中央空调及空气源热泵的原理、安装及运行费用的对比分析

中央空调及空气源热泵的原理、安装及运行费用的对比分析
中央空调及空气源热泵的原理、安装及运行费用的对比分析

一、中央空调

中央空调是由一台主机通过风道过风或冷热水管接多个末端的方式来控制不同的房间以达到室内空气调节目的的空调。采用风管送风方式,用一台主机即可控制多个不同房间并且可引入新风,有效改善室内空气的质量,预防空调病的发生

二、中央空调的分类

1、全空气系统

2、空气水系统

习惯上称为风机盘管加独立新风系统

3、全水系统

三、中央空调系统的末端设备

中央空调系统的末端设备主要是新风机组、风机盘管、水流控制阀(常称二通阀)和温控开关。新风机组一般用于公共场所。

由于这些地方人员较多,要用室外的新鲜空气通过机组制冷(制热)后送入室内。在住宅和客房通常是用风机盘管,它是室内空气的循环通过热交换器达到供冷或供热。水流控制阀是控制通过新风机组或风机盘管的水量也就是控制冷量(热量)来实现控制温度。温控开关是电控制开关、控制风机的转速和水流控制阀的启闭程度,也就是控制通过热交换器的空气量和介质水的流量,因为通过热交换器的空气量越大所带走的冷量(热量)也越大

四、中央空调系统

1.安装内容

2、中央空调系统的分类

1、中央空调系统

中央空调系统设计

1、水冷冷水机组空调系统

2、风冷冷水机组空调系统

水冷冷水机组空调系统的主要设备有:

螺杆机组、冷却塔、冷冻水泵、冷却水泵、补水泵、电子水处理仪或全自动软化水处理装置、水过滤器、膨胀水箱、末端装置(空气处理机组、风机盘管等)

水冷冷水机空调系统

一、制冷主机的选择

1、根据建筑的空调面积和房间功能进行空调冷负荷计算

2、统计建筑空调总冷负荷

3、大部分建筑需要考虑房间的同时使用率,一般建筑的同时使用率为70-80%,特殊情况需根据建筑功能和使用情况确定。

4、制冷机冷负荷为建筑空调总冷负荷与同时使用率的乘积。根据计算的制冷机冷负荷即可选择制冷主机。

二、水泵的选择

1、水泵的主要形式

卧式离心泵和立式离心泵

2、水泵型号含义如SLS 200-250

其中SLS指SLS单级单吸立式离心泵

200指泵进出口公称直径

250指叶轮名义直径

3、水泵选择的步骤

第一步:水泵流量的确定

1、冷却水流量:一般按照产品样本提供数值选取,或按照如下公司进行计算,公式中的Q为制冷机制冷量 L(立方/h)=【Q(KW)/(4.5-5)℃*1.163】*(1.15-1.2)

2、冷冻水流量:在没有考虑同时使用率的情况下选定的机组,可根据产品提供的数值选用或根据如下公司进行计算。如果考虑了同时使用率,建议用如下公式进行计算。公式中的Q为建筑没有考虑同时使用率情况下的总冷负荷。

L(m3/h)=Q(kW)/(4.5~5)℃x1.163

第二步:水系统水管管径的计算

在空调系统中所有水管管径一般按照下述公式进行计算

D(m)=L(m3/h)/0.785x3600xV(m/s) 的开方

公式中:L.....所求管段的水流量(第一步已计算出)

V.....所求管段允许的水流速

流速的确定:一般,当管径在DN100到DN250之间时,流速推荐值为1.5m/s左右,当管径小于DN100时,推荐流速应小于1.0m/s,管径大于DN250时,流速可再加大。进行计算是应该注意管径和推荐流速的对应。

目前管径的尺寸规格有:DN15、DN20、DN25、DN32、DN40、DN50、DN70、DN80、DN100、DN125、DN150、DN200、DN250、DN300、DN350、DN400、DN450、DN500、DN600

注意:一般,选择水泵时,水泵的进出口管径应比水泵所在管段的管径小一个型号。例如:水泵所在管段的管径为DN125,那么所选水泵的进出口管径应为DN100。

第三步:水泵扬程的确定

以水冷螺杆机组为例:

冷冻水泵扬程的组成

1.制冷机组蒸发器水阻力:一般为5~7mH2O;(具体值可参看产品样本)

2.末端设备(空气处理机组、风机盘管等)表冷器或蒸发器水阻力:一般为5~7mH2O;(据体值可参看产品样本)

3.回水过滤器阻力,一般为3~5mH2O;

4.分水器、集水器水阻力:一般一个为3mH2O;

5.制冷系统水管路沿程阻力和局部阻力损失:一般为7~10mH2O;

综上所述,冷冻水泵扬程为26~35mH2O,一般为32~36mH2O。

注意:扬程的计算要根据制冷系统的具体情况而定,不可照

搬经验值!

冷却水泵扬程的组成

1.制冷机组冷凝器水阻力:一般为5~7mH2O;(具体值可参看产品样本)

2.冷却塔喷头喷水压力:一般为2~3mH2O

3.冷却塔(开式冷却塔)接水盘到喷嘴的高差:一般为2~3mH2O

4.回水过滤器阻力,一般为3~5mH2O;

5.制冷系统水管路沿程阻力和局部阻力损失:一般为5~8mH2O;

综上所述,冷冻水泵扬程为17~26mH2O,一般为21~25mH2O。

补水水泵扬程的计算:

◆补水水泵扬程为系统最高点距补水泵接管处的垂直距离和

补水管路的沿程阻力损失和局部阻力损失。

◆沿程阻力损失和局部阻力损失一般为3~5mH2O。

举例:如果计算出系统水流量为160m3/h, 则水系统管径计算为DN200,所以水泵管径选DN150,扬程选为32mH2O,校核水泵参数表中流量和扬程部分,选取:SLS150-315型号的水泵。

5、水泵并联运行情况

水泵台数流量流量的增加值与单台泵运行比较流量的减少

1 100 /

2 190 90 5%

3 251 61 16%

4 284 33 29%

5 300 1

6 40%

由上表可见:水泵并联运行时,流量有所衰减;当并联台数超过3台时,衰减尤为厉害。故强烈建议:1.选用多台水泵时,要考虑流量的衰减,留有余量。2.空调系统中水泵并联不宜超过3台,即进行制冷主机选择时也不宜超过三台。

一般,冷冻水泵和冷却水水泵的台数应和制冷主机一一对应,并考虑一台备用。补水泵一般按照一用一备的原则选取。

三、冷却塔的选择

1、冷却塔的主要形式

圆形逆流冷却塔、方形横流冷却塔。当然冷却塔的分类形式还有很多种,在这里就不一一列举了。

3、冷却塔设计选型

1、冷却塔台数与制冷主机的数量一一对应,可以不考虑备用;

2、冷却塔的水流量= 冷却水系统水量×1.2;

举例:假设空调系统冷却水量为160m3/h,那么冷却塔的冷却水量=160 ×1.2=192 m3/h,根据就近原则,选择冷却塔参数表中冷却水量为200m3/h 的冷却塔。

四、电子水处理仪、水过滤器的选择

1、产品主要形式

电子水处理仪、“Y”形过滤器

2、电子水处理仪和过滤器的选择

空调水系统中使用到的电子水处理仪和水过滤器一般都按照设备所在管段的管径进行选择。

冷却水系统属开式系统,必须使用电子水处理仪;

冷冻水系统属闭式系统,要求不是那么严格,可以在冷冻水系统管路中或膨胀水箱进水管路中安装电子水处理仪。

五、全自动软化水装置的选择

当工程所在地水质较硬或是系统较大的时候,系统的循环水和补水最好是软化水,该空调系统必须配置水软化装置,一般选用全自动软化水装置;

全自动软化水装置的选用一般按照系统补水量进行选择。补水装置可以根据实际情况来选(装置小,系统补水时间长;装置大,系统补水时间短)。

六、膨胀水箱的选择

膨胀水箱一般按照冷冻水系统管路总水容量的2~3%选择

一般,一万平方米左右建筑空调水系统膨胀水箱的容积为2~4立方。

六、末端设备的选择

1、风机盘管的选择

风机盘管有两个主要参数:制冷(热)量和送风量,故有风机盘管的选择有如下两种方法:

(1)根据房间循环风量选:房间面积、层高(吊顶后)和房间换气次数三者的乘积即为房间的循环风量。利用循环风量对应风机盘管高速风量,即可确定风机盘管型号。

(2)根据房间所需的冷负荷选择:根据单位面积负荷和房间面积,可得到房间所需的冷负荷值。利用房间冷负荷对应风机盘管的高速风量时的制冷量即可确定风机盘管型号。

确定型号以后,还需确定风机盘管的安装方式(明装或安装),送回风方式(底送底回,侧送底回等)以及水管连接位置(左或右)等条件。

对于一般的住宅和办公建筑,房间面积在20m2以下,可选用FP-3.5,25m2左右的选用FP-5.0,30m2左右的选用FP-6.3,35m2左右的选用FP-7.1。房间面积较大时应考虑使用多个风机盘管,房间单位面积负荷较大,对

