容斥原理例题

容斥原理例题
容斥原理例题

学科:奥数

教学内容:第四讲容斥原理(二)

上一讲我们已经初步研究了简单的容斥原理,今天我们继续研究较复杂的容斥问题。

例1五年级一班有45名同学,每人都积极报名参加暑假体育训练班,其中报足球班的有25人,报篮球班的有20人,报游泳班的有30人,足球、篮球都报者有10人,足球、游泳都报者有10人,足球、篮球都报者有12人。请问:三项都报的有多少人分析:由于问题比较复杂,我们把它简化成下图.要计算阴影部分的面积,我们记A∩B 为圆A与圆B公共部分的面积,B∩C为圆B与圆C公共部分的面积,A∩C表示圆A与圆C 的公共部分的面积,x为阴影部分的面积则图形盖住的面积为:A+B+C-A∩B-B∩C-A∩C+X。请同学们注意:阴影部分的面积先加了3次,然后又被减了3次,最后又加了1次。

解答:设三项都报的有x人,由容斥原理有

30+25+20-10-10-12+x=45

解得 x=2。

答:三项都报名的有2人。

说明:在“A+B+C-A∩B-B∩C-A∩C+X”式中,A,B,C,A∩B,B∩C,A∩C,x和总量这8个数中,只要知道了7个数,就可通过列方程求出第8个数。

例2从1至1000这1000个自然数中,不能被3、5、7中任何一个自然数整除的数一共有多少个

分析:第一步先求出:能被3、5、7中任何一个自然数整除的数一共有多少个第二步再求出:不能被3、5、7中任何一个自然数整除的数一共有多少个能被3整除的自然数的个数+能被5整除的自然数的个数+能被7整除的自然数的个数-(既能被3整除又能被5整除的自然数的个数+既能被3整除又能被7整除的自然数的个数+既能被5整除又能被7整除的自然数的个数)+能同时被3、5、7整除的自然数的个数=能被3、5、7中任何一个自然数整除的数的个数。

解答:能被3整除的自然数有多少个

1000÷3=333……1 有333个。

能被5整除的自然数有多少个

1000÷5=200 有200个。

能被7整除的自然数有多少个

1000÷7=142……6 有142个。

既能被3整除又能被5整除的自然数有多少个

1000÷15=66……10 有66个。

既能被3整除又能被7整除的自然数有多少个

1000÷21=47……13 有47个。

既能被5整除又能被7整除的自然数有多少个

1000÷35=28……20 有28个。

能同时被3、5、7整除的自然数的个数有多少个

1000÷(3×5×7)=9……55 有9个。

能被3、5、7中任何一个自然数整除的数一共有:

333+200+142-(66+47+28)+9=457个。

所以不能被3、5、7中任何一个自然数整除的数一共有:1000-543=457

例3 某个班的全体学生进行了短跑、游泳、篮球三个项目的测试,有4名学生在这三个项目上都没有达到优秀,其余每人至少有一个项目达到优秀。这部分达到优秀的项目、人

短跑游泳篮球短跑

游泳

游泳

篮球

篮球

短跑

短跑、游

泳、篮球

1718156652

请问:这个班有多少名学生

分析:本题是较复杂的容斥原理的题目,可以画一个长方形表示全班学生,再画三个相交的圆分别表示短跑、游泳、篮球得优秀的学生。注意计算短跑人数+游泳人数+篮球人数时,短跑游泳人数、游泳篮球人数、篮球短跑人数分别被算过两次,而短跑游泳篮球人数则被计算了3次。

解答:至少一项优秀人数=短跑人数+游泳人数+篮球人数-(短跑游泳人数+游泳篮球人数+篮球短跑人数)+短跑游泳篮球人数=17+18+15-(6+6+5)+2=35所以全班人数=至少一项优秀人数+未得优秀人数=39。

说明:本题解中的公式是三个不同集合相互相交而得的问题所用的容斥原理公式,本题也可依次计算图中每一小块所代表的集合的人数最后再求和。如图所示,图中分成8个部分:G=短跑游泳篮球三项优秀人数=2

D=只有短跑游泳两项优秀人数=短跑、游泳优秀人数-短跑游泳篮球三项优秀人数=6-2=4 E=只有游泳篮球两项优秀人数=游泳、篮球优秀人数-短跑游泳篮球三项优秀人数=6-2=4 F=只有篮球短跑两项优秀人数=篮球、短跑优秀人数-短跑游泳篮球三项优秀人数=5-2=3 A=只有短跑一项优秀人数=短跑优秀人数-(D+G+F)=17-(4+2+3)=8

B=只有游泳一项优秀人数=游泳优秀人数-(D+G+E)=18-(4+2+4)=8

C=只有篮球一项优秀人数=篮球优秀人数-(E+G+F)=15-(4+2+3)=6

H=三个项目均未达到优秀人数=4;

所以A+B+C+D+E+F+G+H=8+8+6+4+4+3+2+4=39

例4 如下图,在长方形ABCD中,AD=15厘米,AB=8厘米,四边形OEFG的面积是9平方厘米。请问:阴影部分的面积是多少平方厘米

分析:注意到三角形ABD、三角形ACD面积的和比所求的阴影部分多算了三角形AED与三角形DOG面积的和,而这两个三角形的面积和可由三角形AFD的面积减去四边形OEFG的面积得到,这样就可以求出阴影部分的总面积。

解答:三角形ABD、三角形AFD、三角形ACD都可以AD为底,AB为高,故它们的面积都等于AD×AB÷2=15×8÷2=60(平方厘米)。

阴影部分面积=(三角形ABD面积+三角形ACD面积)-

(三角形AFD面积-四边形DEFG面积)

=(60+60)-(60-9)=69(平方厘米)。

说明:本题还有其它(例3的第2中方法)的方法,请你想一想。

例5 某班同学参加期末测试,得优秀成绩的人数如下:数学20人,语文20人,英语20人,数学、英语两科都是优秀成绩的有8人,数学、语文两科成绩都是优秀的有7人,语文、英语两科成绩都是优秀的有9人,三科都没得优秀成绩的有3人。请问:这个班最多有多少人最少有多少人

分析:如下图,数学、语文、英语得优秀成绩的的同学都包含在这个班中,设这个班有y人,用长方形表示.A、B、C分别表示数学、语文、英语得优秀成绩的的人,由已知有A∩C=8,A∩B=7,B∩C=9,A∩B∩C=X.

