定量测定钢中奥氏体和马氏体的X射线新方法

定量测定钢中奥氏体和马氏体的X射线新方法
定量测定钢中奥氏体和马氏体的X射线新方法

理化检验-物理分册PT CA(PART:A PH YS.TEST.)2005年第41卷10实验技术与方法

定量测定钢中奥氏体和马氏体的

X射线新方法

李长一,周顺兵

(武钢技术中心,武汉430080)

摘要:为了解决应用X射线衍射技术进行精确、定量测定含有织构和碳化物的钢铁材料中的残余奥氏体或马氏体问题,弥补国家标准(GB/T8362-1987)和其它方法之不足,提出一种新方法。该方法操作简单,结果准确,主要用于测定钢中奥氏体和马氏体,也适用于测定其它金属材料中的同素异构体。

关键词:X射线衍射;奥氏体;织构;定量相分析

中图分类号:T G115.22文献标识码:A文章编号:1001-4012(2005)10-0505-05

A NEW M ETH OD OF M EASU RIN G QU A NTITAT IV ELY AU STEN ITE/M ART ENSIT E

IN ST EEL BY X-RAY DIFFRACT ION T ECH NIQU E

LI Chang-yi,ZHOU Shun-bin

(T echnical Center o f Wuhan Ir on and Steel Company,W uhan430080,China)

Abstract:T o solv e the difficult problem w hich puzzled peo ple in a long time fo r measur ing quantitatively the remains Austenite or M atente in iro n and steel with texture and carbide and to complement the disadv antag e of the met ho d in t he standar d o f our count ry,GB/T8362-1987,a new method is put for war d in this paper.T he method is simple to be used and the results are accur at e,and mainly suitable t o determ ine the allo mor ph in iron and steel,as well as that in the other metallic mater ials.

Keywords:X-ray diffractio n;A ustenite;T exture;Q uantitat ive phase analy sis

1引言

测定钢中奥氏体和马氏体的方法首推X射线衍射定量相分析法[1],GB/T8362-1987《钢中奥氏体的X射线衍射测定方法》中规定,测定钢中残余奥氏体要用直接对比法。但此方法(包括现有的许多其它方法)对金属试样的应用效果不佳,主要存在以下两个长期困扰着人们的难题:

(1)织构的影响织构是多晶体材料中晶体的择优取向[2,3]。它的存在会导致衍射强度与所测定的物相的含量之间的正确关系严重失真,有时会造成高达百分之几百的误差[4]。

收稿日期:2005-03-10

作者简介:李长一(1949-),男,高级工程师。

金属试样一般为固体、块状,均不同程度地存在着织构,并且不允许破坏(奥氏体在加工过程中有可能分解),因此试样中的织构对定量测定的影响不能通过研、磨等方法加工成各向同性(无织构)的粉末试样而加以消除。

(2)碳化物的影响当钢铁中存在碳化物时,碳化物的衍射峰与奥氏体的衍射峰往往重迭,致使测定工作难以进行。

笔者提出一种方法,可以基本解决上述两个问题。它操作简单,结果准确,主要适用于钢铁试样中的奥氏体、马氏体和铁素体的定量测定,也适用于其它金属材料中的同素异构体的定量测定。

2原理

设一试样i,另一与试样i的物理状态(包括晶

#

505

#

体的择优取向度、晶粒尺寸及结晶度等)和化学成分相同的纯A相标样j,则试样i中A相的体积百分数X与其(hk l)晶面的X射线衍射强度I、质量吸收系数L/D之间有如下关系:

I i A I j A =

R i A

R j A

L jl/D j

L il/D i X i A(1)

式中:R)))(hkl)晶面的反射本领

L l)))线吸收系数

D)))密度

由于所测为同一相,所以R i A=R j A;又由于组成该试样的A和C互为同素异构体,所以吸收系数基本相同,即L A U L C成立,从而L il/D i=L jl/D j。这样,就得到了一个非常简单的关系式:

X i A=I i A

I j A

(2)

如果试样和标样的物理状态和化学成分相同,或不存在择优取向,则只要在相同的实验条件下测出I i A和I j A并将它们代入式(2),就可以求出奥氏体或马氏体的含量了。但上述理想情况十分罕见,特别是试样中往往存在织构而且与标样中存在的织构不同,所以当具备了与试样化学成分相同的标样以后,最好再进行织构修正,得到更准确的结果。为此,笔者引进轴密度(取向密度)因子P。其公式推导如下[3]:若N是(hkl)晶面的多重性因子,则对于晶体取向各向同性的试样,该晶面平行于所测平面的取向分数:

f=N

E N(3)而对于晶体取向各向异性的试样,其取向分数:

f c=

NI i A/I j A

E(NI i A/I j A)(4)

P=f c

f =

E NI i A/I j A

E(NI i A/I j A)(5)

将轴密度因子P引入式(2),从而有:

X i A=

I i A

P i A I j A

(6)

当标样也存在织构时,还需对其进行织构修正,一种简便但可能不够精确的方法是,不对标样进行织构修正,而是将其作为织构/标样0直接对试样进行/织构修正0,使试样与标样织构相同,笔者采用的是对标样进行织构修正的方法。

在相同的实验条件下分别测出试样i和标样j 的2~3张衍射图谱并将所有可利用的(hkl)晶面的积分强度数椐代入式(5)计算得出任一(hkl)晶面的P,并与对应的该(hkl)晶面的衍射强度I i和I j代入式(6)或式(7)即得所求。

如果用同样的方法同时测出了C相,那么就可利用

X i A+X i C=1(7)来估计结果的准确性。

3实验验证

3.1实验1

(1)试样选用W10和W20G冷轧电工钢,分别编为L10和L11。X射线衍射分析和金相观察表明,这两个试样均为单一的铁素体(A-Fe)钢。

(2)标样将L10和L11经910e退火后(分别编为P10和P11),用本实验室的织构无规标样进行织构修正,得到没有织构、成分相同且A-Fe为100%的标准样品。

(3)实验目的验证本方法的准确性。

(4)实验方法及条件用金相砂纸将试样磨光并使各试样的光洁度一致,然后在日本理学D/ M AX-3C型X射线衍射仪上采集数据。实验条件: M o K,40kV,30mA。狭缝系统根据试样大小来定。本实验采用的狭缝系统为ds=1b,r s=0.6mm,ss= 2b。实验数据和结果比较列于表1。

3.2实验2

(1)试样在所选用的4个试样中,AST0W为爆炸处理奥氏体+马氏体不锈钢,其余3个试样为YU202不锈钢系列试样,并分别经不同的热处理工艺:A01为热轧+正火;A02为热轧+正火+冷轧; A03为热轧+正火+冷轧+900e固溶处理。

(2)标样奥氏体标样是高铬纯奥氏体(但存在织构)的不锈钢。为了得到无织构的奥氏体标样数据,用奥氏体粉末的衍射数据对此奥氏体不锈钢进行织构修正。所用铁素体标样则是本实验室的织构标样。

(3)实验目的与GB/T8362-1987推荐的方法进行比较并验证本方法的精确性。

(4)实验方法及条件与实验1相仿。这4件奥氏体不锈钢的实验数据和结果分别列于表3和表4,表2则是用于测定奥氏体标样数据的。此4件试样均采用表2所列的奥氏体标样数据,不过对狭缝系统作了相应的调整,以使它们各自保持一致。图1所示为YU202不锈钢系列试样铁素体(或马氏

# 506 #

表1L10和L11试样铁素体钢测定的原始数据和结果

T ab.1T he data and r esults of the samples,L10and L11

No.hkl N I r(CP S)I p10(CP S)I l10(CPS)I p11(CPS)I l11(CP S) 1110121003838929690508646819885506054 22006169795264732393008256692638519 321124286252279698532163368839544584 4220127349574544152674714119545 53102492268999793372210387133929 6222816637568891080266407796207 7321488220258157508204970138550 84006977016451200981374931004 9411242849539101377923556452950 104202420043196481201118451380 11332241152516962251921599626296 1242224108619850233172094825553 13431482671525825158111965212227 14521488678142129031181738635 15433241496513603235262116623130 X i A:L10为97.95%,L11为101.80%

注:I r为织构无规标样的衍射强度;I p为与试样物理化学状态基本相同的退火标样的衍射强度;I l为试样的衍射强度。

表2奥氏体标样的强度I j的计算结果及各种数据

T ab.2T he data and calculate r esults o f the intensit ies,I j,of austlite standard sample N o hkl N I(AST0P)(CP S)I(AST O0)(CPS)P I j(CPS)

