竖转法施工。 1B413066 桥梁上部结构缆索吊装施工 一、概况 适用范围:在峡谷或水深流急的河段上,或在通航的河流上需要满足船只的顺利通行时可选用。 主要施工设备:缆索吊机塔架、缆索吊机主索(承重索)、起重索、牵引索、扣索、工作索、风缆、横移索、跑车(天车、骑马滑车)、索鞍和锚锭等。 二、吊装方法和要点 (一)缆索吊装施工工序 1.缆索设备的检查项目及检查方法 (1)地锚试拉

道路桥梁工程施工方法

道路桥梁工程施工方法 道路桥梁工程施工方法 本标段有桥梁一座,中心桩号K4+860,跨径4-22m,由68片预制后张空心板梁构成,下部结构采用圆柱式墩、钻孔灌注桩基础。钢筋混凝土轻型桥台。 1、施工顺序 2、施工方法 2.1、钻孔桩基础 本标段有Ф1200mm钻孔桩共长3232米。 1)、钻孔桩地质情况 桥址处地层自上而下依此为耕土、亚粘土、砂质粘性土、强风化混合岩、弱风化混合岩、微风化混合岩等构成。 2)钻孔桩施工机械 根据桥址处地质情况,采用CZ30型冲击式钻机。 3)钻孔灌注桩施工工艺流程图 4)安装钻机 钻机中心应对准桩中心,并与钻架上的起吊滑轮在同一铅垂线上。钻机定位后,底座必须平整,稳固,确保在钻进中不发生倾斜和位移。在钻头锥顶和提升钢丝绳之间设置保证钻头自转向的装置,以防产生梅花孔,保证钻进中钻具的平稳及钻孔质量。 5)泥浆制备 采用自然造浆方式进行护壁。浆液的比重、粘度、静切力、酸碱度、胶体率、失水、含砂率等指标要符合该地层护壁要求。 6)冲击成孔 开孔时,应低锤密击,同时可参照下表加粘土块夹小片石反复冲击造壁,孔内泥浆面应保持稳定;进入基岩后,应低锤冲击或间断冲击,如发现偏孔应回填片石至偏孔上方300~500mm处,然后重新冲孔;遇到孤石时,用高低冲程交替冲击,将大孤石击碎或击入孔壁,不得已时可用预爆方法处理;每钻进4~5m深度验孔一次,在更换钻头前或容易缩孔处,均应验孔;进入基岩后,每钻进100~300mm应清孔取样一次,以备终孔验收。(冲击钻机作业示意图如下) 7)清除沉碴 排碴采用掏碴筒进行,及时补给泥浆。 8)清孔 清孔处理的目的是使孔底沉碴(虚土)厚度、泥浆液中含钻碴量和孔壁泥垢厚度符合质量要求和设计要求,为在泥浆中灌注混凝土创造良好的条件。当钻孔达到设计深度并确认嵌入微风化2.0m后即停止钻进,此时提起钻头,用抽浆法清孔,清孔时必须保持孔口液面高度泥浆。清孔应符合下列规定:泥浆比重 1.05~1.2,含砂率≤4%,粘度≤28s;灌注混凝土前,孔底沉渣厚度应≤100mm同时令监理工程师满意。 9)、成孔检验 成孔检验的主要内容有孔径大小、成孔倾斜率、孔壁平整度和孔深、沉淀层厚度等。我单位拟使用日本生产的DM-6811III型测壁仪,该仪器使用超声波的发射与接收、根据时间的长短可反映出探头至孔壁的距离远近,从图象上即可直接量取成孔后孔壁的下列各项数据(其工作原理如”测壁仪工作原理图”所示): ①成孔轴线与设计孔轴线立面位置的偏差值。 ②孔径的实测值,即两孔壁间刻划距离值,实际桩径要求不小于设计桩径。

桥梁上部结构转体施工

桥梁上部结构转体施工 一、概述: 1.方法: ●竖转法 ●平转法 ●平竖结合法 2.优点: ●不干扰运输 ●不中断交通 ●不需要复杂的悬拼设备和技术 ●跨越深谷、激流、铁路、公路等特殊条件的有效施工方法 3.平转法:

(1)分类:有平衡重转体施工、无平衡重转体施工 (2)适用:刚构梁式桥、斜拉桥、钢筋砼拱桥、钢管拱桥(3)施工方法: ●桥体上部结构整跨或从中跨分为两个半跨,利用两岸地 形搭设排架(土胎模)预制 ●在桥台处设置转盘,将预制的整跨或半跨悬臂桥体置于 其上 ●砼达到设计强度后脱架