解答:由容斥原理有

Y=A+B+C-A∩B-A∩C-B∩C+A∩B∩C+3

即y=20+20+20-7-8-9+x+3=39+x。

以下我们考虑如何求y的最大值与最小值。

由y=39+x可知,当x取最大值时,y也取最大值;当x取最小值时,y也取最小值。因为x是数学、语文、英语三科都得优秀成绩的人数,所以他们中的人数一定不超过两科得优秀成绩的人数,即x=7,x=8且x=9,由此我们得到x=7.另一方面数学得优秀成绩的的同学有可能语文都没得优秀成绩的,也就是说也有这种可能:没有三科都得优秀成绩的的同学,故x=0,故x =0或x=7。

当x取最大值7时,y有最大值39+7=46,当x取最小值0时,y有最小值39+0=39。

答:这个班最多有46人,最少有39人。

例6 五年级2班有46名学生参加三项课外兴趣活动,其中24人参加了数学小组,20人参加了语文小组,参加文艺小组的人数是既参加数学小组又参加文艺小组人数的倍,又是三项活动都参加人数的7倍,既参加文艺小组又参加语文小组相当于三项活动都参加人数的2倍,既参加数学小组又参加语文小组的学生有10人。请问:参加文艺小组的学生有多少人

分析:这里涉及了三个对象:数学小组、语文小组、文艺小组,然而从题目的叙述来

看,在容斥原理的等式中都涉及了一个关键的量,即三项活动都参加人数。因而必须先求出这个三项活动都参加人数。再利用参加文艺小组的人数与它的关系即可求解。

解答:设三项活动都参加人数为x ,根据题意得参加文艺小组的人数为7x ,既参加数学小组又参加文艺小组的人数为7x ÷=2x ,既参加文艺小组又参加语文小组的人数为2x 。根据容斥原理可以得到下面等式:

24+20+7x-(2x+2x+10)+x=46

4x=16

x=3人

所以:7x=21人。

所以:参加文艺小组的学生有21人。

说明:在很多问题中涉及一个基准量,经过分析找到这个基准量后,问题便可以解决。 阅读材料

“1名数学家=10个师”的由来

第二次世界大战中,美国曾经宣称:一名优秀的数学家的作用超过10个师的兵力。你可知这句话的由来吗

1943年以前,在大西洋上英美运输船队常常受到德国潜艇的袭击,当时,英美两国限于实力,无力增派更多的护航舰,一时间,德军的"潜艇战"搞得盟军焦头烂额。

为此,有位美国海军将领专门去请教了几位数学家,数学家们运用概率论分析后发现,舰队与敌潜艇相遇是一个随机事件,按数学角度来看这一问题,它有一定的规律。一定数量的船(如100艘)编队规模越小,编次就越多(如每次20艘,就要有5个编次);编次越多,与敌人相遇的概率就越大。比如5位同学放学都回自己家里,老师要找一位同学的话,随便去哪家都行,但若这5位同学都在其中某一家的话,老师要找几家才能找到,一次找到的可能性只有20%。美国海军接受了数学家的建议,命令船队在指定海域集合,再集体通过危险海域,然后各自驶向预定港口。结果奇迹出现了:盟军舰队遭袭被击沉的概率由原来的25%降低为1%,大大减少了损失,保证了物资的及时供应。

练习题

1.如下图,长方形长为4厘米,宽为3厘米,请你求出四边形GHEF 的面积。

分析与解答:所求四边形四条边的长都不知道,我们还不会直接求它的面积.由于所求四边形面积与4个三角形面积之和等于长方形面积,我们可以利用容斥原理把不规则图形HEFG 的面积转化为求规则图形的面积。

S HEFG =S ABCD -S △AHE -S △EBF -S △CFG -S △GDH

122113211221132143??-??-??-??-?=

=7(平方厘米)

2.在边长是10厘米的正方形纸片中间挖掉一个小正方形后,成为一个宽度为1厘米的方框,把5个这样的方框放在桌面上(如下图)。请你算一算:桌面被这些方框所盖住的面积是多少平方厘米

分析:观察图,可知重叠部分相当于8个边长1厘米的正方形。

解答:(102-82)×5-12×8=172(平方厘米)

3.张宏、王刚、李立三人练习投篮球,一共投了100次,有43次没投进,已知张宏和王刚一共投进了32次,王刚和李立一共投进了46次,王刚投进了多少次

分析与解答:三人投的总次数减去没投进的次数,就是三人共投进100-43=57次。张宏和王刚、王刚和李立共投进的次数为32+46=78次,这是三人共投进的次数,在加上王刚投进的次数,从中减去共投进的次数,就是王刚投进的次数,列式为78-57=21次,所以王刚投进了21次。

答:王刚投进了21次。

4.育新小学举行各年级学生画展,其中有18幅画不是六年级的,20幅画不是五年级的。现在知道五、六年级共展出22幅画,请问:其他年级共展出多少幅画分析与解答:其中18幅不是六年级的,换句话说,一至五年级共展出18幅,20幅不是五年级的,换句话说,就是一、二、三、四、六年级共展出20幅,从中可以看出一、二、三、四年级总张数的2倍加上五、六年级张数的和,一共是18+20=38幅,又因为五、六年级共展出22幅画,,因此一至四年级张数和的2倍是38-22=16张。从而可以求出一至四年级共展出16÷2=8张。

答:其它年级共展出8张。

5.在一根长木棍上,有三种刻度线,它们分别将木棍分成10等分、12等分、15等分。如果沿每条刻度线把木棍锯断,请问:木棍总共被锯成多少段

分析:由于木棍的端点处没有刻度线,所以,这三种刻度线分别有10-1=9(条),12-1=11(条),15-1=14(条),不妨设木棍长为60厘米。那么,与三种刻度线相对应的每一份长分别是:60÷10=6(厘米),60÷12=5(厘米),60÷15=4(厘米)。根据5和6的最小公倍数是30,可算出第一、第二种刻度线重复的条数是60÷30-1=1(条),用同样的方法可以求出:另两种重复的刻度线分别有2条、4条。

解答:(9+11+14-1-2-4)+1=28(段)

想一想:(1)在计算刻度线条数时为什么都要减去1(2)为什么可以设木棍长是60厘米(3)最后为什么要用所有刻度线条数加1

6.某班45名同学参加了体育测试,其中百米得优者20人,跳远得优者18人,又知百米、跳远均得优者7人,跳高、百米均得优者6人,跳高、跳远均得优者8人,跳高得优者22人,全班只有1名同学各项都没达到优,请问:三项都是优的有多少人解答:设三项都达到优的有x人,由逐步排除法有:

20+18+22-7-8-6+x+1=45

解得x=5

7.“六一”儿童节,某校有25个小朋友得奖,学校为他们准备了甲、乙、丙三种奖品

让他们自由选择,有14人要甲种奖品,12人要乙种奖品,10人要丙种奖品,其中4人既要甲种又要乙种,但不要丙种奖品,2人既要甲种又要丙种,但不要乙种,只有1人三种都要。每个小朋友至少选择其中的一种,请问:有多少人要乙种和丙种而不要甲种奖品分析与解答:根据题意,可以画图表示已知量之间的关系,并用A、B、C表示图中的三个未知量。则

A+B=10-(2+1)=7

B+C=12-(4+1)=7

A+B+C=25-14=11

B=(A+B)+(B+C)-(A+B+C)=7+7-11=3(人)

8.如下图,在桌面上放置两两重叠,边长都相等的三个正方形纸片。已知盖住桌面的总面积是144平方厘米。三张纸片共同重叠部分的面积是42平方厘米,图中阴影面积为72平方厘米。请问:正方形的边长是多少厘米

解答:三个正方形总面积是:144+阴影面积×(2-1)+中间重叠面积×(3-1)=144+72×(2-1)+42×(3-1)=300(平方厘米);每一个正方形的面积是:300÷3=100(平方厘米);因为一个正方形面积是100平方厘米,所以正方形边长是10厘米。

9.某班四年级时、五年级时和六年级时分别评出10名三好学生,又知四、五年级连续三好生4人,五、六年级连续三好生3人,四年级六年级两年评上三好生的有5人,四、五、六三年没评过三好生的有20人,请问:这个班最多有多少名同学最少有多少名同学解答:设该班有y人,三年连续三好生有x人,由容斥原理有

y=10+10+10-3-4-5+x+20

y=38+x

由于三年都连续包含在三年连续中,故0≤x≤3。

y的最大值=38+3=41;

y的最小值=38+0=38。

答:该班最多有41人,最少有38人。

10.某校五年级二班有49人参加了数学、英语、语文学习小组,其中数学有30人参加,英语有20人参加,语文小组有10人.老师告诉同学既参加数学小组又参加语文小组的有3人,既参加数学又参加英语和既参加英语又参加语文的人数均为质数,而三种全参加的只有1人,请问:你能求出既参加英语又参加数学小组的人数吗

