2018中考数学专题复习 新定义 二次函数问题 含答案

2018中考数学专题复习 新定义  二次函数问题   含答案
2018中考数学专题复习 新定义  二次函数问题   含答案

二函新定义

一.解答题(共10小题)

1.在平面直角坐标系中,点A的坐标为(m,n),若点A'(m,n')的纵坐标满足n'=,则称点A′是点A的“绝对点”.

(1)点(3,2)的“绝对点”的坐标为.

(2)点P是函数y=4x﹣1的图象上的一点,点P′是点P的“绝对点”.若点P与点P′重合,求点P的坐标.

(3)点Q(a,b)的“绝对点”Q′是函数y=2x2的图象上的一点.当0≤a≤2时,求线段QQ′的最大值.

2.定义:如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“直观三角形”.

(1)抛物线y=x2的“直观三角形”是.

A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形

(2)若抛物线y=ax2+2ax﹣3a的“直观三角形”是直角三角形,求a的值;

(3)如图,面积为12的矩形ABCO的对角线OB在x轴的正半轴上,AC与OB相交于点E,若△ABE是抛物线y=ax2+bx+c的“直观三角形”,求此抛物线的解析式.

(2)请判断点D是否在直线l上,并说明理由;

(3)记函数y=的图象为G,点M(0,t),过点M垂直于y轴的直线与图象G交

于点P(x1,y1),Q(x2,y2).当1<t<3时,若存在t使得x1+x2=4成立,结合图象,求k的取值范围.

4.设a,b是任意两个不等实数,我们规定:满足不等式a≤x≤b的实数x的所有取值的全体叫做闭区间,表示为[a,b].对于一个函数,如果它的自变量x与函数值y满足:当m≤x≤n时,有m≤y ≤n,我们就称此函数是闭区间[m,n]上的“闭函数”.如函数y=﹣x+4,当x=1时,y=3;当x=3时,y=1,即当1≤x≤3时,恒有1≤y≤3,所以说函数y=﹣x+4是闭区间[1,3]上的“闭函数”,同理函数y=x也是闭区间[1,3]上的“闭函数”.

(1)反比例函数y=是闭区间[1,2018]上的“闭函数”吗?请判断并说明理由;

(2)如果已知二次函数y=x2﹣4x+k是闭区间[2,t]上的“闭函数”,求k和t的值;

(3)如果(2)所述的二次函数的图象交y轴于C点,A为此二次函数图象的顶点,B为直线x=1上的一点,当△ABC为直角三角形时,写出点B的坐标.

5.若抛物线L:y=ax2+bx+c(a,b,c是常数,abc≠0)与直线l都经过y轴上的同一点,且抛物线L 的顶点在直线l上,则称次抛物线L与直线l具有“一带一路”关系,并且将直线l叫做抛物线L的“路

(2)如果抛物线y=mx2﹣2mx+m﹣1与直线y=nx+1具有“一带一路”关系,求m,n的值;

(3)设(2)中的“带线”L与它的“路线”l在y轴上的交点为A.已知点P为“带线”L上的点,当以点P 为圆心的圆与“路线”l相切于点A时,求出点P的坐标.

6.在平面直角坐标系中,规定:抛物线y=a(x﹣h)2+k的关联直线为y=a(x﹣h)+k.

例如:抛物线y=2(x+1)2﹣3的关联直线为y=2(x+1)﹣3,即y=2x﹣1.

(1)如图,对于抛物线y=﹣(x﹣1)2+3.

①该抛物线的顶点坐标为,关联直线为,该抛物线与其关联直线的交点坐标为和;

②点P是抛物线y=﹣(x﹣1)2+3上一点,过点P的直线PQ垂直于x轴,交抛物线y=﹣(x﹣1)2+3的关联直线于点Q.设点P的横坐标为m,线段PQ的长度为d(d>0),求当d随m的增大而减小时,d与m之间的函数关系式,并写出自变量m的取值范围.

(2)顶点在第一象限的抛物线y=﹣a(x﹣1)2+4a与其关联直线交于点A,B(点A在点B的左侧),与x轴负半轴交于点C,直线AB与x轴交于点D,连结AC、BC.

①求△BCD的面积(用含a的代数式表示).

②当△ABC为钝角三角形时,直接写出a的取值范围.

7.已知:抛物线C1:y=﹣(x+m)2+m2(m>0),抛物线C2:y=(x﹣n)2+n2(n>0),称抛物线C1,C2互为派对抛物线,例如抛物线C1:y=﹣(x+1)2+1与抛物线C2:y=(x﹣)2+2是派对抛物线,已知派对抛物线C1,C2的顶点分别为A,B,抛物线C1的对称轴交抛物线C2于C,抛物线C2的对称轴交抛物线C1与D.

③④中互为派对抛物线的是(请在横线上填写抛物线的数字序号);

(2)如图1,当m=1,n=2时,证明AC=BD;

(3)如图2,连接AB,CD交于点F,延长BA交x轴的负半轴于点E,记BD交x轴于G,CD交x轴于点H,∠BEO=∠BDC.

①求证:四边形ACBD是菱形;

②若已知抛物线C2:y=(x﹣2)2+4,请求出m的值.

8.定义:对于给定的两个函数,任取自变量x的一个值,当x<0时,它们对应的函数值互为相反数;当x≥0时,它们对应的函数值相等,我们称这样的两个函数互为相关函数.例如:一次函数y=x﹣1,它们的相关函数为y=.

(1)已知点A(﹣5,8)在一次函数y=ax﹣3的相关函数的图象上,求a的值;

(2)已知二次函数y=﹣x2+4x﹣.

①当点B(m,)在这个函数的相关函数的图象上时,求m的值;

②当﹣3≤x≤3时,求函数y=﹣x2+4x﹣的相关函数的最大值和最小值.

9.定义:在平面直角坐标系中,图形G上点P(x,y)的纵坐标y与其横坐标x的差y﹣x称为P点的“坐标差”,而图形G上所有点的“坐标差”中的最大值称为图形G的“特征值”.

(1)①点A(1,3)的“坐标差”为;

②抛物线y=﹣x2+3x+3的“特征值”为;

(2)某二次函数y=x2+bx+c(c≠0)的“特征值”为1,点B(m,0)与点C分别是此二次函数的图象与x轴和y轴的交点,且点B与点C的“坐标差”相等.

①直接写出m=;(用含c的式子表示)

②求此二次函数的表达式.

(3)如图,在平面直角坐标系xOy中,以M(2,3)为圆心,2为半径的圆与直线y=x相交于点D、

10.如图①所示,双曲线y=(k≠0)与抛物线y=ax2+bx(a≠0)交于A,B,C三点,已知B(4,2),C(﹣2,﹣4),直线CO交双曲线于另一点D,抛物线与x轴交于另一点E.

(1)求双曲线和抛物线的解析式;

(2)在抛物线上是否存在点P,使得∠POE+∠BCD=90°?若存在,请求出满足条件的点P的坐标;若不存在,请说明理由;

(3)如图②所示,过B作直线l⊥OB,过点D作DF⊥l于点F,BD与OF交于点P,求的值.

二函新定义

参考答案与试题解析

一.解答题(共10小题)

1.在平面直角坐标系中,点A的坐标为(m,n),若点A'(m,n')的纵坐标满足n'=,则称点A′是点A的“绝对点”.

(1)点(3,2)的“绝对点”的坐标为(3,1).

(2)点P是函数y=4x﹣1的图象上的一点,点P′是点P的“绝对点”.若点P与点P′重合,求点P的坐标.

【分析】(1)根据“绝对点”的定义求解可得;

(2)设点P的坐标为(m,n).若m≥n,则P′的坐标为(m,m﹣n),根据P与P′重合知n=m﹣n,由4m﹣1=n求得m、n的值可得;若m<n,同上的方法即可得出结论;

(3)当a≥b时,Q′的坐标为(a,a﹣b),由Q′是函数y=2x2的图象上一点知a﹣b=2a2,即b=a﹣2a 2.可得QQ′=|a﹣b﹣b|=|a﹣2(a﹣2a2)|=|4a2﹣a|,利用二次函数的图象和性质求出其最大值;当a<b时,Q′的坐标为(a,b﹣a),知QQ′=|b﹣b+a|=|a|,显然可得其最值.

【解答】解:(1)∵3>2,

∴点(3,2)的“绝对点”的纵坐标为3﹣2=1,

则点(3,2)的“绝对点”的坐标为(3,1),

故答案为:(3,1).

(2)设点P的坐标为(m,n).

当m≥n时,P′的坐标为(m,m﹣n).

若P与P′重合,则n=m﹣n,

∵点P是函数y=4x﹣1的图象上的一点,

∴4m﹣1=n,

∴n=.