11118115871297015 1.4630203014

2200656577149555 1.508799127

32201235099494500.804161496

4311243600283547 1.324563078

52228934329595 1.807916370

6400649109145 1.06308603

73312415805172880.624327691

84202412661163920.738922182

9422247967131170.939713969

10511249306131540.903914553注:I(AST OP)为无规奥氏体粉末的衍射强度;I(ASTO0)为有织构纯奥氏体不锈钢的衍射强度;I j为经过修正的标样的衍射强度。

体)和奥氏体标样的衍射图谱,以便分析与比较。

4讨论

4.1结果与分析

实验1与实验2的结果分别列于表1、表3和表4。从表1中可见,用本方法测得的铁素体钢(试样L10C和L11C)中铁素体的含量均接近实际值100%。而从表3看到,爆炸处理的不锈钢AST0W 的奥氏体和马氏体测定结果之和为1.0045,也接近实际值100%。这说明,上述两个实验的结果是可信的,本方法的准确度是较高的。

将用本方法测定的与用GB/T8362-1987推荐的方法测定的4件奥氏体不锈钢的结果进行比较(表3和表4),可见两者基本吻合。说明GB/T

#

507

#

图1Y U202系列试样衍射图谱

F ig.1T he patter ns for YU202series and so o n

A00100:C-标样;A FE100:A-标样

表3用两种方法测定的AST0W数据

与结果的比较

T ab.3T he data and compariso n o f measur ing r esult s

of A ST0W by the tw o methods

N o2H hkl I i(CP S)I j(CP S)P i

122.70200C9499098408 1.3083 232.42220C7697060472 1.7260 338.18311C6821764814 1.4255 439.75222C3943161000.3326 552.06420C1837621823 1.1407 658.40422C7555137380.7349 762.30511C5758143180.4812 927.50200A2298454557 1.5803 1034.50211A3506398981 1.3300 1140.20220A5773241140.9000 1254.00321A6128290980.7874

注:本法测定的结果:X i C=0.738;X i A=0.2665。GB/ T8362-1987法测定的结果:X i C=0.6915。

8362-1987推荐的方法对于试样织构不太强、测定精度不高且无碳化物干扰的情况是可行的。但是该方法仅采用马氏体的两个峰和奥氏体的三个峰,很难保证有效地消除了织构的影响。而采用本方法测定奥氏体和马氏体有如下特点:

(1)不需测定含量低、测量误差大的相(如残余奥氏体),所以待测相的择优取向对测定无影响。而含量高、测量误差小的相(如马氏体)有很多峰可供选择和测量,所以能有效地消除织构对测定结果的影响。

(2)试样中各相含量的测定彼此是独立的。①独立计算的结果之和E X/n=1可以用来作为评定结果准确性的一个判据。而唯有判据,才能了解结

表4用两种方法测定的YU202不锈钢系列

试样的数据及结果

T ab.4T he data and co mpar ison of measuring results of Y U202Series by t he tw o methods

N o hk l I j(CPS)I A01(CPS)I A02(CPS)I A03(CPS) 120012167019239118882107805 22201115815659014652200011 331110508811300258538109445 422232264188001052816000 542036112189373400032915 64222061418818911214268 7511222891819958038720

注:X i C值(本法):A01为0.821;A02为0.475;A03为0.850。X i C值(GB/T8362-1987):A01为0.850;A02为01507;A03为0.878。

果的可靠性,才能做到心中有数。有些方法,如国标(GB/T8362-1987)规定的直接对比法没有判据,从理论上讲又不能保证有效地消除织构的影响,所以人们往往对结果离真值到底有多远这个问题心中无数。②碳化物的峰一般集中在衍射谱的低角端,对奥氏体的影响严重,而由于马氏体含量高、强度大,重要的是马氏体的峰比较靠后,因此受碳化物峰的干扰可以减少到测定精度允许的程度,从而奥氏体的测定可通过X A+X C+X C=1计算出来(X C是碳化物的含量),使过去不能进行的(如含碳化物)试样的测定成为可能,并且可以通过判据式(7)来估计结果的可靠性。

4.2物相的线吸收系数和密度对测定结果的影响

奥氏体和铁素体的理论密度分别为7.949和7.874(g/cm3),它们的质量吸收系数分别为L m= 59.4996和L m=59.0050(cm2/g),几乎相等,所以

$X i A

X i A

={1-[X i A+X i C

L C/D C

L A/D A]}=0(8) 4.3标样和试样质量吸收系数对测定结果的影响

从式(1)出发,可以导出如下误差公式:

$X i

X i

=

$(L jl/D j)

(L jl/D j)

(9)

4.4试样中碳化物对测定结果的影响之对策

当待测试样中碳化物含量较高时,碳化物的衍射峰会严重干扰奥氏体峰的测量,但对马氏体和铁素体峰的干扰却很小,可以采用经织构修正过的待测试样中碳化物含量基本相同、奥氏体的含量已知为零的试样作标样进行此类试样的奥氏体含量的测

# 508 #

定,试样中的碳化物含量可借助于定量金相求得。5结论

(1)笔者提出的方法由于不需测定含量低、测量误差大的相(如残余奥氏体),所以奥氏体的择优取向对测定无影响;含量高、测量误差小的相(如马氏体)有很多峰可供选择和测量,所以能有效地消除织构对测定结果的影响。

(2)碳化物的峰一般集中在衍射谱的低角端,对奥氏体的影响严重,而由于马氏体含量高、强度大,特别是马氏体的峰比较靠后,因此受碳化物峰的干扰可以减少到测定精度允许的程度,从而奥氏体的测定可通过X A+X C+X C=1计算出来(X C是碳化物的含量),使过去不能进行含碳化物试样的测定成为可能。

(3)本方法同样适用于有色金属等材料中的同素异构体的定量测定。

参考文献:

[1]李树棠.金属X射线衍射与分析技术[M].北京:冶金

工业出版社,1980.1-182.

[2]滕凤恩,王煜明,姜小龙.X射线结构分析与材料性能

表征[M].北京:科学出版社,1997.58-122.

[3]张信钰.金属和合金的织构[M].北京:科学出版社,

1976.

[4]金铨,李文辉.择优取向对X射线法测定钢中A r量的

影响[J].哈尔滨科技大学学报,1980,14(4):6-8.

欢迎订阅2006年《热加工工艺》杂志

《热加工工艺》杂志,1972年创刊,国内外公开发行。本刊为中国期刊方阵(双百期刊)、全国优秀科技期刊、全国中文核心期刊、中国科技论文统计与分析用刊、美国Ei数据库等检索系统收录期刊、中国学术期刊综合评价数据库来源期刊、中国期刊网收录期刊、中国学术期刊(光盘版)收录期刊。读者对象为铸造、焊接、金属材料及热处理行业的管理干部、技术人员和高校师生。为了进一步扩大信息量,增强可读性,更好的为科研生产第一线服务,满足不同专业读者的需要,便于读者有针对性的订阅,本刊2006年将改为半月刊出版,读者可到当地邮局订阅,邮发代号52-94,每期定价10元,全年240元,也可直接到编辑部订阅。

地址:陕西兴平44号信箱,邮编:713102,电话: (0910)8316273,传真:(0910)8316267,E-mail:rjg-gy@163.co m,联系人:任朋立。

欢迎订阅2006年《煤矿机械》杂志

《煤矿机械》是国内外公开发行的煤矿机械行业综合性技术刊物,全国中文核心期刊、全国跨世纪九所重点大学核心期刊、中国学术期刊综合评价数据库来源期刊、中国科学引文数据库来源期刊、中国期刊网全文收录期刊、中国学术期刊(光盘版)全文收录期刊、中国万方数据资源系统数字化期刊群全文入网期刊、黑龙江省优秀期刊。

主要报道煤矿的采煤、掘进、运输、支护、排水、通风、露天机械和选煤设备的研究、设计、制造、使用和维修等方面的最新技术经验和成果,以及通用机械的新技术、新工艺和新材料等。

主要栏目有专题综述、试验研究、设计计算、问题探讨、产品结构、工艺装备、技术革新、使用维修、计算机应用、设备诊断或监测、国内外成果及动态。

2006年《煤矿机械》仍为国际标准大开本A4幅画,月刊,每月5日出版。10元/每册,全年120元。欢迎单位或个人到当地邮局订阅,邮发代号14-38,也可直接汇款至煤矿机械杂志社。

地址:哈尔滨市古香街30号,邮编:150036,电话:(0451)55646587,55645994,传真:(0451) 55646587。

#

509

#

钢铁中锰含量的测定 (2)

