计算方法习题集(含答案)第四版

计算方法习题集(含答案)第四版
计算方法习题集(含答案)第四版

习题1.1

1. 什么叫数值方法?数值方法的基本思想及其优劣的评价标准如

何?

数值方法是利用计算机求解数学问题近似解的方法

2. 试证明及

证明:(1)令

⑵设,不妨设,

即对任意非零,有

下面证明存在向量,使得,

设,取向量。其中。

显然且任意分量为,

故有即证。

3. 古代数学家祖冲之曾以作为圆周率的近似值,问此近似值具有

多少位有效数字?

解:

该近似值具有7为有效数

字。

4. 若T(h)逼近其精确值T的截

断误差为

其中,系数与h无关。试证明由

所定义的T的逼近序列的误差

为,

其中诸是与h无关的常数。证

明:当m=0时

设m=k时等式成立,即

当m=k+1时

习题2.1

1. 试构造迭代收敛的公式求解下列方程:

(1); (2)。

解:

(1)迭代公式,公式收敛

k 0 1 2 3

0 0.25 0.25098 0.25098

(2),,局部收敛

k 0 1 2 3 4 5 6 7 8 9

1.5 1.322 1.421 1.367 1.397 1.380 1.390 1.384 1.387 1.386

2. 方程在附近有根,把方程写成三种不同的等价形式:(1),对应迭代公式; (2),对应迭代公式; (3),对应迭代公式。判断以上三种迭代公式在的收敛性,选一种收敛公式求出附近的根到4

位有效数字。

解:

(1)局部收敛

(2)局部收敛

(3)不是局部收敛

迭代公式(1):

0 1 2 3 4 5 6 7

1.5 1.44444 1.47929 1.456976 1.47108 1.46209 1.46779 1.4416 1.4

9 10 11 12 13 14 15 16

1.4650 1.46593 1.4653 1.46572 1.46548 1.46563 1.465534 1.465595

迭代公式(2):

k 0 1 2 3 4 5 6

1.5 1.481 1.473 1.469 1.467 1.466 1.466

3. 已知在[a,b]内有一根,在[a,b]上一阶可微,且,试构造一个局部

收敛于的迭代公式。

解:

方程等价于

构造迭代公式

由于在[a,b]上也一阶可微

故上述迭代公式是有局部收敛性.

4. 设在方程根的邻近有连续的一阶导数,且,证明迭代公式具有

局部收敛性。

证明:

在邻近有连续一阶导数,则在附近连续,

令则取

则时

从而

令,

由定理2.1知,迭代公式是有局部收敛性。

5. 用牛顿法求方程在[3,4]中的根的近似值(精确到小数点后两

位)。

解:

y次迭代公式

k 0 1 2 3

3.5 3.64 3.63 3.63

6. 试证用牛顿法求方程在[1,3]内的根是线性收敛的。

解:

y次迭代公式

从而,时,故,故牛顿

迭代公式是线性收敛的

7. 应用牛顿法于方程, 导出求立方根的迭代公式,并讨论其收敛

性。

解:

相应的牛顿迭代公式为

迭代函数,,

则,

习题3.1

1. 设有方程组

(1) 考察用Jacobi法,Gauss-Seidal法解此方程组的收敛性;

(2) 用Jacobi法及Gauss-Seidal法解方程组,要求当时迭代终止。解:(1)A是强对角占优阵。

故用雅克比法及高斯-塞德尔法解此方程均收敛。

(2)

雅克比法:

,,,

取初始向量,迭代18次有

(i=1,2,3),,

高斯-塞德尔法:,,取初始向

量,迭代8次有(i=1,2,3)

,,

2. 设有方程组, , 迭代公式:, . 求证由上述迭代公式产生

的向量序列收敛的充要条件是.

证明:

迭代公式中的矩阵,,由迭代收

敛的充要条件知即证。

3. 用SOR方法解下列方程组(取松驰因子),要求.

.

解:SOR方法

故,迭

代初值

k

0 0.000000 0.000000

1 0.6000000 -1.320000

2 1.2720000 -0.854400

3 0.858240 -1.071648

4 1.071341 -0.964268

5 0.964293 -1.017859

6 1.01785

7 -0.991071

7 0.991071 -0.997768

8 1.004464 -0.997768

9 0.997768 -1.001116

10 1.001116 -0.999442

11 0.999442 -1.000279

12 1.000279 -0.999861

13 0.999861 -1.000070

14 1.000070 -0.999965

15 0.999965 -1.000017

16 1.000017 -0.999991

4. 用选列主元高斯消去法求解方程组解:

解得

5. 用追赶法解三角方程组

解:高斯迶元

回代得

解为

6. 用三角分解法求解方程组

解:系数矩阵三角分解为:

原方程可表为:

解得

7. 用选主元法去法计算下列行列式的值. 解:

8. 设计算. 解:

习题四.1

1. 给出概率积分的数据

表:试用二次插值计算.

X0.46 0.47 0.48 0.49

f(x) 0.4846555 0.4937542 0.5027498 0.5116683

解:取插值节点:

2. 已知y=sinx的函数表

X 1.5 1.6 1.7

sinx0.99749 0.99957 0.99166

试构造出差商表,利用二次Newton插值公式计算sin(1.609)(保留5位小数),并估计其误差.

解:由题意得如下差商表

故:

3. 设为互异节点(),求证

(1) (2) 证明:令

所以故

原等式左边用二项式展开得:

由结论得

即证

4. 若,求和.

解:

5. 证明两点三次Hermite插值余项是

证明:

即为的二阶零点

易知

由微分中值定理(Rolle定理),使得

进而有三个零点,有两个零点,有一个零点,

即使得

6. 构造适合下列数据表的三次样条插值函数S(x)

X-1 0 1 3

Y-1 1 3 31

4 28

解:已知

边界条件

从而

得当

即时

故同理,在及上

均有

7. 用最小二乘法求一个形如的经验公式,使与下列数据相拟合

X19 25 31 38 44

Y19.0 32.3 49.0 73.3 97.8 解:依题意

正则方程为

解得故拟合

曲线为

习题5.