即P的坐标为(,).

当m<n时,P′的坐标为(m,n﹣m).

若P与P′重合,则n﹣m=n

∴m=0.

∵点P是函数y=4x﹣1的图象上的一点,

∴4m﹣1=n,

∴n=﹣1,(不符合m<n,舍)

综上所述,点P的坐标为(,);

(3)当a≥b时,Q′的坐标为(a,a﹣b).

因为Q′是函数y=2x2的图象上一点,

所以a﹣b=2a2.

即b=a﹣2a 2.

由图象可知,当a=2时,QQ′的最大值为14.

当a<b时,Q′的坐标为(a,b﹣a).

QQ′=|b﹣b+a|=|a|=a.

当a=2时,QQ′的最大值为2.

综上所述,Q Q′的最大值为14或2.

【点评】本题二次函数的综合题,主要考查了“绝对点”的定义及二次函数的图象和性质、两点间的距离公式,理解新定义是解题的关键.

2.定义:如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“直观三角形”.

(1)抛物线y=x2的“直观三角形”是B.

A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形

(2)若抛物线y=ax2+2ax﹣3a的“直观三角形”是直角三角形,求a的值;

(3)如图,面积为12的矩形ABCO的对角线OB在x轴的正半轴上,AC与OB相交于点E,若△ABE是抛物线y=ax2+bx+c的“直观三角形”,求此抛物线的解析式.

【分析】(1)先确定出抛物线与x轴的交点坐标和顶点坐标,进而求出AD,BD,即可判断出抛物线的“直观三角形”;

(2)根据抛物线的“直观三角形”是直角三角形建立方程求解即可;

(3)先判断出△ABE是等边三角形,即可求出AH,BE,EH,最后用待定系数法求出抛物线解析式.【解答】解:(1)设抛物线y=x2﹣2x与x轴的交点坐标为A,B,顶点为D,

∴AB=AD=BD,

∴△ABD是等边三角形,

∴抛物线y=x2﹣2x对应的“直观三角形”是等边三角形,

故答案为:B;

(2)设抛物线y=ax2+2ax﹣3a与x轴的交点坐标为A,B,顶点为D,∴A(﹣3,0),B(1,0),D(﹣1,﹣4a),

∵抛物线y=ax2+2ax﹣3a对应的“直观三角形”是直角三角形,

∴AB2=AD2+BD2,

∴16=4+16a2+4+16a2,

∴a=±;

(3)如图,

∵四边形ABCD是矩形,

∴AE=CE=OE=BE,

∴S

△ABE =S

矩形ABCD

=×12=3,

∵△ABE是抛物线的“直观三角形”,根据抛物线的对称性得,AE=AB,∴AE=AB=BE,

∴△ABE是等边三角形,

过点A作AH⊥BE,

∴AH=ABsin∠ABE=AB=BE,∴BE2=3,

∴BE=2,

设抛物线解析式为y=a(x﹣3)2+3,

将点E(2,0)代入得,a=﹣1,

∴y=﹣(x﹣3)2+3=﹣x2+6x﹣24.

∴过点A,B,E三点的抛物线的解析式y=﹣x2+6x﹣24.

【点评】此题是二次函数综合题,主要考查了抛物线的“特征轴三角形”的特点,待定系数法,直角三角形的判定和性质,等边三角形的判定,三角形的面积公式,解本题的关键是判断出△ABE是等边三角形.

3.在平面直角坐标系xOy中,已知抛物线C:y=x2﹣4x+4和直线l:y=kx﹣2k(k>0).

(1)抛物线C的顶点D的坐标为(2,0);

(2)请判断点D是否在直线l上,并说明理由;

(3)记函数y=的图象为G,点M(0,t),过点M垂直于y轴的直线与图象G交

于点P(x1,y1),Q(x2,y2).当1<t<3时,若存在t使得x1+x2=4成立,结合图象,求k的取值范围.

【分析】(1)将抛物线解析式整理成顶点式形式,然后写出顶点D的坐标即可;

(2)将点D的坐标代入直线l的解析式判断即可;

(3)根据抛物线的作法作出图形,再根据等式判断出点P、Q关于直线x=2对称,再根据抛物线的对称轴为直线x=2,从而判断出点Q在抛物线上,然后求出t=1和3时的临界的交点坐标,再求出k 的值,写出k的取值范围即可.

【解答】解:(1)∵y=x2﹣4x+4=(x﹣2)2,

∴顶点D的坐标为(2,0);

故答案为:(2,0);

理由如下:直线l的表达式为y=kx﹣2k(k>0),

∵当x=2时,y=2k﹣2k=0,

∴点D(2,0)在直线l上;

(3)如图,不妨设点P在点Q的左侧,

由题意知:要使得x1+x2=4成立,即是要求点P与点Q关于直线x=2对称,

又∵函数y=x2﹣4x+4的图象关于直线x=2对称,

∴当1<t<3时,若存在t使得x1+x2=4成立,即要求点Q在y=x2﹣4x+4(x>2,1<y<3)的图象上,根据图象,临界位置为射线y=kx﹣2k(k>0)过y=x2﹣4x+4(x>2)与y=1的交点A(3,1)处,

以及射线y=kx﹣2k(k>0)过y=x2﹣4x+4(x>2)与y=3的交点B(2+,3)处,

此时,k=1以及k=,

故k的取值范围是1<k<.

【点评】本题是二次函数综合题型,主要利用了二次函数的顶点坐标的求解,一次函数图象上点的坐标特征,二次函数的对称性,难点在于判断出两点关于对称轴x=2对称.

4.设a,b是任意两个不等实数,我们规定:满足不等式a≤x≤b的实数x的所有取值的全体叫做闭区间,表示为[a,b].对于一个函数,如果它的自变量x与函数值y满足:当m≤x≤n时,有m≤y ≤n,我们就称此函数是闭区间[m,n]上的“闭函数”.如函数y=﹣x+4,当x=1时,y=3;当x=3时,y=1,即当1≤x≤3时,恒有1≤y≤3,所以说函数y=﹣x+4是闭区间[1,3]上的“闭函数”,同理函数y=x也是闭区间[1,3]上的“闭函数”.

(1)反比例函数y=是闭区间[1,2018]上的“闭函数”吗?请判断并说明理由;

(2)如果已知二次函数y=x2﹣4x+k是闭区间[2,t]上的“闭函数”,求k和t的值;

(3)如果(2)所述的二次函数的图象交y轴于C点,A为此二次函数图象的顶点,B为直线x=1上

【分析】(1)由k>0可知反比例函数y=在闭区间[1,2016]上y随x的增大而减小,然后将x=1,x=2018别代入反比例解析式的解析式,从而可求得y的范围,于是可做出判断;

(2)先求得二次函数的对称轴为x=1,a=1>0,根据二次函数的性质可知y=x2﹣4x+k在闭区间[2,t]上y随x的增大而增大,然后将x=2,y=k﹣4,x=t,y=t2﹣4t+k分别代入二次函数的解析式,从而可求得k的值;

(3)根据勾股定理的逆定理,可得方程,根据解方程,可得答案.

【解答】解:(1)∵k=2018,

∴当1≤x≤2018时,y随x的增大而减小.

∴当x=1时,y=2018,x=2018时,y=1.

∴1≤y≤2108.

∴反比例函数y=是闭区间[1,2018]上的“闭函数”.

(2)∵x=﹣=2,a=1>0,

∴二次函数y=x2﹣4x+k在闭区间[2,t]上y随x的增大而增大.

∵二次函数y=x2﹣2x﹣k是闭区间[2,t]上的“闭函数”,

∴当x=2时,y=k﹣4,x=t时,y=t2﹣4t+k.

解得k=6,t=3,t=﹣2,

因为t>2,

∴t=2舍去,

∴t=3.

(3)由二次函数的图象交y轴于C点,A为此二次函数图象的顶点,得

①当∠ABC=90°时,AB2+BC2=AC2,即

(2﹣1)2+(2﹣t)2+(t﹣6)2+1=22+(2﹣6)2,

化简,得t2﹣8t+11=0,解得t=4+或t=4﹣,

B(1,4+),(1,4﹣);

②当∠BAC=90°是,AB2+AC2=BC2,

即(2﹣1)2+(2﹣t)2+22+(2﹣6)2=12+(t﹣6)2,

化简,得8t=12,

解得t=,

B(1,),

③当∠ACB=90°时,AC2+CB2=AB2,

即22+(2﹣6)2+12+(t﹣6)2=(2﹣1)2+(2﹣t)2,

化简,得2t=13,

解得t=,

B(1,),

综上所述:当△ABC为直角三角形时,点B的坐标(1,4+),(1,4﹣),(1,),(1,).