●以桥台和锚碇体系或锚固桥体重力平衡,再用牵引系统 牵引转盘 ●桥体上部结构平转至对岸成跨中合龙,再浇筑合龙段接 头砼 ●接头砼达到设计强度后,封固转盘,完成全桥施工 4.竖转法: (1)适用:转体量不大的拱桥或某些桥梁预制部件(塔、斜腿、劲性骨架);砼拱肋、刚架拱、钢管砼拱,当地形、施工条 件合适时,可选择竖转法施工 (2)转动系统组成:转动铰、提升体系(动、定滑轮组)、锚固体系(锚索、锚碇顶)等组成 二、桥体预制及拼装 ●按设计规定的位置、高程,根据两岸地形,设计适当的支架和 模板(或土胎) ●预制应符合的规定: 1.充分利用地形,合理布置桥体预制场地,使支架稳固,工料节 省,易于施工和安装

2.允许偏差: (1)结构的预制尺寸和重量: ●尺寸:±5mm ●重量:±2% ●桥体轴线平面:预制长度的±1/5000 ●轴线立面:±1cm (2)环道: ●转盘、球面:±1mm ●基座3m长度内平整度<±1mm ●径向对称点高差<环道直径×1/5000 三、平转法施工 (一)有平衡重转体施工 ●特点:转体重量大 ●施工关键:将转动体系顺利、稳妥的转到设计位置 ●主要措施:正确的转体设计,制作灵活可靠的转体装置, 并布设牵引驱动装置 ●转体装置分类: ①以四氟乙烯作为滑板的环道平面承重转体

桥梁转体施工作业指导书(Word33页)[优秀范本]

**************************标段 桥梁转体施工 作业指导书 编制: 复核: 审批: **********集团**************************铁路项目部 二〇一〇年十月

桥梁转体施工作业指导书 一、编制目的 明确桥梁转体工艺流程、操作要点和相应的工艺标准,指导、规范桥梁转体作业施工。 二、编制依据 1、**************************标段招标文件 2、《铁路混凝土工程施工技术指南》(TZ210-2021) 3、《铁路混凝土与砌体工程施工规范》(TB10210-2021 J118-2021) 4、《铁路混凝土与砌体工程施工质量验收标准》(TB10424-2021J283-2021) 5、《铁路混凝土工程施工质量验收补充标准》(铁建设【2021】160号) 6、《滚轧直螺纹钢筋连接接头》(JG163-2021) 三、桥梁转体施工工艺 转体结构由转体下盘、球铰、上转盘、转动牵引系统组成。转体下转盘是支撑转体结构全部重量的基础,下转盘上设置转动系统的下球铰、保险撑脚环形滑道及转体拽拉千斤顶反力座等,滑道钢结构采用预制拼装办法进行施工。 球铰制造与安装,本桥采用平转法施工的转动体系,转动球铰是整个转体的核心,制作和安装要求精度很高,需要精心制作、精心安装。上下球铰安装要保证球面的光洁及椭圆度,球铰安装顶口务必水平;上下球铰间按设计位置镶嵌四氟板,四氟板间涂抹黄油和四氟粉,上下球铰中线穿定位钢销,精确定位。最后上下球铰吻合面外周用胶带缠绕密实。 上转盘附着在下转盘上安装,固定成型后,试平转运行,检查无误后在支架上绑扎主墩钢筋、立模板、浇注主墩混凝土,完成上转盘施工。 桥梁转体前,应根据转动角度及转动角速计算出全部转体就位需要时长,如 京哈线路运输繁忙,一次封闭要点时间有限,转体施工时根据向铁路申请要点时间合理安排,采用多次转体施工。 1、转体系统安装 本工程转体结构由转体下盘、球铰、上转盘、转体牵引系统组成。下转盘为支承转体结构全部重量的基础,转体完成后,与上转盘共同形成基础。下转盘上设有转体系统的下铰球、环行下滑道及千斤顶反力座。撑脚与下滑道之间稍留间隙,千斤顶反力座

桥梁工程施工方案及施工方法

小桥施工方案 一、工程概况 本标段共有7座1-8m小桥,上部结构均为装配式钢筋砼空心板,空心板梁共计42片,下部为钢筋砼薄壁式桥台,基础为天然扩大基础。具体情况见下表: 桥梁工程一览表

主要工程数量:砼:1482.54m3;钢筋:102.51t;浆砌片石:1358.55m3。 二、施工安排 1、施工时间:计划开工时间:2003年8月20日;竣工时间:2003年9月30日。 2、施工顺序:计划先施工K60+486.3小桥和K64+099小桥,然后在施工衔接时间中相继施工其它小桥。 三、施工准备 1、施工放样:由项目部精测队测设出小桥中心桩和轴线方向,然后由施工队用经纬仪将小桥细部尺寸放出,用水平仪进行标高控制。在小桥施工过程中必须经常放样校核各部尺寸,以保证施工达到设计要求。 2、原材料:根据设计要求准备相应材料,各种材料必须经试验室检验合格后方可进场并使用。在每个小桥现场设一个料场,各种材料分类码放。在搅拌机旁设一个蓄水池,用水车拉水供施工之用。