实验报告 钢铁中锰含量的测定——银盐氧化光度法 班级:应111-1 姓名:王海花 学号:201169503147 指导老师:王老师

一.实验目的: 1.通过实验,了解钢铁中锰的存在形式,测定意义。 2.了解测定钢铁中锰含量的测定方法。 3.掌握钢铁中锰含量的测定原理。 4.熟练掌握分光光度计的使用,进一步训练移液管、容量瓶的正确使用。 5.掌握用比色法测定钢材中锰含量的方法 二.实验原理: 1.锰在钢铁中主要以MnC、MnS、FeMnSi或固溶体状态存在。生铁中一般 含锰0.5%~6%,普通碳素钢中锰含量较低,含锰0.8%~14%的为 高锰钢,含锰12%~20%的铁合金称为镜铁,含锰60%~80%的铁合 金称为锰铁。 2.锰溶于稀酸中,生成锰(Ⅱ)。锰化物也很活泼,容易溶解和氧化。在 化学反应中,由于条件的不同,金属锰可部分或全部失去外层价电子, 而表现出不同的价态,分析上主要有锰(Ⅱ)、锰(Ⅲ)、锰(Ⅳ)、锰(Ⅶ), 少数情况下亦有锰(Ⅵ),这就为测定锰提供了有利条件。 3.常用测定方法:一般碳素钢,低合金钢,生铁试样常以HNO 3 (1+3)或 硫磷混酸溶解。难溶的高合金钢以王水溶解,加HClO 4或H 2 SO 4 冒烟溶 解。溶解试样的酸主要依靠H 2SO 4 ,HCl,HNO 3 ,因H 2 SO 4 -HCl可使MnS 分解。HNO 3分解碳化物(Mn 3 C)生成CO 2 逸出,加磷酸可使Fe3+配合成 无色而消除Fe3+的干扰。同时因为磷酸的存在,防止了MnO 2 沉淀的生 成和HMnO 4 的分解。 4.主要反应方程式: 3MnS+12HNO 3=3Mn(NO 3 ) 2 +6HNO 3 +3SO 2 +6H 2 O 3Mn 3C+28HNO 3 =29Mn(NO 3 ) 2 +3CO 2 +10NO+14H 2 O MnS+H 2 SO 4 =MnSO4+H 2 S 2AgNO 3 +(NH 4 ) 2 S 2 O 8 =Ag 2 S 2 O 8 +2NH 4 NO 3 Ag 2 S 2 O 8 +2H 2 O=Ag 2 O 2 +2H 2 SO 4 5Ag 2O 2 +2 Mn(NO 3 ) 2 +6HNO 3 =2HMnO 4 +10AgNO 3 +2H 2 O 三.实验仪器及试剂: 1.实验仪器:721型分光光度计,分析天平,容量瓶(50mL),移液管(1ml, 2ml,3ml),滴管,洗耳球,电炉 2.实验试剂:硝酸溶液(1:3),王水(1浓硝酸+3浓盐酸)硫磷混酸(700ml 水中加入150ml磷酸及硫酸150ml,摇匀),0.5%硝酸银溶液,20%过 硫酸铵溶液,5%EDTA,锰标准溶液(0.1mg/ml) 四.实验步骤: 1.溶样:钢样0.2630g于50ml烧杯,加5mlH 2 O,15ml王水溶解,(可稍热) 2mlHClO 4 加热至冒白烟2min冷却,加硫磷混酸10ml加热至冒白烟,除尽Cl-冷却,定量转移至50ml容量瓶定容,摇匀,备用。 2.显色:移取试样溶液5ml4份于4个小烧杯,加H 2 O5ml,硫磷混酸5ml 依次加入锰标准溶液0.00ml,1.00ml,2.00ml,3.00ml,AgNO 3 2ml, (NH 3) 2 S 2 O 8 5.0ml,煮沸20-40s放置1min,冷水冷却转移定容至50ml容 量瓶。 3.测定A:在530nm的波长下,测定溶液的吸光度,比色皿b=1cm,以水为 参比溶液。

高锰钢检测项目和标准

高锰钢检测项目和标准 高猛钢是一种合金钢,锰含量在10%以上。高锰钢是应用在重工业上的防磨钢材,主要应用在采石、采矿、挖掘、煤炭工业、铸造和钢铁行业等。 上海世通检测有多年检测行业经验,可以为企业提供高锰钢检测,出具检测报告。本文将会为您简单介绍如何办理高锰钢检测,如果您有疑问可以联系我们进行咨询。 高锰钢检测范围: 铸造用高锰钢,高锰钢弹簧,高锰钢刀,高锰钢焊条,高锰钢丝,高锰钢烧水壶,高锰钢管,高锰钢履带,高锰钢板等。 高锰钢检测项目: 初始硬度,金相检测,无损检测,性能检测,成分检测,密度,锰含量检测等。 高锰钢检测参考标准: ASTM E2209-2013用原子发射光谱法分析高锰钢的试验方法 GB/T 13925-2010铸造高锰钢金相 GB/T 37400.6-2019重型机械通用技术条件第6部分:铸钢件 GB/T 37400.7-2019重型机械通用技术条件第7部分:铸钢件补焊 JB/T 5940-2018工程机械高锰钢铸件通用技术条件 JB/T 6404-2017大型高锰钢铸件技术条件 JC/T 401.1-2011建材机械用铸钢件第1部分:高锰钢铸件技术条件 JC/T 401.3-2013建材机械用铸钢件第3部分:缺陷处理规定 JIS G5131-2008高锰钢铸件 KS D4104-1995高锰钢铸钢品 高锰钢检测需要提交的资料: 1、申请表:公司名称、地址、商标、营业执照; 2、产品信息:名称、型号、说明书等; 3、样品等。 高锰钢检测办理流程: 1、项目申请——向检测机构监管递检测申请。 2、资料准备——根据检测要求,企业准备好相关的文件。 3、产品测试——企业将待测样品寄到实验室进行测试。 4、编制报告——认证工程师根据合格的检测数据,编写报告。 5、递交审核——工程师将完整的报告进行审核。 6、签发报告——报告审核无误后,出具报告。

马氏体不锈钢与奥氏体不锈钢的区别

马氏体不锈钢:标准马氏体钢材的改良,含有类如镍、钼、钒等的添加元 素,主要是用于将标准钢材受限的容许工作温度提升至高于1100K,当添加这些元素时,碳含量也增加,随着碳含量的增加,在焊接物的硬化热影响区中避免龟裂的问题变成更严重。 马氏体不锈钢能在退火、硬化和硬化与回火的状态下焊接,无论钢材的原先状态如何,经过焊接后都会在邻近焊道处产生一硬化的马氏体区,热影响区的硬度主要是取决于母材金属的碳含量,当硬度增加时,则韧性减少,且此区域变成较易产生龟裂、预热和控制层间温度,是避免龟裂的最有效方法,为得最佳的性质,需焊后热处理。 马氏体不锈钢是一类可以通过热处理(淬火、回火)对其性能进行调整的不锈钢,通俗地讲,是一类可硬化的不锈钢。这种特性决定了这类钢必须具备两个基本条件:一是在平衡相图中必须有奥氏体相区存在,在该区域温度范围内进行长时间加热,使碳化物固溶到钢中之后,进行淬火形成马氏体,也就是化学成分必须控制在γ或γ+α相区,二是要使合金形成耐腐蚀和氧化的钝化膜,铬含量必须在10.5%以上。按合金元素的差别,可分为马氏体铬不锈钢和马氏体铬镍不锈钢。 马氏体铬不锈钢的主要合金元素是铁、铬和碳。图1-4是Fe-Cr系相图富铁部分,如Cr大于13%时,不存在γ相,此类合金为单相铁素体合金,在任何热处理制度下也不能产生马氏体,为此必须在内Fe-Cr二元合金中加入奥氏体形成元素,以扩大γ相区,对于马氏体铬不锈钢来说,C、N是有效元素,C、N元素添加使得合金允许更高的铬含量。在马氏体铬不锈钢中,除铬外,C是另一个最重要的必备元素,事实上,马氏体铬不锈耐热钢是一类铁、铬、碳三元合金。当然,还有其他元素,利用这些元素,可根据Schaeffler图确定大致的组织。 马氏体不锈钢主要为铬含量在12%-18%范围内的低碳或高碳钢。各国广泛应用的马氏体不锈钢钢种有如下3类: 1.低碳及中碳13%Cr钢 2.高碳的18%Cr钢 3.低碳含镍(约2%)的17%Cr钢 马氏体不锈钢具备高强度和耐蚀性,可以用来制造机器零件如蒸汽涡轮的叶片(1Cr13)、蒸汽装备的轴和拉杆(2Cr13),以及在腐蚀介质中工作的零件如活门、螺栓等(4Cr13)。碳含量较高的钢号(4Cr13、9Cr18)则适用于制造医疗器械、餐刀、测量用具、弹簧等。 与铁素体不锈钢相似,在马氏体不锈钢中也可以加入其它合金元素来改进其他性能:1.加入0.07%S或Se改善切削加工性能,例如1Cr13S或4Cr13Se;2.加入约1%Mo及0.1% V,可以增加9Cr18钢的耐磨性及耐蚀性;3.加入约1Mo-1W-0.2V,可以提高1Cr13及2Cr13钢的热强性。 马氏体不锈钢与调制钢一样,可以使用淬火、回火及退火处理。其力学性质与调制钢也相似:当硬度升高时,抗拉强度及屈服强度升高,而伸长率、截面收缩率及冲击功则随着降低。 马氏体不锈钢的耐蚀性主要取决于铬含量,而钢中的碳由于与铬形成稳定的碳化铬,又间接的影响了钢的耐蚀性。因此在13%Cr钢中,碳含量越低,则耐蚀性越高。而在1Cr13、2Cr13、3Cr13及4Cr13四种钢中,其耐蚀性与强度的顺序恰好相反。