【点评】本题考察了二次函数综合题,解(1)的关键是利用闭函数的定义,解(2)的关键是利用闭函数的定义得出方程组,解(3)的关键是利用勾股定理的逆定理得出方程,要分类讨论,以防遗漏.

5.若抛物线L:y=ax2+bx+c(a,b,c是常数,abc≠0)与直线l都经过y轴上的同一点,且抛物线L 的顶点在直线l上,则称次抛物线L与直线l具有“一带一路”关系,并且将直线l叫做抛物线L的“路线”,抛物线L叫做直线l的“带线”.

(1)若“路线”l的表达式为y=2x﹣4,它的“带线”L的顶点的横坐标为﹣1,求“带线”L的表达式;(2)如果抛物线y=mx2﹣2mx+m﹣1与直线y=nx+1具有“一带一路”关系,求m,n的值;

(3)设(2)中的“带线”L与它的“路线”l在y轴上的交点为A.已知点P为“带线”L上的点,当以点P 为圆心的圆与“路线”l相切于点A时,求出点P的坐标.

【分析】(1)找出直线与抛物线的交点坐标,由此设出抛物线的解析式,再由直线的解析式找出直线与x轴的交点坐标,将其代入抛物线解析式中即可得出结论;

(2)找出直线y=nx+1与y轴的交点坐标,将其代入抛物线解析式中即可求出m的值;再根据抛物线的解析式找出顶点坐标,将其代入直线解析式中即可得出结论;

(3)设抛物线的顶点为B,则点B坐标为(1,﹣1),过点B作BC⊥y轴于点C,根据点A 坐标为(0,1)得到AO=1,BC=1,AC=2.然后根据“路线”l是经过点A、B的直线且⊙P与“路线”l相切于点A,连接PA交x轴于点D,则PA⊥AB,然后求解交点坐标即可.

【解答】解:(1)∵“带线”L的顶点横坐标是﹣1,且它的“路线”l的表达式为y=2x﹣4

∴y=2×(﹣1)﹣4=﹣6,

∴“带线”L的顶点坐标为(﹣1,﹣6).

设L的表达式为y=a(x+1)2﹣6,

∵“路线”y=2x﹣4与y轴的交点坐标为(0,﹣4)

∴“带线”L也经过点(0,﹣4),将(0,﹣4)代入L的表达式,解得a=2

∴“带线”L的表达式为y=2(x+1)2﹣6=2x2+4x﹣4;

(2)∵直线y=nx+1与y轴的交点坐标为(0,1),

∴抛物线y=mx2﹣2mx+m﹣1与y轴的交点坐标也为(0,1),得m=2,

∴抛物线表达式为y=2x2﹣4x+1,其顶点坐标为(1,﹣1)

∴直线y=nx+1经过点(1,﹣1),解得n=﹣2,

∴“带线”L的表达式为y=2x2﹣4x+1“路线”l的表达式为y=﹣2 x+1;

(3)设抛物线的顶点为B,则点B坐标为(1,﹣1),

过点B作BC⊥y轴于点C,又∵点A 坐标为(0,1),

∴AO=1,BC=1,AC=2.

∵“路线”l是经过点A、B的直线

且⊙P与“路线”l相切于点A,

连接PA交x轴于点D,则PA⊥AB,

显然Rt△AOD≌Rt△BCA,∴OD=AC=2,D点坐标为(﹣2,0)

则经过点D、A、P的直线表达式为y=x+1,

∵点P为直线y=x+1与抛物线L:y=2x2﹣4x+1的交点,

解方程组得(即点A舍去),即点P的坐标为(,).

【点评】本题考查了反比例函数与一次函数的交点问题已经二次函数的应用,解题的关键是:(1)设出抛物线的顶点式解析式;(2)根据“一带一路”关系找出两函数的交点坐标.

6.在平面直角坐标系中,规定:抛物线y=a(x﹣h)2+k的关联直线为y=a(x﹣h)+k.

例如:抛物线y=2(x+1)2﹣3的关联直线为y=2(x+1)﹣3,即y=2x﹣1.

(1)如图,对于抛物线y=﹣(x﹣1)2+3.

①该抛物线的顶点坐标为(1,3),关联直线为y=﹣x+4,该抛物线与其关联直线的交点坐标为(1,3)和(2,2);

②点P是抛物线y=﹣(x﹣1)2+3上一点,过点P的直线PQ垂直于x轴,交抛物线y=﹣(x﹣1)2+3的关联直线于点Q.设点P的横坐标为m,线段PQ的长度为d(d>0),求当d随m的增大而减小时,d与m之间的函数关系式,并写出自变量m的取值范围.

(2)顶点在第一象限的抛物线y=﹣a(x﹣1)2+4a与其关联直线交于点A,B(点A在点B的左侧),与x轴负半轴交于点C,直线AB与x轴交于点D,连结AC、BC.

①求△BCD的面积(用含a的代数式表示).

【分析】(1)①利用二次函数的性质和新定义得到抛物线的顶点坐标和关联直线解析式;然后解方程组得该抛物线与其关联直线的交点坐标;

②设P(m,﹣m2+2m+2),则Q(m,﹣m+4),如图1,利用d随m的增大而减小得到m<1或1<m<2,当m<1时,用m表示s得到d=m2﹣3m+2;当1<m<2时,利用m表示d得到d=﹣m2+3m ﹣2,根据二次函数的性质得当m≥,d随m的增大而减小,所以≤m<2时,d=﹣m2+3m﹣2;

(2)①先确定抛物线y=﹣a(x﹣1)2+4a的关联直线为y=﹣ax+5a,再解方程组得A

(1,4a),B(2,3a),接着解方程﹣a(x﹣1)2+4a=0得C(﹣1,0),解方程﹣ax+5a=0得D(5,0),然后利用三角形面积公式求解;

②利用两点间的距离公式得到AC2=22+16a2,BC2=32+9a2,AB2=12+a2,讨论:当AC2+AB2<BC2,∠BAC 为钝角,即22+16a2+12+a2<32+9a2;当BC2+AB2<AC2,∠BAC为钝角,即32+9a2+12+a2<22+16a2,然后分别解不等式即可得到a的范围.

【解答】解:(1)①抛物线的顶点坐标为(1,3),关联直线为y=﹣(x﹣1)+3=﹣x+4,

解方程组得或,

所以该抛物线与其关联直线的交点坐标为(1,3)和(2,2);

故答案为(1,3),y=﹣x+4,(1,3)和(2,2);

②设P(m,﹣m2+2m+2),则Q(m,﹣m+4),如图1,

∵d随m的增大而减小,

∴m<1或1<m<2,

当m<1时,d=﹣m+4﹣(﹣m2+2m+2)=m2﹣3m+2;

当1<m<2时,d=﹣m2+2m+2﹣(m+4)=﹣m2+3m﹣2,当m≥,d随m的增大而减小,

综上所述,当m<1,d=m2﹣3m+2;≤m<2时,d=﹣m2+3m﹣2;

解方程组得或,

∴A(1,4a),B(2,3a),

当y=0时,﹣a(x﹣1)2+4a=0,解得x1=3,x2=﹣1,则C(﹣1,0),

当y=0时,﹣ax+5a=0,解得x=5,则D(5,0),

=×6×3a=9a;

∴S

△BCD

②AC2=22+16a2,BC2=32+9a2,AB2=12+a2,

当AC2+AB2<BC2,∠BAC为钝角,即22+16a2+12+a2<32+9a2,解得a<;

当BC2+AB2<AC2,∠BAC为钝角,即32+9a2+12+a2<22+16a2,解得a>1,

综上所述,a的取值范围为0<a<或a>1.

【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会通过解方程组(或方程)求两函数的交点坐标;理解坐标与图象性质,记住两点间的距离公式.7.已知:抛物线C1:y=﹣(x+m)2+m2(m>0),抛物线C2:y=(x﹣n)2+n2(n>0),称抛物线C1,C2互为派对抛物线,例如抛物线C1:y=﹣(x+1)2+1与抛物线C2:y=(x﹣)2+2是派对抛物线,已知派对抛物线C1,C2的顶点分别为A,B,抛物线C1的对称轴交抛物线C2于C,抛物线C2的对称轴交抛物线C1与D.

(1)已知抛物线①y=﹣x2﹣2x,②y=(x﹣3)2+3,③y=(x﹣)2+2,④y=x2﹣x+,则抛物线①②③④中互为派对抛物线的是①与③;①与④(请在横线上填写抛物线的数字序号);

(2)如图1,当m=1,n=2时,证明AC=BD;

(3)如图2,连接AB,CD交于点F,延长BA交x轴的负半轴于点E,记BD交x轴于G,CD交x轴于点H,∠BEO=∠BDC.