噪音要求不高时可考虑使用风量和制冷量较大的风机盘管。

2、空气处理机的选择

空气处理机组主要用于处理室内空气和供新风,一般有空调工况和新风工况两种工作状态。

空气处理机组的选择一般由三个主要参数决定:风量、表冷器排管数和机外余压。

先根据系统需要的风量确定空气处理机组的型号,然后根据需要提供的冷量来决定其排管数,如此便可确定。根据系统需要的余压要求确定余压。

空气处理机组一般有吊顶式和落地式两种。落地式包括立式和卧式两种。另外机组的送回风方式也有多不同。徐根据建筑情况和建筑业主要求进行最终的确定。

注意:空调工况的制冷(热)量比新风工况时要小。

3、组合式空调机组的选择(略)

七、工程概算

1.设备费(除膨胀水箱、软化水箱、阀门管道和管件以外,全部为设备费,设备费的准确度应比合同最终签订价高8%~10%左右)。

2.设备运杂费(运输、包装费等)一般取设备费的1%~2%(根据设备的产地和使用地的距离来确定)。

3.设备安装费:一般取设备的5%~8%,(除散件设备,如:冷却塔的安装费:取冷却塔设备费的10%~15%)。

4.设备运行调试费:一般取设备费的0.5%~1%。

5.管道制作、安装、保温等费用,一般为设备费的20%~40%。(根据系统的复杂程度来确定)。

6.电气费、土建费用(应另行计算)。

7.工程设计费,取以上所有费用合计的2.5%~3%。

8.工程的其他费用(包括各种税费、工程临时设施费、冬雨季施工费、利润等),一般取以上所有费用合计的5%~8%。

上述所有费用之和即工程总造价。

一般,使用水冷冷水机组,末端为风机盘管没有新风的情况下,建筑空调造价为200元/m2左右,末端为风机盘管加新风的为250元/m2左右。使用风冷冷水机组,末端为风机盘管没有新风的情况下,建筑空调造价为300元/m2左右,末端为风机盘管加新风的为350元/m2左右。

风冷冷水机空调系统

主要设备有:

(1)风冷冷水机组

(2)冷冻水泵

(3)补水泵

(4)电子水处理仪或全自动软化水处理装置

(5)水过滤器

(6)膨胀水箱

(7)末端装置(空气处理机组、风机盘管等)

所有设备的选型方法和原则与水冷冷水机组空调系统一样!

五、中央空调系统运行费用

一、亘元大厦中央空调工程方案简介

亘元大厦为综合办公楼,框架结构,地下一层,地上十四层,建筑面积为36887㎡,总高度为H=50.8m,属于一类高层建筑。该工程空调系统为风机盘管加新风的形式,冷源由两台螺杆式水冷机组提供,冬季采暖采用风机盘管+地板敷设采暖方式,热源为燃气锅炉+板换机组。中央空调系统主要设备参数见下表:

1、末端设备

序号设备名称型号规格单位数量备注

1 吊顶式新风机组

(新风工况)

TF3D型L=3000m3/h Q冷=41.6kw Q热=43.32kw

N=0.55kw H=450Pa n=6排管出口噪音<58dB(A)

台8 K1

2 卧式新风机组

(新风工况)TF4DW型L=4000m3/h Q冷=52.60kw Q热=58.05kw

N=1.1kw H=450Pa n=6排管出口噪音<58dB(A)

台10 K2

3 吊顶式新风机组

(新风工况)TF5D型L=5000m3/h Q冷=61.2kw Q热=72.8kw

N=1.1kw H=450Pa n=6排管出口噪音<58dB(A)

台 3 K3

4 吊顶式新风机组

(新风工况)TF6D型L=6000m3/h Q冷=80.6kw Q热=93.1kw

N=1.5kw H=450Pa n=6排管出口噪音<58dB(A)

台 2 K4

5 卧式新风机组

(新风工况)TF06W型L=6000m3/h Q冷=80.6kw Q热=93.1kw

N=1.5kw H=450Pa n=6排管出口噪音<58dB(A)

台 2 K5

6 卧式风机盘管FP-34WAX型L=340m3/h Q冷=2.05kw Q热=3.48kw

N=40W H=30Pa 出口噪音<40dB(A) 后回风箱

台353

7 卧式风机盘管FP-51WAX型L=450m3/h Q冷=2.82kw Q热=4.7kw

N=54W H=30Pa 出口噪音<42dB(A) 后回风箱

台574

8 卧式风机盘管FP-68WAX型L=600m3/h Q冷=3.74kw Q热=6.26kw

N=72W H=30Pa 出口噪音<44dB(A) 后回风箱

台80

9 卧式风机盘管FP-85WAX型L=730m3/h Q冷=4.5kw Q热=7.5kw

N=92W H=30Pa 出口噪音<46dB(A) 后回风箱

台65

2、制冷机房(含锅炉房/水泵间)设备

序号设备名称型号规格单位数量备注

1 双螺杆半封闭冷

水机组

30HXC400A;制冷量1392KW;输入功率279KW。台 2 开利

2 燃气锅炉GE-615-1020型;额定热功率=1.02 MW;

N=2.2KW;G=4.6t;耗气量130m3/h

台 2 泰州安信

3 燃气锅炉CWNS-0.7型;额定热功率=0.70 MW;N=1.5KW;

G=3.7t;耗气量82.4m3/h

台 1 广州迪森

4 热水循环泵KQW80/150-7.5/2型;流量=46.7m/h;扬程

=28m;N=7.5KW

台 4 3用1备

6 冷冻水循环泵KQW200/320-37/4(z);流量=171-294m3/h;

扬程=34.9-25m;N=37KW

台 3 2用1备

8 冷却水循环泵KQW200/300-37/4(z);流量=196-336m3/h;

扬程=31.5-23m;N=37KW

台 3 2用1备

10 冷却塔KSD-LN-200-C2型;流量=312t/h;N=5.5KW×2 台 2

11 定压补水装置KQG-SPGLZ-1275型自动给水装置;

水泵L=9~18m3/h;H=60~80m;N=7.5KW

台 1

电机1用1

12 软化水装置YH-2750A型全自动软水器,产水量15t/h 台 1

13 除污器G型射频水处理器DN300;承压1.2Mp;N=300W 台 1

14 电子水处理仪KGD-350A过滤型电子除垢仪;流量=930T/h;

承压P=1.0MPa;N=130W

台 1

二、运行参数、条件

1、天然气燃气价格:1.4元/NM3

2、电费:0.73元/KW

3、制冷期:90天/年

4、采暖期:150天/年

三、中央空调年运行费用(万元)

中央空调机房设备制冷电耗26.91万元,368600kw,9.99kw/㎡,0.11kw/㎡/天

说明:以上表格详细计算见后附计算说明。

附:运行费用计算说明:

一、制冷机房(锅炉房)设备运行费用

1、由于空调负荷的变化是随外界环境温度而变化,具有很大随机性。

A、机组在一个制冷期90天内运行的负荷分布为:

100%负荷:占17%制冷期,相当于制冷期的15天;

75%负荷:占39%制冷期,相当于制冷期的35天;

50%负荷:占33%制冷期,相当于制冷期的30天;

25%负荷:占11%制冷期,相当于制冷期的10天;

B、机组在一个制热期150天内运行的负荷分布为:

100%负荷:占17%制热期,相当于制热期的25天;

75%负荷:占39%制热期,相当于制热期的58天;

50%负荷:占33%制热期,相当于制热期的50天;

25%负荷:占11%制热期,相当于制热期的17天;

C、每日运行时间折合满负荷运行时间:

根据大厦使用情况,制冷季节螺杆机为8小时/天。

(实际运行为上午9点至下午5点,再加上4小时的夜间运行)。

采暖季节燃气锅炉为12小时/天。

(实际运行为早晨5点至下午5点,再加上6小时夜间运行)

4、制冷运行费用计算:

A、电费:

a、两台主机每年制冷运行耗电(50%以下负荷开一台主机):

[(279kw×15天+223.2kw×35天)×2+279kw×30天+181.35kw×10天] ×8小时/天×0.73元/kw·h÷10000= 19.96 万元/年

b、两台冷却塔每年制冷运行耗电(50%以下负荷开一台冷却塔):

(2×11kw×50天+11kw×40天)×0.73元/kw·h×8小时/天÷10000= 0.9万元/年

c、两台循环水泵和两台冷却水泵每年制冷运行耗电(50%以下负荷各开一台泵)

(4×37kw×50天+2×37kw×40天)×0.73元/kw·h×8小时/天÷10000= 6.05 万元/年

B、制冷期运行合计:26.91万元/年

4、制冷运行费用计算:

A、电费:

a、两台主机每年制冷运行耗电(50%以下负荷开一台主机):

[(279kw×15天+223.2kw×35天)×2+279kw×30天+181.35kw×10天] ×8小时/天×0.73元/kw·h÷10000= 19.96 万元/年

b、两台冷却塔每年制冷运行耗电(50%以下负荷开一台冷却塔):

(2×11kw×50天+11kw×40天)×0.73元/kw·h×8小时/天÷10000= 0.9万元/年

c、两台循环水泵和两台冷却水泵每年制冷运行耗电(50%以下负荷各开一台泵)

(4×37kw×50天+2×37kw×40天)×0.73元/kw·h×8小时/天÷10000= 6.05 万元/年

B、制冷期运行合计:26.91万元/年

5、制热运行费用计算:

A、水泵运转电费:

a、两台热水循环水泵每年制热运行耗电(50%以下负荷开一台泵)

(2×37kw×83天+37kw×67天)×0.73元/kw·h×12小时/天÷10000= 7.55 万元/年

b、一次侧热水泵每年制热运行耗电(50%以下负荷开两台泵)

(3×7.5kw×83天+2×7.5kw×67天)×0.73元/kw·h×12小时/天÷10000= 2.52 万元/年

B、每年制热燃气费(25%-75%负荷开两台锅炉;25%负荷以下开一台锅炉)

[(130×2+82.4)NM3/h×25天+(130×2)NM3/h×58天+(97.5×2)NM3/h×50天+82.4NM3/h×17天)]×1.4元/NM3×12小时/天÷10000= 58.4万元/年

C、锅炉风机运行耗电

[(2×2.2kw+1.5 kw)×25天+(2×2.2kw)×108天+1.5kw×17天)]×0.73元/kw·h×12小时/天÷10000= 0.57 万元/年

D、采暖期运行费用合计:69.04 万元/年

二、中央空调末端设备运行费用

1、风机盘管设备:

末端风机盘管功率:353×40W+574×54W+80×72W+65×92W=56.9 kw

夏季:56.9×(15+0.75×35+0.5*30+0.25*10)×0.73元/kw·h×8小时/天÷10000= 1.95万元/年

冬季:56.9×(25+0.75×58+0.5*50+0.25*17)×0.73元/kw·h×12小时/天÷10000= 6.67万元/年

2、新风机组设备:

末端新风机组功率:8×0.55kw+10×1.1kw+3×1.1kw+4×1.5kw=28.9kw

夏季:28.9×(15+0.75×35+0.5*30+0.25*10)×0.73元/kw·h×8小时/天÷10000= 0.99万元/年

13561.64kw/年,0.004 kw/㎡/天

冬季:28.9×(25+0.75×58+0.5*50+0.25*17)×0.73元/kw·h×12小时/天÷10000= 2.47万元/年

一、空气源热泵制冷原理

液体汽化制冷是利用液体汽化时的吸热、冷凝时的放热效应来实现制冷的。液体汽化形成蒸汽。当液体(制冷工质)处在密闭的容器中时,此容器中除了液体及液体本身所产生的蒸汽外,不存在其他任何气体,液体和蒸汽将在某一压力下达到平衡,此时的汽体称为饱和蒸汽,压力称为饱和压力,温度称为饱和温度。平衡时液体不再汽化,这时如果将一部分蒸汽从容器中抽走,液体必然要继续汽化产生一部分蒸汽来维持这一平衡。液体汽化时要吸收热量,此热量称为汽化潜热。汽化潜热来自被冷却对象,使被冷却对象变冷。为了使

这一过程连续进行,就必须从容器中不断地抽走蒸汽,并使其凝结成液体后再回到容器中去。从容器中抽出的蒸汽如直接冷凝成蒸汽,则所需冷却介质的温度比液体的蒸发温度还要低,我们希望蒸汽的冷凝是在常温下进行,因此需要将蒸汽的压力提高到常温下的饱和压力。

制冷工质将在低温、低压下蒸发,产生冷效应;并在常温、高压下冷凝,向周围环境或冷却介质放出热量。蒸汽在常温、高压下冷凝后变为高压液体,还需要将其压力降低到蒸发压力后才能进入容器。

液体汽化制冷循环是由工质汽化、蒸汽升压、高压蒸汽冷凝、高压液体降压四个过程组成。

二、空气源热泵制冷量

空气源热泵机组的制冷量Q0按下式计算

Q0 = q0 K1

式中Q0———机组制冷量, kW;

q0———产品样本中机组的名义工况(室外

空气干球温度为35 ℃, 冷水出水

温度为7 ℃时) 制冷量, kW;

K1———夏季室外空调计算干球温度的修

正系数,按产品样本或技术说明书

选取,如厂家未提供,可近似按表1

选取。

表1 夏季室外空调计算干球温度修正系数K1 (出水温度7 ℃)

可看出,夏季室外温度几乎不会超过40℃,即夏季制冷时空气源热泵的制冷量几乎不会衰减。

可见空气源热泵冬季采暖衰减较大。

五、空气源热泵机组的能耗指标

可见,较大的中央空调系统宜选用螺杆式压缩机组。

地源热泵工作原理图讲解

地源热泵工作原理图讲解-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

地源热泵工作原理图讲解 地源热泵工作原理图讲解 今天为大家介绍一下关于地源热泵以及地源热泵工作原理的详细讲解。地源热泵是一种绿色技术,地源热泵工作原理是利用地热资源将低位能量转化成高位能量从而达到节能的目的,地源热泵能效比一般可以达到5以上,比普通的中央空调要节能40%以上,目前我国也在大力倡导地源热泵中央空调系统,很多专家认为,地源热泵将是中央空调的未来和趋势。 地源热泵为什么如此节能呢,这要从地源热泵工作原理说起,地源热泵主要是利用了地能和水能,和太阳能一样,他们都是免费可再生能源。下面安徽绿能通过地源热泵原理图为大家详细介绍一下地源热泵工作原理,看看地源热泵是如何节能的。 地源热泵原理简述 作为自然现象,正如水由高处流向低处那样,热量也总是从高温流向低温,用著名的热力学第二定律准确表述:“热量不可能自发由低温传递到高温”。但人们可以创造机器,如同把水从低处提升到高处而采用水泵那样,采用热泵可以把热量从低温抽吸到高温。所以地源热泵实质上是一种热量提升装置,它本身消耗一部分能量,把环境介质中贮存的能量加以挖掘,提高温位进行利用,而整个热泵装置所消耗的功仅为供热量的三分之一或更低,这就是地源热泵节能的原理。 地源热泵原理图 地源热泵工作原理

地源热泵系统是从常温土壤或地表水(地下水),冬季从地下提取热量,夏季把建筑的热量又存入地下,从而解决冬夏两季采暖和空调的冷热源。 夏季通过机组将房间内的热量转移到地下,对房间进行降温,同时储存热量,以备冬用。冬季通过热泵将土壤中的热量转移到房间,对房间进行供暖,同时储存冷量,以备夏用,大地土壤提供了一个很好的免费能量存贮源泉,这样就实现了能量的季节转换。 地源热泵原理图 冬季地源热泵工作原理 冬天热泵中制冷剂正向流动,压缩机排出的高温高压R22气体进入冷凝器向集水器中的水放出热量,相变为高温高压的液体,再经热力膨胀阀节流降压

空气源热泵工作原理

主讲人:刘海棠 职务:技术部部长 课题:空气源工作原理 ㈠空气源热水器工作原理 一、空气源热水器的定义 空气源热泵热水器又称热泵热水器,由热泵吸收空气热源制取热水。空气源热水器就就是通过热泵用逆卡诺原理,以极少的电能,吸收空气中大量的低温热能,通过压缩机的压缩变为高温热能,传输至水箱,加热热水,这种通过热泵运动来获得加热的热水器叫做空气源热水器。 目前,空气能热泵热水生产厂家与市场集中分布在长江以南。主要生产厂家集中在珠江三角洲的佛山、东莞、深圳、珠海以及长江三角洲的杭州、宁波地区。消费市场主要分布在长江以南的广东、广西、福建、江西、上海、浙江、安徽等省区,并逐步从长江以南向长江以北扩展。 二、空气源热水器的组成部分