分析与解答:根据已知条件可以画出集合图.根据已知三圆盖住的总体为49人,A=30,B=20,C=10,A∩B=X,B∩C=Y,A∩C=3,A、B、C的公共部分记为A∩B∩C=1,由逐步排除

法有49=A+B+C-A∩B-B∩C-A∩C+A∩B∩C,即:

49=30+20+10-x-y-3+1

故 x+y=9。

由于x,y都是质数,而它们的和为奇数9.因而这两个质数中必有一个偶质数2,另外由x+y=9知另一个质数为7。

答:既参加英语又参加数学小组的人为2个或7个。

容斥原理公式及运用

容斥原理公式及运用 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

在计数时,必须注意无一重复,无一遗漏。为了使重叠部分不被重复计算,研究出一种新的计数方法。这种方法的基本思路是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。 一、容斥原理1:两个集合的容斥原理 如果被计数的事物有A、B两类,那么,先把A、B两个集合的元素个数相加,发现既是A类又是B类的部分重复计算了一次,所以要减去。如下图所示。【示例1】一次期末考试,某班有15人数学得满分,有12人语文得满分,并且有4人语、数都是满分,那么这个班至少有一门得满分的同学有多少人 数学得满分人数→A,语文得满分人数→B,数学、语文都是满分人数→A∩B,至少有一门得满分人数→A∪B。A∪B=15+12-4=23,共有23人至少有一门得满分。 二、容斥原理2:三个集合的容斥原理

如果被计数的事物有A、B、C三类,那么,将A、B、C三个集合的元素个数相加后发现两两重叠的部分重复计算了1次,三个集合公共部分被重复计算了2次。 如下图所示,灰色部分A∩B-A∩B∩C、B∩C-A∩B∩C、C∩A-A∩B∩C都被重复计算了1次,黑色部分A∩B∩C被重复计算了2次,因此总数A∪B∪C=A+B+C-(A∩B-A∩B∩C)-(B∩C-A∩B∩C)-(C∩A-A∩B∩C)-2A∩B∩C=A+B+C-A∩B-B∩C-C∩A+A∩B∩C。即得到: 【示例2】某班有学生45人,每人都参加体育训练队,其中参加足球队的有25人,参加排球队的有22人,参加游泳队的有24人,足球、排球都参加的有12人,足球、游泳都参加的有9人,排球、游泳都参加的有8人,问:三项都参加的有多少人 参加足球队→A,参加排球队→B,参加游泳队→C,足球、排球都参加的→A∩B,足球、游泳都参加的→C∩A,排球、游泳都参加的→B∩C,三项都参加的→A∩B∩C。三项都参加的有A∩B∩C=A∪B∪C-A-B-C+A∩B+B∩C+C∩A=45-25-22-24+12+9+8=3人。

小学数学容斥原理

容斥原理 知识结构 一、两量重叠问题 在一些计数问题中,经常遇到有关集合元素个数的计算.求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:A B A B A B =+-(其中符号“ ”读作“并”,相当于中文“和”或者“或” 的意思;符号“”读作“交”,相当于中文“且”的意思.)则称这一公式为包含与排除原理,简称容斥原理.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B , 即阴影面积. 包含与排除原理告诉我们,要计算两个集合A B 、的并集A B 的元素的个数,可分以下两步进行: 第一步:分别计算集合A B 、的元素个数,然后加起来,即先求A B +(意思是把A B 、的一切元素都“包含” 进来,加在一起); 第二步:从上面的和中减去交集的元素个数,即减去C A B =(意思是“排除”了重复计算的元素个数). 二、三量重叠问题 A 类、 B 类与 C 类元素个数的总和A =类元素的个数B +类元素个数C +类元素个数-既是A 类又是B 类的元素个数-既是B 类又是C 类的元素个数-既是A 类又是C 类的元素个数+同时是A 类、B 类、C 类的元素个数.用符号表示为:A B C A B C A B B C A C A B C =++---+.图示如下: 在解答有关包含排除问题时,我们常常利用圆圈图(韦恩图)来帮助分析思考. 1.先包含——A B + 重叠部分A B 计算了2次,多加了1次; 2.再排除——A B A B +- 把多加了1次的重叠部分A B 减去. 图中小圆表示A 的元素的个数,中圆表示B 的元素的个数, 大圆表示C 的元素的个数. 1.先包含:A B C ++ 重叠部分A B 、B C 、C A 重叠了2次,多加了1次. 2.再排除:A B C A B B C A C ++--- 重叠部分A B C 重叠了3次,但是在进行A B C ++- A B B C A C --计算时都被减掉了. 3.再包含:A B C A B B C A C A B C ++---+.

容斥原理公式及运用

容斥原理公式及运用 在计数时,必须注意无一重复,无一遗漏。为了使重叠部分不被重复计算,研究出一种新的计数方法。这种方法的基本思路是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。 一、容斥原理1:两个集合的容斥原理 如果被计数的事物有A、B两类,那么,先把A、B两个集合的元素个数相加,发现既是A类又是B类的部分重复计算了一次,所以要减去。如下图所示。 【示例1】一次期末考试,某班有15人数学得满分,有12人语文得满分,并且有4人语、数都是满分,那么这个班至少有一门得满分的同学有多少人?数学得满分人数→A,语文得满分人数→B,数学、语文都是满分人数→A∩B,至少有一门得满分人数→A∪B。A∪B=15+12-4=23,共有23人至少有一门得满分。 二、容斥原理2:三个集合的容斥原理 如果被计数的事物有A、B、C三类,那么,将A、B、C三个集合的元素个数相加后发现两两重叠的部分重复计算了1次,三个集合公共部分被重复计算了2次。如下图所示,灰色部分A∩B-A∩B∩C、B∩C-A∩B∩C、C∩A-A∩B∩C都被重复计算了1次,黑色部分A∩B∩C被重复计算了2次,因此总数A∪B∪C=A+B+C-(A∩B-A∩B∩C)-(B∩C-A∩B∩C)-(C∩A-A∩B∩C)-2A∩B∩C=A+B+C-A∩

B-B∩C-C∩A+A∩B∩C。即得到: 【示例2】某班有学生45人,每人都参加体育训练队,其中参加足球队的有25人,参加排球队的有22人,参加游泳队的有24人,足球、排球都参加的有12人,足球、游泳都参加的有9人,排球、游泳都参加的有8人,问:三项都参加的有多少人? 参加足球队→A,参加排球队→B,参加游泳队→C,足球、排球都参加的→A∩B,足球、游泳都参加的→C∩A,排球、游泳都参加的→B∩C,三项都参加的→A∩B ∩C。三项都参加的有A∩B∩C=A∪B∪C-A-B-C+A∩B+B∩C+C∩ A=45-25-22-24+12+9+8=3人。