1.试确定下面求积公式

使其具三次代数精度.

解:要公式有3次代数

精度,需有

解得:故求积公式为

2.在区间上导出含五个节点的Newton-Cotes公式,并指出其余项及代数精度.

解:

当时,

又故当时,有求

积公式

(*)

其中

由Lagrange差值定理有:

故余项

对(*)至少有四次代数精度

时式(*)左边=右边=

故(*)式具有5次代数精度

3.分别用复合梯形公式及复合Simpson公式计算

, (取步长h=1/6).

解:(1)用复合梯形公式故

(2)用复合Simpson公式:

4.用变步长梯形求积公式计算

, (精确到).

解:

得:

5.用Romberg算法计算积分

, (精确到).

解:由公式

得:

即已经达到预定精度

6.试构造两点Gauss公式

, 并由此计算积分(精确到)

.

解:

二次Lagendre多项式:

Gauss点为

由公式得

令即使得

习题6

1.试用三种方法导出线性二步方法

解:

(1)Taylor展开法

线性k步公式为

即得

(2)数值积分法

用矩形求积公式

令(中矩形公

式)

即得:

(3)由隐式欧拉法得①

由显示欧拉法得②

1 代入②得

2.用Taylor展开法求三步四阶方法类,并确定三步四阶显式方法.

解:线性k步公式为

,在(6.17)中令

取。即

满足上述条件的多步方法即为一类三步四阶显示方法,令可得

方法即为

3.形如

的k阶方法称为Gear方法,试确定一个三步Gear方法,并给出其截断误差主项。

解:线性k步公式为

由Gear法的定义知,三步Gear法满足

方法为阶,故有

得:取得

得三步Gear方法:

其中

4.试用显式Euler法及改进的Euler法

计算初值问题(取步长h=0.2)

并比较两者的误差。解:步长, 真解

显式法:改进法:显然改

进的法误差小于法。

5.给出线性多步法为零稳定的条件,并证明该方法

为零稳定时是二阶收敛的.

证明:线性多步法

的相应多项式多项式

的两根为:,。

由判断零稳定的充要条件根条件知:此方法的零稳定的条件为由于,,

,,

得:

当方法为零稳定时,从而,故方法是二阶收敛的。

6.给出题(6.5)题中时的公式的绝对稳定域.

解:

6.5中当时,即为方法

其相应的差分方程的多项式为

令,即方法的绝对稳

定域为

7.指出Heun方法

0 0 0 0

1/3 1/3 0 0

2/3 0 2/3 0

1/4 0 3/4

的相容阶,并给出由该方法以步长h计算初值问题(6.45)的步骤.

解:

中对方法有

类似例将方法应用到得

其中

上述步骤可按如下步骤完成:将原问题初值代入得出当前步的,然后代入,得出,,再以,作为第2个计算步的初值重复上述步骤

可求出

,,依次类推即可求出原问题的相继数值序列.

经验证方法满足

由方法阶相容的充要条件知方法具有三阶相容阶。

计算方法引论课后答案.

第一章 误差 1. 试举例,说明什么是模型误差,什么是方法误差. 解: 例如,把地球近似看为一个标准球体,利用公式2 4A r π=计算其表面积,这个近似看为球体的过程产生 的误差即为模型误差. 在计算过程中,要用到π,我们利用无穷乘积公式计算π的值: 12 222...q q π=? ?? 其中 11 2,3,... n q q n +?=?? ==?? 我们取前9项的乘积作为π的近似值,得 3.141587725...π≈ 这个去掉π的无穷乘积公式中第9项后的部分产生的误差就是方法误差,也成为截断误差. 2. 按照四舍五入的原则,将下列各数舍成五位有效数字: 816.956 7 6.000 015 17.322 50 1.235 651 93.182 13 0.015 236 23 解: 816.96 6.000 0 17.323 1.235 7 93.182 0.015 236 3. 下列各数是按照四舍五入原则得到的近似数,它们各有几位有效数字? 81.897 0.008 13 6.320 05 0.180 0 解: 五位 三位 六位 四位 4. 若1/4用0.25表示,问有多少位有效数字? 解: 两位 5. 若 1.1062,0.947a b ==,是经过舍入后得到的近似值,问:,a b a b +?各有几位有效数字? 解: 已知4311 d 10,d 1022 a b --

成本核算的几种主要方法

成本核算的几种主要方法 因产品生产类型的不同特点和企业不同的管理要求,存在着三种不同的成本计算对象,即产品的品种、批别、生产步骤。而成本对象的不同,形成了品种法、分批法、分步法三种不同的成本计算方法。此外,如果产品的品种规格繁多,为了简化产品成本核算工作,可将产品的品种规格归并分类,按类别开设成本计算单归集费用,然后再按品种规格或生产批别、生产步骤分配费用、计算成本。这种用来简化成本计算工作的方法,成为分类法。分类法不是单独应用的成本计算方法,需与某一种或某两种基本方法结合应用,以便简化基本方法的核算工作,所以属于成本计算的辅助方法。以下面表格简单列示不同成本核算方法使用的生产组织形式、生产工艺过程和管理的要求及使用的类型。 成本核算方法 生产组织形式 生产工艺过程和管理的要求 适用的类型 品种法 大量大批生产 单步骤生产或管理上不要求分步骤计算工成本的多步骤生产 发电、采煤 分批法 小批单件生产 管理上要求分步计算成本 精密仪器、专用设备 分步法

大量大批生产 管理上要求分步骤计算成本的多步骤生产 冶金、纺织、造纸 分类法 综合性生产 分步、不分计算成本的生产 家电、服装 http: 产品制造成本构成项目为直接材料、直接人工和制造费用。 ⒈直接材料成本 ⑴采用实际成本方法核算 获取成本计算单、材料成本分配汇总表、材料发出汇总表、材料明细账中各直接材料的单位成本等资料。 ①审查成本计算单中直接材料与材料成本分配汇总表中相关的直接材料是否相符,分配的标准是否合理。审查时注意两个方面的问题: 第一、非生产耗用材料记入产品成本。如果成本计算单直接材料金额大于材料成本分配汇总表的分配金额,应进一步查明原因,审查材料使用对象有无将非产品耗用材料记入产品成本。 但企业会计人员如果有意识地挤占产品成本,在耗用材料进行分配时,就会将非生产耗用材料直接分配到产品成本,使得成本计算单和材料分配汇总表金额相等。核对材料分配表若不能暴露问题,可采取通过非生产性项目的审查,即采用“反查法”的方法进行审查,查明问题后,按照谁耗用谁负担的原则,进行纳税调整。账务处理:

计算方法上机作业

计算方法上机报告 姓名: 学号: 班级: 上课班级:

说明: 本次上机实验使用的编程语言是Matlab 语言,编译环境为MATLAB 7.11.0,运行平台为Windows 7。 1. 对以下和式计算: ∑ ∞ ? ?? ??+-+-+-+=0681581482184161n n n n S n ,要求: ① 若只需保留11个有效数字,该如何进行计算; ② 若要保留30个有效数字,则又将如何进行计算; (1) 算法思想 1、根据精度要求估计所加的项数,可以使用后验误差估计,通项为: 1421114 16818485861681 n n n a n n n n n ε??= ---<< ?+++++??; 2、为了保证计算结果的准确性,写程序时,从后向前计算; 3、使用Matlab 时,可以使用以下函数控制位数: digits(位数)或vpa(变量,精度为数) (2)算法结构 1. ;0=s ?? ? ??+-+-+-+= 681581482184161n n n n t n ; 2. for 0,1,2,,n i =??? if 10m t -≤ end; 3. for ,1,2,,0n i i i =--??? ;s s t =+

(3)Matlab源程序 clear; %清除工作空间变量 clc; %清除命令窗口命令 m=input('请输入有效数字的位数m='); %输入有效数字的位数 s=0; for n=0:50 t=(1/16^n)*(4/(8*n+1)-2/(8*n+4)-1/(8*n+5)-1/(8*n+6)); if t<=10^(-m) %判断通项与精度的关系break; end end; fprintf('需要将n值加到n=%d\n',n-1); %需要将n值加到的数值 for i=n-1:-1:0 t=(1/16^i)*(4/(8*i+1)-2/(8*i+4)-1/(8*i+5)-1/(8*i+6)); s=s+t; %求和运算 end s=vpa(s,m) %控制s的精度 (4)结果与分析 当保留11位有效数字时,需要将n值加到n=7, s =3.1415926536; 当保留30位有效数字时,需要将n值加到n=22, s =3.14159265358979323846264338328。 通过上面的实验结果可以看出,通过从后往前计算,这种算法很好的保证了计算结果要求保留的准确数字位数的要求。

计算方法上机题答案

2.用下列方法求方程e^x+10x-2=0的近似根,要求误差不超过5*10的负4次方,并比较计算量 (1)二分法 (局部,大图不太看得清,故后面两小题都用局部截图) (2)迭代法

(3)牛顿法 顺序消元法 #include #include #include int main() { int N=4,i,j,p,q,k; double m; double a[4][5]; double x1,x2,x3,x4; for (i=0;i

for(k=p+1;kmax1 max1=abs(A(i,k));r=i; end end

《数值计算方法》上机实验报告

《数值计算方法》上机实验报告华北电力大学 实验名称数值il?算方法》上机实验课程名称数值计算方法专业班级:电力实08学生姓名:李超然学号:200801001008 成绩: 指导教师:郝育黔老师实验日期:2010年04月华北电力大学实验报告数值计算方法上机实验报吿一. 各算法的算法原理及计算机程序框图1、牛顿法求解非线性方程 *对于非线性方程,若已知根的一个近似值,将在处展开成一阶 xxfx ()0, fx ()xkk 泰勒公式 "f 0 / 2 八八,fxfxfxxxxx 0 0 0 0 0 kkkk2! 忽略高次项,有 ,fxfxfxxx 0 ()()(),,, kkk 右端是直线方程,用这个直线方程来近似非线性方程。将非线性方程的 **根代入,即fx ()0, X ,* fxfxxx 0 0 0 0, ,, kkk fx 0 fx 0 0,

解出 fX 0 *k XX,, k' fx 0 k 水将右端取为,则是比更接近于的近似值,即xxxxk, Ik, Ik fx ()k 八XX, Ikk* fx()k 这就是牛顿迭代公式。 ,2,计算机程序框图:,见, ,3,输入变量、输出变量说明: X输入变量:迭代初值,迭代精度,迭代最大次数,\0 输出变量:当前迭代次数,当前迭代值xkl ,4,具体算例及求解结果: 2/16 华北电力大学实验报吿 开始 读入 l>k /fx()0?,0 fx 0 Oxx,,01* fx ()0 XX,,,?10 kk, ,1,kN, ?xx, 10 输出迭代输出X输出奇异标志1失败标志

,3,输入变量、输出变量说明: 结束 例:导出计算的牛顿迭代公式,并il ?算。(课本P39例2-16) 115cc (0), 求解结果: 10. 750000 10.723837 10. 723805 10. 723805 2、列主元素消去法求解线性方程组,1,算法原理: 高斯消去法是利用现行方程组初等变换中的一种变换,即用一个不为零的数乘 -个 方程后加只另一个方程,使方程组变成同解的上三角方程组,然后再自下而上 对上三角 3/16 华北电力大学实验报告方程组求解。 列选主元是当高斯消元到第步时,从列的以下(包括)的各元素中选出绝 aakkkkkk 对值最大的,然后通过行交换将其交换到的位置上。交换系数矩阵中的 两行(包括常ekk 数项),只相当于两个方程的位置交换了,因此,列选主元不影响求解的结 ,2,计算机程序框图:,见下页, 输入变量:系数矩阵元素,常向量元素baiji 输出变量:解向量元素bbb,,12n