3、机具设备:每个小桥配备强制式搅拌机、40KW发电机、电焊机、钢筋切割机各一台,捣固器、手推车等机具足够。 4、人员:每个小桥配备领工员、技术员、测量工各一人,各种技术工人12人,劳动力25人。 四、基础施工 1、基坑开挖:基坑开挖均采用机械和人工开挖相结合的办法,机械开挖至设计标高以上10~20cm处时,改由人工清理至设计标高。基坑渗水时,要在最低洼处预留积水坑,用潜水泵抽水,以保证基坑面的干燥。当基坑开挖较深时,根据周围情况采取放坡或临时支撑对坑壁进行支护。基坑开挖完毕,进行地基承载力检测,如地基承载力不能满足设计要求,则进行换填或采用其它方式处理直至满足设计要求。 2、基础砼:基坑检验合格后,重新将基础细部尺寸测定,开始支立基础模板。基础模板加固好,报检合格后进行基础砼浇筑。砼机械拌和,用滑槽将砼送入模板内,以30cm~40cm为一层分层浇筑,插入式振动棒捣固,到设计标高后用人工找平,并在台身范围内以50cm的间距预埋连接筋。基础砼施工结束后及时覆盖养护。 施工工艺见后附图1“明挖扩大基础施工工艺框图” 五、台身施工 1、模板工程:桥台盖梁模板和底模采用整体式钢模板,其模板板面钢板厚度为5mm。高度小于6米的桥台台身均采用整体式钢模板,其模板板面钢板厚度为10mm,绝不使用小块组合钢模。高度大于6m的台身,为考虑拆装方便,可采用多

桥梁转体监控方案

附件 2:利川至万州高速公路跨沪蓉铁路立交桥T 构梁转体施工 监 测 方 案 衡阳市恒德工程质量检测有限公司 2015 年 6 月 1 日

利川至万州高速公路跨沪蓉铁路立交桥T 构梁转体施工 监测技术方案 编制:复核:审核: 批准: 衡阳市恒德工程质量检测有限公司 2015年6月1日 目录

1、工程概况. (4) 1.1 项目概况. (4) 1.2 设计相关技术标准. (4) 1.3 桥址自然条件 (5) 1.3.1 工程地质构造 (5) 1.3.2 水文地质条件 (5) 1.3.3. 地震区划. (5) 2、施工监控方案编制依据. (6) 3、施工监控的目的. (6) 4、施工监控的原理 (7) 5、施工监控的内容 (7) 6、施工监测控制目标. (8) 7、施工过程的结构分析. (9) 8、线形监控的实施方案. (10) 8.1 承台沉降观测测量 (10) 8.2 线形高程监测. (10) 8.3 结构内力监测 (11) 8.4 施工过程温度变化影响观测 (15) 8.5 几何形态挠度监控 (16) 9、项目人员组织及仪器设备. (16) 9.1 监测人员配备 (16) 9.2 仪器设备. (17) 10、监测工作质量保证措施. (18) 11、施工监测安全措施. (20) 12、应急措施. (20) 13、监测数据整理和信息反馈. (22)

1、工程概况 1.1项目概况 利万高速利川西枢纽互通 A 匝道和B 匝道并行,在公路里程AK1+186.894处 与 沪渝高速交叉,在公路里程 AK1+270.26处与沪蓉铁路交叉,顺设计线方向沪 渝高速公路边至铁路下行线距离为 72m 桥位处公路路线为直线,与铁路的交角 为73度。A 匝道跨铁路立交桥的起点为 AK1+218.894,终点为AK1+328.894,桥 长110m; B 匝道跨铁路立交桥的起点为 BK0+248.315,终点为BK0+358.315,桥 长110m 两个匝道均为33+43+33mi 连续箱梁。 A 、 B 匝道跨铁路主跨采用42+30mT 型刚构,连续梁T 构部分为预应力混凝 土变 高度箱梁,箱梁采用单箱双室直腹板箱型截面,根部高 4.5m,端部高2.5m , 梁底线形按二次抛物线变化。箱梁顶板宽 15.1m,底板宽10m,两侧悬臂板长各 2.55m,悬臂板端部厚0.2m ,根部厚0.6m ;箱梁体顶、底板倾斜形成桥面横坡。 采用支架现浇后转体施工。 # L' 卜 r -1-】-卜■ 万州 1 利川 ——」1 T L- ~~- I I 匝道 T 构梁段划分图 1.2设计相关技术标准 1、公路等级:高速公路 利川 L F 1: 7 L 弓■ || r — -—斗1 一」 #左 #左 #左 # #右 #右 #右 -匝道