①求证:四边形ACBD是菱形;

【分析】(1)先把四个解析式配成顶点式,然后根据派对抛物线的定义进行判断;

(2)利用抛物线C1:y=﹣(x+1)2+1,抛物线C2:y=(x﹣2)2+4得到A(﹣1,1),B(2,4),再计算出C(﹣1,13),D(2,﹣8),则AC=12,BD=12,于是可判断AC=BD;

(3)①先表示出A(﹣m,m2);B(n,n2),再表示出C(﹣m,m2+2mn+2n2),D(n,﹣2mn ﹣n2),接着可计算出AC=BD=2mn+2n2,则可判断四边形ACBD为平行四边形,然后利用三角形内角和,由∠BEO=∠BDC得到∠EFH=∠DGH=90°,从而可判断四边形ACBD是菱形;

②由抛物线C2:y=(x﹣2)2+4得到B(2,4),即n=2,则AC=BD=4m+8,再利用A(﹣m,m2)可表示出C(﹣m,m2+4m+8),所以BC2=(m+2)2+(m+2)4,然后利用BC=BD得(m+2)2+(m+2)4=(4m+8)2,最后利用m>0可求出m的值.

【解答】(1)解:①y=﹣x2﹣2x=﹣(x+1)2+12,②y=(x﹣3)2+3=(x﹣3)2+()2,③y=(x﹣)2+()2,④y=x2﹣x+=(x﹣)2+()2,

所以①与③互为派对抛物线;①与④互为派对抛物线;

故答案为①与③;①与④;

(2)证明:当m=1,n=2时,抛物线C1:y=﹣(x+1)2+1,抛物线C2:y=(x﹣2)2+4,

∴A(﹣1,1),B(2,4),

∵AC∥BD∥y轴,

∴点C的横坐标为﹣1,点D的横坐标为2,

当x=﹣1时,y=(x﹣2)2+4=13,则C(﹣1,13);

当x=2时,y=﹣(x+1)2+1=﹣8,则D(2,﹣8),

∴AC=13﹣1=12,BD=4﹣(﹣8)=12,

∴AC=BD;

(3)①抛物线C1:y=﹣(x+m)2+m2(m>0),则A(﹣m,m2);

抛物线C2:y=(x﹣n)2+n2(n>0),则B(n,n2);

∴AC=m2+2mn+2n2﹣m2=2mn+2n2,BD=n2﹣(﹣2mn﹣n2)=2mn+2n2,

∴AC=BD;

∴四边形ACBD为平行四边形,

∵∠BEO=∠BDC,

而∠EHF=∠DHG,

∴∠EFH=∠DGH=90°,

∴AB⊥CD,

∴四边形ACBD是菱形;

②∵抛物线C2:y=(x﹣2)2+4,则B(2,4),

∴n=2,

∴AC=BD=2mn+2n2=4m+8,

而A(﹣m,m2),

∴C(﹣m,m2+4m+8),

∴BC2=(﹣m﹣2)2+(m2+4m+8﹣4)2=(m+2)2+(m+2)4,

∵四边形ACBD是菱形,

∴BC=BD,

∴(m+2)2+(m+2)4=(4m+8)2,

即(m+2)4=15(m+2)2,

∵m>0,

∴(m+2)2=15,

∴m+2=,

∴m=﹣2.

【点评】本题考查了二次函数综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和菱形的判定方法;会利用乘法公式进行代数式的变形;理解坐标与图形性质,记住两点间的距离公式.

8.定义:对于给定的两个函数,任取自变量x的一个值,当x<0时,它们对应的函数值互为相反数;当x≥0时,它们对应的函数值相等,我们称这样的两个函数互为相关函数.例如:一次函数y=x﹣1,它们的相关函数为y=.

(1)已知点A(﹣5,8)在一次函数y=ax﹣3的相关函数的图象上,求a的值;

(2)已知二次函数y=﹣x2+4x﹣.

①当点B(m,)在这个函数的相关函数的图象上时,求m的值;

②当﹣3≤x≤3时,求函数y=﹣x2+4x﹣的相关函数的最大值和最小值.

【分析】(1)写出y=ax﹣3的相关函数,代入计算;

(2)①写出二次函数y=﹣x2+4x﹣的相关函数,代入计算;

②根据二次根式的最大值和最小值的求法解答.

【解答】解:(1)y=ax﹣3的相关函数y=,

将A(﹣5,8)代入y=﹣ax+3得:5a+3=8,

解得a=1;

(2)二次函数y=﹣x2+4x﹣的相关函数为y=,

①当m<0时,将B(m,)代入y=x2﹣4x+

得m2﹣4m+=,

解得:m=2+(舍去),或m=2﹣,

当m≥0时,将B(m,)代入y=﹣x2+4x﹣得:

﹣m2+4m﹣=,

解得:m=2+或m=2﹣.

综上所述:m=2﹣或m=2+或m=2﹣;

②当﹣3≤x<0时,y=x2﹣4x+,抛物线的对称轴为x=2,

此时y随x的增大而减小,

∴此时y的最大值为,

当0≤x≤3时,函数y=﹣x2+4x﹣,抛物线的对称轴为x=2,

综上所述,当﹣3≤x≤3时,函数y=﹣x2+4x﹣的相关函数的最大值为,最小值为﹣.

【点评】本题考查的是互为相关函数的定义,掌握二次函数的性质、二次函数与一元二次方程的关系是解题的关键.

9.定义:在平面直角坐标系中,图形G上点P(x,y)的纵坐标y与其横坐标x的差y﹣x称为P点的“坐标差”,而图形G上所有点的“坐标差”中的最大值称为图形G的“特征值”.

(1)①点A(1,3)的“坐标差”为2;

②抛物线y=﹣x2+3x+3的“特征值”为4;

(2)某二次函数y=x2+bx+c(c≠0)的“特征值”为1,点B(m,0)与点C分别是此二次函数的图象与x轴和y轴的交点,且点B与点C的“坐标差”相等.

①直接写出m=2;(用含c的式子表示)

②求此二次函数的表达式.

(3)如图,在平面直角坐标系xOy中,以M(2,3)为圆心,2为半径的圆与直线y=x相交于点D、E,请直接写出⊙M的“特征值”为1+2.

【分析】(1)①②根据“坐标差”,“特征值”的定义计算即可;

(2)因为点B与点C的“坐标差”相等,推出B(﹣c,0),把(﹣c,0)代入y=﹣x2+bx+c,得到:0=﹣c2﹣bc+c,推出c=1﹣b,因为二次函数y=﹣x2+bx+c(c≠0)的“特征值”为﹣1所以y﹣x=﹣x2+(b ﹣1)x+1﹣b的最大值为﹣1,可得=﹣1,解得b=3,由此即可解决问题;

(3)如图,设K(2,3),作KM⊥x轴于M,交⊙K于N,JK⊥y轴于J,作∠JKN的平分线交⊙K于T,观察图象,根据“特征值”的定义,可知点T的“坐标差”的值最大;

【解答】解:(1)①点A(1,3)的“坐标差”为=3﹣1=2,

故答案为2;

②设P(x,y)为抛物线y=﹣x2+3x+3上一点,

坐标差=﹣x2+2x+3,=﹣(x﹣1)2+4,最大值为4,

中考数学新定义题型专题复习

新定义型专题 (一)专题诠释 所谓“新定义”型问题,主要是指在问题中定义了中学数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识、能力进行理解,根据新定义进行运算、推理、迁移的一种题型.“新定义”型问题成为近年来中考数学压轴题的新亮点.在复习中应重视学生应用新的知识解决问题的能力 (二)解题策略和解法精讲 “新定义型专题”关键要把握两点:一是掌握问题原型的特点及其问题解决的思想方法;二是根据问题情景的变化,通过认真思考,合理进行思想方法的迁移. 的差倒数是 111(1)2 =--. 已知a 1=-1 3,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,…,依此类推,a 2009= . 考点二:运算题型中的新定义 例2.对于两个不相等的实数a 、b ,定义一种新的运算如下,*0a b a b a b = +(>)﹣,如: 3*2= =6*(5*4)= . 例3.我们定义ab ad bc cd =-,例如23 45 =2×5﹣3×4=10﹣12=﹣2,若x ,y 均为整数,且满足1< 14x y <3,则x+y 的值是 . 考点三:探索题型中的新定义 例4.定义:到凸四边形一组对边距离相等,到另一组对边距离也相等的点叫凸四边形的准内点.如图 1,PH=PJ ,PI=PG ,则点P 就是四边形ABCD 的准内点. (1)如图2,∠AFD 与∠DEC 的角平分线FP ,EP 相交于点P .求证:点P 是四边形ABCD 的准内点. (2)分别画出图3平行四边形和图4梯形的准内点.(作图工具不限,不写作法,但要有必要的说明) (3)判断下列命题的真假,在括号内填“真”或“假”. ①任意凸四边形一定存在准内点.( ) ②任意凸四边形一定只有一个准内点.( ) ③若P 是任意凸四边形ABCD 的准内点,则PA+PB=PC+PD 或PA+PC=PB+PD .( ) 考点四:阅读材料题型中的新定义 阅读材料 我们经常通过认识一个事物的局部或其特殊类型,来逐步认识这个事物; 比如我们通过学习两类特殊的四边形,即平行四边形和梯形(继续学习它们的特殊类型如矩形、等腰梯形等)来逐步认识四边形;