数值分析丛书

作者:李庆扬,王能超,易大义编 出版社:清华大学出版社 出版时间:2008年12月 本书是为理工科大学各专业普遍开设 的“数值分析”课程编写的教材。其内容包 括插值与逼近,数值微分与数值积分,非 线性方程与线性方程组的数值解法,矩阵 的特征值与特征向量计算,常微分方程数 值解法。每章附有习题并在书末给出了部 分答案,每章还附有复习与思考题和计算 实习题。全书阐述严谨,脉络分明,深入 浅出,便于教学。 本书也可作为理工科大学各专业研究 生学位课程的教材,并可供从事科学计算 的科技工作者参考。 作者:徐萃薇,孙绳武编著 出版社:高等教育出版社 本书为普通高等教育“十一五”国家 级规划教材。本书从服务于多层次、多 专业、多学科的教学需要出发,在选材 上考虑普适性,涉及现代数字电子计算 机上适用的各类数学问题的数值解法以 及必要的基础理论,在材料组织安排上 给讲授者根据教学要求和学生情况适当 剪裁的自由,一些内容还可作为阅读材 料。 新版全书经过整理、润色,多处内容有 所修改,乃至重写。考虑到代数计算在 应用中所占份额较大,是比较活跃的领 域,六至十章改动较大;新增共轭斜量 法、预善共轭斜量法、拟Newton法等;改进了例题设置,增加数量,加强例题间联系;新 增习题参考答案;参考文献收集了国内外内容结构与本书相近的、有影响的、包括新近面世 的一些书籍,并按大学生教材和研究生教材或专著分列,可供读者加深理解和进一步提高使 用。有些对研究工作亦不无裨益。 本书算法描述不拘一格,或用自然语言,或用某种形式语言(以描述某些细节),便于理解, 也便于编程。本书可作为工科非计算数学专业本科生学习“计算方法”课程的教材。

计算方法上机作业

计算方法第四次上机报告 2.用欧拉方法解初值 y’=10x(1-y) 0<=x<=1 Y(0)=0 取步长h=0.1,保留5位有效数字,并与准确解相比较 分析:该题目考察欧拉方法解初值问题 程序如下: function Heun(a,b,y0,n) h=(b-a)/n;x=a:h:b; y=y0*ones(1,n+1); for j=2:n+1 yp=y(j-1)+h*f(x(j-1),y(j-1)); yc=y(j-1)+h*f(x(j),yp); y(j)=1/2*(yp+yc); end for k=1:n+1 fprintf('x[%d]=%f\ty[%d]=%f\n',k-1,x(k),k-1,y(k)); end function z=f(xx,yy) z=10*xx*(1-yy); 运行结果: >> Heun(0,1,0,10) x[0]=0.000000 y[0]=0.000000 x[1]=0.100000 y[1]=0.050000 x[2]=0.200000 y[2]=0.183000

x[3]=0.300000 y[3]=0.362740 x[4]=0.400000 y[4]=0.547545 x[5]=0.500000 y[5]=0.705905 x[6]=0.600000 y[6]=0.823543 x[7]=0.700000 y[7]=0.901184 x[8]=0.800000 y[8]=0.947627 x[9]=0.900000 y[9]=0.973290 x[10]=1.000000 y[10]=0.986645 >> 分析: 该结果与准确结果相比比较接近,但是有一定的误差。 6.用四阶龙格—库塔公式解第三题中的初值问题,取步长h=0.2,保留五位有效数字。 题目目的分析: 该题考查四阶龙格-库塔方法和改进欧拉方法求解精确度问题。 程序: 改进欧拉法: function Heun(a,b,y0,n) h=(b-a)/n;x=a:h:b; y=y0*ones(1,n+1); for j=2:n+1 yp=y(j-1)+h*f(x(j-1),y(j-1)); yc=y(j-1)+h*f(x(j),yp); y(j)=1/2*(yp+yc); end for k=1:n+1 fprintf('x[%d]=%f\ty[%d]=%f\n',k-1,x(k),k-1,y(k)); end

计算方法试题库讲解

计算方法 一、填空题 1.假定x ≤1,用泰勒多项式?+??+++=! !212n x x x e n x ,计算e x 的值,若要求截断误差不超过0.005,则n=_5___ 2. 解 方 程 03432 3=-+x -  x x 的牛顿迭代公式 )463/()343(121121311+--+--=------k k k k k k k x x x x x x x 3.一阶常微分方程初值问题 ?????= ='y x y y x f y 0 0)() ,(,其改进的欧拉方法格式为)],(),([21 1 1 y x y x y y i i i i i i f f h +++++= 4.解三对角线方程组的计算方法称为追赶法或回代法 5. 数值求解初值问题的四阶龙格——库塔公式的局部截断误差为o(h 5 ) 6.在ALGOL 中,简单算术表达式y x 3 + 的写法为x+y ↑3 7.循环语句分为离散型循环,步长型循环,当型循环. 8.函数)(x f 在[a,b]上的一次(线性)插值函数= )(x l )()(b f a b a x a f b a b x --+-- 9.在实际进行插值时插值时,将插值范围分为若干段,然后在每个分段上使用低阶插值————如线性插值和抛物插值,这就是所谓分段插值法 10、数值计算中,误差主要来源于模型误差、观测误差、截断误差和舍入误差。 11、电子计算机的结构大体上可分为输入设备 、 存储器、运算器、控制器、 输出设备 五个主要部分。 12、算式2 cos sin 2x x x +在ALGOL 中写为))2cos()(sin(2↑+↑x x x 。 13、ALGOL 算法语言的基本符号分为 字母 、 数字 、 逻辑值、 定义符四大