实验27 钢中锰含量的测定

实验27 钢中锰含量的测定 一. 实验目的 1. 学习分光光度法测定试样浓度; 2. 掌握移液管、容量瓶、比色管及滴定管等基本操作。 二. 背景知识及实验原理 1. 钢样中锰含量测定的化学反应原理 将一定质量的钢样用混合酸(含硝酸、硫酸及磷酸)溶解,再用过硫酸铵做氧化剂,使溶解于酸中的锰氧化成具有特征颜色的高锰酸根离子。为了加速反应的进行,常加入硝酸银做催化剂。 钢样溶解后产生的硝酸铁为黄褐色,会干扰比色的进行,混合酸中的磷酸可与硝酸铁形成无色配合物,因此磷酸时作为干扰物Fe3+的掩蔽剂。 溶液呈现不同颜色是由于物质对光具有选择吸收所造成的,含有高锰酸根离子的溶液对绿色光有强烈的吸收,因此高锰酸根溶液呈现出绿光的互补色——紫红色。分析高锰酸根溶液可以选择530nm的单色光。 2.分光光度法 利用光电池代替人眼睛,测量有色溶液对某一波长的单色光的吸收程度,从而求得待测物质含量的方法叫分光光度法。这种方法可以提高测量的准确度。 分光光度法测定试样的浓度,首先要做标准曲线,即配制一系列不同浓度的标准溶液,测定其光密度值,然后以光密度为纵坐标,以浓度为横坐标,绘制标准曲线。在相同条件下测定未知试样的光密度值,由光密度可从标准曲线上找到对应点,该点在横坐标对应的浓度,即为待测溶液的浓度。 二. 实验仪器和药品 1. 仪器 移液管、比色管、容量瓶、滴定管、722型分光光度计。 2. 药品 钢样、标准高锰酸钾溶液、混合酸、硝酸银、过硫酸铵溶液、NaNO2溶液。 三. 实验内容与操作 1.标准系列溶液的配制 将所用的比色管、容量瓶、滴定管及烧杯等用自来水洗净,再用少量蒸馏水冲洗。从共

马氏体奥氏体珠光体贝氏体的区别

马氏体奥氏体珠光体贝氏体 马氏体(martensite)是黑色金属材料的一种组织名称。马氏体(M)是碳溶于α-Fe的过饱和的固溶体,是奥氏体通过无扩散型相变转变成的亚稳定相。其比容大于奥氏体、珠光体等组织,这是产生淬火应力,导致变形开裂的主要原因。马氏体最初是在钢(中、高碳钢)中发现的:将钢加热到一定温度(形成奥氏体) 奥氏体(austenite)A、γ是晶体结构:面心立方(fcc)。是碳在γ-Fe中形成的间隙固溶体。奥氏体是一种塑性很好,强度较低的固溶体,具有一定韧性。不具有铁磁性。因此,分辨奥氏体不锈钢刀具(常见的18-8型不锈钢)的方法之一就是用磁铁来看刀具是否具有磁性。古代铁匠打铁时烧红的铁块即处于奥氏体状态。另外,奥氏体因为是面心立方,四面体间隙较大,可以容纳更多的碳。 珠光体pearlite 珠光体是奥氏体(奥氏体是碳溶解在γ-Fe中的间隙固溶体)发生共析转变所形成的铁素体与渗碳体的共析体。得名自其珍珠般(pearl-like)的光泽。其形态为铁素体薄层和渗碳体薄层交替重叠的层状复相物,也称片状珠光体。用符号P表示,含碳量为ωc=%。在珠光体中铁素体占88%,渗碳体占12%,由于铁素体的数量大大多于渗碳体,所以铁素体层片要比渗碳体厚得多.在球化退火条件下,珠光体中的渗碳休也可呈粒状,这样的珠光体称为粒状珠光体。珠光体的性能介于铁素体和渗碳体之间,强韧性较好.其抗拉强度为750 ~900MPa,180 ~280HBS,伸长率为20 ~25%,冲击功为24 ~32J.力学性能介于铁素体与渗碳体之间,强度较高,硬度适中,塑性和韧性较好。

铁素体(ferrite,缩写:FN,用F表示)即α-Fe和以它为基础的固溶体,具有体心立方点阵。亚共析成分的奥氏体通过先共析析出形成铁素体。在碳钢和低合金钢的热轧(正火)和退火组织中,铁素体是主要组成相;室温下的铁素体的机械性能和纯铁相近。铁素体的强度、硬度不高,但具有良好的塑性与韧性。 经过硝酸溶液侵蚀后,从颜色上观察区分金相组织形态. 铁素体是白色,珠光体是黑色,马氏体(M)是碳溶于α-Fe的过饱和的固溶体,在金相观察中为细长的板条状或针叶状。

钢的奥氏体晶粒大小的测定

实验二、钢的奥氏体晶粒大小的测定(3学时) 一、实验目的: 1、熟悉钢的奥氏体晶粒的显示方法,各种的优缺点和适用方法。 2、掌握奥氏体晶粒大小的测定方法及评级标准。 二、实验原理: 1、根据钢的奥氏体形成过程和晶粒长大情况,奥氏体晶粒度可分为: 起始晶粒度—珠光体刚刚全部转变为奥氏体时的奥氏晶粒的大小。 实际晶粒度—钢在具体的热处理或热加工条件下所获得的奥氏体晶粒的大小。 本质晶粒度—钢在标准加热条件下所获得的奥氏体晶粒的大小,它表征奥氏体晶粒长大的倾向。 钢的珠光体,贝氏体和马氏体等组织都是由奥氏体转变过来的,奥氏体晶粒的大小直接影响了转变产物的组织及性能,因此冶金部规定了用标准工艺的实验方法来测定奥氏体晶粒度。根据部颁标准规定,测量奥氏体本质晶粒度必须把试样加热到930℃上下10℃,保温3小时或8小时,以适当的冷却方式冷却后,在室温显示或测量奥氏体晶粒度。通常只测量奥氏体本质晶粒度和实际晶粒度。 钢的奥氏体晶粒度大小的测定包括二个步骤;1、奥氏体晶粒的显示,2、奥氏体晶粒尺寸的的测定和评级。 三、实验方法: (一)、奥氏体晶粒的显示方法: 绝大多数的钢的奥氏体只是在高温下才是稳定的相,冷却时将转变为其它类型的组织或部分残留下来。因此测定奥氏体晶粒首先要设法将高温下的奥氏体晶界轮廓痕迹在室温下显示出来常用的显示奥氏体晶粒的方法已有规定按原理可归纳为三类: 1、渗入外来元素的方法: 钢在奥氏体状态时,用碳氧和其它元素渗入钢中利用晶界比晶粒内有较大的化学活泼性的特点,在晶界上优先形成渗碳体或氧化亚铁等组成物,利用这些组成物的网络以显示出高温状态下奥氏体晶粒的轮廓。这类方法采用的有渗碳法和氧化法。。并被广泛应用,但由于外来元素的渗入,改变了钢的成分,或由于氧化物在晶界的形成,影响了奥氏体晶粒的长大速度,因而影响了测定的准确性。 (1)、渗碳法: 试样在60%木炭+40%BaCO3或70%木炭+30% BaCO3的渗剂中进行固体渗碳,渗碳温度930℃上下10℃保温5—8小时(渗碳层深度不小于1 MM,表面碳浓度达到过共析为宜)。渗碳后炉冷,冷却速度碳素钢为100℃∕小时:合金钢为50∕小时。但温度低于600℃时,冷却速度可以不受限制。 渗碳后的缓冷过程中,在过共析层里,渗碳体优沿奥氏体晶界析出,试样磨制后,在显微镜下可观察到渗碳体网络,根据渗碳体网络即可评定奥氏体晶粒大小。 显示渗碳体试样显微组织的浸蚀剂可用下列任意一种: a、4%硝酸酒精溶液(或5%苦味酸酒精溶液),网状渗碳体呈白色。 B、碱性苦味酸钠溶液(苦味酸2克、氢氧化钠20克、水100ml)浸蚀时间 10—20分钟。网络状渗碳体呈黑紫色。 这方法多用于渗碳钢,对含炭化物形成元素过多的钢种,不能形成炭化物网络,固不宜采用。 (2)、氧化法: 试样先用细砂纸磨光,然后放入氧化气氛炉中加热到930℃,保温3小时后在水(油)

