火炬工艺计算

火炬工艺计算
火炬工艺计算

设计导则

SGST 0018-2002

实施日期2002年10月18日中国石化工程建设公司

火炬工艺计算

第 1 页共 4 页

目 次

1 总则

1.1 目的

1.2 范围

1.3 引用标准

2 计算要求

2.1 一般要求

2.2 计算公式

1 总则

1.1 目的

为规范储运系统火炬工艺计算,特编制本标准。

1.2 范围

1.2.1 本标准规定了储运系统火炬工艺计算的一般要求、计算公式等要求。

1.2.2 本标准适用于国内工程,对涉外工程应按指定标准执行。

1.3 引用标准

使用本标准时,应使用下列标准最新版本。

GB/T 3840 《制定地方大气污染物排放标准的技术方法》

2 计算要求

2.1 一般要求

2.1.1 排放气体视为理想气体。

2.1.2 火炬出口气体排放压力取当地大气压。

2.1.3 计算火炬出口气体允许线速度时,马赫数值如下:

a) 单个装置开停工产生最大排放量时,一般取0.2;b) 局部停电、停水等事故造成若干泄压设施同时泄放而产生最大排放量时,一般取0.5。

2.1.4 火炬头直径应满足有效流通截面积的要求。

2.1.5 计算火炬高度时,允许热辐射强度(或称热流密度)(包括太阳热辐射强度)取值如下:

a) 操作人员需要连续暴露的任意地点,一般取1.5 kW /m 2;

b) 无防护设施,但操作人员有适当防护衣着并需要停留几分钟的地点,一般取

4.7 kW /m 2;

c) 操作人员进入火炬筒体下部梯子、平台或火炬周围设备(如塔、罐等)梯子、平台,只能够停留几秒钟时间就需撤离现场的地点,一般取9.4 kW /m 2。

2.1.6 火炬如用蒸汽消烟,蒸汽用量按单个装置开、停工时排放量计算。

2.2 计算公式

2.2.1 火炬(见图2.2.1)筒体出口直径按式(2.2.1-1)至式(2.2.1-4)计算。 A D 128.1f = (2.2.1-1) a

V G A r 3600= (2.2.1-2) V a =mV s (2.2.1-3) M

KRT V =s (2.2.1-4)式中:

D f ——火炬筒体出口直径,m ;

A ——火炬筒体出口截面积,即火炬头有效流通面积,m 2;

G ——排放气体的质量流量,kg /h ;

ρ——操作条件下排放气体密度,kg /m 3;

V a ——火炬出口气体允许线速度,m /s ;

m ——马赫数;

V s ——声波在排放气体中的传播速度,m /s ;

K ——排放气体绝热指数;

R ——气体常数,一般取8314 N ?m /(每千克分子?K ); M ——排放气体的分子量;

T ——操作条件下的排放气体温度,K 。

图2.2.1 火炬示意图

2.2.2 火炬筒体高度按式(2.2.2-1)至式(2.2.2-4)计算。 t f h h

h

X q Q

h +---=f f p e cos 3)sin 3(42

(2.2.2-1) a w

V V tg 1-=f

(2.2.2-2) Q =2.78×10-7H v G

(2.2.2-3)

)8.1068.0(M

G G -=st (2.2.2-4) h f ——火炬筒体高度,m ;

ε——热辐射率,简化计算时,可取0.20;

φ——有风时的火焰倾斜角度;

V w ——火炬头出口处最大平均风速,m /s ,计算方法见GB /T 3840; V a ——火炬筒体内气体允许线速度,m /s ;

q ——火炬的热辐射强度,kW /m 2;

X ——最大受热点到火炬筒中心线的水平距离,m ;

h ——火焰高度,m ;马赫数为0.2~0.5时,简化计算可取120D f ; h t ——最大受热点至地面的垂直距离,m ;

Q ——火焰放出的总热量,kW ?h ;

H v ——排放气体的低发热值,J /kg ;

G ——排放气体的质量流量,kg /h 。

G st ——消烟蒸汽量,kg /h ;

M ——排放气体的分子量。

火炬分液罐工艺设计及计算

火炬分液罐工艺设计及计算 在放空系统中,火炬分液罐设置在火炬前端,去除放空天然气中夹带的凝液,以减少放空总管中的凝液量,避免液滴被带至火炬头,形成火雨。本文主要介绍火炬分液罐的分类、工艺仪表流程图的设计及火炬分液罐的计算方法,为设计选型提供依据。 标签:分液罐;分类;工艺设计 1 设置火炬分液罐的目的 站场设备及管线的放空天然气排放至火炬系统,若含有凝液,燃烧后会形成火雨,易引发安全事故。因此需要在火炬前设置分液罐,将放空天然气中的液滴分离出来,保证火炬的安全运行。 2 火炬分液罐的分类 2.1 卧式分液罐 卧式分液罐分为单流式卧式分液罐和双流式卧式分液罐两种。单流式:只有一个进气口和一个排气口;双流式:有两个进气口和一个排气口。双流式卧式分液罐的结构形式可以减少罐体直径,但是却增加了罐体的长度,对于直径超过3.6 m或者流量大的可以考虑这种结构。 2.2 立式分液罐 立式分液罐设置一个进气口和一个排气口,气体进口设在立式罐的侧面,出口设在立式罐的顶部,入口处一般加挡板使气体向下方流动,有利于液滴的沉降。 3 工艺流程设计 放空天然气进入火炬分液罐对凝液分离,达到外输要求后通过排气管道输送至火炬。进出火炬罐的管线需考虑坡度要求(坡度不小于2‰),要有必要的温压指示和取样分析。 分液罐一般设有就地和远传的液位指示,高低液位报警;压力指示就地和远传仪表,高低压报警;温度测量的就地和远传仪表。罐内液体需设置泵移走(一般两台,一用一备),可以手动启停泵,或通过液位控制连锁启泵,低液位自动停泵。 根据气候条件和分离罐内液体的物性,在冬天或者平常也可使用加热器加热以蒸发其中的易挥发成分。内部蒸汽盘管可实现这一目的,但要确保蒸发的物质在罐内不凝结,不会在火炬总管凝固,不会在分液罐下游堆积。