计算方法习题答案

计算方法第3版习题答案 习题1解答 1.1 解:直接根据定义得 *411()102x δ-≤?*411()102r x δ-≤?*3*12211 ()10,()1026 r x x δδ--≤?≤?*2*5331()10,()102r x x δδ--≤?≤ 1.2 解:取4位有效数字 1.3解:433 5124124124 ()()() 101010() 1.810257.563 r a a a a a a a a a δδδδ----++++++≤≤=?++? 123()r a a a δ≤ 123132231123 ()()() a a a a a a a a a a a a δδδ++0.016= 1.4 解:由于'1(),()n n f x x f x nx -==,故***1*(())()()()n n n f x x x n x x x δ-=-≈- 故** * ***(()) (())()0.02()r r n f x x x f x n n x n x x δδδ-= ≈== 1.5 解: 设长、宽和高分别为 ***50,20,10l l h h εεωωεεεε=±=±=±=±=±=± 2()l lh h ωωA =++,*************()2[()()()()()()]l l l h h l h h εδωωδδδωδδωA =+++++ ***4[]320l h εωε=++= 令3201ε<,解得0.0031ε≤, 1.6 解:设边长为x 时,其面积为S ,则有2()S f x x ==,故 '()()()2()S f x x x x δδδ≈= 现100,()1x S δ=≤,从而得() 1 ()0.00522100 S x x δδ≈ ≤ =? 1.7 解:因S ld =,故 S d l ?=?,S l d ?=?,*****()()()()()S S S l d l d δδδ??≈+?? * 2 ()(3.12 4.32)0.010.0744S m δ=+?=, *** ** * () () 0.0744 ()0.55%13.4784 r S S S l d S δδδ= = = ≈ 1.8 解:(1)4.472 (2)4.47 1.9 解:(1) (B )避免相近数相减 (2)(C )避免小除数和相近数相减 (3)(A )避免相近数相减 (3)(C )避免小除数和相近数相减,且节省对数运算 1.10 解 (1)357sin ...3!5!7!x x x x x =-+-+ 故有357 sin ..3!5!7! x x x x x -=-+-, (2) 1 (1)(1)1lnxdx ln ln ln N+N =N N +-N N +N +-? 1 (1)1ln ln N +=N +N +-N 1.11 解:0.00548。 1.12解:21 16 27 3102 ()()() -? 1.13解:0.000021

计算方法上机实习题大作业(实验报告).

计算方法实验报告 班级: 学号: 姓名: 成绩: 1 舍入误差及稳定性 一、实验目的 (1)通过上机编程,复习巩固以前所学程序设计语言及上机操作指令; (2)通过上机计算,了解舍入误差所引起的数值不稳定性 二、实验内容 1、用两种不同的顺序计算10000 21n n -=∑,分析其误差的变化 2、已知连分数() 1 01223//(.../)n n a f b b a b a a b =+ +++,利用下面的算法计算f : 1 1 ,i n n i i i a d b d b d ++==+ (1,2,...,0 i n n =-- 0f d = 写一程序,读入011,,,...,,,...,,n n n b b b a a 计算并打印f 3、给出一个有效的算法和一个无效的算法计算积分 1 041 n n x y dx x =+? (0,1,...,1 n = 4、设2 2 11N N j S j == -∑ ,已知其精确值为1311221N N ?? -- ?+?? (1)编制按从大到小的顺序计算N S 的程序 (2)编制按从小到大的顺序计算N S 的程序 (3)按两种顺序分别计算10001000030000,,,S S S 并指出有效位数 三、实验步骤、程序设计、实验结果及分析 1、用两种不同的顺序计算10000 2 1n n -=∑,分析其误差的变化 (1)实验步骤: 分别从1~10000和从10000~1两种顺序进行计算,应包含的头文件有stdio.h 和math.h (2)程序设计: a.顺序计算

#include #include void main() { double sum=0; int n=1; while(1) { sum=sum+(1/pow(n,2)); if(n%1000==0)printf("sun[%d]=%-30f",n,sum); if(n>=10000)break; n++; } printf("sum[%d]=%f\n",n,sum); } b.逆序计算 #include #include void main() { double sum=0; int n=10000; while(1) { sum=sum+(1/pow(n,2)); if(n%1000==0) printf("sum[%d]=%-30f",n,sum); if(n<=1)break; n--; } printf("sum[%d]=%f\n",n,sum); } (3)实验结果及分析: 程序运行结果: a.顺序计算

(完整版)数值计算方法上机实习题答案

1. 设?+=1 05dx x x I n n , (1) 由递推公式n I I n n 1 51+-=-,从0I 的几个近似值出发,计算20I ; 解:易得:0I =ln6-ln5=0.1823, 程序为: I=0.182; for n=1:20 I=(-5)*I+1/n; end I 输出结果为:20I = -3.0666e+010 (2) 粗糙估计20I ,用n I I n n 51 5111+- =--,计算0I ; 因为 0095.05 6 0079.01020 201 020 ≈<<≈??dx x I dx x 所以取0087.0)0095.00079.0(2 1 20=+= I 程序为:I=0.0087; for n=1:20 I=(-1/5)*I+1/(5*n); end I 0I = 0.0083 (3) 分析结果的可靠性及产生此现象的原因(重点分析原因)。 首先分析两种递推式的误差;设第一递推式中开始时的误差为000I I E '-=,递推过程的舍入误差不计。并记n n n I I E '-=,则有01)5(5E E E n n n -==-=-Λ。因为=20E 20020)5(I E >>-,所此递推式不可靠。而在第二种递推式中n n E E E )5 1(5110-==-=Λ,误差在缩小, 所以此递推式是可靠的。出现以上运行结果的主要原因是在构造递推式过程中,考虑误差是否得到控制, 即算法是否数值稳定。 2. 求方程0210=-+x e x 的近似根,要求4 1105-+?<-k k x x ,并比较计算量。 (1) 在[0,1]上用二分法; 程序:a=0;b=1.0; while abs(b-a)>5*1e-4 c=(b+a)/2;