奥氏体马氏体铁素体的区别

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 奥氏体/马氏体/铁素体 奥氏体(钢的组别:A1, A2, A3 A4, A5)(性能等级:50软,70冷加工,80高强度) 马氏体(钢的组别:C1,C2,C3) (性能等级:50软,70、110淬火并回火,80淬火并回火) 铁素体(钢的组别:F1) (性能等级:45软,60冷加工) 马氏体不锈钢属于铬不锈钢。由于含碳量高,碳化铬多,钢的耐蚀性能下降,虽可通过热处理的方法改善,但防腐性不高。马氏体不锈钢多用于制造力学性能要求较高,并有一定耐蚀性能要求的零件,如汽轮机叶片、喷嘴、阀座、量具、刃具等。 铁素体不锈钢也属于铬不锈钢。含碳量小,抗大气、硝酸及盐水溶液的腐蚀能力强,有高温抗氧化性能好等特点。主要用于制作化工设备中的容器、管道。 奥氏体不锈钢属于铬镍不锈钢。具有很高的耐蚀性,优良的塑性,良好的焊接性及低温韧性,不具有磁性,易加工硬化。主要用于在腐蚀介质中工作的零件、容器、管道、医疗器械以及抗磁环境中。 奥氏体 奥氏体是碳溶解在γ-Fe中的间隙固溶体,常用符号A表示。它仍保持γ-Fe的面心立方晶格。其溶碳能力较大,在727℃时溶碳为ωc= 0.77%,1148℃时可溶碳2.11%。奥氏体是在大于727℃高温下才能稳定存在的组织。奥氏体塑性好,是绝大多数钢种在高温下进行压力加工时所要求的组织。奥氏体是没有磁性的。 马氏体分级淬火 是将奥氏体化工件先浸入温度稍高或稍低于钢的马氏体点的液态介质(盐浴或碱浴)中,保持适当的时间,待钢件的内、外层都达到介质温度后取

出空冷,以获得马氏体组织的淬火工艺,也称分级淬火。分级淬火由于在分级温度停留到工件内外温度一致后空冷,所以能有效地减少相变应力和热应力,减少淬火变形和开裂倾向。分级淬火适用于对于变形要求高的合金钢和高合金钢工件,也可用于截面尺寸不大、形状复杂地碳素钢工件。 马氏体不锈钢 通过热处理可以调整其力学性能的不锈钢,通俗地说,是一类可硬化的不锈钢。典型牌号为Cr13型,如2Cr13 ,3Cr13 ,4Cr13等。粹火后硬度较高,不同回火温度具有不同强韧性组合,主要用于蒸汽轮机叶片、餐具、外科手术器械。根据化学成分的差异,马氏体不锈钢可分为马氏体铬钢和马氏体铬镍钢两类。根据组织和强化机理的不同,还可分为马氏体不锈钢、马氏体和半奥氏体(或半马氏体)沉淀硬化不锈钢以及马氏体时效不锈钢等。 马氏体就是以人命命名的: 对于学材料的人来说,“马氏体”的大名如雷贯耳,那么说到阿道夫·马滕斯又有几个人知道呢?其实马氏体的“马”指的就是他了。在铁碳组织中这样以人名命名的组织还有很多,今天我们就来说说这些名称和它们背后那些材料先贤的故事。 马氏体Martensite,如前所述命名自Adolf Martens (1850-1914)。这位被称作马登斯或马滕斯的先生是一位德国的冶金学家。他早年作为一名工程师从事铁路桥梁的建设工作,并接触到了正在兴起的材料检验方法。于是他用自制的显微镜(!)观察铁的金相组织,并在1878年发表了《铁的显微镜研究》,阐述金属断口形态以及其抛光和酸浸后的金相组织。(这个工作我们现在做的好像也蛮多的。)他观察到生铁在冷却和结晶过程中的组织排列很有规则(大概其中就有马氏体),并预言显微镜研究必将成为最有用的分析方法之一(有远见)。他还曾经担任了柏林皇家大学附属机械工艺研究所所长,也就是柏林皇家材料试验所("Staatliche Materialprüfungsamt")的前身,他在那里建立了第一流的金相试验室。1895年国际材料试验学会成立,他担任了副主席一职。直到现在,在德国依然有一个声望颇高的奖项以他的名字命名

钢中锰含量的测量

钢中锰含量的测量 1.实验目的 (1)了解用分光光度法测定钢中锰含量的原理和方法; (2)熟练掌握分光光度计的使用,进一步训练移液管、容量瓶的正确使用; (3)练习作图法处理实验数据。 2.实验原理 将已知质量的钢样溶解于由硝酸、硫酸和磷酸组成的混合酸中。Fe+6HN03 = Fe(N03)3+3NO2十+3H20 Mn+4HN03 = Mn(N03)2+2N02十+2H20 Fe3++2H3PO4 = H3[Fe(P04)2] +3H+ Ag+ 2Mn2++5S2O82-+8H20 = 2MnO4-+10SO42-+16H+ 所得到的MnO4-溶液,以空白试样为参比液,可用分光光度计在波长530nm处测定其吸光度。将一系列已知浓度的Mn04-标准溶液,按上述相同方法处理后,用分光光度计测出它们的吸光度。以吸光度(A)为纵坐标,标准溶液浓度(c)为横坐标作图,得到A与c的关系曲线,叫工作曲线。通过工作曲线可查到样品溶液的吸光度所对应的浓度,进而可换算出钢样中锰的含量, 3.仪器与试剂 仪器:721型分光光度计,分析天平,容量瓶(50mL),移液管(10mL),吸量管(5mL),滴管,洗耳球,酒精灯。

试剂:HN03-H2S04—H3P04的混合酸(1:1:1) 1%AgN03,KMn04标准溶液 (含Mn 1mg·mL-1),(NH4)2S2O8 (15%),钢样。 4.实验内容 (1)标准KMn04系列溶液的配制:用移液管吸取10mL的标准KMnO4溶液 于100mL容量瓶中,用去离子水稀释至刻度。盖上瓶盖后摇匀备用。另取6只50ml容量瓶。每只容量瓶按表5—4用量,用移液管(或吸量管)分别加入备用的标准KMn04溶液、混合酸、(NH4)2S2O8和AgN03,并用去离子水稀释至刻度,盖上瓶塞后摇匀。 (2)钢样的处理及钢样溶液的配制: 用分析天平准确称量一份钢样(60~ 80mg),放人50mL烧杯中,加入17mL混合酸,在通风橱中用低温电势板加热,使钢样溶解,待棕色N02气体不再产生时,加入10mL (NH4)2S2O8和3mL AgN03溶液,继续加热至沸腾。煮沸lmin后即可停止加热。待溶液冷却至室温后,全部转移到50mL溶量瓶中,用去离子水稀释至刻度,盖上瓶塞,摇匀(3)溶液吸光度的测定:将分光光度计波长调至530nm(使用方法参见第二章2.4节),使用0.5cm 比色皿装待测液,以空白试样为参比液,分别测定5个标准KMnO4溶液及钢样溶液的吸光度。 5.数据处理 以溶液的吸光度为纵坐标,KMn04浓度为横坐标,在坐标纸上作