第31讲___容斥原理

第31讲容斥原理 例题与方法 例1 在1~100的自然数中,不能被3也不能被5整除的数有多少个? 例2 某班有52人,其中会下棋的有48人,会画画的有37人,会跳舞的有39人,这三项都会的至少有几人? 例3 100名学生中,每人至少懂一种外语,其中75人懂法语,83人懂英语,65人懂日语,懂三种语言的有50人,懂两种外语的有多少人? 例4 在1~143这143个自然数中,与143互质的自然数共有多少个? 例5 某班学生参加语文、数学、英语三科考试,语文、数学、英语都得满分的分别有21人、19人、20人。语文、数学都得满分的有9人;数学、英语都得满分的有7人;语文、英语都得满分的有8人;另有5人三科都未得满分。这个班最多能有多少人? 思考与练习 1.某班有学生46名,其中爱好音乐的有17人,爱好美术的有14人,既爱好音乐又爱好美术的有5人。问:两样都不爱好的有多少人? 2.分母是105的最简真分数共有多少个? 3.一个家电维修站有80%工人精通修彩电,有70%的人精通修空调,10%的人两项不熟悉。问:两项都精通的人占白分之几? 4.在1~100的自然数中,既不能被5整除也不能被9整除的数的和是多少? 5.在1~200的自然数中,能被2整除,或能被3整除,或能被5整除的数共有多少个? 6.在100名学生中,爱好音乐的有56人,爱好体育的有75人,那么既爱好音乐又爱好体育的最少有多少人,最多有多少人? 7.64人订A、B、C三种杂志,订A杂志的有28人,订B杂志的有41人,订C杂志的有20人,订A、B两种杂志的有10人,订B、C两种杂志的有12人,订A、C两种杂志的有12人。三种杂志都订的有多少人? 8.有100位旅客,其中有10人既不懂英语又不懂俄语,有75人懂英语,有83人懂俄语,那么这100位旅客中既懂英语懂俄语的有多少人?

《三集合容斥原理》

三集合容斥原理 华图教育梁维维 我们知道容斥原理的本质是把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复的一种计数的方法。之前我们叙述过了两集合容斥原理,下面我们来看一下三集合容斥原理,相对于两集合容斥原理而言,三集合容斥原理的难度有所增加,但总体难度适中,所以三集合容斥原理在国家公务员考试中出现的频率较高,在其他省份考试以及各省份联考当中也时有出现,下面我们了解一下三集合容斥原理的公式。 三集合容斥原理公式: 三者都不满足的个数。 总个数- = + - - - + + =| | | | | | | | | | | | | || |C B A C B C A B A C B A C B A 有些问题,可以直接代入三集合容斥原理的公式进行求解。 【例1】如图所示,X、Y、Z分别是面积为64、180、160的三张不同形状的纸片。它们部分重叠放在一起盖在桌面上,总共盖住的面积为290。且X与Y、Y与Z、Z与X重叠部分面积分别为24、70、36。问阴影部分的面积是多少?( ) A.15 B.16 C.14 D.18 【解析】依题意,假设阴影部分的面积为x,代入公式可得:64+180+160-24-70-36+x=290,解得x=16,正确答案为B选项。 近几年,直接套用三集合公式的题目有所减少,开始出现条件变形的题目,往往告诉大家“只满足两个条件的共有多少”这样的信息,看似无法直接套用公式,其实只要掌握本质,仍然可以直接套用公式。 【例2】(2012河北-44)某通讯公司对3542个上网客户的上网方式进行调查,其中1258个客户使用手机上网,1852个客户使用有线网络上网,932个客户使用无线网络上网。如果使用不只一种上网方式的有352个客户,那么三种上网方式都使用的客户有多少个?() A. 148 B. 248

升第八讲容斥原理之重叠问题

第八讲:容斥原理之重叠问题 导入 文氏图■■■■■■■■■■■■■■■ 文氏图,也叫维恩图”是由英国著名数学家Venn发明的. 维恩(公元1834 年8月4日「公元1923 年4月4日)十九世纪英国著名的数学家和哲学家,生于英国赫尔.他1883 年获得理学博士学位,同年被选为英国皇家学会会员. 维恩最主要的成就是系统解释并发展了几何表示的方法,也就是发明了文氏图.■他作出一系列 ? 简单闭曲线(圆或更复杂的图形),将平面分为许多间隔.利用这种图表,维恩阐明了演绎推理的基本原 理.为了进一步明确起见,他还引入了一些数学难题作为实例.虽然在维恩之前, 莱布尼茨(Leibniz )已系统地运用过这类逻辑图,但今天这种逻辑图仍称作维恩图”另外, 维 恩在概率论和逻辑学方面也有很大贡献,他的著作一一《机会逻辑》和《符号逻辑》,在19 世纪末20 世纪初曾享有很高的声誉. 除了数学以外,维恩还有一项较为特别的技能一一制作机器.他曾制作过一部板球发球机, 当澳洲板球队在1909 年到访剑桥大学时,维恩的机器依然运作正常,并使他们其中一位成员打空四次. 什么是容斥原理? 这一讲我们主要学习和“包含”与“排除”有关的问题,这样的问题在生活中就有不少,比如吃瓜子.我们说吃掉了一斤瓜子,指的是带壳的瓜子,并非真的吃到肚子里一斤,因为这一斤中还“包含”着瓜子壳.如果要计算到底吃了多少,最简单的方法就是称一称瓜子壳,用原来的一斤“排除”掉瓜子壳的重量.瓜子的例子相对简单,一斤瓜子里一部分是瓜子仁,另一部分就是瓜子壳,两者各不相关.但本讲要学习的包含与排除问题要复杂一些,各部分之间会有重叠. 比如一个办公室中每个人都至少爱喝茶或咖啡中的一种,已知有7个人爱喝茶,10个人爱喝咖啡,那能不能就说办公室里有17 个人呢?显然不能,因为可能有一些人既爱喝茶也爱 喝咖啡,如果直接将喝茶的人数和喝咖啡的人数相加,会把既爱喝茶又爱喝咖啡的人计算2 次,计算人数的时候要把这一部分减去才行. 比如,如果有3个人既爱喝茶又爱喝咖啡,那总的人数就应该是7 + 10 - 3 = 14 人.

容斥原理公式及运用完整版

容斥原理公式及运用 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

在计数时,必须注意无一重复,无一遗漏。为了使重叠部分不被重复计算,研究出一种新的计数方法。这种方法的基本思路是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。 一、容斥原理1:两个集合的容斥原理 如果被计数的事物有A、B两类,那么,先把A、B两个集合的元素个数相加,发现既是A类又是B类的部分重复计算了一次,所以要减去。如下图所示。 【示例1】??一次期末考试,某班有15人数学得满分,有12人语文得满分,并且有4人语、数都是满分,那么这个班至少有一门得满分的同学有多少人? 数学得满分人数→A,语文得满分人数→B,数学、语文都是满分人数→A∩B,至少有一门得满分人数→A∪B。A∪B=15+12-4=23,共有23人至少有一门得满分。 二、容斥原理2:三个集合的容斥原理 如果被计数的事物有A、B、C三类,那么,将A、B、C三个集合的元素个数相加后发现两两重叠的部分重复计算了1次,三个集合公共部分被重复计算了2次。 如下图所示,灰色部分A∩B-A∩B∩C、B∩C-A∩B∩C、C∩A-A∩B∩C都被重复计算了1次,黑色部分A∩B∩C被重复计算了2次,因此总数A∪B∪C=A+B+C-(A∩B-A∩B∩C)-(B∩C-A∩B∩C)-(C∩A-A∩B∩C)-2A∩B∩C=A+B+C-A∩B-B∩C-C∩A+A∩B∩C。即得到: 【示例2】??某班有学生45人,每人都参加体育训练队,其中参加足球队的有25人,参加排球队的有22人,参加游泳队的有24人,足球、排球都参加的有12人,足球、游泳都参加的有9人,排球、游泳都参加的有8人,问:三项都参加的有多少人? 参加足球队→A,参加排球队→B,参加游泳队→C,足球、排球都参加的→A∩B,足球、游泳都参加的→C∩A,排球、游泳都参加的→B∩C,三项都参加的→A∩B∩C。三项都参加的有A∩B∩C=A∪B∪C-A-B-C+A∩B+B∩C+C∩A=45-25-22-24+12+9+8=3人。