计算方法课程教学大纲

《计算方法》课程教学大纲 课程编号: 学时:54 学分:3 适用对象:教育技术学专业 先修课程:高等数学、线性代数 考核方式:本课程考试以笔试为主70%,兼顾学生的平时成绩30%。 使用教材及主要参考书: 使用教材: 李庆扬.《数值分析(第四版)》, 清华大学出版,2014年。 主要参考书: 1.朱建新,李有法.《高等学校教材:数值计算方法(第3版)》,高等教育出版社,2012。 2.徐萃薇,孙绳武.《计算方法引论(第4版)》,高等教育出版社,2015。 一课程的性质和任务 计算方法是教育技术学专业学生的一门专业选修课。作为计算数学的一个重要分支,它是数学科学与计算机技术结合的一门应用性很强的学科,本课程重点介绍计算机上常用的基本计算方法的原理和使用;同时对计算方法作适当的分析。 教学任务:通过本课程的学习,要使学生具有现代数学的观点和方法,并初步掌握处理计算机常用数值分析的构造思想和计算方法。同时,也要培养学生抽象思维和慎密概括的能力,使学生具有良好的开拓专业理论的素质和使用所学知识分析和解决实际问题的能力。 二教学目的与要求 教学目的:通过学习使学生了解数值计算方法的基本原理。了解计算机与数学结合的作用及课程的应用性。为今后使用计算机解决实际问题中的数值计算问题打下基础。 通过理论教学达到如下基本要求。 1.了解误差的概念 2.掌握常用的解非线性方程根的方法 3.熟练掌握线性代数方法组的解法 4.熟练掌握插值与拟合的常用方法 5.掌握数值积分方法 6.了解常微分方程初值问题的数值方法 三学时分配

四教学中应注意的问题 本课程是一门理论性较强、内容较抽象的综合课程,因此面授辅导或自学,将是不可缺少的辅助教学手段,教师在教学的过程中一定要注意理论结合实际,课堂教学并辅助上机实验,必须通过做练习题和上机实践来加深对概念的理解和掌握,熟悉公式的运用,从而达到消化、掌握所学知识的目的。同时应注重面授辅导或答疑,及时解答学生的疑难问题。 五教学内容 第一章绪论(误差) 基本内容: 第一节数值分析研究的对象和特点 第二节数值计算的误差 1.误差的来源与分类 2.误差与有效数字 3.数值运算的误差估计 第三节误差的定性分析与避免误差的危害 1.病态问题与条件数 2.算法的数值稳定性 3.避免误差危害的若干原则 教学重点难点: 重点:数值运算的误差估计。 难点:误差的定性分析与避免误差的危害。

成本会计核算方法

成本核算的基本方法有哪些 1、品种法 (1)定义 以产品品种作为成本计算对象的一种成本计算方法。 (2)成本对象 品种法的成本计算对象为:产品品种。实际工作中,可以将“品种法”之下的成本对象变通应用为:产品类别、产品品种、产品品种规格。 (3)计算方法及要点 品种法在实际工作中的应用要点为:以“品种”为对象开设生产成本明细账、成本计算单;成本计算期一般采用“会计期间”;以“品种”为对象归集和分配费用;以“品种”为主要对象进行成本分析。 4)适用范围 品种法适合于大批大量、单步骤生产的企业。如发电、采掘业、管理上只要求考核最终产品的企业。 2、分批法 (1)定义 以产品批别作为成本计算对象的一种成本计算方法。 (2)成本对象 产品的“批”。分批法是一种很广义的成本计算方法,在实际工作中,有“批号”、“批次”的定义。可以按照下列方式确定成本对象:产

品品种、存货核算中分批实际计价法下的“批”、生产批次、制药等企业的产品“批号”、客户订单——即按照客户订单计算成本的方法、其他企业需要并自定义的“批” (3)计算方法及要点 分批法在实际工作中的应用要点为:以“批号”、“批次”为成本计算对象开设生产成本明细账、成本计算单。成本计算期一般采用“自,工期”,一般不存在生产费用在完工产品和在产品之间分配。若生产费用在完工产品、在产品间分配采用定额法。 (4)适用范围 单件、小批生产企业、按照客户定单组织生产的企业——因而也称“订单法” 3、分步法 (1)定义 以产品生产阶段、“步骤”作为成本计算对象,计算成本的一种方法。 (2)成本对象 分步法下的“步”同样是广义的,在实际工作中有丰富的、灵活多样的具体内涵和应用方式,分步法下之“步”在实际应用中,可以定义为下列“步”含义:部门——即计算考核“部门成本”、车间、工序、特定的生产、加工阶段、工作中心,上述情况的随意组合 (3)计算方法及要点 较之其他方法,分步法在具体计算方式方法上很有不同,这主要

计算方法上机作业集合

第一次&第二次上机作业 上机作业: 1.在Matlab上执行:>> 5.1-5-0.1和>> 1.5-1-0.5 给出执行结果,并简要分析一下产生现象的原因。 解:执行结果如下: 在Matlab中,小数值很难用二进制进行描述。由于计算精度的影响,相近两数相减会出现误差。 2.(课本181页第一题) 解:(1)n=0时,积分得I0=ln6-ln5,编写如下图代码

从以上代码显示的结果可以看出,I 20的近似值为0.7465 (2)I I =∫I I 5+I 10dx,可得∫I I 610dx ≤∫I I 5+I 10dx ≤∫I I 510dx,得 16(I +1)≤I I ≤15(I +1),则有1126≤I 20≤1105, 取I 20=1 105 ,以此逆序估算I 0。代码段及结果如下图所示

(3)从I20估计的过程更为可靠。首先根据积分得表达式是可知,被积函数随着n的增大,其所围面积应当是逐步减小的,即积分值应是随着n的递增二单调减小的,(1)中输出的值不满足这一条件,(2)满足。设I I表示I I的近似值,I I-I I=(?5)I(I0?I0)(根据递推公式可以导出此式),可以看出,随着n的增大,误差也在增大,所以顺序估计时,算法不稳定性逐渐增大,逆序估计情况则刚好相反,误差不断减小,算法逐渐趋于稳定。 2.(课本181页第二题)

(1)上机代码如图所示 求得近似根为0.09058 (2)上机代码如图所示 得近似根为0.09064;

(3)牛顿法上机代码如下 计算所得近似解为0.09091 第三次上机作业上机作业181页第四题 线性方程组为 [1.13483.8326 0.53011.7875 1.16513.4017 2.53301.5435 3.4129 4.9317 1.23714.9998 8.76431.3142 10.67210.0147 ][ I1 I2 I3 I4 ]=[ 9.5342 6.3941 18.4231 16.9237 ] (1)顺序消元法 A=[1.1348,3.8326,1.1651,3.4017;0.5301,1.7875,2.5330,1.5435; 3.4129, 4.9317,8.7643,1.3142;1.2371,4.9998,10.6721,0.0147]; b=[9.5342;6.3941;18.4231;16.9237]; 上机代码(函数部分)如下 function [b] = gaus( A,b )%用b返回方程组的解 B=[A,b]; n=length(b); RA=rank(A); RB=rank(B);