硫酸工业转化工艺

硫酸工业转化工艺 硫酸生产过程中转化是核心,转化率高,硫的利用率高,环境污染小;反之不仅硫的损失大,而且会给环境造成危害。转化率的高低与转化过程所选择的转化流程有关,不同的转化流程,可能达到的最终转化率不同,硫的利用率及尾气中有害气体的含量不同。 转化流程选择的主要依据是生产中所采用的催化剂、进转化器的二氧化硫浓度及氧硫比、要求的总转化率等。转化流程可分为“一转一吸”“两转两吸”和两大类。 1、“一转一吸”流程。“一转一吸”流程亦为一次转化一次吸收工艺。由于受催化剂用量及平衡转化率的限制,该工艺可能达到的最终转化率为97 %~98 % ,显然此转化率下,硫的利用率不够高,尾气中二氧化硫的含量远远超过排放标准,需进行尾气回收。目前国内只有部分采用低浓度冶炼烟气制酸( 入转化工序二氧化硫浓度低于 6 %) 的企业采用此流程。由于用碱性物质回收尾气产生的亚硫酸盐销路有限、用氨—酸法回收尾气副产品硫铵母液运输不便及销售困难,一些企业计划将“一转一吸”改为“两转两吸”从而使尾气直接达标排放。 2“两转两吸”流程按环保要求,除了有条件采用尾气回收工艺及气体浓度较低且规模较小的装置以外,一般硫酸装置都应采用“两转两吸”的转化流程。“两转两吸”流程为两次转化两次吸收工艺,可能达到的最终转化率大于99.5 % 。该工艺的总转化率受第一次转化率和第二转化率的制约。第一次转化常用两段或三段催化剂床层来完成,其中第一段的转化率受出口温度的限制,若第一次转化采用两段,则仅是第二段来保证第一次转化率;若第一次转化采用三段,则是以第二、第三段两段保证第一次的转化率。随着要求的总转化率的提高,对第一次转化率的要求亦在提高。对第二次转化有用一段和两段催化剂床层之分。若用一段,该段催化剂床层既要兼顾反应速率又要兼顾第二次转化率是难于两全的;若采用两段,则以前一段满足反应速率,以后一段满足转化率,这可使第二次转化率提高3 %左右,且对第一次转化率的波动有一定的承受能力。该第一、二次转化所采用段数的组合可有“2 + 1”三段转化、“2 + 2”、“3 + 1”四段转化和“3 + 2”五段转化流程。“3 + 1”与“2 + 2”组合方式相比,前者由于经过三段转化后进行中间吸收,在吸收塔中将有更多三氧化硫从系统中移走,

放空火炬系统的计算与安全因素

安全管理编号:LX-FS-A16040 放空火炬系统的计算与安全因素 In the daily work environment, plan the important work to be done in the future, and require the personnel to jointly abide by the corresponding procedures and code of conduct, so that the overall behavior or activity reaches the specified standard 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

放空火炬系统的计算与安全因素 使用说明:本安全管理资料适用于日常工作环境中对安全相关工作进行具有统筹性,导向性的规划,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 摘要放空火炬设计中火炬筒出口直径及高度的计算是按照标准APIRP521的方法进行计算的,并确定了放空火炬系统设计中应考虑的安全因素。 关键词放空火炬;计算;参数;安全因素 现代油气田地面工程中,油气处理单元的设计和操作越来越复杂。可靠、周全的压力泄放系统对这些处理单元的能量储存是十分重要的。 火炬是长输管道站场、库区的安全设施。放空火炬系统能及时处理生产装置中排放的多余、有害、不平衡的废气,以及事故时瞬间放出的大量气体,从而保证装置正常、安全运行。

火炬介绍

6.1.2火炬 6.1.2.1 概述 沼气火炬的设置,早期被用于小型垃圾卫生填埋场和产气量不稳定或较小的沼气工程,此时尽管沼气量偏小,不具备利用价值,但从保护环境、杜绝安全隐患角度出发,不能采用直接放空的方式,而应设置火炬系统将其进行及时、安全的燃烧处理。 随着沼气工程技术的不断发展,对沼气火炬的功能也在不断完善,具体来讲,通过火炬燃烧达到了如下处理目的:其一,燃烧掉绝大部分可燃组份(主要是甲烷),避免直接排放易于造成局部浓度过高进而达到爆炸极限的安全隐患。 其二,通过燃烧,对沼气中的硫化氢、氨气以及有机污染物进行了有效去除,减少了对大气环境的污染。 其三,具有较大的操作弹性,能较好地适应处理气量的波动,对于沼气利用项目,可将资源化利用之外剩余的沼气部分进行无害化处理,发挥了平衡沼气产生与利用总量之间差额的作用。 其四,当沼气工程项目运行出现问题而导致沼气品质与设计值有较大偏移从而无法正常利用时,或者沼气利用设施发生故障等情况时,火炬作为安保措施承担着应急处理的功能。 此外,从碳减排角度看,沼气火炬更被视为一个必要且简单的甲烷燃烧摧毁设备,能以较低的投资成本和运行成本实现温室气体减排,从而获得减排碳交易量。 由于火炬具有上述诸多功能,使得火炬在各种类型沼气项目

中都成为一个重要的组成部分。无论规模大小,无论是否资源化利用。 因此火炬系统是保障沼气工程项目安全生产的必要措施,兼顾了生产、安全和环保三大功能。尽管人们对火炬烧掉大量可燃气体而感到可惜,期望尽可能减少通过火炬燃烧的沼气量,但还不能在沼气工程的全生产过程以及全运行周期中将其取消掉,因此现阶段火炬系统依然为沼气工程生产工艺流程中的有机组成部分之一。 火炬尽管具有上述在沼气工程应用系统中不可替代的作用,其自身在运行过程中所产生的潜在二次污染隐患也不应被忽视,主要体现在如下方面: 一个方面是燃烧后烟气是否超标,其主要污染物是SO2和NOx,其中SO2来源于沼气中的硫化氢,若脱硫措施可靠,可以有效控制烟气中的SO2浓度,NOx则来自于高温燃烧,当燃烧充分,燃烧效率高时易于造成NOx浓度增加。 另一个方面是应保证充分燃烧,避免出现局部燃烧不完全或短流排放现象。 另外,火炬运行中的噪声、热辐射、光辐射状况也应给予重视,并采取措施予以控制,确保对工作人员的安全防护。 6.1.2.2 沼气火炬的类型 从沼气火炬的应用场合讲,可将沼气火炬分为三类:

电视机生产工艺流程设计

第1章工艺文件 一、工艺工作: 1、工艺工作的重要性 一个工业企业如果没有工艺工作,没有一个合理的工艺工作程序,就很难想像会搞出高质量、高水平的产品来,企业的管理必然混乱。工艺工作在电子工业中占有重要位置。 工艺文件在电子企业部门必备的一种技术资料。他是加工、装配检验的技术依据,是生产路线、计划、调度、原材料准备、劳动力组织、定额管理、工模具管理、、质量管理等的主要依据和前提。只有建立一套完整的、合理而行之有效的工艺工作程序和工艺文件体系,才能保证实现企业的优质、高效、低消耗的安全生产,才能使企业获得最佳的经济效益。 2、工艺工作的程序 在工业企业中,最基础的工作是产品的生产和生产技术管理工作。在一个企业中,把原材料制成零件,把零件组装成部件、整件,是一项很复杂的工作,必须通过一种计划的形式来组织和指导。为了使生产活动有秩序按计划进行,各企业应有一个符合本企业客观规律的工作程序。 典型的工艺工作程序框图如附录: 3、工艺工作程序的说明: a.工艺性调研和访问用户由主管工艺人员参加新产品的设计调研和老用户访问工作,了解国内外同类产品的性能指标一用户对该产品的意见和要求. b.参加新产品设计方案的讨论和老产品改进设计方案的讨论针对产品的结构、性能、精度的特点和企业的计算水平、设备条件等进行工艺分析,提出改进产品的意见. c.审查产品设计的工艺性由有关工艺人员对产品设计图样进行工艺性审查,提出工艺性审查意见书. d.编织工艺方案工艺方案是工艺计算准备工作的重要指导性文件,由主管工艺人员负责编写. 编制工艺方案的一句是:1产品图纸(技术条件)和产品标准及其他有关技术文件. 2 有关领导和科室的意见 3产品的生产批量和周期 4有关工艺资料,如企业的设备条件、工人计算等级和技术水平等. 5企业现有工艺技术水平和国内外同类产品的新工艺新技术成就. 工艺方案的一般内容是:1.根据产品的生产特性、生产类型,规定工艺文件的种类,并规定工装系数 2专用设备、工装的量刃刀的购置、改进和意见. 3提出关键工艺实验项目的新工艺、新材料在本产品上的实施意见,进行必要的技术经济分析. 4提出外购件和外协件项目 5根据产品的企业具体情况,提出生产组织和设备的调

均四甲苯的生产工艺

均四甲苯的生产工艺 均四甲苯又名杜烯,化学名为:1,2,4,5—四甲基苯,是一种重要的有机化工原料。主要用于生产均苯四甲酸二酐(1,2,4,5—苯甲酸二酐,PMDA),均苯四甲酸二酐是生产聚酰亚胺聚合物的重要原料,聚酰亚胺是一种耐高温、低温、耐辐射、抗冲击且具有优异电性能和机械性能的新型合成材料,在宇航和机电工业中具有其它工程塑料不可替代的重要用途。随着聚酰亚胺市场用量的不断扩大,均四甲苯作为合成其的主要原料,其需求也与日俱增。均四甲苯的生产路线分两类,一类是化学合成法,包括,异构化法、烷基化法、歧化反应法等,合成法不但工艺复杂,成本也较高;另一类是分离提纯法,以石油和煤加工过程中的副产物,主要是C10重芳烃为原料进行分离提纯。我国C10资源丰富,炼油厂的催化重整装置、涤纶厂的宽馏分催化重整装置、乙烯装置以及煤高温炼焦装置等。对于国内企业来说,从C10中提取高附加值的均四甲苯,能为企业带来显著的经济效益。选择一种简单有效、易工业化的技术路线,具有重要意义。 C10原料中约含8—12%均四甲苯,精馏切取190℃~200℃的馏分。此馏分为均四甲苯及其同系物等的混合物,偏四甲苯、连四甲苯含量较高,其沸点相近,单纯依靠精馏无法将它们分开,但均四甲苯纯品凝固点高达72℃,而偏四甲苯纯品为—24℃,连四甲苯纯品—60℃,通过结晶、离心分离的方法很容易将均四甲苯分离出来。为了进一步提高均四甲苯的纯度,采用压榨机进行挤压操作,提取的均四甲苯的纯度可达99%以上。 1 实验部分 1.1 原料 重整碳十芳烃:辽阳石化催化重整装置副产碳十重芳烃。原料性质见表1。 1.2 工艺原则流程 工艺原则流程见图1。 1.3 分析测试 纯度:带有程序升温系统氢火焰检测器的5890型色谱仪。采用氢火焰离子化检测器,将液体样品注入到涂有SE—54毛细柱中,载气为氮气,流量30 ml/min,气化温度250℃,检测室温度250℃,进料量0.2μl。根据流出物的峰面积,用归一化方法测定。 外观:目测。 1.4 产品质量标准 均四甲苯的质量标准见表2。 1.5 主要设备 主要设备见表3。 1.6 主要工艺参数 结晶釜温度:—15℃~—20℃ 结晶时间:6~8小时 离心时间:40~50分钟 挤压压力:20~22MPa 挤压时间:50~80分钟 盐水温度:—25℃~—30℃ 1.7 工艺操作

放空火炬系统的计算与安全因素(通用版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 放空火炬系统的计算与安全因 素(通用版) Safety management is an important part of production management. Safety and production are in the implementation process

放空火炬系统的计算与安全因素(通用版) 摘要放空火炬设计中火炬筒出口直径及高度的计算是按照标准APIRP521的方法进行计算的,并确定了放空火炬系统设计中应考虑的安全因素。 关键词放空火炬;计算;参数;安全因素 现代油气田地面工程中,油气处理单元的设计和操作越来越复杂。可靠、周全的压力泄放系统对这些处理单元的能量储存是十分重要的。 火炬是长输管道站场、库区的安全设施。放空火炬系统能及时处理生产装置中排放的多余、有害、不平衡的废气,以及事故时瞬间放出的大量气体,从而保证装置正常、安全运行。 火炬计算基本方法是按美国石油学会标准APIRP521《泄压和放空系统》进行计算的。火炬计算的基础参数和条件如下:气体组分、低发热值、平均分子量、纯组分压缩性系数(压缩因