奥氏体马氏体铁素体不锈钢区别

奥氏体马氏体铁素体不锈钢区别? 铁素体型不锈钢 它的内部显微组织为铁素体,其铬的质量分数在11.5%~32.0%范围内。随着铬含量的提高,其耐酸性能也提高,加入钼(Mo)后,则可提高耐酸腐蚀性和抗应力腐蚀的能力。这类不锈钢的国家标准牌号有00Cr12、1Cr17、00Cr17Mo、00Cr30Mo2等。 430是铁素体不锈钢。 铁素体不锈钢是含铬大于14%的低碳铬不锈钢,含铬大于27%的任何含碳量的铬不锈钢,以及在上述成分基础上再添加有钼、钛、铌、硅、铝、、钨、钒等元素的不锈钢,化学成分中形成铁素体的元素占绝对优势,基体组织为铁素。这类钢在淬火(固溶)状态下的组织为铁素体,退火及时效状态的组织中则可见到少量碳化物及金属间化合物。 属于这一类的有Crl7、Cr17Mo2Ti、Cr25,Cr25Mo3Ti、Cr28等。铁素体不锈钢因为含铬量高,耐腐蚀性能与抗氧化性能均比较好,但机械性能与工艺性能较差,多用于受力不大的耐酸结构及作抗氧化钢使用。 马氏体型不锈钢 它的显微组织为马氏体。这类钢中铬的质量分数为11.5%~18.0%,但碳的质量分数最高可达0.6%。碳含量的增高,提高了钢的强度和硬度。在这类钢中加入的少量镍可以促使生成马氏体,同时又能提高其耐蚀性。这类钢的焊接性较差。列入国家标准牌号的钢板有1Cr13、2 Cr13、3Cr13、1Cr17Ni2等。 410是马氏体不锈钢,其中碳最大含量为0.15%,锰最大含量1.00%,硅最大含量为1.00%,铬含量为11.50~13.50%。为通用型可热处理不锈钢,耐腐蚀,耐热,硬度可达42HRC或更高些。 奥氏体型不锈钢 其显微组织为奥氏体。它是在高铬不锈钢中添加适当的镍(镍的质量分数为8%~25%)而形成的,具有奥氏体组织的不锈钢。奥氏体型不锈钢以Cr18Ni19铁基合金为基础,在此基础上随着不同的用途,发展成图1-2所示的铬镍奥氏体不锈钢系列。 奥氏体、铁素体、马氏体不锈钢在用途上如何区分? 工业上应用的不锈钢按金相组织可分为三大类:铁素体不锈钢,马氏体不锈钢,奥氏体不锈钢。可以把这三类不锈钢的特点归纳(如下表),但需要说明的是马氏体不锈钢并不是都不可焊接,只是受某些条件的限制,如焊前应预热焊后应作高温回火等,而使焊接工艺比较复杂。实际生产中一些马氏体不锈钢如1Cr13,2Cr13以及2Cr13与45钢焊接还是比较多的。 马氏体不锈钢属于铬不锈钢。 由于含碳量高,碳化铬多,钢的耐蚀性能下降,虽可通过热处理的方法改善,但防腐性不高。马氏体不锈钢多用于制造力学性能要求较高,并有一定耐蚀性能要求的零件,如汽轮机叶片、喷嘴、阀座、量具、刃具等。 铁素体不锈钢也属于铬不锈钢。 含碳量小,抗大气、硝酸及盐水溶液的腐蚀能力强,有高温抗氧化性能好等特点。主要用于制作化工设备中的容器、管道。 奥氏体不锈钢属于铬镍不锈钢。

实验一 钢中奥氏体晶粒的显示和晶粒度测定(1)

实验一钢中奥氏体晶粒的显示和晶粒度测定 一、实验目的及意义 1、了解加热温度对钢的奥氏体晶粒大小的影响; 2、了解并掌握钢中奥氏体晶粒度的测定方法,凭借金相显微镜的实际观察与标准晶粒度级别图进行评定。 二、概述 钢的热处理包括加热、保温和冷却。其中加热和保温是为了使钢的组织转变为奥氏体。奥氏体的晶粒大小对钢冷却后的性能有很大的影响。因此,确定合适的钢的加热工艺,严格控制奥氏体晶粒大小对钢的质量有着积极的作用。 奥氏体晶粒度有三种概念:起始晶粒度,本质晶粒度,实际晶粒度。起始晶粒度指奥氏体形成过程结束,奥氏体晶粒边界刚刚相互接触时的晶粒大小;本质晶粒度指奥氏体晶粒长大的倾向;实际晶粒度指实际加热条件下所获得的奥氏体晶粒大小,它直接影响钢在热处理以后的性能。 三、奥氏体晶粒的显示方法与奥氏体晶粒度的测定 1、奥氏体晶粒的显示 测定奥氏体实际晶粒度的方法,就是将钢加热到一定温度,保持一定的时间后,用各种方法保持奥氏体晶粒间界,并在室温下显示出来。 常用的显示奥氏体晶粒的方法有: 1)渗碳法:低碳钢。加热到930℃,渗碳8h,使渗碳层达到1mm以上,渗碳层含碳达过共析钢成分,然后缓慢冷却,在过共析区渗碳体沿奥氏体晶界析出形成网状,以此显示奥氏体晶粒大小。 2)网状铁素体法:0.5-0.6%亚共析钢。加热到指定温度,保温,选择适当的冷却方法,当冷却经过临界温度Ar3-Ar1时,先共析铁素体首先沿奥氏体晶界析出,形成网状分布,就借铁素体网所分割的范围大小来确定奥氏体晶粒大小。 3)网状珠光体法:适用于淬透性不大的碳钢和低合金钢。加热到指定温度,保温,一端淬入水中冷却,另一端空冷,在过渡带可看到屈氏体沿原奥氏体晶界析出,侵蚀后,屈氏体黑色网状,包围着马氏体组织,借此可显示奥氏体晶粒大小。 4)加热缓冷法:过共析钢。加热到指定温度,保温,冷却到600-690℃,使碳化物沿奥氏体晶界析出。(本室常用) 5)氧化法。用于任何钢的奥氏体晶粒的测定。试验时先将试样磨光,抛光,然后在空气介质炉中加热保温,出炉淬入水中。由于晶界化学活性大,加热保温时形成较深的氧化层。用细砂纸磨去表面的氧化膜,而保留晶粒边界的氧化膜,借此可显示体晶粒大小。 用这些方法测定钢的本质晶粒度时,加热规范为930±10℃保温3-8h。 在实际生产中,需分析零件早期损坏原因而测定奥氏体实际晶粒度时,不能用上述方法来显示奥氏体晶粒,而采用特殊腐蚀剂浸蚀金相样品。 常用的腐蚀剂有: 1)饱和苦味酸水溶液。 2)10%苦味酸水溶液中加入1-2mm的盐酸。 2、奥氏体晶粒度的测定 奥氏体晶粒度的测定有两种方法,比较法和弦计算法。 1)比较法:即将制好的金相样品置于100×的显微镜下观察,与晶粒度标准图谱进行比较,以确定试样的奥氏体晶粒级别,按晶粒大小分为8级:1级最粗,8级最细。 2)弦计算法:当准确度要求较高或晶粒为椭圆时采用。用已知长度的线段切割晶粒,用相截的晶粒总数除以选用的直线总长,得出弦的平均长度,以弦的长度根据附表数据确定晶粒度等级。