计算方法引论-第十三章

计算方法引论: 微分方程数值解法 ?常微分方程初值问题的数值解法?双曲型方程的差分解法 ?抛物型方程的差分解法 ?橢圆型方程的差分解法 ?有限元方法

第十三章抛物型方程差分解法?初值问题和初边值混合问题 ?微分方程的差分近似 ?边界条件的差分近似 ?几种常用的差分格式 ?差分格式的稳定性 ?二维热传导方程的交替方向法

热传导方程定解问题 ?热传导方程 ?初值问题 ?初边值问题 –u (x ,0)=?(x ), 0≤x ≤1 –Ⅰu (0,t )=g 1(t ), Ⅲu (1,t )=g 2(t ), 2 20, 0, 0≤??(,0)(), u x x x ?=<+∞110 221()() 0()()x x u t u g t x t T u t u g t x λλ==? ??? -=? ?????≤≤? ????+= ??????

一些数值微分公式 ?一阶差商 ?二阶差商 1(,)(,1)(,)(,)2tt k j u u k j u k j u k t t τ τ?+-''=-?2(,)(,)(,1)(,)2 tt k j u u k j u k j u k t t τ τ?--''=+?2 3(,)(,1)(,1)(,)26 ttt k j u u k j u k j u k t t τ τ?+--''=-?2 2 (4) 22 (,)(1,)2(,)(1,)(,)12xxxx k j u u k j u k j u k j h u x j x h ?+-+-=-?

微分方程的差分近似 ?差商代微商h =1/N ?近似解满足差分方程 –形式1 –形式2 s =τ/h 2 ?截断误差 ,2 (,1)(,) (1,)2(,)(1,)0h u k j u k j u k j u k j u k j b R h ττ+-+-+---=2 (4) 2,1(,)(,)() 212 h tt xxxx bh R u"k t u x j O h τττ=-=+ 0 22 ,1,,1,1,=+----++h u u u b u u j k j k j k j k j k τ 2 (4)2 ,1(,)(,)()212 h tt xxxx bh R u"k t u x j O h ττ τ=-=+,1,1,,1,(2)k j k j k j k j k j u u bs u u u ++-=+-+

西交计算方法A上机大作业

计算方法A 上机大作业 1. 共轭梯度法求解线性方程组 算法原理:由定理3.4.1可知系数矩阵A 是对称正定矩阵的线性方程组Ax=b 的解与求解二次函数1()2 T T f x x Ax b x =-极小点具有等价性,所以可以利用共轭梯度法求解1()2 T T f x x Ax b x = -的极小点来达到求解Ax=b 的目的。 共轭梯度法在形式上具有迭代法的特征,在给定初始值情况下,根据迭代公式: (1)()()k k k k x x d α+=+ 产生的迭代序列(1)(2)(3)x x x ,,,... 在无舍入误差假定下,最多经过n 次迭代,就可求得()f x 的最小值,也就是方程Ax=b 的解。 首先导出最佳步长k α的计算式。 假设迭代点()k x 和搜索方向()k d 已经给定,便可以通过()()()() k k f x d φαα=+的极小化 ()()min ()()k k f x d φαα=+ 来求得,根据多元复合函数的求导法则得: ()()()'()()k k T k f x d d φαα=?+ 令'()0φα=,得到: ()() ()()k T k k k T k r d d Ad α=,其中()()k k r b Ax =- 然后确定搜索方向()k d 。给定初始向量(0)x 后,由于负梯度方向是函数下降最快的方向,故第一次迭代取搜索方向(0) (0)(0)(0)()d r f x b Ax ==-?=-。令 (1)(0)00x x d α=+ 其中(0)(0)0(0)(0) T T r d d Ad α=。第二次迭代时,从(1) x 出发的搜索方向不再取(1)r ,而是选取(1) (1)(0)0d r d β=+,使得(1)d 与(0)d 是关于矩阵A 的共轭向量,由此可 求得参数0β:

论文计算方法

2001—2010年粮食产量数据分析 摘要: 本文搜集了近十年的粮食产量数据,应用最小二乘法原理建立了粮食产量与粮食播种面积的数学模型。通过对模型的分析得出粮食产量变化的原因,提出保障粮食安全的一些措施,并预测了下一年的粮食产量。 关键词: 粮食产量数据;数据拟合;最小二乘法 通过上网及查阅文献,收集了近十年的粮食产量数据,应用最小二乘法原理对数据进行了处理,建立了粮食产量与粮食播种面积之间的数学模型。通过分析模型找出了影响粮食产量的主要因素,针对这些因素提出了一些保障我国粮食安全的措施。其中,本文中所用的最小二乘法原理以及数据拟合方法参考文献[1]和[4].本文数据来源于《中国农业统计年鉴》、国家统计局统计、国家发改委和科技部相关网站。 1.有关数据 2. 模型的设定及预测 2.1 模型的建立 根据上述表格中的数据,作出2001-2010年粮食产量与粮食播种面积变化图

形(如下所示): 40000 420004400046000480005000052000 54000560002001200220032004200520062007200820092010时间(年) 粮食产量(万吨) 14 14.51515.51616.517 17.5 18播种面积(亿亩) 对比上图中两条曲线的走势可以看出粮食产量大致随着粮食播种面积的变化而变化,尤其是在2003年粮食播种面积大幅度减少的同时粮食产量也明显下降。为了进一步研究这两种量之间的关系,下面建立粮食产量与粮食播种面积之间的散点图。 2001—2010年播种面积与粮食产量散点图(如下) 40000 4500050000550006000014.5 15 15.5 16 16.5 17 粮食播种面积(亿亩) 粮食产量(万吨) 根据散点图可以看出粮食产量随着粮食播种面积的增加而增加,这两种量有一定的正相关性,因此可以把粮食播种面积作为自变量x ,粮食产量作为因变量 y ,初步构造线性函数 bx a y +=