热泵热水装置,主要由蒸发器、压缩机、冷凝器、膨胀阀、风机五大部件组成,通过让工质(制冷剂)不断完成蒸发(吸取环境中的热量)→压缩→冷凝(放出热量)→节流→再蒸发的热力循环过程,从而将环境里的热量转移到水中。 蒸发器直接从空气中吸取热量,将节流后的制冷剂吸热气化达到预期效果的设备。 压缩机就是空气源热水器的心脏,把制冷剂从低压提升为高压,并使制冷剂不断循环流动。 冷凝器就就是将压缩机排出的高温高压气体释放出热量后冷凝成低温高压液体的换热设备。 膨胀阀就是一种节流装置,控制制冷剂的流量,可提高系统的能效比与可靠性。 风机主要就是起加强气体流通量的作用,就是依靠输入的机械能,提高气体压力并排送气体的设备。 制冷剂就是热泵系统中实现制热循环的工作介质,也称冷媒。作为一种特殊的物质,制冷剂的物质状态在热泵循环过程中不断发生变化:在蒸发器中,制冷剂在较低的压力状态下吸收热能由液态变为气态;压缩机将此低压的气态制冷剂压缩升温为高压气态制冷剂;在冷凝器中,制冷剂在较高压力状态下放出热能由气态便为液态。 三、空气源热水器的基本工作原理 热泵技术就是基于逆卡诺循环原理实现的;如同在自然界中水总就是由高处流向低处一样,热量也总就是从高温传向低温。但人们可以用水泵把水从低处提升到高处,从而实现水的由低处向高处流动,热泵同样可以把热量从低温热源传递到高温热源,所以热泵实质上就是一种热量提升装置。热泵的作用就就是从周围环境中吸取热量(这些被吸取的热量可以就是地热、太阳能、空气的能量),并把它传递给被加热的对象(温度较高的媒质)。 热泵热水机组工作时,蒸发器吸收环境热能,压缩机吸入常温低压介质气体,经过压缩机压缩成为高温高压气体并输送进入冷凝器,高温高压的气体在冷凝器中释放热量来制取热水,并冷凝成低温高压的液体。后经膨胀阀节流变成低温低压液体进入蒸发器内进行蒸发,低温低压液体在蒸发器中从外界环境吸收热量后蒸发,变成低温低压的气体。蒸发产生的气体再次被吸入压缩机,开始又一轮同样的工作过程。这样的循环过程连续不断,周而复始,从而达到不断制热的目的。 热泵原理示意图如下:

地源热泵工作原理 供暖、制冷

地源热泵工作原理地源热泵原理图 舒适100网2010-7-9 12:00:38 .shushi100. 地源热泵是一种绿色技术,地源热泵工作原理是利用地热资源将低位能量转化成高位能量从而达到节能的目的,地源热泵能效比一般可以达到5以上,比普通的中央空调要节能40%以上,目前我国也在大力倡导地源热泵中央空调系统,很多专家认为,地源热泵将是中央空调的未来和趋势。 地源热泵为什么如此节能呢,这要从地源热泵工作原理说起,地源热泵主要是利用了地能和水能,和太阳能一样,他们都是免费可再生能源。下面我们通过地源热泵原理图为大家详细介绍一下地源热泵工作原理,看看地源热泵是如何节能的。 地源热泵原理简述 作为自然现象,正如水由高处流向低处那样,热量也总是从高温流向低温,用著名的热力学第二定律准确表述:“热量不可能自发由低温传递到高温”。但人们可以创造机器,如同把水从低处提升到高处而采用水泵那样,采用热泵可以把热量从低温抽吸到高温。所以地源热泵实质上是一种热量提升装置,它本身消耗一部分能量,把环境介质中贮存的能量加以挖掘,提高温位进行利用,而整个热泵装置所消耗的功仅为供热量的三分之一或更低,这就是地源热泵节能的原理。

地源热泵原理图 地源热泵工作原理 地源热泵系统是从常温土壤或地表水(地下水),冬季从地下提取热量,夏季把建筑的热量又存入地下,从而解决冬夏两季采暖和空调的冷热源。 夏季通过机组将房间的热量转移到地下,对房间进行降温,同时储存热量,以备冬用。冬季通过热泵将土壤中的热量转移到房间,对房间进行供暖,同时储存冷量,以备夏用,土壤提供了一个很好的免费能量存贮源泉,这样就实现了能量的季节转换。 地源热泵原理图

地源热泵系统工作原理

地源热泵系统工作原理、优点介绍 环境和经济效益显著 地源热泵机组运行时,不消耗水也不污染水,不需要锅炉,不需要冷却塔,也不需要堆放燃料废物的场地,环保效益显著。地源热泵机组的电力消耗,与空气源热泵相比也可以减少40%以上;与电供暖相比可以减少70%以上,它的制热系统比燃气锅炉的效率平均提高近50%,比燃气锅炉的效率高出了75%。 一机多用,应用广泛 地源热泵系统可供暖、空调制冷,还可提供生活热水,一机多用,一套系统可以替换原来的锅炉加空调的两套装置或系统,特别是对于同时有供热和供冷要求的建筑物。地源热泵有着明显的优点。不仅节省了大量的能量,而且用一套设备可以同时满足供热、供冷、供生活用水的要求,减少了设备的初投资,地源热泵可应用于宾馆、居住小区、公寓、厂房、商场、办公楼、学校等建筑,小型的地源热泵更适合于别墅住宅的采暖、空调。 自动运行 地源热泵机组由于工况稳定,可以设计成简单的系统,部件较少,机组运行可靠,维护费用用低,自动控制程度高,使用寿命长。 无环境污染 地源热泵的污染物排放,与空气源热泵相比,相当于减少38%以上,与电供暖相比,相当于减少70%以上,真正的实现了节能减排节能减排是减少能源浪费和降低废气排放更多。维护费用低 地源热泵系统运动部件要比常规系统少,因而减少维护,系统安装在室内,不暴露在风雨中,也可免遭损坏,更加可靠,延长寿命。 使用寿命长 地源热泵的地下埋管选用聚乙烯和聚丙烯塑料管,寿命可达50年,要比普通空调高35年使用寿命。 维持生态环境平衡 地源热泵夏天把室内的热量排到地下,冬天把地下的热量取出来供室内使用,相对来说,向环境排放更少的能量,维持生态环境的平衡。 节省空间 没有冷却塔、锅炉房和其它设备,省去了锅炉房,冷却塔占用的宝贵面积,产生附加经济效益,并改善了环境外部形象。

自己空气源热泵的工作原理

电空气源热泵 一、电空气源热泵作原理图及工作原理 1、电空气源热泵作原理图 电空气源热泵作原理图 2、电空气源热泵作原理 (1) 低温低压制冷剂经膨胀阀节流降压后,进入空气交换机中蒸发吸热,从空气中吸收大量的热量Q1; (2) 蒸发吸热后的制冷剂以气态形式进入压缩机,被压缩后,变成高温高压的制冷剂(此时制冷剂中所蕴藏的热量分为两部分:一部分是从空气中吸收的热量Q1,一部分是输入压缩机中的电能在压缩制冷剂时转化成的热量Q2); 压缩机蒸发 器 空气热量的输入 冷凝 器 电能的输入 储液罐 过滤器膨胀阀 热水出冷水入热 用 户

(3)被压缩后的高温高压制冷剂进入热交换器,将其所含热量(Q1+Q2)释放给进入热换热器中的冷水,冷水被加热到55℃(最高达65℃),直接给用户供暖; (4)放热后的制冷剂以液态形式进入节膨胀阀,节流降压......如此不间断进行循环。 二、电空气源热泵有如下特点 1、用途广泛、四季无忧 空气能(源)热泵既能在冬季制热,又能在夏季制冷,能满足冬夏两种季节需求,而其他采暖设备往往只能冬季制热,夏季制冷时还需要加装空调设备。 2、安全运行、保护环保 空气能(源)热泵采用热泵加热的形式,水、电完全分离,无需燃煤或天然气,因此可以实现一年四季全天24小时安全运行,不会对环境造成污染。 3、使用灵活、没有限制 相比太阳能、燃气。水地能(源)热泵等形式,空气能(源)热泵不受夜晚、阴天、下雨及下雪等恶劣天气的影响,也不受地质。燃气供应的限制。 4、节能科技、省电省心 空气能(源)热泵使用1份电能,同时从室外空气中获取2份以上免费的空气能(源),能生产3份以上的热能,高效环保,相比电采暖每月节省75%的电费,为用户省下如此可观的电费,很快就能收

地源热泵空调工作原理

地源热泵空调工作原理 地源热泵供热空调系统是目前世界上先进的绿色空调系统。热泵供热空调系统的工作原理是利用环境(空气、水和大地)中的低品味热量,经过热泵机组的工作而改变温度,进而实现对建筑物的供热和空调,同时还可以提供生活热水。 地源热泵系统通过循环液在封闭的地下埋管中流动,实现系统与大地之间的换热,利用大地岩土层中的可再生热能。由于较深的底层中在未受干扰的情况下常年保持恒定的温度,与室外温度相比是冬暖夏凉,因此地源热泵可克服空气源热泵的技术障碍,且效率大大提高。在热泵机组中消耗1KW的电能可以得到4KW以上的热量,即能效比大于4。此外,它保持了地下水源热泵利用大地作为冷热源的优点,同时又不需要抽取地下水作为传热的介质,因此它是一种可持续发展的建筑节能新技术。 地源热泵空调工作流程 地源热地下环路的(即地热换热器)埋管方式多种多样。目前国外普遍采用的有垂直埋管和水平埋管地热器两种基本的配置形式。垂直埋管地热换热器是在地层中垂直钻孔的地热换热器是在浅层土地中水平埋管。地热换热器型式和结构的选取应根据实际工程以及给定的建筑场地条件来确定。水平埋管占地面积大,而且水平埋管的地热换热器受地表气候变化的影响,效率较低,因此这种水平埋管的地源热泵空调系统在多数场合不适合中国人多地少的国情。 垂直环路地源热泵系统在工作中有三个必需的环路,有的还有第四个可供选择的预热生活热水的环路。 1、地下换热环路