4升5-8第八讲:容斥原理之重叠问题

第八讲:容斥原理之重叠问题 一、导入 文氏图 文氏图,也叫“维恩图”,是由英国著名数学家 Venn 发明的. 维恩(公元 1834 年 8 月 4 日─公元 1923 年 4 月 4 日)十九世纪英国著名的数学家和哲学家,生于英国赫尔.他 1883 年获得理学博士学位,同年被选为英国皇家学会会员. 维恩最主要的成就是系统解释并发展了几何表示的方法,也就是发明了文氏图.他作出一系列简单闭曲线(圆或更复杂的图形),将平面分为许多间隔.利用这种图表,维恩阐明了演绎推理的基本原理.为了进一步明确起见,他还引入了一些数学难题作为实例.虽然在维恩之前, 莱布尼茨(Leibniz)已系统地运用过这类逻辑图,但今天这种逻辑图仍称作“维恩图”另外,维恩在概率论和逻辑学方面也有很大贡献,他的著作——《机会逻辑》和《符号逻辑》,在 19 世纪末 20 世纪初曾享有很高的声誉. 除了数学以外,维恩还有一项较为特别的技能——制作机器.他曾制作过一部板球发球机,当澳洲板球队在 1909 年到访剑桥大学时,维恩的机器依然运作正常,并使他们其中一位成员打空四次. 什么是容斥原理? 这一讲我们主要学习和“包含”与“排除”有关的问题,这样的问题在生活中就有不少, 比如吃瓜子.我们说吃掉了一斤瓜子,指的是带壳的瓜子,并非真的吃到肚子里一斤,因为这一斤中还“包含”着瓜子壳.如果要计算到底吃了多少,最简单的方法就是称一称瓜子壳,用原来的一斤“排除”掉瓜子壳的重量.瓜子的例子相对简单,一斤瓜子里一部分是瓜子仁,另一部分就是瓜子壳,两者各不相关.但本讲要学习的包含与排除问题要复杂一些,各部分之间会有重叠. 比如一个办公室中每个人都至少爱喝茶或咖啡中的一种,已知有 7 个人爱喝茶,10 个人爱喝咖啡,那能不能就说办公室里有 17 个人呢?显然不能,因为可能有一些人既爱喝茶也爱喝咖啡,如果直接将喝茶的人数和喝咖啡的人数相加,会把既爱喝茶又爱喝咖啡的人计算 2 次,计算人数的时候要把这一部分减去才行. 比如,如果有 3 个人既爱喝茶又爱喝咖啡,那总的人数就应该是 7 + 10 ? 3 = 14 人.

容斥原理

容斥原理(Inclusion–exclusion principle),是指在计数时,必须注意无一重复,无一遗漏,为了使重叠部分不被重复计算,人们研究出一种新的计数方法。这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。 公式 也可表示为 设S为有限集,,则 两个集合的容斥关系公式:A∪B=A+B-A∩B(∩:重合的部分) 三个集合的容斥关系公式:A∪B∪C=A+B+C-A∩B-B∩C-C∩A+A∩B∩C 详细推理如下: 1、等式右边改造={[(A+B-A∩B)+C-B∩C]-C∩A}+A∩B∩C 2、文氏图分块标记如右图图:1245构成A,2356构成B,4567构成C 3、等式右边()里指的是下图的1+2+3+4+5+6六部分: 那么A∪B∪C还缺部分7。 4、等式右边[]号里+C(4+5+6+7)后,相当于A∪B∪C多加了4+5+6三部分,减去B∩C(即5+6两部分)后,还多加了部分4。 5、等式右边{}里减去C∩A(即4+5两部分)后,A∪B∪C又多减了部分5, 则加上A∩B∩C(即5)刚好是A∪B∪C。 2严格证明 对于容斥原理我们可以利用数学归纳法证明: 证明:当时,等式成立()。 假设时结论成立,则当时, 所以当时,结论仍成立。因此对任意,均可使所证等式成立。 3原理1

如果被计数的事物有A、B两类,那么,A类B类元素个数总和=属于A类元素个数+属于B类元素个数—既是A类又是B类的元素个数。(A∪B=A+B-A∩B) 例1一次期末考试,某班有15人数学得满分,有12人语文得满分,并且有4 人语、数都是满分,那么这个班至少有一门得满分的同学有多少人? 分析 依题意,被计数的事物有语、数得满分两类,“数学得满分”称为“A类元素”,“语文得满分”称为“B类元素”,“语、数都是满分”称为“既是A类又是B 类的元素”,“至少有一门得满分的同学”称为“A类和B类元素个数”的总和。 答案 15+12-4=23 试一试 电视台向100人调查前一天收看电视的情况,有62人看过2频道,34人看过8频道,其中11人两个频道都看过。两个频道都没看过的有多少人? 100-(62+34-11)=15 4原理2 如果被计数的事物有A、B、C三类,那么,A类和B类和C类元素个数总和=A 类元素个数+B类元素个数+C类元素个数—既是A类又是B类的元素个数—既是A类又是C类的元素个数—既是B类又是C类的元素个数+既是A类又是B类而且是C类的元素个数。(A∪B∪C=A+B+C-A∩B-B∩C-C∩A+A∩B∩C) 例1 某校六⑴班有学生45人,每人在暑假里都参加体育训练队,其中参加足球队的有25人,参加排球队的有22人,参加游泳队的有24人,足球、排球都参加的有12人,足球、游泳都参加的有9人,排球、游泳都参加的有8人,问:三项都参加的有多少人? 分析:参加足球队的人数25人为A类元素,参加排球队人数22人为B类元素,参加游泳队的人数24人为C类元素,既是A类又是B类的为足球排球都参加的12人,既是B类又C类的为足球游泳都参加的9人,既是C类又是A类的为排球游泳都参加的8人,三项都参加的是A类B类C类的总和设为X。注意:这个

容斥原理(二)

才子教育小学奥数系列 容斥原理(二) 【例题分析】 例1. 有25人参加跳远达标赛,每人跳三次,每人至少有一次达到优秀。第一次达到优秀的有10人,第二次达到优秀的有13人,第三次达到优秀的有15人,三次都达到优秀的只有1人。只有两次达到优秀的有多少人? 分析与解:“每人至少有一次达到优秀”说明没有三次都没达到优秀的。要求只有两次达到优秀的人数,就是求重叠两层的部分(图中阴影部分)。 (人) 答:只有两次达到优秀的有11人。 例2. 在一个炎热的夏日,几个小朋友去冷饮店,每人至少要了一样冷饮,其中有6人要了冰棍,6人要了汽水,4人要了雪碧,只要冰棍和汽水的有3人,只要冰棍和雪碧的没有,只要汽水和雪碧的有1人;三样都要的有1人。问:共有几个小朋友去了冷饮店? 分析与解:根据题意画图。