计算方法作业2

《计算方法》上机指导书

实验1 MATLAB 基本命令 1.掌握MATLAB 的程序设计 实验内容:对以下问题,编写M 文件。 (1) 生成一个5×5矩阵,编程求其最大值及其所处的位置。 (2) 编程求∑=20 1!n n 。 (3) 一球从100米高度自由落下,每次落地后反跳回原高度的一半,再落下。求它在 第10次落地时,共经过多少米?第10次反弹有多高? 2.掌握MATLAB 的绘图命令 实验内容:对于自变量x 的取值属于[0,3π],在同一图形窗口画出如下图形。 (1)1sin()cos()y x x =?; (2)21 2sin()cos()3 y x x =-;

实验2 插值方法与数值积分 1. 研究人口数据的插值与预测 实验内容:下表给出了从1940年到1990年的美国人口,用插值方法推测1930年、1965年、2010年人口的近似值。 美国人口数据 1930年美国的人口大约是123,203千人,你认为你得到的1965年和2010年的人口数字精确度如何? 2.最小二乘法拟合经验公式 实验内容:某类疾病发病率为y ‰和年龄段x (每五年为一段,例如0~5岁为第一段,6~10岁为第二段……)之间有形如bx ae y =的经验关系,观测得到的数据表如下 (1)用最小二乘法确定模型bx ae y =中的参数a 和b 。 (2)利用MATLAB 画出离散数据及拟合函数bx ae y =图形。 3.复化求积公式 实验内容:对于定积分? +=1 02 4dx x x I 。 (1)分别取利用复化梯形公式计算,并与真值比较。再画出计算误差与n 之间的曲线。 (2)取[0,1]上的9个点,分别用复化梯形公式和复化辛普森公式计算,并比较精度。

《徐翠微计算方法引论》

第二章 插值法 知识点:拉格朗日插值法,牛顿插值法,余项,分段插值。 实际问题中,时常不能给出f (x )的解析表达式或f (x )解析表达式过于复杂而难于计算,能采集的只是一些f (x )的离散点值{xi,f(xi)}(i=0,1,2,…n )。因之,考虑近似方法成为自然之选。 定义:设f (x )为定义在区间[a ,b]上的函数,x0,x1,…,xn 为[a ,b]上的互异点,yi=f (xi )。若存在一个简单函数?(x ),满足 (插值条件)?(xi )=f (xi ),i=0,1,…,n 。 则称 ?(x )为f (x )插值函数,f (x )为被插函数,点x0,x1,…,xn 为插值节点,点{xi,f(xi)},i=0,1,2,…n 为插值点。 于是计算f (x )的问题就转换为计算 ?(x )。 构造插值函数需要解决:插值函数是否存在唯一;插值函数如何构造(L 插值);插值函数与被插函数的误差估计和收敛性。 对插值函数 ?(x )类型有多种不同的选择,代数多项式常被选作插值函数。 P23(2.18)和(2.19)指出,存在唯一的满足插值条件的n 次插值多项式p n (x )。但是需要计算范德蒙行列式,构造插值多项式工作量过大,简单表达式不易得到,实际中不采用这类方法。 插值法是一种古老的数学方法,拉格朗日(Lagrange )、牛顿(Newton )等分别给出了不同的解决方法。 拉格朗日插值 拉格朗日(Lagrange )插值的基本思想:把插值多项式p n (x )的构造问题转化为n+1个插值基函数l i (x)(i=0,1,…,n)的构造。 (1)线性插值 ①构造插值函数 已知函数y =f (x )的两个插值点(x 0,y 0),(x 1,y 1),构造多项式y =p 1(x ),使p 1(x 0)=y 0,p 1(x 1)=y 1。 p n (x )≈f (x )

成本计算方法习题

分批法: 1.某企业生产甲、乙两种产品,生产组织属于小批生产,采用分批法计算成本。 (1)5月份的产品批号有:9414批号:甲产品10台,本月投产,本月完工6台。9415批号:乙产品10台,本月投产,本月完工2台。 (2)5月份各批号生产费用资料见表: 生产费用分配表 9414批号甲产品完工数量较大,原材料在生产开始时一次投入,其他费用在完工产品与在产品之间采用约当产量比例法分配,在产品完工程度为50%。 9415批号乙产品完工数量较少,完工产品按计划成本结转。每台产品单位计划成本:原材料费用460元,工资及福利费用350元,制造费用240元。 要求:根据上述资料,采用分批法,登记产品成本明细账,计算各批产品的完工成本和月末在产品成本。 2.某工业企业生产组织属于小批生产,产品批数多,而且月末有许多批号未完工,因而采用简化的分批法计算产品成本。 (1)9月份生产批号有: 9420号:甲产品5件,8月投产,9月20日全部完工。 9421号:乙产品10件,8月投产,9月完工6件。 9422号:丙产品5件,8月末投产,尚未完工。 9423号:丁产品6件,9月初投产,尚未完工。 (2)各批号9月末累计原材料费用(原材料在生产开始时一次投入)和工时为: 9420号:原材料费用18000元,工时9020小时。 9421号:原材料费用24000元,工时21500小时。 9422号:原材料费用15800元,工时8300小时。 9423号:原材料费用11080元,工时8220元小时。

(3)9月末,该厂全部产品累计原材料费用68880元,工时47040小时,工资及福利费18816元,制造费用28224元。 (4)9月末,完工产品工时23020元,其中乙产品14000小时。 要求:1.根据上列资料,登记基本生产成本二级账和各批产品成本明细账。 2.计算和登记累计间接费用分配率。 3.计算各批完工产品成本。 分步法 1.有关资料如下: 产成品成本还原计算表 产品名称:甲产量: 100件单位:元 要求:(1)计算还原分配率。 (2)将还原前产成品成本中的半成品费用,按本月所产半成品成本的结构进行还原,计算按原始成本项目反映的产成品成本。 2.资料:某企业生产甲产品分三个步骤连续加工,原材料在生产开始时一次投入,各步骤发生的费用已填列在成本计算单中,三个步骤的产量记录如下: 计量单位:件