水或防冻剂溶液在地下循环的封闭加压环路。冬季从周围土壤吸收热量,夏季向土壤释放热量,其循环由一台低功率的循环泵来实现。 2、制冷剂环路 即在热泵机组内部的制冷循环,与空气源热泵相比,只是将空气—制冷剂换热器变成水—制冷剂热换器,其它结构基本相同。 3、空气环路 把已调节好的空气分配到建筑物中去的环路。送风机将空气送到空气分布系统,再根据各区域的热损失或得热,将它们分配到特定的区域去。 4、生活热水环路 将水从生活热水箱送到过热蒸汽冷却器去进行循环的封闭加压环路,是一个可选的环路。 这些环路的不同运行方向即构成了冬夏两大循环:制热循环和制冷循环。 地源热泵空调的突出优点 1.高效节能 热泵的运行方式,使能量输入和输出之比,在供热状态可达1:3以上,制冷状态为1:5左右;即使在部分负荷状态下,也能高效运行,运行费用仅为传统中央空调的40—60%。 2.绿色环保 地源热泵系统省去了锅炉和锅炉房,全年仅采用电力这种清洁能源,彻底解决了锅炉造成的大气污染问题。由于提高了能源的利用效率,大大减少了由于建筑供热空调产生的CO2排放量。同时避免了地下水源热泵系统可能造成的对地下水的浪费和污染。

空气源热泵工作原理分析

空气源热泵工作原理分析 一、热泵简要介绍 日常生活中泵的应用很多,泵是一种提高位能的装置,根据用途不同有水泵、气泵、油泵等。 热泵,顾名思义就是泵热的装置。热泵技术是近年来在全世界备受关注的新能源技术,目前较多地应用于冷暖空调机。 热泵按结构、用途等可以有多种分类,如果按所取热源方式,常见的可分为空气源热泵、水源热泵、地热热泵等。 三、空气源热泵原理介绍 空气源热泵热水器是空气源热泵的其中一种用途方式。空气源热泵系统的主要工作原理就是利用少量高品位的电能作为驱动能源,从低温热源(空气当中蕴涵的热能)高效吸收低品位热能并传输给高温热源(水箱里的水),达到了“泵热”的目的。 热泵技术是一种提高能量品位的技术,它不是能量转换的过程,不受能量转换效率极限100%的制约。利用热泵热水机释放到水中的热量不是直接用电加热产生出来的,而是通过热泵热水机把热源搬运到水中去的,所以平均能效比能达到400%以上。也就是1度电通过热泵能产生4度电的效果。

三、各种热水器的比较能源利用率 家用型空气源热泵系统结构示意图: 四、系统结构流程说明 压缩机→高压保护器→换向阀→热交换器(家用型水箱)→节流装置→蒸发器→低压保护器→气液分离器→压缩机。 商用型空气源热泵系统结构示意图:

商用型空气源热泵系统安装示意图: 五、斯米茨水源热泵介绍

多乐?斯米茨水源热泵是一种空气能产品,适用于宾馆、商场、办公楼、学校、别墅、住宅小区的制热及制冷。 多乐?斯米茨水源热泵优势特点: 1、高效节能 水源热泵是目前空调系统中能效比(COP值)最高的制冷、制热方式,理论计算可达到7,实际运行为4~6。运行费用仅为普通中央空调的40~60%。 2、节水省地

空气能热水器使用说明书

空气源热泵热水器原理 由生活中的常识中我们可以知道,热水可以自己慢慢向空气中放热,冷却成凉水, 这表明热量可以从温度高的物体一一热水自动的传递到温度低的物体一一空气。那么可不可以将这个过程反过来进行,将温度较低的空气中的能量向热水中转移呢?热力学第二定律指出:不可能把热从低温物体传到高温物体而不引 起其他变化。这就是说,热量能自发的从高温物体传向低温物体,而不能自发地从低温物体传向高温物体。但这并不是说热量就不能从低温物体传向高温物体,就向水泵能够使水从低处流向高处一样,热泵通过消耗一部分电能,也能够使热量从低温物体传到高温物体。空气源热泵热水器就是根据这样一个原理 来工作的,通过消耗少量的电能驱动压缩机,使制冷剂吸收空气里的热量来加热生活用热水的,其制热效果比传统热水器高出3倍,而消耗的电能仅为普通热水器的三分之一,并能从根本上杜绝了漏电、一氧化碳中毒的危险 电能输入一1 热水岀一 lili 冷水进 热泵工作流程图 热泵热水器的工作过程如下:如上图所示,压缩机通过消耗一部分电能,将低温低压的制冷剂气体压缩成高温高压的气体,高温高压的气体在冷凝器中放出热量将水加热,自己温度被降低,经过膨胀阀节流降压后,变成低温低压的气液混合物,在蒸发器中制冷剂吸收其他介质(如空气、井水)中的热量,变成低温低压的气体,然后再被压缩机吸收,压缩成高温高压的气体加热热水。 与其他形式的热水器相比,热泵热水器主要有安全、节能、环保的特点。 安全性: 传统热水器以燃气、电和太阳能为主,三分天下,燃气热水器安全性较差, 燃烧不充分和水压不稳定易造成燃气中毒和烫伤事件,电热水器的漏电隐患和住宅接地不良也对消费者的生命安全造成严重威胁,太阳能热水器储水式的特点决定了其在晴天时,水温可能很高,造成烫伤,阴雨天的电辅助加热却留下安全隐患,与以上热水器不同,热泵热水器制热过程是通过压缩机排出的高温高压制冷剂气体加热水罐中的水,电主要用于压缩机,制热后的气体通过外盘式的盘管与搪瓷水罐中的水交换热量,水电完全分离,

空气源热泵原理

经济的发展带动了人们对生活质量的高要求,在燃气、电力和太阳能等能源逐渐满足不了人们对舒适度性、节能性和安全性追求之后,空气源热泵应运而生。相比较其他能源方式,空气源热泵的优势很明显,如安装时没有任何条件限制,水电分离保证了较高的安全性,耗电量很低,节能省电。集众多优势于一身体的空气源热泵是是如何运行的呢? 这里需要先了解一个原理:逆卡诺循环原理,即通过压缩机系统运转工作,吸收空气中热量制造热水。而空气源热泵正是按照“逆卡诺”原理工作的,具体的运行过程如下:压缩机会将冷空气压缩,压缩后冷空气温度会升高,经过水箱中的冷凝器制造热水,热交换后的冷空气回到压缩机进行下一循环,在这一过程中,空气热量通过蒸发器被吸收导入冷空气中,冷空气再导入水中,产生热水。通过压缩机空气制热的新一代热水器,即空气能热泵热水器。打个比方,就是“室外机”像打气筒一样压缩空气,使空气温度升高,然后通过一种-17℃

就会沸腾的液体传导热量到室内的储水箱内,再将热量释放传导到水中。通过这样一个流程,科希曼空气源热泵将室外的空气置换成冷(暖)空气,从而实现制冷和采暖二合一。 科希曼电器有限公司,生产基地位于中国家电制造中心之一的安徽省合肥市,是安徽省重点招商引资企业,是一家专业的空气能研发制造企业。KOCHEM立足于独有的空气源热泵技术,以新能源利用方式,为全球家庭与商业空间提供空气能冷暖一体化及中央热水解决方案。 始终缔造完美。KOCHEM将德国工业“严谨、细致、追求完美”的基因带到中国,从采购、生产到成品,每一个环节都严格按照德国工艺标准操作,确保每一台KOCHEM产品都符合德国品质规范。公司先后通过全国工业产品生产许可证、3C强制认证、欧盟CE认证、德国GS认证、美国UL认证、ISO9001等多项认证及多项国家发明专利。未来,KOCHEM将勇担行业重任,立志为人类创造更加环保、舒适、健康的美好生活!如果你想进一步了解,可以直接点击官网科希曼电器有限公司进行咨询。