1B413037 桥梁上部结构转体施工

1B413037桥梁上部结构转体施工:针对本知识点提问? 1b413037桥梁上部结构转体施工。本知识点重点包括:转体施工方法概述、桥体预制及拼装、平转法施工、竖转法施。 一、转体施工方法概述 上部结构转体施工是跨越深谷、急流、铁路和公路等特殊条件下的有效施工方法,具有不干扰运输、不中断交通、不需要复杂的悬臂拼装设备和技术等优点,转体施工分为竖转法、平转法和平竖结合法。 平转法施工是将桥体上部结构整跨或从跨中分成两个半跨,利用两岸地形搭设排架(土胎模)顸制,在桥台处设置转盘,将预制的整跨或半跨悬臂桥体置于其上,待混凝土达到设计强度后脱架,以桥台和锚碇体系或锚固桥体重力平衡,再用牵引系统牵引转盘,待桥体上部结构平转至对岸成跨中合龙。再浇灌合龙段接头混凝土,待其达到设计强度后,封固转盘,完成全桥施工。平转法分为有平衡重转体施工和无平衡重转体施工两种方法,平转施工主要适用于刚构梁式桥、斜拉桥、钢筋混凝土拱桥及钢管拱桥。 竖转施工主要适用于转体重量不大的拱桥或某些桥梁预制部件(塔、斜腿、劲性骨架)。竖转施工对混凝土拱肋、刚架拱、钢管混凝土拱,当地形、施工条件适合时,可选择竖转法施工。其转动系统由转动铰、提升体系(动、定滑轮组,牵引绳等)、锚固体系(锚索、锚碇顶)等组成。 二、桥体预制及拼装 桥体的预制及拼装,应按照设计规定的位置、高程,并视两岸地形情况,设计适当的支架和模板(或土胎)进行。预制时应符合下列规定: (一)应充分利用地形,合理布置桥体预制场地,使支架稳固,工料节省,易于施工和安装。 (二)应严格掌握结构的预制尺寸和重量,其允许偏差为±5mm,重量偏差不得超过±2%,桥体轴线平面允许偏差为预制长度的±l/5000,轴线立面允许偏差为±l0mm,环道转盘应平整,球面转盘应圆顺,其允许偏差为±1mm;环道基座应水平,3m长度内平整度不大于±1mm,环道径向对称点高差不大于环道直径的1/5000。 三、平转法施工 (一)有平衡重转体施工 有平衡重转体施工的特点是转体重量大,施工关键是转体,要将转动体系顺利、稳妥地转到设计位置,主要依靠以下措施实现:正确的转体设计;制作灵活可靠的转体装置,并布设牵引驱动装置。目前国内使用的转体装置主要有两种,

浅谈转体桥梁的施工现状及关键技术

侯书亮水务二班 1101060228 浅谈转体桥梁的应用现状及关键技术 摘要:随着我国城市交通的发展,道路立交化已经是大势所趋。尤其是在已修建的公路、铁路上修建桥梁,每月必须申请多日铁路 A 类“天窗”内方可施工,不但施工进度受到道路行车运营情况的严重制约,而且也会影响繁忙的道路正常运营,同时也对道路的安全构成严重威胁。所以转体桥梁施工技术应运而生,并在近几年取得飞速发展。随着转体桥梁技术的大范围应用,其关键技术成为保障工程质量的关键性因素。现对转体桥梁的应用现状与关键的施工技术进行研究,了解这一技术的发展情况。 关键词:转体桥梁现状关键技术 1 转体桥梁的概念 桥梁转体施工技术是指桥梁在非设计位置完成桥梁上部结构的施工,然后通过转动体系使桥梁上部结构转动一定角度后就位于设计位置的一种施工方法(平面或竖向角度)。该施工方法具有结构合理、节约材料。施工设备投入少。施工安全,不影响通航、不中断桥下通行等优点,所以该施工方法发展迅速应用越来越广泛。尤其是对修建处于交通运输繁忙、安全要求苛刻的铁路跨线桥。由于该方法将在铁路上方的施工转换为在安全区域的施工,不对铁路运输产生安全威胁,所以其优势更加明显。目前跨越铁路的桥梁施工,铁路部门一般均要求采用该施工方法进行设计、施工。 2 转体桥梁的应用现状 为了确保既有铁路的运营安全,尽量减少施工对既有铁路运输的影响,铁道部及相关铁路局在进行跨越既有铁路桥梁方案的审批过程中越来越倾向于采用转体施工方案。特别是跨越既有电气化铁路、繁忙客货运铁路均要求转体施工。为此针对于采用转体施工方案过程中保证既有铁路运输安全如何使制订的施工方案更有针对性和可操作性成为一个新的研究课题。 3 转体桥梁施工的关键技术 在跨铁路桥梁转体施工法中,转动设备与转动能力是最为关键的技术问题。这一技术问题的突破能有效保证施工过程中的结构稳定,还能保证其强度,有效的实施结构的合拢,进行相应体系的高效转换。 3.1 竖转法 一般在肋拱桥工程中主要采用竖转法。而肋拱一般都是在底位浇筑,或是进行低位拼装之后再向上拉升,进而使其达到相应的设计位置,之后再进行合拢。竖转体系的构成也相对来说简单一些,方案设计为安装旋转支座——搭设拼装支架、塔架,安装扣索、平衡索——起吊安装拱肋——竖转对接—调整线形—焊接合龙。其中,在脱架时,竖转的拉索索力是最大的。主要是由于在这时候拉索的