2018年中考数学真题汇编:二次函数(含答案)

中考数学真题汇编:二次函数 一、选择题 1.给出下列函数:①y=﹣3x+2;②y= ;③y=2x2;④y=3x,上述函数中符合条作“当x>1时,函数值y随自变量x增大而增大“的是() A. ①③ B. ③④ C. ②④ D. ②③ 【答案】B 2.如图,函数和( 是常数,且)在同一平面直角坐标系的图象可能是 () A. B. C. D. 【答案】B 3.关于二次函数,下列说法正确的是() A. 图像与轴的交点坐标为 B. 图像的对称轴在轴的右侧 C. 当时,的值随值的增大而减小 D. 的最小值为-3 【答案】D 4.二次函数的图像如图所示,下列结论正确是( ) A. B. C. D. 有两个不相等的实数根 【答案】C 5.若抛物线与轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点( ) A. B. C. D.

【答案】B 6.若抛物线y=x2+ax+b与x轴两个交点间的距离为2,称此抛物线为定弦抛物线。已知某定弦抛物线的对称轴为直线x=1,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点() A. (-3,-6) B. (-3,0) C. (-3,-5) D. (-3,-1) 【答案】B 7.已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式h=﹣t2+24t+1.则下列说法中正确的是() A. 点火后9s和点火后13s的升空高度相同 B. 点火后24s火箭落于地面 C. 点火后10s的升空高度为139m D. 火箭升空的最大高度为145m 【答案】D 8.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3,其中正确的个数是() A. 1 B. 2 C. 3 D. 4 【答案】B 9.如图是二次函数(,,是常数,)图象的一部分,与轴的交点在点 和之间,对称轴是.对于下列说法:①;②;③;④ (为实数);⑤当时,,其中正确的是() A. ①②④ B. ①②⑤ C. ②③④ D. ③④⑤ 【答案】A

最新史上最全初三数学二次函数知识点归纳总结

二次函数知识点归纳及相关典型题 第一部分 基础知识 1.定义:一般地,如果c b a c bx ax y ,,(2 ++=是常数,)0≠a ,那么y 叫做x 的二次函数. 2.二次函数2 ax y =的性质 (1)抛物线2 ax y =的顶点是坐标原点,对称轴是y 轴. (2)函数2 ax y =的图像与a 的符号关系. ①当0>a 时?抛物线开口向上?顶点为其最低点; ②当0a 时,开口向上;当0

7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同. 8.求抛物线的顶点、对称轴的方法 (1)公式法:a b ac a b x a c bx ax y 44222 2 -+ ??? ? ? +=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线a b x 2-=. (2)配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2 的形式,得到顶点为(h ,k ),对称轴是直线 h x =. (3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对 称轴,对称轴与抛物线的交点是顶点. 用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失. 9.抛物线c bx ax y ++=2 中,c b a ,,的作用 (1)a 决定开口方向及开口大小,这与2 ax y =中的a 完全一样. (2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2 的对称轴是直线 a b x 2- =,故:①0=b 时,对称轴为y 轴;②0>a b (即a 、b 同号)时,对称轴在y 轴左侧;③0c ,与y 轴交于正半轴;③0

中考数学专题复习 新定义题(含答案)

最新的2019中考新定义题 1.在平面直角坐标系xOy 中的某圆上,有弦MN ,取MN 的中点P ,我们规定:点P 到某点(直线)的距离叫 做“弦中距”,用符号“d 中”表示. 以(3,0)W -为圆心,半径为2的圆上. (1)已知弦MN 长度为2. ①如图1:当MN ∥x 轴时,直接写出到原点O 的d 中的长度; ②如果MN 在圆上运动时,在图2中画出示意图,并直接写出到点O 的d 中的取值范围. (2)已知点(5,0)M -,点N 为⊙W 上的一动点,有直线2y x =-,求到直线2y x =-的d 中 的最大值. 2.1所示,若点P 是 抛物线14 y =PH PF =M 的距离之和的最小 值为d ,称d 4y x = 的关联距离;当24d ≤≤时,称点M 为抛物线21 4 y x =的关联点. (1)在点1(20)M , ,2(12)M ,,3(45)M ,,4(04)M -,中,抛物线21 4 y x =的关联点是______ ; (2)如图2,在矩形ABCD 中,点(1)A t , ,点(13)A t +,C ( t . ①若t =4,点M 在矩形ABCD 上,求点M 关于抛物线2 14 y x =的关联距离d 的取值范围; ②若矩形ABCD 上的所有点都是抛物线2 14 y x = 的关联点,则t 的取值范围是__________. 3.对于平面直角坐标系xOy 中的点(,)Q x y (x ≠0),将它的纵坐标y 与横坐标x 的比 y x 称为点Q 的“理想值”,记作Q L .如(1,2)Q -的“理想值”2 21 Q L = =--. (1)①若点(1,)Q a 在直线4y x =-上,则点Q 的“理想值”Q L 等于_________; ②如图,C ,⊙C 的半径为1. 若点Q 在⊙C 上,则点Q 的“理想值” Q L 的取值范围是 . (2)点D 在直线+3y x =上,⊙D 的半径为1,点Q 在⊙D 上运动时都有 0≤L Q ,求点D 的横坐标D x 的取值范围; (3)(2,)M m (m >0),Q 是以r 为半径的⊙M 上任意一点,当0≤L Q ≤

2018中考数学,二次函数性质综合题

第二部分 题型研究 题型二 二次函数性质综合题 类型二 二次项系数不确定型 针对演练 1. (2013杭州)已知抛物线y 1=ax 2 +bx +c (a ≠0)与x 轴相交于点A 、B (点A 、B 在原点O 两侧),与y 轴相交于点C ,且 点A 、C 在一次函数y 2=43 x +n 的图象上,线段AB 长为16,线段OC 长为8,当y 1随着x 的增大而减小时,求自变量x 的取值范围. 2. 在平面直角坐标系xOy 中,抛物线y =mx 2-2mx -2(m ≠0)与y 轴交于点A ,其对称轴与x 轴交于点B . (1)求点A ,B 的坐标; (2)若抛物线在-2≤x ≤3的区间上的最小值为-3,求m 的值; (3)设直线l 与直线AB 关于该抛物线的对称轴对称,且该抛物线在-2<x <-1这一段位于直线l 的上方,在2<x <3这一段位于直线AB 的下方,求该抛物线的解析式. 第2题图 3. 已知二次函数y =kx 2 +(3k +2)x +2k +2. (1)若二次函数图象经过直线y =x -1与x 轴的交点,求此时抛物线的解析式; (2)点A (x 1,y 1),B(x 2,y 2)是函数图象上的两个点,若满足x 1+x 2=-3,试比较y 1和y 2的大小关系.