子); 放空管道设计排气压力及温度; 受热点和放空火炬的高度及其相对标高; 火炬计算地点平均大气压力及相对湿度。 1火炬的计算 1.1火炬筒出口直径的计算 采用标准APIRP521计算方法,火炬筒出口直径按下列公式计算:式中:d一一火炬筒出口直径,m; W一一排放气体的质量流率,kg/s; P一一火炬出口处排放气体压力,kPa(绝压); Mach一马赫数; Tj一一操作条件下气体温度,K; K一一排放气体的绝热系数,Cp/Cv; Ni一一排放气体的平均分子量。 计算中须注意: 排放气体的质量流量应选取最大排放量,也应考虑到现场在事

硫酸生产方法

以硫铁矿为原料的接触法硫酸生产工艺 董子玉 1.概述 (1)硫酸的用途和产品规格 硫酸是重要的化工产品,用途十分广泛。工业硫酸是指SQ与H20以一定比例混合而成的化 合物,分为稀硫酸(H2SQ含量65%和75%)浓硫酸(H2SO含量92.5 %和98%和发烟硫酸(游离S03 含量20%)。 (2)硫酸生产的原料 生产硫酸的原料主要有硫磺、硫铁矿、硫酸盐及含硫工业废物。硫磺是理想原料(含硫99.5%),原料纯,流程简单、投资少、成本低。 硫铁矿是世界上大多数国家生产硫酸的主要原料。分有普通硫铁矿、浮选硫铁矿和含 煤硫铁矿。硫酸盐有石膏(CaSQ)芒硝(N82SQ)和明矶石[KA13(QH)6(SQ4)2]等,这些原料生产硫酸,还可生产其它产品。 含硫废物指冶金厂、石油炼制副产气及低品位燃料燃烧废气中的SQ,炼焦的焦炉气和 合成氨厂半水煤气中的HS,及金属加工的酸洗液、炼厂的废酸与废渣。 (3)硫酸生产的方法 接触法制硫酸基本反应 (1)S0 2的制取将硫铁矿焙烧,制取S02 2.二氧化硫炉气的制造

(1) 硫铁矿的预处理 块状硫铁矿和含煤硫铁矿需破碎和筛分。大矿石破碎至35-45m m以下,再细碎,使碎粒小于3-6mm送入料仓或焙烧炉。 (2) 硫铁矿的焙烧 焙烧操作条件 a .温度焙烧温度控制在850—950r0 b .矿粒度 c .氧浓度氧浓度过高,生成的SO2在Fe2O3的催化作用下变为SO3生成的酸雾多,加重净化负荷。 焙烧设备焙烧是在焙烧炉中进行。焙烧炉有块矿炉、机械炉、沸腾炉等几种型式,我国广泛使用沸腾炉。 (3) 炉气净化 ①净化的目的和指标 工艺流程不同,净化指标有所差别,我国规定的标准(mg?m-3)如下: 水分V 100;尘V 2;砷V 5;氟V 10;酸雾:一级降雾v 35, 二级电降雾v 5。 ②净化原理及设备 根据炉气中杂质的种类和特点,可用U形管除尘、旋风降尘、水洗(或酸洗)、电除尘、

火炬系统水封罐计算

火炬系统水封罐计算 SGST 0017-2002 1 总则 1.1 目的 为规范石油化工企业火炬系统水封罐计算,特编制本标准。 1.2 范围 1.2.1 本标准规定了石油化工企业火炬系统水封罐计算的一般要求、计算公式等要求。 1.2.2 本标准适用于石油化工企业火炬系统水封罐计算。本标准适用于国内工程,对涉外工程应按指定标准执行。 2 计算要求 2.1 一般要求 2.1.1 水封罐能够分离气体中大于等于300 μm~600 μm的液滴。 2.1.2 不带挡液板的卧式水封罐的气体空间高度不小于950 mm。 2.1.3 带挡液板的卧式水封罐的直径不宜小于3 m。 2.1.4 带挡液板的卧式水封罐的分液端不考虑存液,挡液板顶端应高出最高水位200 mm。 2.1.5 挡液板上方气体通道面积应大于进气口截面积。 2.1.6 立式水封罐中气体的线速度取液滴沉降速度的80 %。 2.1.7 水封罐中的有效水量应满足水封罐进气立管长度3 m的充水量。 2.2 计算公式 2.2.1 不带挡液板的卧式水封罐(见图2.2.1)按式(2.2.1-1)和式(2.2.1-2)计算。 式中: D1——水封罐直径,m; h1——水封罐内的液面高度,m; b——系数,由表2.2.1查得; L1——水封罐进出口中心距离,m; T——操作条件下的气体温度,K; Q——气体体积流量,Nm3/h; K1——系数,一般取2.5~3; P——操作条件下的气体压力(绝对压力),kPa; V——液滴沉降速度,m/s。