地源热泵工作原理图讲解

地源热泵工作原理图讲 解 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

地源热泵工作原理图讲解 地源热泵工作原理图讲解 今天为大家介绍一下关于地源热泵以及地源热泵工作原理的详细讲解。地源热泵是一种绿色技术,地源热泵工作原理是利用地热资源将低位能量转化成高位能量从而达到节能的目的,地源热泵能效比一般可以达到5以上,比普通的中央空调要节能40%以上,目前我国也在大力倡导地源热泵中央空调系统,很多专家认为,地源热泵将是中央空调的未来和趋势。 地源热泵为什么如此节能呢,这要从地源热泵工作原理说起,地源热泵主要是利用了地能和水能,和太阳能一样,他们都是免费可再生能源。下面安徽绿能通过地源热泵原理图为大家详细介绍一下地源热泵工作原理,看看地源热泵是如何节能的。 地源热泵原理简述 作为自然现象,正如水由高处流向低处那样,热量也总是从高温流向低温,用着名的热力学第二定律准确表述:“热量不可能自发由低温传递到高温”。但人们可以创造机器,如同把水从低处提升到高处而采用水泵那样,采用热泵可以把热量从低温抽吸到高温。所以地源热泵实质上是一种热量提升装置,它本身消耗一部分能量,把环境介质中贮存的能量加以挖掘,提高温位进行利用,而整个热泵装置所消耗的功仅为供热量的三分之一或更低,这就是地源热泵节能的原理。 地源热泵原理图 地源热泵工作原理

地源热泵系统是从常温土壤或地表水(地下水),冬季从地下提取热量,夏季把建筑的热量又存入地下,从而解决冬夏两季采暖和空调的冷热源。 夏季通过机组将房间内的热量转移到地下,对房间进行降温,同时储存热量,以备冬用。冬季通过热泵将土壤中的热量转移到房间,对房间进行供暖,同时储存冷量,以备夏用,大地土壤提供了一个很好的免费能量存贮源泉,这样就实现了能量的季节转换。 地源热泵原理图 冬季地源热泵工作原理 冬天热泵中制冷剂正向流动,压缩机排出的高温高压R22气体进入冷凝器向集水器中的水放出热量,相变为高温高压的液体,再经热力膨胀阀节流降压变为低温低压的液体进入蒸发器,从地下循环液中吸取低温热后相变为低温低压的饱和蒸汽后进入压缩机吸气端,由压缩机压缩排出高温高压气体完成一个循环。如此循环往复将地下低温热能“搬运”到集水器,从而不断的向用户提供45 ℃ -50 ℃的热水。 夏天热泵中制冷剂逆向流动,与用户换热的冷凝器变为蒸发器从集水器中的低温水(7 -12 ℃)提取热能,与地下循环液换热的蒸发器变为冷凝器向地下循环液排放热量,循环液中热量再向地下低温区排放,如此循环往复连续地向用户提供7 -12 ℃ 的冷水。

地源热泵与水源热泵的区别

地源热泵与水源热泵的区别? 根据热力学第二定律,热可以自发地由高温物 体传向低温物体,而由低温物体传向高温物体则必 须做功。热泵系统实现了把能量由低温物体向高温 物体的传递,它是以花费一部分高质能(电能)为代 价,从自然环境中获取能量,并连同所花费的高质能 一起向用户供热。热泵的供热量大于所消耗的功 量,是综合利用能源的一种很有价值的措施。热泵 由压缩机、蒸发器、冷凝器、膨胀阀等主要部件组成。 热泵技术按所需热源的不同大体可分为气源热 泵、地源热泵及水源热泵。 地源热泵是一种利用地表浅层地热资源(也 称地能,包括地下水、土壤和地表水等携带的能 量)的高效节能空调系统。该系统集地质勘探成 井技术、热泵技术和暖通技术于一体,利用地热资 源进行采暖和制冷。地源热泵通过输人少量的高 品位能源(如电能),实现低温位或高温位的能量 转移。地能分别在冬季作为热泵供暖的热源和夏 季空调的冷源,即在冬季,把地能中的热量“取” 出来,提高温度后,供给室内采暖;夏季,把室内的 热量“取”出来,释放到地能中去。通常地源热泵 机组的性能系数COP(指其制热量与所消耗的电 能的比值)达到3.8-5.4,即消耗1kW的能量可 以得到4kW以上的热量或制冷量。十几年来,发 达国家对于地源热泵技术多有研究和利用,且不 断发展,近年来国内也呈现出不断研究和使用的 趋势。据统计,至2004年底,浅层地能供暖(冷) 系统已在国内推广近1000万平方米。 由于地源热泵是利用地球表面浅层地热资源 (通常小于400米)作为冷热源而进行能量转换的供暖空调系统。地表浅层又是一个巨大的太阳 能集热器,它不受地域、资源等限制,真正是量大 面广、无处不在。这种储存于地表浅层近乎无限 的能源,使得地能成为清洁的可再生能源。地表浅层地热资源的温度一年四季相对稳 定,在我国华北地区,它在冬季比环境空气温度 高,夏季比环境空气温度低,是很好的热泵热源和 空调冷源。这种温度特性使得地源热泵比传统空 调系统运行效率要高出许多,因此可以节约能源 和节省运行费用。另外,地能温度较恒定的特性, 使得热泵机组运行更可靠、稳定,也保证了系统的 高效性和经济性。 地源热泵系统可供暖、制冷,还可供生活热

污水源热泵工作原理及效益分析

污水源热本调研报告 所谓污水源热泵,主要是以城市污水做为提取和储存能量的冷热源,借助热泵机组系统内部制冷剂的物态循环变化,消耗少量的电能,从而达到制冷制暖效果的一种创新技术。 城市污水源热泵空调技术能实现冬季供暖、夏季空调、全年生活热水供应(很廉价的热水供应方案)、夏季部分免费生活热水供应。 城市污水热泵空调是一项高新技术,具有节能、环保及经济效益,符合经济与社会的可持续性发展战略。城市污水源热泵机组以污水为冷热源,冬季采集来自污水的低品位热能,借助热泵系统,通过消耗部分电能(1份),将所取得的能量(大于4份)供给室内取暖;在夏季把室内的热量取出,释放到水中,以达到夏季空调的目的。 1、污水源热泵的工作原理 污水源热泵的主要工作原理是借助污水源热泵压缩机系统,消耗少量电能,在冬季把存于水中的低位热能“提取”出来,为用户供热,夏季则把室内的热量“提取”出来,释放到水中,从而降低室温,达到制冷的效果。其能量流动是利用热泵机组所消耗能量(电能)吸取的全部热能(即电能+吸收的热能)一起排输至高温热源,而起所消耗能量作用的是使介质压缩至高温高压状态,从而达到吸收低温热源中热能的作用。 污水源热泵系统由通过水源水管路和冷热水管路的水源系统、热泵系统、末端系统等部分相连接组成。根据原生污水是否直接进热泵机组蒸发器或者冷凝器可以将该系统分为直接利用和间接利用两种方式。直接利用方式是指将污水中的热量通过热泵回收后输送到采暖空调建筑物;间接利用方式是指污水先通过热交换器进行热交换后,再把污水中的热量通过热泵进行回收输送到采暖空调建筑物。 2、污水源热泵系统的特点: (1)环保效益显著

城市污水源热泵是利用了污水作为冷热源,进行能量转换的供暖空调系统。供热时省去了燃煤、燃气、然油等锅炉房系统,没有燃烧过程,避免了排烟污染;供冷时省去了冷却水塔,避免了冷却塔的噪音及霉菌污染。不产生任何废渣、废水、废气和烟尘,环境效益显著。 (2)高效节能 冬季,污水温度比环境空气温度高,所以热泵循环的蒸发温度提高,能效比也提高。而夏季污水温度比环境空气温度低,所以制冷的冷凝温度降低,使得冷却效果好于风冷式和冷却塔式,机组效率提高。 (3)运行稳定可靠 污水的温度一年四季相对稳定,其波动的范围远远小于空气的变动。是很好的热泵热源和空调冷源,水体温度较恒定的特性,使得热泵机组运行更可靠、稳定,也保证了系统的高效性和经济性。不存在空气源热泵的冬季除霜等难点问题。 (4)一机多用,应用xx 此热泵系统可供暖、空调,生活热水供应(夏季免费)等。一机多用,一套系统可以替换原来的锅炉加空调的两套装置或系统。 (5)投资运行费用低 城市污水源热泵具有初投资低,运行费低的巨大经济优势。运行效果良好,经济效益显著。污水热泵系统的机房面积仅为其他系统的50%。系统根据室外温度及室内温度要求自动调节,可做到无人看管,同时也可做到联网监控。污水源热泵系统原理简单,设备的可靠性强,维护量小,平时无设备的维护问题。 3、污水源热泵系统目前在国内主要有两种应用方式 一种是利用防堵机技术把污水过滤后直接进入热泵机组,此种是对污水的直接利用,污水直接利用,进入热泵机组的热源温度较高,从理论上,系统能效比较高;但是在实际应用中,防堵机和污水热泵需要经常清洗,防堵机和热

一目了然的空气源热泵原理

一目了然的空气源热泵 一、什么是热泵? 热泵不是水泵,甚至不是泵,而是成套装置。热泵的英文名称heat pump,它有2个定义:定义1:从低温热源吸热送往高温热源的循环设备。 定义2:以消耗一部分高品位能源(机械能、电能或高温热能)为补偿,使热能从低温热源向高温热源传递的装置。 让我们来回忆一下物理知识: 热力学第一定律:能量守恒定律。 热力学第二定律:热量可以自发地从温度高的物体传递到温度低的物体,但不可能自发地从温度低的物体传递到温度高的物体。 那热泵是不是违反热力学定律的怪物?热泵是不是永动机? 我们来看一下热泵的工作原理: 高压锅:大于1个大气压,水的沸点会超过100℃, 换言之,在高压下,水蒸气会在超过100 ℃的情况下冷凝成液体! 在2个大气压下,水的沸点是121 ℃!