4. (2012杭州)在平面直角坐标系中,反比例函数与二次函数y=k(x2+x-1)的图象交于点A(1,k)和点B(-1,-k). (1)当k=-2时,求反比例函数的解析式; (2)要使反比例函数与二次函数都是y随着x的增大而增大,求k应满足的条件以及x的取值范围; (3)设二次函数的图象的顶点为Q,当△ABQ是以AB为斜边的直角三角形时,求k的值. 考向2) 函数类型不确定型(:2015.20,2014.23,2012.18) 针对演练 1. (2012杭州)当k分别取-1,1,2时,函数y=(k-1)x2-4x+5-k都有最大值吗?请写出你的判断,并说明理由,若有,请求出最大值. 2. (2015杭州)设函数y=(x-1)[(k-1)x+(k-3)](k是常数). (1)当k取1和2时的函数y1和y2的图象如图所示,请你在同一直角坐标系中画出当k取0时函数的图象; (2)根据图象,写出你发现的一条结论; (3)将函数y2的图象向左平移4个单位,再向下平移2个单位,得到函数y3的图象,求函数y3的最小值. 第2题图 3. (2011杭州)设函数y=kx2+(2k+1)x+1(k为实数). (1)写出其中的两个特殊函数,使它们的图象不全是抛物线,并在同一直角坐标系中,画出这两个特殊函数的图象; (2)根据所画图象,猜想出:对任意实数k,函数的图象都具有的特征,并给予证明;

2019-2020年中考数学专题复习新定义问题

2019-2020年中考数学专题复习新定义问题【专题点拨】 新定义运算、新概念问题一般是介绍新定义、新概念,然后利用新定义、新概念解题,其解题步骤一般都可分为以下几步:1.阅读定义或概念,并理解;2.总结信息,建立数模; 3.解决数模,回顾检查.“新概念”试题,其设计新颖,构思独特,思维容量大,既能考查学生的阅读、分析、推理、概括等能力,又能考查学生知识迁移的能力和数学素养,同时还兼具了区分选拔的功能 . 【解题策略】 具体分析新颖问题→弄清问题题意→向已知知识点转化→利用相关联知识查验→转化问题思路解决 【典例解析】 类型一:规律题型中的新定义 例题1:(2015?永州,第10题3分)定义[x]为不超过x的最大整数,如[3.6]=3,[0.6]=0,[﹣3.6]=﹣4.对于任意实数x,下列式子中错误的是() A.[x]=x(x为整数) B.0≤x﹣[x]<1 C.[x+y]≤[x]+[y]D.[n+x]=n+[x](n为整数) 【解析】:根据“定义[x]为不超过x的最大整数”进行计算 【解答】:解:A、∵[x]为不超过x的最大整数, ∴当x是整数时,[x]=x,成立; B、∵[x]为不超过x的最大整数,∴0≤x﹣[x]<1,成立; C、例如,[﹣5.4﹣3.2]=[﹣8.6]=﹣9,[﹣5.4]+[﹣3.2]=﹣6+(﹣4)=﹣10,∵﹣9>﹣10, ∴[﹣5.4﹣3.2]>[﹣5.4]+[﹣3.2], ∴[x+y]≤[x]+[y]不成立, D、[n+x]=n+[x](n为整数),成立; 故选:C. 【点评】本题考查了一元一次不等式组的应用,解决本题的关键是理解新定义.新定义解题是近几年中考常考的题型.

新人教版九年级上二次函数知识点总结与练习

新人教版九年级上二次函数知识点总结与练习知识点一:二次函数的定义 1.二次函数的定义: 一般地,形如2 =++(a b c y ax bx c ,,是常数,0 a≠)的函数,叫做二次函数. 其中a是二次项系数,b是一次项系数,c是常数项. 知识点二:二次函数的图象与性质 ? 2. 二次函数()2 =-+的图象与性质 y a x h k (1)二次函数基本形式2 =的图象与性质:a的绝对值越大,抛物线的开口越小 y ax (2)2 =+的图象与性质:上加下减 y ax c

(3)()2 y a x h =-的图象与性质:左加右减

(4)二次函数()2 y a x h k =-+的图象与性质 3. 二次函数c bx ax y ++=2的图像与性质 (1)当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a =-时,y 有最小值 2 44ac b a -. (2)当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2b x a =-时,y 有最大值 2 44ac b a -.

4. 二次函数常见方法指导 (1)二次函数2y ax bx c =++图象的画法 ①画精确图 五点绘图法(列表-描点-连线) 利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图. ②画草图 抓住以下几点:开口方向,对称轴,与y 轴的交点,顶点. (2)二次函数图象的平移 平移步骤: ① 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k , ; ② 可以由抛物线2 ax 经过适当的平移得到具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 平移规律:概括成八个字“左加右减,上加下减”. (3)用待定系数法求二次函数的解析式 ①一般式:.已知图象上三点或三对、 的值,通常选择一般式. ②顶点式:.已知图象的顶点或对称轴,通常选择顶点式. ③交点式: .已知图象与轴的交点坐标 、 ,通常选择交点式. (4)求抛物线的顶点、对称轴的方法 ①公式法:a b ac a b x a c bx ax y 44222 2 -+ ?? ? ??+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线a b x 2- =. ②配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2 的形式,得到顶点为(h ,k ),对称轴是直线h x =.

二次函数新定义问题

专题训练(四)与二次函数相关的新定义问题 ?类型之一应用型:阅读——理解——建模——应用 图4-ZT-1 1.2017·巴中如图4-ZT-1,我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,点A,B,C,D分别是“蛋圆”与坐标轴的交点,AB为半圆的直径,且抛物线的函数表达式为y=x2-2x-3,则半圆圆心M点的坐标为________. 2.一个函数的图象关于y轴成轴对称图形时,我们称该函数为“偶函数”.如果二次函数y=x2+bx-4是“偶函数”,该函数的图象与x轴交于点A和点B,顶点为P,那么△ABP 的面积是________. 3.2017·余杭区一模如果两个二次函数的图象关于y轴对称,我们就称这两个二次函数互为“关于y轴对称二次函数”,如图4-ZT-2所示,二次函数y1=x2+2x+2与y2=x2-2x+2是“关于y轴对称二次函数”. (1)直接写出两条图中“关于y轴对称二次函数”图象所具有的特点. (2)二次函数y=2(x+2)2+1的“关于y轴对称二次函数”表达式为____________;二次函数y=a(x-h)2+k的“关于y轴对称二次函数”表达式为____________. (3)平面直角坐标系中,记“关于y轴对称二次函数”的图象与y轴的交点为A,它们的两个顶点分别为B,C,且BC=6,顺次连结点A,B,O,C得到一个面积为24的菱形,求“关于y轴对称二次函数”的表达式. 图4-ZT-2

?类型之二探究型:阅读——理解——尝试——探究 4.若抛物线y=ax2+bx+c过定点M(1,1),则称此抛物线为定点抛物线. (1)张老师在投影屏幕上出示了一个题目:请你写出一条定点抛物线的函数表达式.小敏写出了一个答案:y=2x2+3x-4,请你写出一个不同于小敏的答案; (2)张老师又在投影屏幕上出示了一个思考题:已知定点抛物线y=-x2+2bx+c+1,求该抛物线顶点纵坐标的值最小时的函数表达式.请你解答. 5.2017·衢州定义:如图4-ZT-3①,抛物线y=ax2+bx+c(a≠0)与x轴交于A,B 两点,点P在该抛物线上(点P与A,B两点不重合),若△ABP的三边满足AP2+BP2=AB2,则称点P为抛物线y=ax2+bx+c(a≠0)的勾股点. (1)直接写出抛物线y=-x2+1的勾股点的坐标; (2)如图②,已知抛物线C:y=ax2+bx(a≠0)与x轴交于A,B两点,点P(1,3)是抛物线C的勾股点,求抛物线C的函数表达式; (3)在(2)的条件下,点Q在抛物线C上,求满足条件S△ABQ=S△ABP的点Q(异于点P)的坐标.

2018中考数学专题二次函数

2018中考数专题二次函数 (共40题) 线于点G . (1 )求抛物线 y= - x 2+bx+c 的表达式; (2)连接GB , E0,当四边形GEOB 是平行四边形时,求点 G 的坐标; (3)①在y 轴上存在一点 H ,连接EH , HF ,当点E 运动到什么位置时,以 A , E , 顶点的四边形是矩形?求出此时点 E , H 的坐标; ②在①的前提下,以点 E 为圆心,EH 长为半径作圆,点 M 为O E 上一动点,求 (x -3)与x 轴交于A , B 两点,与y 轴的正半轴交于点 C,其 (1) 写出C, D 两点的坐标(用含 a 的式子表示); (2 )设 & BCD : Sz\ABD =k ,求 k 的值; (3)当厶BCD 是直角三角形时,求对应抛物线的解析式. 1.如图,抛物线 y=- x 2+bx+c 与直线AB 交于A (- 4, - 4) , B (0, 4)两点,直线 -_ x 2 -6交y 轴于点C .点E 是直线 AB 上的动点,过点 E 作EF 丄x 轴交AC 于点F , AC: y= 交抛物 F ,H 为 AM+CM 它 顶点为D .