才子教育小学奥数系列 方法一:(人) 方法二:(人) 答:共有10个小朋友去了冷饮店。 例3. 有28人参加田径运动会,每人至少参加两项比赛。已知有8人没参加跑的项目,参加投掷项目的人数与参加跑和跳两项的人数都是17人。问:只参加跑和投掷两项的有多少人? 分析与解:“每人至少参加两项比赛”说明没有不参加的,也没有参加一项比赛的,我们可以在下图中参加一项的区域用0表示。 (人) 答:只参加跑和投掷两项的有3人。 例4. 某校六年级二班有49人参加了数学、英语、语文学习小组,其中数学有30人参加,英语有20人参加,语文小组有10人。老师告诉同学既参加数学小组又参加语文小组的有3人,既参加数学又参加英语和既参加英语又参加语文的人数均为质数,而三种全参加的只有1人,求既参加英语又参加数学小组的人数。 分析与解:根据已知条件画出图。

容斥原理公式及运用

容斥原理公式及运用 在计数时,必须注意无一重复,无一遗漏。为了使重叠部分不被重复计算,研究出一种新的计数方法。这种方法的基本思路就是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。 一、容斥原理1:两个集合的容斥原理 如果被计数的事物有A、B两类,那么,先把A、B两个集合的元素个数相加,发现既就是A类又就是B类的部分重复计算了一次,所以要减去。如下图所示。 【示例1】一次期末考试,某班有15人数学得满分,有12人语文得满分,并且有4人语、数都就是满分,那么这个班至少有一门得满分的同学有多少人? 数学得满分人数→A,语文得满分人数→B,数学、语文都就是满分人数→A∩B,至少有一门得满分人数→A∪B。A∪B=15+12-4=23,共有23人至少有一门得满分。 二、容斥原理2:三个集合的容斥原理 如果被计数的事物有A、B、C三类,那么,将A、B、C三个集合的元素个数相加后发现两两重叠的部分重复计算了1次,三个集合公共部分被重复计算了2次。 如下图所示,灰色部分A∩B-A∩B∩C、B∩C-A∩B∩C、C∩A-A∩B∩C都被重复计算了1次,黑色部分A∩B∩C被重复计算了2次,因此总数A∪B∪C=A+B+C-(A∩B-A∩B∩C)-(B∩C-A∩B∩C)-(C∩A-A∩B∩C)-2A∩B∩C=A+B+C-A∩B-B∩C-C∩

A+A∩B∩C。即得到: 【示例2】某班有学生45人,每人都参加体育训练队,其中参加足球队的有25人,参加排球队的有22人,参加游泳队的有24人,足球、排球都参加的有12人,足球、游泳都参加的有9人,排球、游泳都参加的有8人,问:三项都参加的有多少人? 参加足球队→A,参加排球队→B,参加游泳队→C,足球、排球都参加的→A∩B,足球、游泳都参加的→C∩A,排球、游泳都参加的→B∩C,三项都参加的→A∩B∩C。三项都参加的有A∩B∩C=A∪B∪C-A-B-C+A∩B+B∩C+C∩ A=45-25-22-24+12+9+8=3人。

快乐学堂小升初数学专题三容斥原理

快乐学堂小升初数学专题三容斥原理 在计数时,必须注意无一重复,无一遗漏。为了使重叠部分不被重复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。 容斥原理1 如果被计数的事物有A、B两类,那么,A类B类元素个数总和= 属于A类元素个数+ 属于B类元素个数—既是A类又是B类的元素个数。(A∪B = A+B - A∩B ) 例1 一次期末考试,某班有15人数学得满分,有12人语文得满分,并且有4 人语、数都是满分,那么这个班至少有一门得满分的同学有多少人? 分析 依题意,被计数的事物有语、数得满分两类,“数学得满分”称为“A 类元素”,“语文得满分”称为“B类元素”,“语、数都是满分”称为“既是A类又是B类的元素”,“至少有一门得满分的同学”称为“A类和B类元素个数”的总和。 答案 15+12-4=23 试一试 电视台向100人调查前一天收看电视的情况,有62人看过2频道,34人看过8频道,其中11人两个频道都看过。两个频道都没看过的有多少人? 100-(62+34-11)=15 课堂训练 1. 在1,2,3,…,100这100个自然数中,能被5或9整除的数有( )。

2. 在1,2,3,…,100这100个自然数中,能被2和3整除,但不能被5整除的数有( )个。 3. 500以内既是完全平方数也是完全立方数的数有( )个。 容斥原理2 如果被计数的事物有A、B、C三类,那么,A类和B类和C类元素个数总和= A类元素个数+ B类元素个数+C类元素个数—既是A类又是B类的元素个数—既是A类又是C类的元素个数—既是B类又是C类的元素个数+既是A类又是B类而且是C类的元素个数。(A∪B∪C = A+B+C - A∩B - B∩C - C∩A + A∩B∩C) 例2 某校六(1)班有学生45人,每人在暑假里都参加体育训练队,其中参加足球队的有25人,参加排球队的有22人,参加游泳队的有24人,足球、排球都参加的有12人,足球、游泳都参加的有9人,排球、游泳都参加的有8人,问:三项都参加的有多少人? 分析:参加足球队的人数25人为A类元素,参加排球队人数22人为B 类元素,参加游泳队的人数24人为C类元素,既是A类又是B类的为足球排球都参加的12人,既是B类又C类的为足球游泳都参加的9人,既是C 类又是A类的为排球游泳都参加的8人,三项都参加的是A类B类C类的总和设为X。注意:这个题说的每人都参加了体育训练队,所以这个班的总人数既为A类B类和C类的总和。 答案:25+22+24-12-9-8+X=45 解得X=3 例3 在1到1000的自然数中,能被3或5整除的数共有多少个?不能被3或5整除的数共有多少个? 分析:显然,这是一个重复计数问题(当然,如果不怕麻烦你可以分别去数3的倍数,5的倍数)。我们可以把“能被3或5整除的数”分别看成A类元素和B类元素,能“同时被3或5整除的数(15的倍数)”就是被重复计算的数,即“既是A类又是B类的元素”。求的是“A类或B类元素个数”。现在我们还不能直接计算,必须先求出所需条件。

容斥原理讲解

容斥原理 在计数时,为了使重叠部分不被重复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重 复,这种计数的方法称为容斥原理。 例、一次期末考试,某班有15人数学得满分,有12人 语文得满分,并且有4人语、数都是满分,那么这个班 至少有一门得满分的同学有多少人? 结论:(公式一) 如果被计数的事物有A、B两类,那么: (A类和B类)事物个数= A个数+ B个数—既是A类又是B类的事物个数。 A∪B=A+B-A∩B 例题1、某班学生每人家里至少有空调和 电脑两种电器中的一种,已知家中有空调 的有41人,有电脑的有34人,二者都有 的有27人,这个班有学生多少人? 例题2、一个班有45名学生,订阅《小学生数学报》 的有15人,订阅《今日少年报》的有10人, 两种报纸都订阅的有6人。 (1)订阅报纸的总人数是多少? (2)两种报纸都没订阅的有多少人? 例题3、在1到1000的自然数中,能被3或5整除的数共有多少个?不能被3或5整除的数共有多少个? 例、某校5(1)班,每人在暑假里都参加体育训练队, 其中参加足球队的有25人,参加排球队的有22人, 参加游泳队的有34人,足球、排球都参加的有12人, 足球、游泳都参加的有18人,排球、游泳都参加 的有14人,三项都参加的有8人,这个班有多少人?