铁素体奥氏体马氏体等归纳

1铁素体,奥氏体,马氏体是钢在不同温度下,或是不同处理使得存在形式,首先碳溶在铁中若含量极少,小于0.0218%,在较低温度时就会形成铁素体,碳含量增加的话就会存在铁素体和渗碳体,铁素体和渗碳体机械混合结构和成珠光体,将碳含量小于0.77%的铁加热到727摄氏度以上就会变成奥氏体,奥氏体与铁素体的不同是结构不一样,奥氏体是面形立方,铁素体是体心立方,将奥氏体以极快的速度冷却,它就不能变为低温下的铁素体和渗碳体混合结构,因为碳原子无法扩散,直接就切变成体心立方的马氏体,马氏体是碳过饱和溶于体心立方的铁中,之所以研究这些东西,在于这些结构的性质不同,如,铁素体有好的塑形,但是非常软,马氏体是很硬的,但塑形不怎么样,一般淬火得到的就是马氏体,2正火得到珠光体组织,淬火是将奥氏体变化为马氏体,回火是将马氏体变为铁素体。 加入锰和镍能将奥氏体临界转变温度降至室温以下,使钢在室温下保持奥氏体组织,即所谓奥氏体钢。 3铁素体,奥氏体都有很好的塑性,韧性,珠光体有较高的综合机械性能;莱氏体\渗碳体都是脆性的,硬度高,耐磨性好;索氏体较珠光体有更高的综合机械性能;马氏体分2种:低碳M有很高的强韧性,高碳M有更高的耐磨性;屈氏体较索氏体的层片间距更小,屈服强度更高,弹性更好. 4奥氏体——碳与合金元素溶解在γ-Fe中的固溶体,仍保持γ-Fe的面心立方晶格。晶界比较直,呈规则多边形;淬火钢中残余奥氏体分布在马氏体间的空隙处铁素体——碳与合金元素溶解在a-Fe中的固溶体。 亚共析钢中的慢冷铁素体呈块状,晶界比较圆滑,当碳含量接近共析成分时,铁素体沿晶粒边界析出。 渗碳体——碳与铁形成的一种化合物。 在液态铁碳合金中,首先单独结晶的渗碳体(一次渗碳体)为块状,角不尖锐,共晶渗碳体呈骨骼状。过共析钢冷却时沿Acm线析出的碳化物(二次渗碳体)呈网结状,共析渗碳体呈片状。铁碳合金冷却到Ar1以下时,由铁素体中析出渗碳体(三次渗碳体),在二次渗碳体上或晶界处呈不连续薄片状。 珠光体——铁碳合金中共析反应所形成的铁素体与渗碳体的机械混合物。 珠光体的片间距离取决于奥氏体分解时的过冷度。过冷度越大,所形成的珠光体片间距离越小。在A1~650℃形成的珠光体片层较厚,在金相显微镜下放大400倍以上可分辨出平行的宽条铁素体和细条渗碳体,称为粗珠光体、片状珠光体,简称珠光体。在650~600℃形成的珠光体用金相显微镜放大500倍,从珠光体的渗碳体上仅看到一条黑线,只有放大1000倍才能分辨的片层,称为索氏体。在600~550℃形成的珠光体用金相显微镜放大500倍,不能分辨珠光体片层,仅看到黑色的球团状组织,只有用电子显微镜放大10000倍才能分辨的片层称为屈氏体。 上贝氏体——过饱和针状铁素体和渗碳体的混合物,渗碳体在铁素体针间。 过冷奥氏体在中温(约350~550℃)的相变产物,其典型形态是一束大致平行位向差为6~8od铁素体板条,并在各板条间分布着沿板条长轴方向排列的碳化物短棒或小片;典型上贝氏体呈羽毛状,晶界为对称轴,由于方位不同,羽毛可对称或不对称,铁素体羽毛可呈针状、点状、块状。若是高碳高合金钢,看不清针状羽毛;中碳中合金钢,针状羽毛较清楚;低碳低合金钢,羽毛很清楚,针粗。转变时先在晶界处形成上贝氏体,往晶内长大,不穿晶。 下贝氏体——同上,但渗碳体在铁素体针内。 过冷奥氏体在350℃~Ms的转变产物。其典型形态是双凸透镜状含过饱和碳的铁素体,并在其内分布着单方向排列的碳化物小薄片;在晶内呈针状,针叶不交叉,但可交接。与回火马氏体不同,马氏体有层次之分,下贝氏体则颜色一致,下贝氏体的碳化物质点比回火马氏体粗,易受侵蚀变黑,回火马氏体颜色较浅,不易受侵蚀。高碳高合金钢的碳化物分散度

8 钢铁中锰的测定方法

实验八钢铁中锰的测定方法 亚砷酸钠-亚硝酸钠滴定法测定锰量 一、实验目的 1.掌握钢铁中锰的亚砷酸钠—亚硝酸钠测定法 2.掌握钢铁试样的溶样方法 二、实验原理 试样经酸溶解,在硫酸、磷酸介质中,以硝酸银为催化剂,用过硫酸铵将锰氧化成七价,用亚砷酸钠—亚硝酸钠标准溶液滴定。本方法适用于生铁、碳钢、合金钢和铁粉中锰量(0.10%~2.50%)的测定。 三、试剂 1.浓硝酸(p=1.42g/ml) 2.硝酸(2+98) 3.浓盐酸(P=1.19g/ml) 4.浓硫酸(p=1.84g/ml) 5.硫酸(2+3)配制100ml,全班共用 6.硫酸(1+1)配制250ml,全班共用 7.双氧水 8.氨水 9.硫酸—磷酸混合酸A:将30ml硫酸(p=1.84g/ml)、30ml磷酸(p=1.70g/ml) 缓慢加入到140ml水中,并不断搅拌、冷却。 10.硫酸—磷酸混合酸B:硫酸(p=1.84g/ml)、磷酸(p=1.70g/ml)和水按等体 积混合,冷却。 11.硝酸银溶液(0.5%):称取0.5g硝酸银溶于水中,滴加数滴硝酸(p=1.42g/ml) 用水稀释至100ml,储存在棕色瓶中。 12.过硫酸铵溶液(20%):用时配制(每组100ml) 13.氯化钠溶液(0.5%):称取0.5g氯化钠,用硫酸(2+98)溶解,并稀释至 100mL 14.高锰酸钾溶液(0.16%)

21V C V T ?=15.锰标准溶液 (1) 称取1.4383g 基准高锰酸钾,置于600ml 烧杯中,加入30ml 水溶解, 加10ml 硫酸(1+1),滴加过氧化氢(p=1.10g/ml )至红色刚好消失,加热煮沸5~10min 冷却、移入1000ml 容量瓶中,用水稀释至刻度,混匀。此溶液1ml 含500ug 锰 (2) 称取0.5000g 电解锰(99.99%)置于250ml 烧杯中,加20ml 硝酸(1+3), 加热溶解,煮沸驱尽氮氧化物,取下冷却至室温,移入1000ml 容量瓶中,用水稀释至刻度,混匀。此溶液1ml 含500ug 锰。(电解锰处理方法:将电解锰放入硫酸(5+95)中清洗,待表面氧化锰洗净后,取出,立即用蒸馏水反复洗,再放入无水乙醇中洗4~5次,取出放入干燥中干燥后,方可使用)。 16.亚砷酸钠—亚硝酸钠标准溶液。 (1) 配制 称取1.63g 亚砷酸钠和0.86g 亚硝酸钠,置于1000ml 烧杯中,用水溶解并稀释至1000ml ,混匀。或称取1.25~1.30g 三氧化二砷,置于1000ml 烧杯中,加25ml 15%氢氧化钠溶液,低温加热溶解,用水稀释至200ml 。滴加硫酸(2+3)使溶液呈酸性并过量2~3ml ,然后用15%碳酸钠溶液中和至pH=6~7,再加0.86g 亚硝酸钠,用水稀释至1000ml ,混匀。 (2) 亚砷酸钠—亚硝酸钠溶液的标定 称取与试样量相近似的铁粉(含锰量不大于0.002%)三份,分别置于300ml 锥形瓶中,加30ml 硫酸—磷酸混合酸A ,加热溶解后,滴加5ml 硝酸破坏碳化物,煮沸驱尽氮氧化物,取下冷却,分别加入锰标准溶液(锰量与试样中锰量相似),用水稀释至体积约80ml ,以下按试样的滴定方法进行。 亚砷酸钠—亚硝酸钠标准溶液对锰的滴定度按下式计算: 式中,T —亚砷酸钠—亚硝酸钠 标准溶液对锰的滴定度,g/ml V 1—移取锰标准溶液的体积,ml C —锰标准溶液的浓度,g/ml

实验一 钢的奥氏体晶粒度的测定及评级方法

实验一钢的奥氏体晶粒度的显示与测定 一.实验目的 1.熟悉钢的奥氏体晶粒度的显示与测定的基本方法。学习利用物镜测微尺标定目镜测微尺和毛玻璃投影屏刻度格值。通过它们间的关系到确定显微镜物镜和显微镜的线放大倍数。 2.熟悉钢在加热时,加热温度和保温时间对奥氏体晶粒大小的影响。 3.测定钢的实际晶粒度。用直接计算法和弦计算法测量晶粒大小。用比较法评定晶粒度级别。 二.实验原理 金属及合金的晶粒大小与金属材料的机械性能、工艺性能及物理性能有密切的关系。细晶粒金属的材料的机械性能、工艺性能均比较好,它的冲击韧性和强度都较高,在热处理和淬火时不易变形和开裂。粒晶粒金属材料的机械性能和工艺性能都比较差,然而粗晶粒金属材料在某些特殊需要的情况下也被加以使用,如永磁合金铸件和燃汽轮机叶片希望得到按一定方向生长的粗大柱状晶,以改善其磁性能和耐热性能。硅钢片也希望具有一定位向的粗晶,以便在某一方向获得高导磁率。金属材料的晶粒大小与浇铸工艺、冷热加工变形程度和退火温度等有关。晶粒尺寸的测定可用直测计算法。掌握了这种方法也可对其它组织单元长度进行测定,如铸铁中石墨颗粒的直径;脱碳层深度的测定等。 某些具有晶粒度评定标准的材料,可通过与标准图片对比进行评定。这种方法称为比较法。 1.奥氏体晶粒度的显示 钢在临界温度以上直接测量奥氏体晶粒大小比较困难的,而奥氏体在冷却过程中将发生相变。一般采用间接的方法显示其原奥氏体晶界,以测定奥氏体晶粒大小。根据GB6394-86规 在经上述方法之一制备的金相试样上,即可进行奥氏体晶粒度的测定。根据GB6394-86规定显示奥氏体晶粒大小的方法有以下几种: (2)比较法 目前生产中,一般都采用比较法测定晶粒度。在用比较法评定钢的晶粒度时,试样制好后在100倍显微镜下直接观察或投射在毛玻璃上,其视场直径为0.80mm。首先对试样作全面观察,然后选择其晶粒度具有代表性的视场与与标准的1-8级级别评级图(×100)对比评定试样的奥氏体晶粒度,与标准级别图中哪一级晶粒大小相同,即定为试样的晶粒度号数。该法简便、快速。