低压锅:小于1个大气压下,水的沸点会低于100℃, 换言之,在低压下,水会在低于100 ℃情况下蒸发成气体! 在0.12个大气压下,水的沸点是50 ℃! 通过压缩机做功,使工质产生物理变相(气态--液态--气态),利用这一往复循环相变过程不断通过低压锅(蒸发器)吸热和高压锅(冷凝器)放热,由吸热装置吸取免费的热量,经过热交换器使冷水升温,制取的热水通过水循环系统送至用户。 蒸汽机开启了第一次工业革命,世界进入到利用能源的新时代,其原理是卡诺循环,是利用热能转化为机械能的方式,能效永远低于1。

热泵则开启了节约能源的新时代。其原理是逆卡诺循环,利用机械能将低温热能转换为高温热能的方式,能效永远大于1,热泵是节约能源的最佳方式。 各种能源形式的密度最高的是电力 中国能源的最佳利用方式:

空气源热泵使用说明书

空气源热泵原理 由生活中的常识中我们可以知道,热水可以自己慢慢向空气中放热,冷却成凉水,这表明热量可以从温度高的物体——热水自动的传递到温度低的物体——空气。那么可不可以将这个过程反过来进行,将温度较低的空气中的能量向热水中转移呢?热力学第二定律指出:不可能把热从低温物体传到高温物体而不引起其他变化。这就是说,热量能自发的从高温物体传向低温物体,而不能自发地从低温物体传向高温物体。但这并不是说热量就不能从低温物体传向高温物体,就向水泵能够使水从低处流向高处一样,热泵通过消耗一部分电能,也能够使热量从低温物体传到高温物体。空气源热泵热水器就是根据这样一个原理来工作的,通过消耗少量的电能驱动压缩机,使制冷剂吸收空气里的热量来加热生活用热水的,其制热效果比传统热水器高出3倍,而消耗的电能仅为普通热水器的三分之一,并能从根本上杜绝了漏电、一氧化碳中毒的危险 热泵热水器的工作过程如下:如上图所示,压缩机通过消耗一部分电能,将低温低压的制冷剂气体压缩成高温高压的气体,高温高压的气体在冷凝器中放出热量将水加热,自己温度被降低,经过膨胀阀节流降压后,变成低温低压的气液混合物,在蒸发器中制冷剂吸收其他介质(如空气、井水)中的热量,变成低温低压的气体,然后再被压缩机吸收,压缩成高温高压的气体加热热水。 与其他形式的热水器相比,热泵热水器主要有安全、节能、环保的特点。 安全性: 传统热水器以燃气、电和太阳能为主,三分天下,燃气热水器安全性较差,燃烧不充分和水压不稳定易造成燃气中毒和烫伤事件,电热水器的漏电隐患和住宅接地不良也对消费者的生命安全造成严重威胁,太阳能热水器储水式的特点决定了其在晴天时,水温可能很高,造成烫伤,阴雨天的电辅助加热却留下安全隐患,与以上热水器不同,热泵热水器制热过程是通过压缩机排出的高温高压制冷剂气体加热水罐中的水,电主要用于压缩机,制热后的气体通过外盘式的盘管与搪瓷水罐中的水交换热量,水电完全分离,这样,既不存在漏电隐患,省去了防漏电的烦恼,也避免了电加热管表面温度高,易结垢并影响加热效率的弊端,真正作到绝对安全。 节能性: 由于采用热泵技术,可将大量低品位的热源(空气中的热量)通过压缩机和制冷剂,转变为高品位的可利用的热能,热泵热水器由于吸收了大量空气中的热量,能效比平均在3以上,即热泵热水器的压缩机每耗一度电,可产生电加热消耗3度电产生的热水,极大的节省了能源。 ; 以120升热泵热水器为例,压缩机功率为500瓦,热效率值为370%(标准工况环境温度为20℃),是普通电热水器的四倍左右(电热水器热效率为95%),大大节省了电能,同样120升水从15℃升到55℃,普通电热水器需要6Kw,康特姆热泵热水器仅需Kw,不仅仅节省了费用,大面积推广也可极大的缓和电力紧张情况,具有很大的现实意义。

地源热泵技术工作原理及制冷制热原理图

地源热泵技术工作原理及制冷制热原理图 热泵是一种能从自然界的空气、水或土壤中获取低品位热,经过电力做功,输出可用的高品位热能的设备,可以把消耗的高品位电能转换为3倍甚至3倍以上的热能,是一种高效供能技术。热泵技术在空调领域的应用可分为空气源热泵、水源热泵以及地源热泵三类。由于热泵是提取自然界中能量,效率高,没有任何污染物排放,是当今最清洁、经济的能源方式。在资源越来越匮乏的今天,作为人类利用低温热能的最先进方式,热泵技术已经在全世界范围内受到广泛关注和重视。 地源热泵 地源热泵(也称地热泵)是利用地下常温土壤和地下水相对稳定的特性,通过深埋于建筑物周围的管路系统或地下水,采用热泵原理,通过少量的高位电能输入,实现低位热能向高位热能转移与建筑物完成热交换的一种技术。 地源热泵空调系统主要分为三个部分:室外地能换热系统、水源热泵机组系统和室内采暖空调末端系统。其中水源热泵机组主要有两种形式:水-水型机组或水-空气型机组。三个系统之间靠水或空气换热介质进行热量的传递,水源热泵与地能之间换热介质为水,与建筑物采暖空调末端换热介质可以是水或空气。 地源热泵原理图:

地源热泵工作原理是:冬季,热泵机组从地源(浅层水体或岩土体)中吸收热量,向建筑物供暖;夏季,热泵机组从室内吸收热量并转移释放到地源中,实现建筑物空调制冷。根据地热交换系统形式的不同,地源热泵系统分为地下水地源热泵系统和地表水地源热泵系统和地埋管地源热泵系统。 地源热泵制冷原理: 地源热泵系统在制冷状态下,地源热泵机组内的压缩机对冷媒做功,使其进行汽-液转化的循环。通过冷媒/空气热交换器内冷媒的蒸发将室内空气循环所携带的热量吸收至冷媒中,在冷媒循环的同时再通过冷媒/水热交换器内冷媒的冷凝,由循环水路将冷媒中所携带的热量吸收,最终通过室外地能换热系统转移至地下水或土壤里。在室内热量通过室内采暖空调末端系统、水源热泵机组系统和室外地能换热系统不断转移至地下的过程中,通过冷媒-空气热交换器(风机盘管),以13℃以下的冷风的形式为房供冷。

空气源热泵热水机组工作原理及节能分析

空气源热泵热水机组工作原理及节能分析 一、空气能热水中心机组工作原理 空气源热泵热水机组是一种新型、可替代热水锅炉的热水装置。与传统太阳能相比,空气能源热泵热水机组不仅可吸收空气中的热量,还可吸收太阳能,它是将电热水器和太阳能热水器的优点完美的结合于一体的新型热水器。该产品以制冷剂为媒介,通过制冷剂状态、温度的变化和压缩机压缩制取热量,通过换热装置将热量传递给水,使水的温度升高来,升高温度的水通过水循环系统送入用户散热器进行采暖或直接用于卫生热水的供应。 空气源热热泵热水机组技术是基于逆卡诺循环原理建立起来的一种节能、环保制热技术。空气源热泵热水中机组系统通过自然能(空气蓄热)获取低温热源,经热泵系统高效集热整合后成为高温热源,用来制取供暖或卫生热水。整个系统集热效率较电热水机组(锅炉)、燃油、燃气热水机组有了很大提高。 空气源热热泵热水中心机组遵循能量守恒定律和热力学第二定律,运用热泵的原理,只需要消耗一小部分的机械功(电能),将处于低温环境(大气)中的热量转移到水中,去加热制取高温的热水。热泵可以与水泵相比拟,水是不能自发地从低处流向高处,要将低处的水输送到高处,必须用一台水泵,消耗一部分电力,才能将水送到高处的水箱中。同样,根据热力学第二定律,热量也是不能自发地从低温环境向高温环境中转移(传送),而要实现这个目的,必须要有一台机器,消耗一部分机械功(例如电能),才能将低温环境中的热量传送到高温环境中去。这样的机器就称之为“热泵”。热泵的作用是将空气中的热量取出,连同本身所用的电能转变成的热能,一起送到水中。 空气源热泵热水机组由压缩机、冷凝器、蒸发器和膨胀阀等部件组成。它运用逆卡诺循环原理,通过压缩机做功使工质产生相变(气态—液态—气态),在这种往复循环相变的过程中,通过蒸发器不间断的从环境吸取热量,通过冷凝器(换热器)不间断的放出热量,使冷水逐步升温,制取的热水通过热水管网循环装置输出到用户使用终端。