3.如图,直线y=kx+b ( k 、b 为常数)分别与 x 轴、y 轴交于点A (- 4, 0)、B (0, 3),抛 物线y=- X 1 2+2X +1与y 轴交于点 C . (1) 求直线y=kx+b 的函数解析式; (2) 若点P ( X , y )是抛物线y=- X 2+2X +1上的任意一点,设点 P 到直线AB 的距离为d , 求d 关于x 的函数解析式,并求 d 取最小值时点P 的坐标; (3)若点E 在抛物线y=- X 2+2X +1的对称轴上移动,点 F 在直线AB 上移动,求CE+EF 的最 1 求此抛物线的解析式以及点 B 的坐标. 2 动点M 从点O 出发,以每秒2个单位长度的速度沿 X 轴正方向运动,同时动点 N 从 点O 出发,以每秒3个单位长度的速度沿 y 轴正方向运动,当 N 点到达A 点时,M 、N 同 时停止运动.过动点 M 作X 轴的垂线交线段 AB 于点Q ,交抛物线于点 P ,设运动的时间为 t 秒. ① 当t 为何值时,四边形 OMPN 为矩形. ② 当t >0时,△ BOQ 能否为等腰三角形?若能,求出 t 的值;若不能,请说明理由. (0, 3),与X 正半轴相交于点 B,对 称轴是直线X =1

二次函数基本定义完整版

二次函数基本定义 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

基本定义一般地,把形如 (a、b、c是)的叫做二次函数,其中a称为,b为,c为。x 为,y为。等号右边自变量的最高次数是2。 顶点坐标 为 (仅限于与x轴有交点的抛物线), 与x轴的交点坐标是和 顶点式 y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为(h,k)[4],对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2 的图像相同,当x=h时,y最大(小)值=k.有时题目会指出让你用配方法把一般式化成顶点式。 例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。 解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。 注意:与点在中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。[2] 具体可分为下面几种情况:

当h>0时,y=a(x-h)2的图像可由抛物线y=ax2向右平行移动h 个单位得到; 当h<0时,y=a(x-h)2的图像可由抛物线y=ax2向左平行移动|h|个单位得到; 当h>0,k>0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象; 当h>0,k<0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象; 当h<0,k>0时,将抛物线y=ax2向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象; 当h<0,k<0时,将抛物线y=ax2向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象。[5] 交点式 [仅限于与x轴即y=0有交点时的 与X轴交点的情况: 当时,函数图像与x轴有两个交点,分别是(x1,0)和 (x2,0)。 当时,函数图像与x轴只有一个切点,即 。[2] 当 时,抛物线与x轴没有公共交点。x的取值范围是虚数 抛物线,即b2-4ac≥0]. 已知抛物线与x轴即y=0有交点A(x1,0)和B(x2,0),我们可设

中考数学新定义型专题

第一部分 讲解部分 (一)专题诠释 所谓“新定义”型问题,主要是指在问题中定义了中学数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识、能力进行理解,根据新定义进行运算、推理、迁移的一种题型.“新定义”型问题成为近年来中考数学压轴题的新亮点.在复习中应重视学生应用新的知识解决问题的能力 (二)解题策略和解法精讲 “新定义型专题”关键要把握两点:一是掌握问题原型的特点及其问题解决的思想方法; 2的差倒数是 1112=--,-1的差倒数是111(1)2 =--.已知a 1=-13,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,…,依此类推,a 2009= . 【分析】:理解差倒数的概念,要根据定义去做.通过计算,寻找差倒数出现的规律,依据规律解答即可. 【解】:解:根据差倒数定义可得:21113 114 13 a a = ==-+, 3211 43 114 a a = ==-- 43111 1143 a a = ==---. 显然每三个循环一次,又2009÷3=669余2,故a 2009和a 2的值相等. 【评注】:此类题型要严格根据定义做,这也是近几年出现的新类型题之一,同时注意分析循环的规律. 考点二:运算题型中的新定义 例2.(2011毕节地区,18,3分)对于两个不相等的实数a 、b , 定义一种新的运算如下, *0 a b a b a b = +(>)﹣,如:3*2== 那么6*(5*4)= . 【分析】:本题需先根据已知条件求出5*4的值,再求出6*(5*4)的值即可求出结果. 【解】:∵ *0a b a b a b = +(>)﹣, ∴=3, ∴6*(5*4)=6*3,

2018中考数学试题二次函数解答题试题汇编(含答案解析)

2018年全国各地中考数学试题 《二次函数》解答题试题汇编(含答案解析) 1.(2018?达州)如图,抛物线经过原点O(0,0),点A(1,1),点.(1)求抛物线解析式; (2)连接OA,过点A作AC⊥OA交抛物线于C,连接OC,求△AOC的面积;(3)点M是y轴右侧抛物线上一动点,连接OM,过点M作MN⊥OM交x轴于点N.问:是否存在点M,使以点O,M,N为顶点的三角形与(2)中的△AOC相似,若存在,求出点M的坐标;若不存在,说明理由. 2.(2018?眉山)传统的端午节即将来临,某企业接到一批粽子生产任务,约定这批粽子的出厂价为每只4元,按要求在20天内完成.为了按时完成任务,该企业招收了新工人,设新工人李明第x天生产的粽子数量为y只,y与x满足如下关系: y= (1)李明第几天生产的粽子数量为280只? (2)如图,设第x天生产的每只粽子的成本是p元,p与x之间的关系可用图中的函数图象来刻画.若李明第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大?最大利润是多少元?(利润=出厂价﹣成本)

3.(2018?河南)如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C. (1)求抛物线的解析式; (2)过点A的直线交直线BC于点M. ①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标; ②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M 的坐标. 4.(2018?抚顺)俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%.试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每上涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售量为y本,销售单价为x元.(1)请直接写出y与x之间的函数关系式和自变量x的取值范围; (2)当每本足球纪念册销售单价是多少元时,商店每天获利2400元? (3)将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润w 元最大?最大利润是多少元? 5.(2018?张家界)如图,已知二次函数y=ax2+1(a≠0,a为实数)的图象过点A(﹣2,2),一次函数y=kx+b(k≠0,k,b为实数)的图象l经过点B(0,2).(1)求a值并写出二次函数表达式;

中考数学专题突破十:新定义问题(含答案)

专题突破(十) 新定义问题 1. 在平面直角坐标系xOy 中,⊙C 的半径为r ,P 是与圆心C 不重合的点,点P 关于⊙O 的反称点的定义如下:若在射线..CP 上存在一点P ′,满足CP +CP ′=2r ,则称P ′为点P 关于⊙C 的反称点,如图Z10-1为点P 及其关于⊙C 的反称点P ′的示意图. (1)当⊙O 的半径为1时. ①分别判断点M (2,1),N (3 2,0),T (1,3)关于⊙O 的反称点是否存在,若存在,求其 坐标; ②点P 在直线y =-x +2上,若点P 关于⊙O 的反称点P ′存在,且点P ′不在x 轴上,求点P 的横坐标的取值范围. (2)当⊙C 的圆心在x 轴上,且半径为1,直线y =- 3 3 x +2 3与x 轴、y 轴分别交于点A ,B.若线段AB 上存在点P ,使得点P 关于⊙C 的反称点P ′在⊙C 的内部,求圆心C 的横坐标的取值范围. 图Z10-1 2. 对某一个函数给出如下定义:若存在实数M >0,对于任意的函数值y ,都满足-M ≤y ≤M ,则称这个函数是有界函数.在所有满足条件的M 中,其最小值称为这个函数的边界值.例如,图Z10-2中的函数是有界函数,其边界值是1. (1)分别判断函数y =1 x (x >0)和y =x +1(-4a )的边界值是2,且这个函数的最大值也是2,求b 的取值范围; (3)将函数y =x 2(-1≤x ≤m ,m ≥0)的图象向下平移m 个单位长度,得到的函数的边界值是t ,当m 在什么范围时,满足3 4 ≤t ≤1?

2020年中考数学新定义(二次函数)

第一部分案例分析 1.【最值问题】对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M≤y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值,例如,如下图中的函数,它的最大值是,最小值是﹣1,它也是有界函数,其边界值是1. (1)分别判断函数和y=x+1(x>0)是不是有界函数?若是有界函数,求其边界值; (2)若函数y=﹣2x﹣1(a≤x≤b,a<b)的边界值是3,且这个函数的最大值也是3,求a的值及b的取值范围.

2.【直线与抛物线点交点问题】对于某一函数给出如下定义:若存在实数p,当其自变量的值为p时,其函数值等于p,则称p为这个函数的不变值.在函数存在不变值时,该函数的最大不变值与最小不变值之差q称为这个函数的不变长度.特别地,当函数只有一个不变值时,其不变长度q为零.例如,下图中的函数有0、1两个不变值,其不变长度q等于1.(1)分别判断函数y=x+1,y=,y=x2﹣2有没有不变值?如果有,直接写出其不变长度; (2)函数y=2x2﹣bx ①若其不变长度为零,求b的值; ②若1≤b≤3,求其不变长度q的取值范围; (3)记函数y=x2﹣2x(x≥m)的图象为G1,将G1沿x=m翻折后得到的函数图象记为G2,函数G的图象由G1和G2两部分组成,若其不变长度q满足0≤q≤3,则m的取值范围为多少?