桥梁转体施工方案工艺及技术[优秀工程方案]

桥梁转体施工方案、工艺及技术
1、总体施工顺序 1.1 基础部分 桩基施工→基坑围护结构施工→下承台施工→球铰安装→上承台施工→拱 座施工 1.2 拱梁施工 地基处理→搭设支架→预压→分节段支架现浇拱肋→浇注拱上立柱→搭设 拱上支架→浇注拱上简支梁→张拉临时系杆及其它预应力索→拆除拱肋、拱上支 架→现浇连续梁湿接缝(简支变连续)→转体准备→正式转体→平转到位→封铰 →支架现浇边跨并合拢→中跨合拢→张拉永久系杆,拆除临时系杆→桥面附属施 工 2、总体施工方案 2.1 钻孔桩 钻孔桩设计为摩擦桩,钻孔采用回旋钻机,主墩采用气举反循环工艺,边墩采 用正循环工艺进行施工,主墩砼采用泵送方法进行灌注。 2.2 承台 承台开挖采用圆形双壁钢围堰进行防护,靠沪杭高速公路侧在围堰外设置一 排抗滑桩,围堰开挖下沉到位以后,进行封底砼施工,承台厚度 6.5 米,总体分三次进 行浇筑,第一次浇筑 3.5 米,第二次浇筑球铰以上 2.1 米(部分承台),最后封铰浇注剩 余承台混凝土(包括平转空间 0.9m)。在承台砼当中埋设好冷却水管,以降低砼的 内部温度,防止砼开裂。 2.3 主拱圈 拱圈砼采用碗扣式满堂脚手架现浇的方法施工,地基处采用 CFG 桩进行加 固。计划将单个转体半边主拱圈分为 3 个节段,每段水平长度分别为 25m、25m、 28m。每节段设置 1m 宽间隔槽,节段间设型钢劲性骨架,每段分 3 环浇注施工。具 体分段见下图:

2.4 拱上立柱 拱上立柱采用定型加工的大块钢模一次性浇注完成。 2.5 拱上连续梁 连续梁连续拟采用膺架体系作支撑,立柱采用钢管和在拱上柱顶部设置牛腿 结合的方案,支撑梁采用贝雷梁。梁部钢筋在桥下专用胎具上绑扎好后,整体吊装 入模,单跨简支梁一次性浇注完成。逐孔梁施工完毕后,安装并张拉临时系杆后落 梁。拆除拱上支架,现浇湿接缝,按设计要求张拉相关预应力索后完成简支变连续 体系转换。 2.6 转体 完成拱梁现浇后,实施转体。转体前进行平转摩阻力测定、不平衡力矩测试, 根据检测结果进行配重,然后每个转体依靠由 2 台 2021 连续型牵引千斤顶、两台 液压泵站及一台主控台通过高压油管和电缆连接组成的牵引动力系统牵引实施 转体,根据高速公路管理部门的要求,路两侧两个转体的先后转体。精确就位后立 即锁定,然后进行转铰固结施工。 2.7 合拢 按照先合拢边跨,后合拢中跨的顺序施工。合拢时,需要安装临时锁定设施, 并选择当天气温最低或设计要求的温度浇筑合拢段砼。中跨合拢时根据设计要求 施加 700t 的顶推力。 3、主要施工方法、工艺 3.1 桩基础
3.1.1、施工工艺流程

桥梁工程施工方案汇总

第二章各分部分项工程的主要施工方案与技术措施 2.3 四里河桥施工方案 2.3.1 工程概述 本标段四里河桥位于长丰县四里河治理工程(大官塘~大房郢段),为装配式后张法预应力混凝土简支空心板桥,设计汽车荷载等级为公路—II级,桥梁设计为三跨,跨度分别为10m、20m、10m,总跨度为40m,桥面净宽为7m,桥面总宽为10m,桥面高程为39.5m,桥台搭板以外设置与未来公路平顺相接。 该桥上部结构采用预应力混凝土空心板梁,下部结构为桩柱结合结构,桥墩为圆柱式墩(直径1.5m和直径1.2m,最大高度27m),基础均采用桩基础,四里河桥主要工程量如下: 桥梁工程主要工程量表 表2-1