图 2.2.1 不带挡液板的卧式水封罐示意图 2.2.2 带挡液板的卧式水封罐(见图2.2.2)按式(2.2.2-1)至式(2.2.2-3)计算。

高架火炬系统的设计与计算

!针#术石油化工设计 Petrochemical Design2018,35(3) 8 ~ 12高架火炬系统的设计与计算 民 (山东三维石化工程股份有限公司北京节能环保开发中心,北京100020) 摘要:高架火炬系统是石油化工行业重要的安全设施。通过介绍中石化某石化炼油厂新建高架火炬工程设计实例,对火炬系统工艺流程设计、火炬系统主要工艺计算、火炬筒体上的主要设备及火炬点火系统等进行了阐述。重点介绍了火炬系统总管直径的计算和选取,以及火炬分液罐、火炬水封罐、火炬筒体的计算。提供了高架火炬系统设计与计算的思路和方法。 关键词!火炬排放量分液罐水封罐设计计算 doi:10. 3969/j.issn. 1005 - 8168.2018.03.003 高架火炬(以下简称火炬)主要用于处理石化 设 的废气和 性气体或 状态下的可燃性气体。的设计包 气排放管网和 置两部分。的设计内容包气总管和各分 的设计;置的设内容包 #体、分、水封罐、点设备设计。 1工程概况 中石化北京某分公司炼油厂1 〇〇〇万t/a炼 油系统改造项目新建了 5套装置,新建装置事故 气体排放量大,排放气体管道直径 ,炼油厂现有火炬设施的能力难以接纳新建5套装置 气体的 增量,且新建装置距现有火炬区较远,为保证新建装置正常生产运行及在 气体,在 新建装置区东北方向约700 m处的山上新建一座高架火炬。 2设计依据 2.1设计原则 根据各装置事故状态火炬气排放量,在满足 相关 和 要 安全环保的前 ,确 定新建 设 模。 2.2基础数据 新建5套装置包括%800万t/a常减压蒸馏I 装置、140万t/a延迟焦化装置、200万t/a加氢裂 化装置、5万m3/h制氢装置、第二套三废处理联合装置(包括6万t/a制硫装置、150 t/h污水汽提装 置及250 t/h溶剂再生装置)。各装置火炬气最大 排放量 1。 从表1可看出%停电工况是新建火炬最大排 放工况,是低压排放状态,同的装置有:加氢裂化装置202 000 kg/h;制氢装置43 000 kg/h;三废装置17 158 kg/h(酸性气)。停蒸汽工况是 高压排放最大工况,加氢裂化装置146 000 kg/h。 3工艺流程设计 新建火炬承担着炼油厂新建的加氢裂化装 置、置、减压 置 处理 合 置在 气体的 。新建 分设高、低压 气主 性 气 。 3.1主火炬系统 为保 新建 置在 气体,根据排放压力分设高、低压2条气体排放管,分 设置分 和水 。工 置在 状态下的 气送至 ,分,将 气中 的液体 分离,再通过水封罐人口进人水封罐内的水面以下,达到一定压力 收稿日期! 2017 -09 -28。 作者简介:彭安民,男,2003年毕业于中国石油大学 (北京)储运专业,学士,工程师,主要从事石油化工设 计工作。联系电话:010 -64352961 &E-mail:pen/an- min@https://www.360docs.net/doc/a016474007.html,

发烟硫酸生产工艺及市场分析样本

发烟硫酸生产工艺及市场分析1 产品概述 发烟硫酸, 即三氧化硫的硫酸溶液, 化学式: H 2SO 4 ·xSO 3 。无色至浅棕色粘 稠发烟液体, 其密度、熔点、沸点因SO 3 含量不同而异。当它暴露于空气中时, 挥发出来的SO 3 和空气中的水蒸汽形成硫酸的细小露滴而冒烟, 因此称之为发烟硫酸。 发烟硫酸中的物质成分复杂, 除了硫酸和三氧化硫外, 还有焦硫酸 ( H 2S 2 O 7 ) 、二聚硫酸( H 4 S 2 O 8 ) 、三聚硫酸( H 6 S 3 O 12 ) 及H 4 S 3 O 15 、 H 2 S 3 O 10 、 ( H 2SO 4 ) 4~20 等各种各样的硫酸聚合物。 1.1 物化性质( 从《化工百科全书》硫酸中摘录) 第一部分: 化学品名称 化学品中文名称: 发烟硫酸 化学品英文名称: sulphuric acid fuming; Oleum 技术说明书编码: 934 CAS No.: 8014-95-7 [RTECS号] : WS5605000 [UN编号] : 1831 [危险货物编号] : 81006 [IMDG规则页码] : 8231 第二部分: 成分/组成信息 有害物成分: 发烟硫酸CAS No. 8014-95-7 第三部分: 危险性概述 危险性类别: 第8类腐蚀品第1项酸性腐蚀品( 《常见危险化学品的分类及标志》(GB13690-92)) 侵入途径: 经呼吸道吸入, 经食道食入, 或身体接触。 健康危害: 对皮肤、粘膜等组织有强烈的刺激和腐蚀作用。蒸气或雾可引起结膜炎、结膜水肿、角膜混浊, 以致失明; 引起呼吸道刺激症状, 重者发生

火炬系统分液罐计算

火炬系统分液罐计算 SGST 0016-2002 1 总则 1.1目的 为规范石油化工企业火炬系统分液罐计算,特编制本标准。 1.2范围 1.2.1 本标准规定了石油化工企业火炬系统分液罐计算的一般要求、计算公式等要求。 1.2.2 本标准适用于石油化工企业火炬系统分液罐计算。本标准适用于国内工程,对涉外工程应按指定标准执行。 2 计算要求 2.1一般要求 2.1.1 分液罐能够分离气体中大于等于300 μm~600 μm的液滴。 2.1.2 卧式分液罐的最大存液量为分液罐容积的30 %。 2.1.3 立式分液罐的最大存液量应根据泵的流量和液面仪表的控制要求确定,但液面高度不得小于500 mm。 2.2计算公式 2.2.1 卧式分液罐直径应按式(2.2.1)计算。 式中: D1——卧式分液罐直径,m; T——操作条件下的气体温度,K; Q——气体体积流量,Nm3/h;单流式分液罐(见图2.2.1-1)取携带液滴可燃排放气体的全部排放量,双流式分液罐(见图2.2.1-2)取全部排放量的1/2; K1——系数,一般取2.5~3; P——操作条件下的气体压力(绝对压力),kPa; V——液滴沉降速度,m/s。

图 2.2.1-1 单流式分液罐示意图 图 2.2.1-2 双流式分液罐示意图 2.2.2 卧式分液罐进出口管距离L1应按式(2.2.2)计算。 式中符号意义同前。 2.2.3 立式分液罐(见图2.2.4)直径应按式(2.2.3)计算。 式中: D2——立式分液罐直径,m; K2——系数,一般取0.8; 其余符号意义同前。 2.2.4 立式分液罐筒体高度应按式(2.2.4)计算。 式中: H——立式分液罐筒体高度,m; h1——气体空间高度(筒体上端与液面之间的最小垂直距离),m,一般取大于或等于 1.5 D2,但不小于3 m; h2——筒体下端与液面之间的垂直距离,m。其余符号意义同前。

总工艺计算

1.1总工艺计算 1.1.1主要工艺指标的基本数据 工艺计算的依据是设计计划任务规定的生产规模,生产方法和产品品种,计算的基准是熔制车间的生产能力。下面是工艺计算的主要工艺指标:(1)玻璃制品比例: (2)年工作日:本厂设计三年一次大修,大修时间三个月。故年工作日为: (365*3—30)/3 = 355天 (3)生产能力:平板玻璃250万重箱/年 (4)原板宽度:3500mm (5)综合成品率:80% (6)玻璃成分(质量百分比): 成分SiO 2Al 2 O 3 Fe 2 O 3 CaO MgO R 2 O 其他 Wt%72.70 2.10 0.20 6.80 4.20 14.00 0.2 (7)厂储存定额(可用天数): 1.1.2工艺平衡计算 1.1. 2.1 玻璃产品产量计算 a. 产品任务(年产250万箱) b. 拉引速度:

3mm:355*10%=36天 1666666.7/(3.5*24*0.8*36)=688.9 m/h 取700 m/h 5mm:355*50%=178天 5000000/(3.5*24*0.8*178)=418 m/h 取450 m/h 6mm:355*20%=71天 1666666.7/(3.5*24*0.8*71)=344.5 m/h 取350 m/h 8mm:355*20%=71天 1250000/(3.5*24*0.8*71)=261.9 m/h 取300 m/h c. 完成各类产品所需的生产天数: 3mm:1666666.7/(3.5*24*0.8*700)=36天 5mm:5000000/(3.5*24*0.8*450)=166天 6mm:1666666.7/(3.5*24*0.8*350)=71天 8mm:1250000/(3.5*24*0.8*300)=62天 36+166+71+62=335 < 355 即符合设计要求,可以完成生产任务d. 各种玻璃的全年生产天数 3mm:355*(36/335)=38.2天 5mm:355*(166/335)=175.9天 6mm:355*(71/335)=75.2天 8mm:355*(62/335)=75.7天 e. 各种厚度玻璃的年产量 3mm:38.2*24*700*3.5*0.8=1796928.0平方米 折合269539.2重箱 5mm:175.9*24*450*3.5*0.8=5319316.0平方米 折合1339903.3重箱 6mm:75.2*24*350*3.5*0.8=1516032.0平方米 折合454809.6重箱 8mm:75.7*24*300*3.5*0.8=1526112.0平方米 折合610444.8重箱 合计:2674695重箱/年

紫光均酐实习报告doc

紫光均酐实习报告 篇一:南京紫光均酐实习报告 2. 均苯四甲酸二酐(均酐)生产工艺介绍 均酐生产的主要原料为均四甲苯和空气中的氧为原料(辅料为活性炭、硅胶),进入装填有催化剂的列管式反应器,在催化剂V2O5的作用下生成均苯四甲酸(PMA)和均苯四甲酸二酐(PMDA)。(1)、均酐 气绝缘漆、固体润滑剂、环氧树脂固化剂、增塑剂和聚酯树脂的交联剂等。 (2)、辅料: ①、均四甲苯:白色结晶状物质,熔点:79.38℃,沸点:196.99℃。 ②、活性炭:黑色微细粉末,无臭无味。(用于脱色)(767型,上海焦化厂活性炭厂)(江苏溧阳市活性炭联合公司)③、硅胶:粗孔不规则硅胶(ψ1-3)(青岛海洋化工厂)(上海硅胶厂) ④、催化剂:V系催化剂 (黑龙江省石油化学研究院)(南京工业大学)反应方程式: OO CH3 CH3

CH33 + 6O2 +6H2O O O (3)生产流程原料线 化料槽→输送泵→计量罐→计量泵→过滤器→汽化混合器→浮球液位计 O2线 罗茨风机→空气缓冲罐→三捕→二捕→一捕→空气预热器→二换→一换→汽化器混合气线 汽化器→反应器→一换→二换→热管换热器→一捕→二捕→三捕→四捕→水洗塔废水处理线 废水→集水池→隔油池→催化氧化塔→中和池→混凝沉淀→UBF 厌氧池→好氧池→气浮→达标排放 (4)生产工段 生产工段分为氧化、水解、精制、干燥四个工段。 ①、氧化工序 固体的均四甲苯经蒸汽加热融化,汽化与热空气混合,在固定床氧化反应器中,催化氧化生成均酐及副产物,经换热冷却在捕集器中凝华捕集得到均酐粗产品。

主反应:副反应: ②、水解工序 粗的均酐产品在水解釜中加一定量的水和活性炭,加热水解后,经热过滤除去活性炭冷却结晶后再经过离心机甩干,得均苯四甲酸粗产品。 ③、脱水、升华工序 四酸的粗产品在脱水釜中,在加热真空条件下除去粗产品中的游离的水和分子水生产粗酐,同时脱去低沸点副产物。脱水后由于表面有一定量的硅胶,在升华釜内加热和高真空条件下升华,结晶得产品。该过程为物理过程,通过升华使产品的纯度提高。 升华工序是一个物理过程:本工序是通过升华使产品纯度提高。④、干燥工序 四酸粗产品在一定真空度和温度条件下,干燥一定时间,除去表面离子水,得到符合要求的产品。 另一种干燥方法是闪蒸。利用高速流动的热空气,使物料悬浮于空气中,在气力输送状态下完成干燥过程。 本工艺氧化工序为连续生产,捕集器采用两套切换操作。一套捕集,一套出料备用。水解工序及脱水、升华工序为间歇操作。 3、三废的来源及处理原理、方法(1)、废气 废气主要来自氧化工段。捕集器末凝华的尾气(主要)

年产5万吨硫酸生产工艺

年产5万吨硫酸生产工艺 )

目录 第一章 (1) 概述 (1) 硫酸的性质 (1) 第二章 (1) 硫酸的生产方法 (1) 接触法制造硫酸 (2) 接触法生产硫酸由下列四个工序组成 (2) 接触法的优缺点 (3) 硝化法制造硫酸 (3) 硝化法制造硫酸可归纳为三个重要过程 (4) 硝化法的优缺点 (4) 第三章硫酸生产全工段工艺简介 (4) SO2气体的制取 (4) 炉气的净化 (5) SO2气体的转化 (5) 一次转化一次吸收 (5) 二次转化二次吸收 (6) 沸腾转化 (6) SO3气体的吸收 (7) 尾气的处理 (7) 氨法 (7) 碱法 (7) 金属氧化物法 (8) 活性炭法 (8) 控制SO2排放的其他方法 (8) 第四章 (9) 两次吸收法生产硫酸的流程图 (9) 流程说明 (9)

干燥系统流程说明 (9) 一吸系统流程说明 (9) 二吸系统流程说明 (10)