那么根据题意,我们有以下七条等式: (1)A+D+E+G =25; (2) B+D+F+G =34; (3) C+E+F+G = 22; (4) D+G =18; (5) E+G =12; (6) F+G =14; (7) G = 8。 现在我们要求的是A+B+C+D+E+F+G=? 把头三条等式加起来,我们得到: A+B+C+2D+2E+2F+3G = 81 结果包含了多余的D、E、F和G,必须设法把多余的部分减去。 由于等式(4) (5) (6)各有一个D、E和F, 减去这三条等式,便可以把多余的D、E和 F减去, 得A+B+C+D+E+F = 37。可是这么一来, 本来重复重现的G却变被完全减去了,所以最后还得把等式(7)加上去, 得最终结果为A+B+C+D+E+F+G = 45,即该班共有45名学生。 结论(公式二) 如果被计数的事物有A、B、C三类,那么,A类和B类和C类事物个数= A类事物个数+ B类事物个数+C类事物个数—既是A类又是B类的事物个数—既是A类又是C类的事物个数—既是B类又是C类的事物个数+既是A类又是B类而且是C类的事物个数。 A∪B∪C=A+B+C-A∩B-A∩C-B∩C+ A∩ B∩C 例题4、设某班每名学生都要选修至少一种外语,其中选修英语的学生人数为25,选修法语的学生人数为18,选修德语的学生人数为20,同时选修英语和法语的学生人数为8,同时选修英语和德语的学生人数为13 ,同时选修法语和德语的学生人数为6,而同时选修上述三种外语的学生人数则为3,问该班共有多少名学生? 例题5、在一个炎热的夏日,几个小朋友去冷饮店,每人至少要了一样冷饮,其中有6人要了冰棍,6人要了汽水, 4人要了雪碧,只要冰棍和汽水的有3人,只要冰棍和雪碧的没有,只要汽水和雪碧的有1人;三样都要的有1人。问:共有几个小朋友去了冷饮店?

容斥原理之最值问题

教学目标 1. 了解容斥原理二量重叠和三量重叠的内容; 2. 掌握容斥原理的在组合计数等各个方面的应用. 知识要点 一、两量重叠问题 在一些计数问题中,经常遇到有关集合元素个数的计算?求两个集合并集的元素的个数,不能简单地把 两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数, 用式子可表示成: AUB A B AI B (其中符号“ U ”读作“并”,相当于中文“和”或者“或”的意思; 符号“ I ”读作“交”,相当于中文“且”的意思. )则称这一公式为包含与排除原理,简称容斥原理?图示 AI B ,即阴影面积?图示 第一步:分别计算集合 A 、B 的元素个数,然后加起来,即先求 A B (意思是把A B 的一切元素都“包含” 进来,加在一起); 第二步:从上面的和中减去交集的元素个数,即减去 C AI B (意思是“排除”了重复计算的元素个数 )? 、三量重叠问题 A 类、 B 类与 C 类元素个数的总和 A 类元素的个数 B 类元素个数 C 类元素个数 既是A 类又是B 类 的元素个数 既是B 类又是C 类的元素个数 既是A 类又是C 类的元素个数 同时是A 类、B 类、C 类的元 素个数.用符号表示为: AUBUC A B C AI B BI C AI C AI BI C .图示如下: 如下:A 表示小圆部分, B 表示大圆部分, C 表示大圆与小圆的公共部分,记为: 包含与排除原理告诉我们,要计算两个集合 A B 的并集AU B 的元素的个数,可分以下两步进行:

例题精讲 【例1】 “走美”主试委员会为三?八年级准备决赛试题。 每 个年级12道题,并且至少有8道题与其他各年 级都不同。如果每道题出现在不同年级,最多只能出现 3次。本届活动至少要准备 道决赛 试题。 【考点】容斥原理之最值问题 【难度】4星 【题型】填空 【关键词】走美杯,4年级,决赛,第9题 【解析】每个年级都有自己8道题目,然后可以三至五年级共用 4道题目,六到八年级共用 4道题目,总共有 8 6 4 2 56 (道)题目。 【答案】56题 【例2】 将1?13这13个数字分别填入如图所示的由四个大小相同的圆分割成的 个圆内的7个数相加,最后把四个圆的和相加,问:和最大是多少? 【考点】容斥原理之最值问题 【难度】4星 【题型】填空 【解析】越是中间,被重复计算的越多,最中心的区域被重复计算四次,将数字按从大到小依次填写于 被重复计算多的区格中,最大和为: 13 X 4+ (12+11 + 10+9 ) X 3+ 8+7+6+5 ) X 2+ 4+3+2+1 ) =240. 【答案】240 【例3】如图,5条同样长的线段拼成了一个五角星?如果每条线段上恰有 这个五角星上红色点最少有多少个 ? 目 tMlF 13个区域中,然后把每 1994个点被染成红色,那么在

第二十讲容斥原理

第二十讲容斥原理(2) [知识提要] 前面讲述过简单的容斥原理,“容”就是相容,相加,而“斥”就是相斥,相减,容斥原理作为一种计数方法,说简单点,就是从多的往下减,减过头了在加回来,加多了再减,减多了再加……最终得到正确结果。对于计数中容易出现重复的题目,我们常常采用容斥原理,去掉重复的情况。应用于计数集合划分有重叠,无法简单应用加法原理的情况下。 在计数时,为了使重叠部分不被重复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。 如果被计数的事物有A、B两类,那么,具体公式为: A类或B类元素个数= A类元素个数+ B类元素个数—既是A类又是B类的元素个数。 如果被计数的事物有A、B、C三类,那么,具体公式为: A类或B类或C类元素个数= A类元素个数+ B类元素个数+C类元素个数—既是A类又是B类的元素个数—既是A类又是C类的元素个数—既是B类又是C类的元素个数+既是A 类又是B类而且是C类的元素个数。 有了以上的容斥原理,一些看起来头绪很多的问题就可以比较方便地得到解决。 [经典例题] [例1]五(1)班有学生42人,参加体育代表队的有30人,参加文艺代表队的25人,并且每个人都至少参加了一个队,这个班两队都参加的有几个人? [分析]我们可以画一个图帮助思考,画两个相交的圆圈: 其中一个表示体育代表队,另一个表示文艺代表队,那么两圆的内部共有42人,而体育代表队的圆中有30人,文艺代表队的图中有25人,但:30+25=55>42,这是因为两队都参加的人被计算了两次,因此55-42=13,即是两队都参加的人数。 [解答]解:(30+25)-42=13(人) 答:两队都参加的有13人。 [评注]可能有很多同学还是刚刚接触容斥原理,所以我们用图形来形象地描绘整个问题。当容斥原理的题目做多了之后,很多基本的题目就不再需要一个一个的画图了。但是,当遇到复杂的问题时,图形还是帮助我们理解和解决问题的一个帮手。 [举一反三] 1、某班学生每人家里至少有空调和电脑两种电器中的一种,已知家中有空调的有41人,有电脑的有34人,二者都有的有27人,这个班有学生多少人?