2.3.2 桥梁工程施工方案 ㈠桥梁工程施工工艺流程: 四里河桥工程施工主要工艺流程包括:施工准备-桩基施工-系梁、承台施工-墩柱施工-帽梁、台帽施工-箱梁安装-现浇湿接缝-桥面系施工-附属结构施工等。 ㈡桩基施工 四里河桥共8个桩基,合计长度143m,其中Φ1.2m桩基47.2m,Φ1.5m桩基95.8m。桩基混凝土总量为223.4m3,设计均为摩擦桩,且为桩柱结合方式,桩身、墩身均采用C30混凝土。 1. 施工布置: ⑴施工交通:从当地县乡公路修筑施工便道至四里河桥处接入,并沿线布置,施工便道宽5m,长240m。 ⑵临建布置:进入施工场地后,首先进行场地平整、硬化,修建临时设施、测量定位放桩位、设备安装调试等。主要临建设施包括:施工平台、贮浆池、沉淀池、排污沟、钢筋笼加工场地、临时供水、供电设施、各种管路敷设等。 制浆系统布置在施工工作面附近,布置泥浆搅拌机2台,修建贮浆池2个,沉淀池1

桥梁上部结构转体施工

桥梁上部结构转体施工文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

桥梁上部结构转体施工 一、概述: 1.方法: 竖转法 平转法 平竖结合法 2.优点: 不干扰运输 不中断交通 不需要复杂的悬拼设备和技术 跨越深谷、激流、铁路、公路等特殊条件的有效施工方法 3.平转法: (1)分类:有平衡重转体施工、无平衡重转体施工 (2)适用:刚构梁式桥、斜拉桥、钢筋砼拱桥、钢管拱桥 (3)施工方法: 桥体上部结构整跨或从中跨分为两个半跨,利用两岸地形搭设排架(土胎 模)预制 在桥台处设置转盘,将预制的整跨或半跨悬臂桥体置于其上 砼达到设计强度后脱架 以桥台和锚碇体系或锚固桥体重力平衡,再用牵引系统牵引转盘 桥体上部结构平转至对岸成跨中合龙,再浇筑合龙段接头砼 接头砼达到设计强度后,封固转盘,完成全桥施工

4.竖转法: (1)适用:转体量不大的拱桥或某些桥梁预制部件(塔、斜腿、劲性骨架);砼拱肋、刚架拱、钢管砼拱,当地形、施工条件合适时,可选择竖转法施工(2)转动系统组成:转动铰、提升体系(动、定滑轮组)、锚固体系(锚索、锚碇顶)等组成 二、桥体预制及拼装 按设计规定的位置、高程,根据两岸地形,设计适当的支架和模板(或土胎) 预制应符合的规定: 1.充分利用地形,合理布置桥体预制场地,使支架稳固,工料节省,易于施工和安装 2.允许偏差: (1)结构的预制尺寸和重量: 尺寸:±5mm 重量:±2% 桥体轴线平面:预制长度的±1/5000 轴线立面:±1cm (2)环道: 转盘、球面:±1mm 基座3m长度内平整度<±1mm 径向对称点高差<环道直径×1/5000 三、平转法施工 (一)有平衡重转体施工 特点:转体重量大 施工关键:将转动体系顺利、稳妥的转到设计位置

桥梁工程施工方案(全过程)

桥梁工程施工方案 一、工程概况 本工程主桥为3 孔(31+44+31m)V 型墩装配式预应力混凝土连续T 梁桥。两侧引桥各采用4 孔(北)和7 孔(南)25 米装配式后张预应力混凝土简支空心板梁,单排柱式墩,重力式桥台,钻孔灌注桩基础。桥墩钻孔灌注桩桩径为1.5m,V 墩为1.0m,桥台钻孔灌注桩桩径1.0m。本桥梁全长389.8m,台后填土高度2.8~3.2m。**河南侧桥梁位于中心半径为1200m 的圆曲线上。 (一)技术标准 1、荷载等级:城-A 级汽车荷载,人群荷载按“城市桥梁设计荷载标准”中的“城市桥梁人群荷载”进行设计。 2、桥面宽度:桥面全宽38m,为不对称布置,其中机动车道宽8.5m(西)和12m(东),分隔带宽1.5m(西)和2.0m(东),两侧人行道和非机动车道宽2×4.5,中央绿化带宽5.0m。在古塘路交叉口段,西侧机动车道拓宽为11.5m,中央绿化带宽缩为2.0m。 3、通航标准:**河为七级航道,设计通航水位4.180m(黄海),净宽B=22m,上底宽b=17m,净高H=4.5m,侧高h=3.4m。 4、**路立交孔:净高3.5m,**路规划路面标高为5.60m。 5、地震裂度:按七度设防。 (二)主桥结构 主桥上部结构为装配式预应力(后张)混凝土连续T 梁,T 梁中距1.6m,T 梁梁高在主墩处为2m,在边墩与桥中为1.3m,腹板厚度0.16~0.34m。每片T 梁在顺桥向分成5 段预制,即有两段1 号段,2段2 号段,1 段3 号段,段与段之间留有45 厘米湿接头,通过张拉通长预应力钢束连成连续梁。T 梁在横桥向分成2 联,西侧11 片T梁形成1 联,东侧12 片T 梁形成1 联。主桥在横桥向共有23 片T 梁,每一联内T 梁与T 梁横桥向通过横隔板湿接头(50cm)和T 梁翼缘板湿接头(20cm)成为一整体。 主桥主梁(T 梁)采用C50 砼,梁内预应力筋采用OVM15-9、OVM15-7、OVM15-6 预应力钢绞线,金属波纹管成孔,张拉力及伸长值双控张拉施工。主桥墩采用V 型墩,V 型墩的顶部水平预应力砼结构。 拉杆内设有OVM15-4、OVM15-6 预应力钢绞线,金属波纹管成孔。 其余为普通钢筋砼。基础为双排钻孔灌注桩基础,桩径1m。