奥氏体不锈钢与马氏体不锈钢的区别

管件知识(2)奥氏体不锈钢与马氏体不锈钢的区别 奥氏体不锈钢与马氏体不锈钢的区别与不同用处 奥氏体不锈钢:在常温下具有奥氏体组织的不锈钢。钢中含Cr约18%、Ni 8%~10%、C约0.1%时,具有稳定的奥氏体组织。奥氏体铬镍不锈钢包括著名的18Cr-8Ni 钢和在此基础上增加Cr、Ni含量并加入Mo、Cu、Si、Nb、Ti等元素发展起来的高Cr-Ni系列钢。奥氏体不锈钢无磁性而且具有高韧性和塑性,但强度较低,不可能通过相变使之强化,仅能通过冷加工进行强化。如加入S,Ca,Se,Te等元素,则具有良好的易切削性。此类钢除耐氧化性酸介质腐蚀外,如果含有Mo、Cu等元素还能耐硫酸、磷酸以及甲酸、醋酸、尿素等的腐蚀。此类钢中的含碳量若低于0.03%或含Ti、Ni,就可显著提高其耐晶间腐蚀性能。高硅的奥氏体不锈钢浓硝酸肯有良好的耐蚀性。由于奥氏体不锈钢具有全面的和良好的综合性能,在各行各业中获得了广泛的应用。 奥氏体型钢 (1)1Cr17Mn6Ni15N;(2)1Cr18Mn8Ni5N;(3)1Cr18Ni9;(4)1Cr18Ni9Si3;(5)0Cr18Ni9;(6)00Cr19Ni10;(7)0Cr19Ni9N;(8)0Cr19Ni10NbN; (9)00Cr18Ni10N;(10)1Cr18Ni12;(11) 0Cr23Ni13;(12)0Cr25Ni20;(13) 0Cr17Ni12Mo2;(14) 00Cr17Ni14Mo2;(15) 0Cr17Ni12Mo2N;(16) 00Cr17Ni13Mo2N;(17) 1Cr18Ni12Mo2Ti;(18) 0Cr18Ni12Mo2Ti;(19) 1Cr18Ni12Mo3Ti;(20) 0Cr18Ni12Mo3Ti;(21) 0Cr18Ni12Mo2Cu2;(22) 00Cr18Ni14Mo2Cu2;(23) 0Cr19Ni13Mo3;(24) 00Cr19Ni13Mo3;(25) 0Cr18Ni16Mo5;(26) 1Cr18Ni9Ti;(27) 0Cr18Ni10Ti;(28) 0Cr18Ni11Nb;(29) 0Cr18Ni13Si4 1.概述 奥氏体不锈钢1913年在德国问世,在不锈钢中一直扮演着最重要的角色,其生产量和使用量约占不锈钢总产量及用量的70%。钢号也最多,当今我国常用奥氏体不锈钢的牌号就有40多个,最常见的就是18-8型。 定义:常温下具有奥氏体组织的不锈钢。 分类:Fe-Cr-Ni (主体) Fe-Cr-Mn

钢的奥氏体等温转变图测定

实验三钢的奥氏体等温转变图测定 一、概述 奥氏体等温转变:钢加热奥氏体化后,冷却到临界点以下进行等温转变时所发生的组织转变为奥氏体等温转变。 奥氏体等温转变图:描述过冷奥氏体在等温转变过程中的转变温度与转变开始和转变终了时间的关系图为奥氏体等温转变图。 奥氏体等温转变图根据转变产物的形态和性质不同分三个区域,低温转变区、中温转变区和高温转变区。 高温转变区转变产物为珠光体。 中温转变区转变产物为贝氏体。 低温转变区转变产物为马氏体和残余奥氏体。 二、实验目的 1、用金相法研究并建立GCr15钢奥氏体的等温转变图。 2、了解不同加热温度对GCr15钢奥氏体等温转变图的影响。 三、实验内容 1、影响奥氏体等温转变的因素 (1)化学成分的影响。 (2)奥氏体晶粒大小对过冷奥氏体转变的影响。 (3)塑性变形的影响。 2、测定奥氏体等温转变图的方法 (1)金相法 (2)硬度法 (3)磁性法 (4)膨胀法 金相法: 金相法能直接而精确地观察到奥氏体分解产物的数量和组织特征。可以确定奥氏体分解的开始点和结束点,还可以精确确定在等温过程中不同等温时间内的奥氏体的分解量。

测量面积法、画线法、定点法和称重法。 硬度法: 随等温停留时间的延长,奥氏体分解量增加,随后淬火得到的马氏体量减少,硬度值随之下降。点1处硬度开始下降,为转变开始时间。到点2处硬度值不再下降,为转变的终了时间。 3、实验步骤 将GCr15钢加热至840℃保温5分钟将试样分别迅速投入到保持在不同温度的盐浴中进行不同时间的等温,然后取出,淬入水中冷却。进行金相组织观察,用画线法测出转变开始时间和结束时间。最后画出GCr15钢奥氏体的等温转变图。

铁素体马氏体和奥氏体的区别

铁素体和奥氏体的区别 钢的组织和特性?铁是钢的基本组成元素。铁在固态有两种晶体结构,一是体心立方结构(存在于两个温度范围内,?912?℃?以上称?α? 铁,?1394?℃?以上称?δ?铁);另一是面心立方结构(存在 于?912?~?1394?℃?之间,称?γ?铁)。碳是钢中另一主要元素,对钢的组织和性能起重要作用,通常随着含碳量的增加,钢的强度增加、塑性下降。碳在钢中主要有两种存在形式,一是溶入铁中与铁形成固溶体(两种以上化学组分互相溶解而形成的均匀固相);另一是与铁形成铁碳化合物,称渗碳体(?Fe?3C?),其硬度高、脆性大。碳溶于?α?铁中形成的固溶体称铁素体;溶于?γ?铁中形成的固溶体称奥氏体,其最大溶解度为??%。钢在冷却过程中,过饱和的奥氏体将发生分解,形成铁素体和渗碳体。铁素体和渗碳体组成的呈片状相间排列的混合物称珠光体。一般碳素钢在室温下的金相组织由铁素体、珠光体和渗碳体组成? 铁素体是碳溶解在a-Fe中的间隙固溶体,常用符号F表示。 不锈钢中的“铁素体”,指的是碳溶解在a-Fe中的间隙固溶体,其溶碳能力很小,常温下仅能溶解为%的碳,在727℃时最大的溶碳能力为%, 它仍保持的体心立方晶格.常用符号F表示。

由于铁素体含碳量很低,其 c:\iknow\docshare\data\cur_work\&aid=6148&sid=&click=1&url=http:的是在使用状态下以铁素体组织为主的不锈钢。它的含铬量在11%~30%,具有体心立方晶体结构,至于不锈钢含铁量与它是否是铁素体不锈钢并无关系.铁素体不锈钢只取决于在使用状态下,它是否以铁素体组织为主. 铁素体有磁性. 在使用状态下以铁素体组织为主的不锈钢。含铬量在11%~30%,具有体心立方晶体结构。这类钢一般不含镍,有时还含有少量的Mo、Ti、Nb等到元素,这类钢具导热系数大,膨胀系数小、抗氧化性好、抗应力腐蚀优良等c:\iknow\docshare\data\cur_work\&aid=6025&sid=&click=1&url=http:727℃1148℃727℃是奥氏体不锈钢的三大元素之一(碳、铬、镍)。镍在奥氏体不锈钢中的作用是与碳紧密结合(不锈钢含碳量越大越容易生锈,为了使奥氏体不锈钢既具有强度又不容易生锈,就需要控制碳的含量,而镍正好弥补这一缺陷),增加其强度及硬度。因为镍抗磁性元素,所以奥氏体不锈钢是没有磁性的。因为铁素体不锈钢主要用于加工装饰方面,需具有良好的塑性与韧性,所以它只含极少量的镍元素,因而它是有磁性的。B. 因为马氏体和铁素体的内部电子都有规则的排列;决定磁性的关键因素是排列规则的电子有规律的运动.而镍正好破坏了电子间这种有规则的排列。 为什么不锈钢不生锈铬具有耐腐蚀性。奥氏体不锈钢、马氏体和铁素体不锈钢都含有12%——30%的铬元素,所以它们不生锈。

相关文档
最新文档