第一章 概述 硫酸是一种普通的化工产品,也是一种古老的化学品,据了解,早在17世纪就有化学家利用“铅室法”将燃烧硫磺所得的二氧化硫和进行反应而生产出约70%左右的稀硫酸,到18世纪又有化学家利用铂催化剂(今用钒催化剂)与较高浓度的二氧化硫空气中的氧气反应而生产出浓度达98%的硫酸。由于硫酸在工业上有广泛的用途,因此它被号称为“工业之母”,硫酸的产量也常用来作为评定一个国家工业经济发展水平的重要指标。 硫酸的性质 硫酸是(SO 3)和水(H 2O )化合而成。化学上一般把一个分子的三氧化硫与一个分子的水相结合的物质称为无水硫酸。无水硫酸就是指的100%的硫酸(又称纯硫酸)。纯硫酸的化学式用“H 2SO 4”来表示,分子量为。 硫酸是基础化学工业中重要的产品之一。硫酸的性质决定了它用途的广泛性,硫酸主要用于生产化学肥料、合成纤维、涂料、洗涤剂、致冷剂、饲料添加剂和石油的精炼、有色金属的冶炼,以及钢铁、医药和化学工业。 第二章 硫酸的生产方法 生产硫酸最古老的方法是用绿矾(FeSO 4·7H 2O )为原料,放在蒸馏釜中锻烧而制得硫酸。在煅烧过程中,绿矾发生分解,放出二氧化硫和三氧化硫,其中三 氧化硫与水蒸气同时冷凝,便可得到硫酸。 2(FeSO 4·7H 2O ) 煅烧???→Fe 2O 3+SO 2+SO 3+14H 2O

放空火炬计算示例

1. 计算依据,SY/T10043-2002,《泄压和减压系统指南》 一、火炬头筒径的计算 5.051023.3?????????????=-M K ZT Ma P W d (公式1-1) =5.0519.1754.12930.15 .0325.101521201023.3??????????????- =0.334 式中 d -火炬头顶部直径,m ; W -火炬气最大排放量,kg/h ; P -火炬顶部火炬气压力,kPa ,可取当地大气压;(绝压) Ma -马赫数,火炬气流速与该流体声速的比值; M -火炬气的平均分子量; K -绝热指数; T —操作条件下火炬气温度,K 。 Z —气体压缩因子。 由此选取火炬头直径为DN350mm 。 注:1)此处的工况下气体的温度,入口三相分离器安全阀前的温度为60℃,阀后为11°左右,到火炬跟前,考虑9℃的温升(考虑到环境温度较高),即火炬入口处的温度为20℃。 2)火炬气量按照紧急情况全部放空的情况考虑,选择马赫数为0.5。 3)火炬气最大排放量取两口井出口气量之和。 4)气体分子量选取井口出来的气体的分子量16.94.(保守取值) 5)绝热系数井口出来的气体的分子量1.54. 6)压缩因子取1.0. 二、火焰长度计算

如图所示,火焰长度与气体释放的热量有对应关系, 气体释放量的计算公式为 3600 )(q W Q ?==52120*50000/3600=723889(KW) 式中 W —火炬气最大排放量,kg/h q —气体燃烧热值KJ/Kg ,气体中甲烷占95%,因此可选取甲 烷的燃烧值进行近似计算。甲烷的燃烧值约为50000KJ/Kg 。 计算出气体释放热量后,查表后得火焰长度约为55m 。 3、风速引起火焰变形的简单计算 火炬头速度 风速j =∞U U 孟加拉正常天气情况下平均风速为7.5m/s ,在暴风情况下风速可达50m/s 。 火炬头速度可以用体积流速与火炬出口横截面之比得出,也可以根据火炬出口气体马赫数乘以火炬出口音速得出。 4 .223600T T M W V ??==20.55 4 d 2j πV U == 20.55*4/3.14/0.352=213.7 火炬头速度 风速j =∞U U =7.5/213.7=0.035

聚丙烯生产工艺计算

聚丙烯生产工艺计算 第一节主催化剂和助催化剂的配比计算 一、主催化剂配比的计算 主催化剂(FT4S或GF2A)的配制一般用加热至70℃的油脂混合物来配制(油脂比例为2:1),此时油脂混合物的比重为0.85,常温下油脂混合物的比重为0.89(10℃),假设主催化剂一桶为85kg,比重为1.8,在生产上一般要求配制成200g主催化剂/l催化剂膏,计算所要加入的油脂量为多少? 解:由题意得: ∵85kg主催化剂配制成浓度为200g主催化剂/l催化剂膏的总体积为: 85/0.2=425(l)(10℃) 其中85kg主催化剂所占体积为 85/1.8=47.22(l) ∴主催化剂膏中油脂体积为: 425-47.22=377.8(l)(10℃) ∴10℃时油脂总量为: 377.8×0.89=336.242(kg) ∵油:脂=2:1 ∴需要脂为:336.242×1/3=112.08(kg) 需要油为:336.242-112.08=224.16(kg) 另外,加入的油脂体积为: V70℃·d70℃= V10℃·d10℃ V70℃·0.85=377.8×0.89 V70℃=395.6(l) ∴要将85kg主催化剂配制成200g主催化剂/l催化剂膏所需加入70℃的油脂混合物为395.6(l),每kg主催化剂所需加入的油脂为:395.6/85=4.65(l)。 在实际配制过程中,可根据上述计算方法进行。例如:要将一桶主催化剂配

制成200g主催化剂/l催化剂膏,只要将主催化剂净重乘以4.65l即是所加入的油脂量。再从仪表上设定即可。 二、低浓度给电子体(DONOR)的配制 不同的产品在生产中要求加入的给电子体量也不同,为了提高操作的灵活性,一般要准备100%和25%两种浓度的给电子体。低浓度DONOR用已烷配制。 已知:Donor的比重d420=0.947,已烷的比重d420=0.82,设需要配制500kg 浓度为25%(wt)的Donor溶液,计算所需加入的已烷量? 解:由题意得: ∵500kg浓度为25%(wt)的Donor净重:W=500×25%=125(kg) ∴所需要加入的已烷体积:V=(500-W)/0.82=(500-125)/0.82=457.3(l) ∴需配制500kg浓度为25%(wt)的Donor,要加入Donor为125kg,已烷为457.3(l)。 第二节工艺操作计算 一、物料衡算知识简介 1.质量守恒定律 在物理变化过程中,变化前后各物质的总量及各单元组分的量都保持不变。 在化学变化过程中,改变的是物质的性质,但变化前后,物质的总量不变,即参加反应的物质的总量等于反应后生成的物质总量。质量守恒定律又叫物质不灭定律,即参加反应的总量等于反应后生成的物质总量,是物料衡算的理论基础。 2.物料衡算 物料衡算是质量守恒定律的一种表现形式。依此定律:凡引入某一设备进行操作的物料质量,必须等于操作后所得产品的质量,但在实际操作中物料不可避免有损失,所以输出的量较输入的量少,其差值为物料损失量,即:输入量=输出量+损失量 上式适用于整个过程,也适用于任何一个步骤。在物料衡算中,可以做总的