拱桥施工监控方案

沪杭甬客运专线上海至杭州段(88+160+88)m自锚上承式拱桥 施工监控方案 中铁第五勘察设计院集团有限公司 二○○九年九月

目录 1 工程概况 (3) 2 施工监控的目的、依据、原则和方法 (4) 2.1 施工监控目的 (4) 2.2 施工监控依据 (5) 2.3 施工监控原则 (5) 2.4 施工监控方法 (5) 3 施工监控工作的主要内容 (7) 3.1 施工过程仿真计算 (7) 3.2 与施工监控有关的基础资料的收集 (7) 3.3 施工过程结构线形、应力应变监测 (8) 3.4. 基础沉降及拱座位移观测 (11) 4 施工控制精度与监控要求 (12) 4.1 施工控制精度 (12) 4.2 施工监控要求 (12) 5 组织机构 (12) 5.1 机构组成 (12) 5.2 各单位分工 (13) 5.3 施工控制工作程序 (14) 6 施工监控注意事项 (15)

1 工程概况 沪杭客运专线跨沪杭高速公路特大桥位于上海市金山区和浙江省嘉兴市境内,沿途穿越上海市金山区,浙江省嘉兴市嘉善县,桥位处地形平坦。沪杭客专于嘉善县内由沪杭高速公路南侧跨到北侧,交点处客专里程为DK59+247。 线路设计为双线,线间距5.0m,本桥位于直线上。设计速度350km/h。 桥梁方案: 本桥采用自锚上承式拱桥,孔跨组成为(88+160+88)m,立面布置如图1所示。拱肋采用抛物线线形,矢跨比为1/6,中跨拱肋拱顶截面高为4m,拱脚截面高为6m,拱肋横向宽度7.5m,采用单箱单室截面。 为简化结构构造及受力,拱肋上设置三个拱上立柱,支承(20+22+22+20)m连续梁,为配合拱肋曲线变化,连续梁边跨截面高度采用变截面,梁端截面高度4m,跨中截面高度采用3m,连续梁与拱肋结构分离。 施工方法: 主桥采用“支架现浇,转体就位”的施工方案,即主拱及拱上连续梁先顺公路方向支架现浇,然后拆除支架进行转体施工。具体施工步骤如下: 1、主墩桩基础、下层承台、平转球铰、上层承台、拱座施工;边墩桩 基础、承台、墩身施工。 2、顺公路方向搭设支架、并预压,在支架上现浇拱肋。 3、浇拱上立柱、支架现浇拱上连续梁,本阶段连续梁支承在临时支座 及支架上,与永久支座悬空5cm。 4、张拉临时系杆。 5、拆除拱上连续梁现浇支架、落梁,通过调整支座下板底无收缩水泥 砂浆厚度,使连续梁各支点下落高度一致。 6、用素混凝土填实连续梁端与拱圈之间的梁缝、张拉临时预应力索将 拱圈与连续梁固接。 7、拆除现浇拱肋支架,做好拱肋平转准备工作。 8、拱肋平转到位,封铰。 9、支架现浇边跨并合龙。 10、合龙中跨,解除拱肋与连续梁的临时固结索,拆除梁缝内的素混凝土塞