空气源热泵可行性研究报告

摘要 本文主要从热泵热水器原理设计节能环保等方面进行了大体的说明。首先是从空气源热泵的概述、起源、发展历程等进行了介绍。从中可以了解到什么是热泵热水器?什么又是超低温空气源热泵以及空气源热泵技术前景等等。 其次是从热泵的运行原理,以及蒸汽压缩式制冷循环原理方面,进行了更详细的介绍空气源热泵的组成以及设计方法。通过这一章可以的了解到热泵的组成、性质、特点等。 最后对空气源热泵的系统计算、工质性能的分析,从环保节能经济性等方面入手说明空气源的相对于其他热泵的优势。北方供暖机型的前景应用。 广州欧式博空调设备有限公司 企业简介 广州欧式博中央空调有限公司是一家致力于新能源技术开发,坚持以节能环保为企业核心发展目标,并专注于热泵技术研发、生产及提供综合节能、低温、高温应用解决方案的国际型企业。 一直以来,欧式博作为一家集研发、生产、销售“欧斯博”品牌热泵及特种中央空调的高科技企业,超过60%的产品出口欧盟、澳洲、北美、东南亚等地区,主要用于高端商用及家用场所。欧式博在近十年引进吸收整合欧盟地区热泵技术,长期与当地研发、工厂、客户保持良好的沟通与交流,由于低温供暖与低温热泵性能稳定,是欧盟地区主要的低温空气源热泵、泳池恒温热泵、低温热泵及热泵中央热水机主要供应商及OEM生产商。

近年来,欧式博公司着力把出口到发达国家,质量性能优越的“欧斯博”品牌产品供应国内市场,以满足国内高端市场日益提高的使用要求。 OSBERT GUANGZHOU OSBERT CENTRAL AIR CONDITIONING CO., LTD is an international company devoted to new energy technology development. We design and produce heat pumps, offering energy-saving medium and high temperature hot water solutions in domestic and abroad market. In the past decade, 80% of our products are exported to EU, Australia, North America and Southeastern Asia. We have been introducing, absorbing and integrating advanced heat pump technologies from EU, and established good communication channels with local designing/production teams and customers. Thanks to the reliability and efficiency of our products, we have become an important supplier and OEM factory of low temperature air to water heat pump, pool heat pump and hot water heat pump in EU market. To satisfy upgrading demand of local market for high quality products, in China OSBERT begins to sell high quality and performance products designed for export market. 企业优势 欧式博公司现有广州、佛山两大生产基地。占地面积150多亩,厂房、办公楼、宿舍近5万平方米。建有八条主机设备生产线,以及钣金加工、换热器生产线,并设立深圳研发中心。 多年来,欧斯博热泵拥有国内外成千上万个商用热泵工程项目在使用。销售商用热泵已过十万台(套)。拥有中国最多的热泵工程项目及用户。

同益空气能使用说明

空气能热水器使用说明 空气能热泵技术简介 1、 空气能热泵技术是基于逆卡诺循环原理建立起来的一种节能、环保制热技 术。 2、 热泵的工作原理:就是借消耗机械功而将热量从低温物体转移到高温物体 (逆卡诺循环)。 3、 系统循环原理图: 4、 热泵与空调的异同:工作原理是相同的,但其任务和工作范围不同。 1) 空调是把低温物体的热量转移到自然环境(水或空气),以实现并维 持物体的低温; 2) 热泵是把自然环境(空气、水等)中的热量转移到需要较高温度的环境中去; 压缩机 蒸发器 冷凝器 2 1 3 4 吸热 高温、高压气体 高压液体 低温湿蒸气 低压气体

5、空气能热泵的特征:就是系统通过从自然环境的空气中获取低温热源,经 过系统高效循环集热后成为高温热源,用来取(供)暖或供应热水。可广泛应用于酒店、旅馆、医院、游泳池、学校、住宅、美容院等地方。 6、优势: 1)节能,有利于能源的综合利用,运行效率高; 2)环保,无任何污染,热泵产品是从空气环境中取热而不是将废热排放到 环境中去; 3)适用广范,受环境影响较少,在-5℃到40℃范围内一年四季可用; 4)综合使用,可以实现冷热的结合(热水+冷气),设备应用率高,节省 出投资; 5)调控简便,使用微电脑蕊片集中控制,操作简单; 6)运行安全,无须专人监控操作; 附加 7)智能补水功能:温度+水位联锁控制; 8)加大的换热器:换热快、防结霜; 9)密码加锁功能; 7、热量计算 1)热量:表示物体吸热或放热多少的物理量。Q Q=C×M×(T2-T1) 式中: Q:制热量,单位为千卡[Kcal]或瓦[w];

C:水的比热,千卡/(千克·度),单位为 [Kcal/(kg.℃)];比热:单位质量的物体温度升高或降低1℃时,所吸收或放出的热量。 M:水的质量,单位为千克[kg]; T2:结束时水温,单位为摄氏度[℃]; T1:开始时水温,单位为摄氏度[℃]。 2)国际单位为焦耳(J),通用单位卡cal。1kcal=≈ 3)1kcal是使1kg纯水温度升高1℃所吸收的热量。 4)瓦(W)是热流量单位 1W=h (1 kcal/h = W) 5)能效(性能系数ξ) ξ=(Q÷/(W×1000) (w/w) 用电量W:(电表度[kwh]) 6)选型估算 总用水量M:(人数n×个人用水量L) 温差ΔT:(T2-T1)可选40℃ 则,总热量Q总= M×ΔT (kcal) 选型:Q机= Q总/ H (kcal) H:机组工作时间(8-12小时/天)

地源热泵 基础知识

地源热泵基础知识 一、地源热泵系统原理 地源热泵是利用地下浅层地热资源的低品位能源,通过热泵技术获取可供空调使用的冷热水的空调系统。地源热泵是一个广泛的概念,根据地热的利用方式,分为水源热泵和土壤源热泵。二者不同之处是:水源热泵直接利用水作为热源,土壤源热泵需要通过换热器从土壤中获取能量。 地源热泵空调系统通常由地源热泵机组、地热能换热系统、建筑物内系统组成。地源热泵机组与常用的水冷式冷水机组的工作原理基本相同,仅水源部分的温度有所差别。此外,地源热泵冷热工况的转换,一般是通过机组以外管道阀门的切换来实现的。 地埋管换热器是地源热泵的重要组成部分。垂直地埋管方式,是在垂直钻孔内埋置U型换热管道,然后由水平管将U型管并联成系统,水从管道内流过并与土壤换热。垂直地埋管方式的主要特点是运行比较稳定和可靠。还有一种是水平地埋管方式。 二、地源热泵系统工作原理 地源热泵技术是利用浅层常温土壤或地下水的能量作为能源的新型热泵技术。该技术可以同时供暖和制冷,并且能够提供生活热水。利用水与地能(地下水、土壤或地表水)进行冷热交换来作为水源热泵的冷热源,冬季把地能中的热量“取”出来,供给室内采暖,此时地能为“热源”;夏季把室内热量取出来,释放到地下水、土壤或地表水中,此时地能为“冷源”。 地源热泵系统冬季代替锅炉从土壤中取出热量,以30~40℃左右的热风向建筑物供暖,夏季代替普通空调向土壤排热,以10~17℃左右的冷风形式给建筑物制冷。地源热泵技术节能效果显著,消耗1kW的能量,用户可以得到4kW以上的热量或冷量。它不向外界排放任何废气、废水、废渣,是一种的理想的“绿色技术”。从能源角度来说,它是一种用之不尽的可再生能源。 三、地源热泵的分类及其各自特点 地源热泵在国内也被称为地热泵。根据利用地热源的种类和方式不同可以分为以下3类:土壤源热泵或称土壤耦合热泵(GCHP)、地下水热泵(GWHP)、地表水热泵(SWHP)。 (一)土壤源热泵 土壤源热泵以大地作为热源和热汇,热泵的换热器埋于地下,与大地进行冷热交换。土壤源热泵系统主机通常采用水—水热泵机组或水—气热泵机组。根据地下热交换器的布置形式,主要分为垂直埋管、水平埋管和蛇行埋管3类。 垂直埋管换热器通常采用的是U型方式,按其埋管深度可分为浅层(<30

相关文档
最新文档