3.1硫酸工业制备

第一节接触法制硫酸 ●教学目标 1.了解接触法制硫酸的化学原理、原料、生产流程和典型设备。 2.通过二氧化硫接触氧化条件的讨论,复习巩固关于化学反应速率和化学平衡的知识,训练学生应用理论知识分析和解决问题的能力。 一、反应原理 1.S+O2===SO2 3.SO3+H2O===H2SO4 现阶段我国硫酸的生产原料以黄铁矿(主要成分为FeS2)为主,部分工厂用有色金属冶炼厂的烟气、矿产硫黄或从石油、天然气脱硫获得硫黄作原料。 4FeS2+11O2 高温 =====2Fe2O3+8SO2 如以石膏为原料的第一步反应就是:2CaSO4+C ? ====2CaO+2SO2↑+CO2 二、工业制硫酸的生产流程。 工业上制硫酸主要经过以下几个途径: 1、以黄铁矿为原料制取SO2的设备叫沸腾炉。 沸腾炉示意图 矿石粉碎成细小的矿粒,是为了增大与空气的接触面积,通入强大的空气流为使矿粒燃烧得更充分,从而提高原料的利用率。 [设问]黄铁矿经过充分燃烧,以燃烧炉里出来的气体叫做“炉气”。但这种炉气往往不能直接用于制取SO3,这是为什么呢? 这是因为炉气中常含有很多杂质,如N2,水蒸气,还有砷、硒的化合物及矿尘等。这些杂质有些是对生产不利的,如砷硒的化合物、矿尘能够使下一步氧化时的催化剂中毒,水蒸气对设备也有不良影响,因此炉气必须经过净化、干燥处理。

问题:1.N2对硫酸生产没有用处,为什么不除去? 2.工业生产上为什么要控制条件使SO2、O2处于上述比例呢? [答案]1.N2对硫酸的生产没有用处,但也没有不利之处,若要除去,势必会增加生产成本,从综合经济效益分析没有除去的必要。 2.这样的比例是增大反应物中廉价的氧气的浓度,而提高另一种反应物二氧化硫的转化率,从而有利于SO2的进一步氧化。 三、生产设备及工艺流程 2.接触室 根据化学反应原理,二氧化硫的氧化是在催化剂存在条件下进行的,目前工业生产上采用的是钒催化剂。二氧化硫同氧气在钒催化剂表面上与其接触时发生反应,所以,工业上将这种生产硫酸的方法叫做接触法制硫酸。 二氧化硫发生催化氧化的热化学方程式为: [提问]SO2的接触氧化在什么条件下反应可提高SO2的转化率? SO2的氧化为一可逆反应。根据勒夏特列原理,加压、降温有利于SO2转化率的提高。 实际生产中反应条件:常压下400℃~500℃。为什么?? 二氧化硫在接触室里是如何氧化成三氧化硫的呢? 经过净化、干燥的炉气,通过接触室中部的热交换器被预热到400℃~500℃,通过上层催化剂被第一次氧化,因为二氧化硫的催化氧化是放热反应,随着反应的进行,反应环境的温度会不断升高,这不利于三氧化硫的生成。接触室中部安装的热交换器正是把反应生成的热传递给接触室里需要预热的炉气,同时降低反应后生成气体的温度,使之通过下层催化剂被第二次氧化。这是提高可逆反应转化率的一种非常有效的方法。 3.吸收塔 二氧化硫在接触室里经过催化氧化后得到的气体含三氧化硫一般不超过10%,其余为N2、O2及少量二氧化硫气体。这时进入硫酸生产的第三阶段,即成酸阶段。其反应的热化学方程式为: SO3(g)+H2O(l)===H2SO4(l);ΔH=-130.3 kJ/mol 从反应原理上看,硫酸是由三氧化硫跟水化合制得的。事实上,工业上却是用98.3%的浓H2SO4来吸收SO3的,为什么要这样操作呢?

火炬计算书

项目名称:伴生气回收及综合利用工程记录编号: 火炬计算书 项目号:DD11002 专业:工艺 编制: 校对: 审核: 审定: 中国石化集团*****设计研究院 20** 年**月**日

目录 1 计算依据 (2) 2 基础数据 (2) 3 火炬高度和直径的计算 (2) 4 结论 (4)

1 计算依据 《油田油气集输设计技术手册》 2 基础数据 火炬系统排放气体的基础数据如下表: 气体分子量M = 36 kg/kmol 气体密度ρ= 1.6 kg/m3 排向火炬的气体流量Wv = 1250 Nm3/h 气体排放量W = 2000 kg/h 气体的温度T = 313 K 3 火炬高度和直径的计算 以在最大排放量时操作人员有时间从火炬底部撤离为火炬的设计基础,根据操作人员和设备的安全来选择火炬的位置和高度。为了求得火炬底部位于地坪上任一点P处的热强度,其关系图如下图所示: P点的热强度计算公式如下: q=ε·Q/(4πR2)

由上面的关系图可知,R2= x2+H(H+120D) 因此P点的热强度可用下面的公式进行计算: q=ε·Q/[4π(x2+H(H+120D))] 热辐射强度为22680kJ/(h·m2)时,人在8s后开始感到灼痛,因此当发生事故排除大量可燃气体到火炬时,应给操作人员提供撤离到安全地带的时间,并使其不致收到约高于16800kJ/( h·m2)的热强度。假定火炬底部的热辐射强度不超过16800kJ/( h·m2),即16800≥ε·Q/[4π(x2+H(H+120D))] 其中:H--火炬高度,m; D--火炬直径,m; q--热辐射强度,kJ/(h·m2); ε--火焰辐射率; Q--火炬释放的总热量。 (1)火炬的火焰辐射率 ε=0.048·M1/2 其中:M--气体分子量 代入分子量数值,计算得ε=0.288 (2)火炬释放的总热量 Q=46200·W 其中:W--事故时气体最大排放量,kg/h; 代入气体排放量值,计算得Q= 9.24×107kJ/h (3)火炬燃烧器直径 D2=W/690000·(T/M)1/2 其中:M--气体分子量 W--事故时气体最大排放量,kg/h;

相关文档
最新文档