桥梁上部结构转体施工方法

桥梁上部结构转体施工方法 (1)概述 ①转体施工一般适用于各类单孔拱桥的施工,其基本原理是:将拱圈或整个上部结构分为两个半跨,分别在河流两岸利用地形或简单支架现浇或者预制装配半拱,然后利用动力装置将其两半拱体转动至桥轴线位置合拢成拱。分为平面转体、竖向转体和平竖结合转体三种。 ②平面转体:按照拱桥设计标高先在两边预制半拱,当结构混凝土达到设计强度后,借助设置于桥台底部的转动设备和动力装置在水平面内将其转动至桥位中线处合拢成拱。 ③竖向转体:在桥台处先竖向或者在桥台前俯卧预制半拱,然后在桥位垂直平面内绕拱脚将其合拢成拱。根据河道情况可以:竖直向上预制半拱,然后向下转动成拱,其特点是施工占地少,预制可采用滑模施工,工期短,造价低;在桥面以下俯卧预制半拱,然后向上转动成拱,适于河内无水条件下使用。 ④平竖结合转体:由于受河岸地形条件限制,采用转体施工时,前述两种方法均难以实施,只能在适当位置预制后,平转与竖转相结合,实现两个半拱桥位合拢。 (2)有平衡重平面转体施工 1)转动体系构造 ①转动体系主要由底盘、上转盘、锚扣系统、背墙、拱体构造、拉杆等组成。 ②底盘与上转盘:是桥台基础的一部分,地盘固定,上转盘与转体形成整体并可在底盘上旋转,从而实现拱体转动。 ③锚扣系统:目的是把支承在支架、环道或滚轮上的拱体与上转盘、背墙全部连接成一个转动体系并脱离周边支承,形成一个支承在转动轴心或铰上的悬空平衡体。 ④背墙:桥台的一部分,作为转体阶段的拱体扣索或拉杆的锚碇反力墙。 ⑤拱体:预制完成的半拱。 ⑥拉杆(拉索):连接半拱与台背的螺杆或者缆索。 2)有平衡重转体施3232序制作底盘一制作上转盘一布置牵引系统的锚碇及滑轮,试转上盘一浇筑背墙一施工支架,浇筑主拱圈上部结构(用预制构件组拼)+张拉脱架+转体合拢+封上下盘、封拱顶一松拉杆。 (3)无平衡重转体施工 1)无平衡重转体一般构造

桥梁转体施工作业指导书教学内容

桥梁转体施工作业指 导书

桥梁转体施工技术交底书 一、编制目的 明确桥梁转体工艺流程、操作要点和相应的工艺标准,指导、规范桥梁转体作业施工。 二.工程概况 ?桥址:四川省巫山县 ?主跨结构: 122米钢筋混凝土箱形拱桥 ?施工方法:平面转体施工法 ?箱拱预制:右岸半跨是全宽一次预制,左岸半跨分成单箱分别在上、下游预制,不对称转体到对称转体再合拢。 三、编制依据 1、《铁路混凝土工程施工技术指南》(TZ210-2005) 2、《铁路混凝土与砌体工程施工规范》(TB10210-2001 J118-2001) 3、《铁路混凝土与砌体工程施工质量验收标准》(TB10424-2003J283-2004) 四、桥梁转体施工工艺 转体结构由转体下盘、球铰、上转盘、转动牵引系统组成。转体下转盘是支撑转体结构全部重量的基础,下转盘上设置转动系统的下球铰、保险撑脚环形滑道及转体拽拉千斤顶反力座等,滑道钢结构采用预制拼装办法进行施工。 球铰制造与安装,本桥采用平转法施工的转动体系,转动球铰是整个转体的核心,制作和安装要求精度很高,需要精心制作、精心安装。上下球铰安装要保证球面的光洁及椭圆度,球铰安装顶口务必水平;上下球铰间按设计位置镶嵌四氟板,

四氟板间涂抹黄油和四氟粉,上下球铰中线穿定位钢销,精确定位。最后上下球铰吻合面外周用胶带缠绕密实。 上转盘附着在下转盘上安装,固定成型后,试平转运行,检查无误后在支架上绑扎主墩钢筋、立模板、浇注主墩混凝土,完成上转盘施工。 1.转体系统安装 ⑴水平转体总体施工步骤 步骤一、基础施工: 在承台上预埋定位架、预留二次浇注混凝土槽口,安装下转盘球铰及滑道,浇注临时支墩; 步骤二、墩身施工: 安装下球铰聚四氟乙烯滑块、上球铰及上转盘,浇注墩身混凝土; 步骤三、0#梁段施工: 安装支架,在支架上进行0#段施工,浇注混凝土; 步骤四、梁施工: 主梁在碗扣支架上进行钢筋绑扎、模板安装、混凝土浇注、预应力安装及张拉,同时进行相邻墩的施工; 步骤五: 在相邻墩处搭设南北端梁段的支架及转体梁端临时接受墩; 步骤六: 主梁落架,桥梁水平转体,实现铁路的跨越,完成墩与承台的固结; 步骤七:

相关文档
最新文档