集合整体重复型公式巧解容斥原理问题

行测数学运算技巧:三集合整体重复型公式巧解容斥原理问题 一、介绍三集合整体重复型核心公式 在三集合题型中,假设满足三个条件的元素数量分别是A、B和C,而至少满足三个条件之一的元素的总量为W。其中,满足一个条件的元素数量为x,满足两个条件的元素数量为y,满足三个条件的元素数量为z,可以得到以下两个等式: W=x+y+z A+B+C=x×1+y×2+z×3 二、典型的三集合整体重复型的题目讲解 例1、某班有35个学生,每个学生至少参加英语小组、语文小组、数学小组中的一个课外活动。现已知参加英语小组的有17人,参加语文小组的有30人,参加数学小组的有13人。如果有5个学生三个小组全参加了,问有多少个学生只参加了一个小组?(2004年浙江公务员考试行测第20题) A. 15人 B.16人 C.17人 D.18人 【答案】A 解析:此题有两种解法可以解出: 解一:分别设只参加英语和语文、英语和数学、语文和数学小组的人为x、y、z,则只参加英语小组的人为17-5-x-y,只参加语文小组的人有30-5-x-z,只参加数学小组的人有13-5-y-z,则只参加三个小组中的一个小组的人和只参加其中两个小组的人和三个小组都参加的人的总和为总人数,即17-5-x-y+30-5-x-z+13-5-y-z+x+y+z+5=35。则求x+y+z=15,所以只参加一个小组的人数的和为15。 解二:套用三集合整体重复型公式: W=x+y+z A+B+C=x×1+y×2+z×3 35=x+y+5 17+30+13=x×1+y×2+5×3 解得:x= 15,y=15

例2、某调查公司就甲、乙、丙三部电影的收看情况向125人进行调查,有89人看过甲片,有47人看过乙片,有63人看过丙片,其中有24人三部电影全看过,20人一部也没有看过,则只看过其中两部电影的人数是( )(2009年江苏公务员考试行测A类试卷第19题) A. 69 B.65 C.57 D.46 【答案】D 解析:本题也是一道典型的三集合整体重复型题目,直接套用三集合整体重复型公式: W=x+y+z A+B+C=x×1+y×2+z×3 这里需要注意的是W=105,而非125, 105=x+y+24 89+47+63=x×1+y×2+24×3 两个方程,两个未知数,解出y=46,这里y表示只看过两部电影的人数,即所求。 例3、某高校对一些学生进行问卷调查。在接受调查的学生中,准备参加注册会计师考试的有63人,准备参加英语六级考试的有89人,准备参加计算机考试的有47人,三种考试?准备参加的有24人,准备选择两种考试参加的有46人,不参加其中任何一种考试的有15人。问接受调查的学生共有多少人?(2010年国家公务员考试行测第47题) A. 120 B.144 C.177 D.192 【答案】A 解析:本题的特征也很明显,直接套用公式,只是要注意的是,题目中最后问的是接受调查的总人数,我们求出W之后,还需要再加上不参加其中任何一种考试的那15个人, W=x+46+24 63+89+47=x×1+46×2+24×3 通过解方程,可以求出W=105,这只是至少准备参加一种考试的人数,所以接受调查的总人数为105+15=120。 例4、某市对52种建筑防水卷材产品进行质量抽检,其中有8种产品的低温柔度不合格,10种产品的可溶物含量不达标,9种产品的接缝剪切性能不合格,同时两项不合格的有7种,有1种产品这三项都不合格,则三项全部合格的建筑防水卷材产品有多少种?(2011 年国家公务员考试行测试卷第74题) A. 37 B.36 C.35 D.34

第6讲 容斥原理

第六讲 容斥原理 在一些计数问题中,经常遇到有关集合元素个数的计算。我们用|A |表示有限集A 的元素的个数。在两个集合的研究中,已经知道,求两个集合并集的元素个数,不能简单地把两个集合的元素个数相加,而要从两根集合的个数之中减去重复计算的元素个数,用式子可以表示成 |A ∪B |=|A |+|B |–|A ∩B |。 我们称这一公式为包含与排除原理,简称为容斥原理。 包含与排除原理|告诉我们,要计算两个集合A 、B 的并集A ∪B 的元素个数,可以分一下两步进行: 第一步:分别计算集合A 、B 的元素个数,然后加起来。即先求|A |+|B |(意思是把A 、B 的一切元素都“包含”进来,加在一起); 第二步“从上面的和中减去交集的元素的个数,即减去|A ∩B |(意思是“排除”了重复计算的元素的个数)。 例1.求不超过20的正整数中是2的倍数或3的倍数的数共有多少? 解:设I ={1、2、3、…、19、20},A ={I 中2的倍数},B ={I 中3的倍数}。 显然题目中要求计算并集A ∪B 的元素个数,即求|A ∪B |。 我们知道A ={2、4、6、……、20},所以|A |=10, B ={3、6、9、12、15、18},|B |=6。 A ∩ B ={I 中既是2的倍数又是3的倍数}={6、12、18},所以|A ∩B |=3, 根据容斥原理有|A ∪B |=|A |+|B |–|A ∩B |=10+6–3=13. 答:所求的数共有13个。 此题可以直观地用图表示如下: 例2.某班统计考试成绩,数学得90分以上的有25人,语文得90分以上的有21人,两科中至少有一科在90分以上的有38人,问两科都在90分以上的有多少人? 解:设A ={数学在90分以上的学生},B ={语文在90分以上的学生}, 由题意知|A |=25,|B |=21。 A ∪ B ={数学、语文至少一科在90分以上的学生},|A ∪B |=38。 A ∩B ={数学、语文都在90分以上的学生}, 由容斥原理知|A ∪B |=|A |+|B |–|A ∩B |, 所以|A ∩B |=|A |+|B |–|A ∪B |=25+21–38=8。 答:两科都在90分以上的有8人。 画图分析一下: 15 9320 18 16141210 8 642B A

容斥原理公式

容斥原理 1.关键提示:容斥原理关键内容就是两个公式,考生只要把这两个公式灵活掌握就可全面应对此类题型。另外在练习及真考的过程中,请借助图例将更有助于解题。 2.2.核心公式:(1)两个集合的容斥关系公式:A+B=A∪B+A∩B (2)三个集合的容斥关系公式:A+B+C=A∪B∪C+A∩B+B∩C+C∩A-A∩B∩C 例题1:2004年中央A类真题某大学某班学生总数为32人,在第一次考试中有26人及格,在第二次考试中有24人及格,若两次考试中,都没有及格的有4人,那么两次考试都及格的人数是( )。A.22 B.18 C.28 D.26 解析:设A=第一次考试中及格的人(26),B=第二次考试中及格的人(24)显然,A +B=26+24=50;A∪B=32-4=28,则根据公式A∩B=A+B-A∪B=50-28=22 所以,答案为A。 例题2:2004年山东真题某单位有青年员工85人,其中68人会骑自行车,62人会游泳,既不会骑车又不会游泳的有12人,则既会骑车又会游泳的有()人A.57 B.73 C.130 D.69 解析:设A=会骑自行车的人(68),B=会游泳的人(62)显然,A+B=68+62=130;A∪B=85-12=73,则根据公式A∩B =A+B-A∪B=130-73=57 所以,答案为A。 例题3:电视台向100人调查前一天收看电视的情况,有62人看过2频道,34人看过8频道,11人两个频道都看过。两个频道都没看过的有多少人?解析:设A=看过2频道的人(62),B=看过8频道的人(34)显然,A+B=62+34=96;A∩B=两个频道都看过的人(11)则根据公式A∪B=A+B-A∩B =96-11=85 所以,两个频道都没有看过的人数=100-85=15 所以,答案

相关文档
最新文档