3.【“关联抛物线”】如图1,若抛物线L1的顶点A在抛物线L2上,抛物线L2的顶点B也在抛物线L1上(点A与点B不重合),我们把这样的两抛物线L1、L2互称为“友好”抛物线. (1)一条抛物线的“友好”抛物线有条. A.1 B.2 C.3D.无数 (2)如图2,已知抛物线L3:y=2x2﹣8x+4与y轴交于点C,点C关于该抛物线对称轴的对称点为D,请求出以点D为顶点的L3的“友好”抛物线L4的表达式; (3)若抛物线y=a1(x﹣m)2+n的“友好”抛物线的解析式为y=a2(x﹣h)2+k,请直接写出a1与a2的关系式为.

2018中考数学专题二次函数

2018中考数专题二次函数 (共40题) 1.如图,抛物线y=﹣x2+bx+c与直线AB交于A(﹣4,﹣4),B(0,4)两点,直线AC:y=﹣x﹣6交y轴于点C.点E是直线AB上的动点,过点E作EF⊥x轴交AC于点F,交抛物线于点G. (1)求抛物线y=﹣x2+bx+c的表达式; (2)连接GB,EO,当四边形GEOB是平行四边形时,求点G的坐标; (3)①在y轴上存在一点H,连接EH,HF,当点E运动到什么位置时,以A,E,F,H为顶点的四边形是矩形?求出此时点E,H的坐标; ②在①的前提下,以点E为圆心,EH长为半径作圆,点M为⊙E上一动点,求AM+CM它的最小值. 2.如图,抛物线y=a(x﹣1)(x﹣3)与x轴交于A,B两点,与y轴的正半轴交于点C,其顶点为D. (1)写出C,D两点的坐标(用含a的式子表示); (2)设S△BCD:S△ABD=k,求k的值; (3)当△BCD是直角三角形时,求对应抛物线的解析式. 3.如图,直线y=kx+b(k、b为常数)分别与x轴、y轴交于点A(﹣4,0)、B(0,3),抛物线y=﹣x2+2x+1与y轴交于点C. (1)求直线y=kx+b的函数解析式; (2)若点P(x,y)是抛物线y=﹣x2+2x+1上的任意一点,设点P到直线AB的距离为d,求d关于x的函数解析式,并求d取最小值时点P的坐标;

(3)若点E在抛物线y=﹣x2+2x+1的对称轴上移动,点F在直线AB上移动,求CE+EF的最小值. 4.如图,已知抛物线y=﹣x2+bx+c与y轴相交于点A(0,3),与x正半轴相交于点B,对称轴是直线x=1 (1)求此抛物线的解析式以及点B的坐标. (2)动点M从点O出发,以每秒2个单位长度的速度沿x轴正方向运动,同时动点N从点O出发,以每秒3个单位长度的速度沿y轴正方向运动,当N点到达A点时,M、N同时停止运动.过动点M作x轴的垂线交线段AB于点Q,交抛物线于点P,设运动的时间为t秒. ①当t为何值时,四边形OMPN为矩形. ②当t>0时,△BOQ能否为等腰三角形?若能,求出t的值;若不能,请说明理由. 5.如图,抛物线y=﹣x2+bx+c与x轴分别交于A(﹣1,0),B(5,0)两点. (1)求抛物线的解析式; (2)在第二象限取一点C,作CD垂直X轴于点D,AC,且AD=5,CD=8,将Rt△ACD沿x轴向右平移m个单位,当点C落在抛物线上时,求m的值; (3)在(2)的条件下,当点C第一次落在抛物线上记为点E,点P是抛物线对称轴上一点.试探究:在抛物线上是否存在点Q,使以点B、E、P、Q为顶点的四边形是平行四边形?若存

中考数学习题精选:新定义型问题

第1页 共1页 第一学期八年级期中学业检测试题 八 年 级 数 学 (满分150分 测试时间120分钟) 一、选择题(本大题共8小题,每小题3分,共24分,每小题仅有一个答案正确,请把你认为正确的答案前的字母填入下表相应的空格 ) 1.下列各图是选自历届世博会徽中的图案,其中是中心对称图形的是( ) A B C D 2. 在下列四组线段中,能组成直角三角形的是: ( ) A .a=1,b=2,c=3 B .a=2,b=3,c=4 C .a=3,b=4,c=5 D .a=7,b=8,c=9 3.在实数2207-2π中,无理数的有 ( ) A .1个 B .2个 C. 3个 D. 4个 4.据统计,2011年十·一期间,某市某风景区接待中外游客的人数为86740人次,将这个数字保留三个有效数字........,用科学记数法可表示为 ( ) A .8.7×103 B .8.67×103 C .8.67×104 D .8.674×104 5. 下列各式中,正确的是 ( )

八年级上学期期末测试数学试卷 (人教版) 一、选择题:(每题3分,共30分) 1.如图,射线l 甲、l 乙分别表示甲、乙两名运动员在自行车比赛中所走路程与时间的函数关系, 则他们的行进的速度关系是( ) A .甲比乙快 B .乙比甲快 C .甲、乙同速 D .不一定 2.若直线l 与直线y =2x +1关于y 轴对称,则直线l 的解析式为( ) A .y =-2x -1 B .y =-2x +1 C .y =2x -1 D .121+- =x y 3.代数式a +bc ,3x ,ax 2,ax 2+bx +c ,8,abc ,x a ,yz b a 23-中有( ) A .7个整式 B .4个单项式,2个多项式 C .8个整式 D .5个单项式,3个多项式 4.如图,AB ∥CD ,AC ∥DB ,AD 与BC 交于O ,AE ⊥BC 于E ,DF ∥BC 于F ,那么图中全 等的三角形有( )对 A .5 B .6 C .7 D .8 5.下列图形不是轴对称图形的是( ) A .等边三角形 B .线段 C .任意三角形 D .等腰三角形 6.若A =3m 2-5m +2,B =3m 2-4m +2,则A 与B 的关系是( ) A .A < B B .A >B C .A =B D .以上都有可能 7.如图,用整个圆表示某班的总人数,那么表示该班人数35%的扇形为( ) A .M B .N C .P D .Q 8.在△ABC 中,AC =5,中线AD =4,那么边AB 的取值范围为( )

新定义函数-中考新题型

3

实数b的取值范围. 变式 如果二次函数的二次项系数为l,则此二次函数可表示为y=x2+px+q,我们称[p,q]为此函数的特征数,如函数y=x2+2x+3的特征数是[2,3]. (1)若一个函数的特征数为[-2,1],求此函数图象的顶点坐标. (2)探究下列问题: ①若一个函数的特征数为[4,-1],将此函数的图象先向右平移1个单位,再向上平移1个单位,求得到的图象对应的函数的特征数. ②若一个函数的特征数为[2,3],问此函数的图象经过怎样的平移,才能使得到的图象对应的函数的特征数为[3,4]?

例3.如图1,抛物线y =ax 2 +bx +c (a >0)的顶点为M ,直线y =m 与x 轴平行,且与抛物线交于点A ,B ,若△AMB 为等腰直角三角形,我们把抛物线上A ,B 两点之间的部分与线段AB 围成的图形称为该抛物线对应的准蝶形,线段AB 称为碟宽,顶点M 称为碟顶,点M 到线段AB 的距离称为碟高. (1)抛物线2 12 y x = 对应的碟宽为 ;抛物线y =4x 2对应的碟宽为 ;抛物线y =ax 2(a >0)对应的碟宽为 ;抛物线y =a (x -2)2 +3(a >0)对应的碟宽为 ; (2)抛物线2 543 y ax ax =--(a >0)对应的碟宽为6,且在x 轴上,求a 的值; (3)将抛物线y =a n x 2+b n x +c n (a n >0)的对应准蝶形记为F n (n =1,2,3…),定义F 1, F 2,…,F n 为相似准蝶形,相应的碟宽之比即为相似比.若F n 与F n ﹣1的相似比为1 2 ,且F n 的碟顶 是F n ﹣1的碟宽的中点,现将(2)中求得的抛物线记为y 1,其对应的准蝶形记为F 1. ①求抛物线y 2的表达式; ②若F 1的碟高为h 1,F 2的碟高为h 2,…F n 的碟高为h n ,则h n = ,F n 的碟宽有端点横坐标为2;若F 1,F 2,…,F n 的碟宽右端点在一条直线上,请直接写出该直线的表达式;若不是,请说明理由。

2019年北京中考数学习题精选:新定义型问题

一、选择题 1、(2018北京昌平区初一第一学期期末) 用“☆”定义一种新运算:对于任意有理数a 和b ,规定a ☆b = ab 2 + a .如:1☆3=1×32 +1=10. 则(-2)☆3的值为 A .10 B .-15 C. -16 D .-20 答案:D 二、填空题 3、(2018北京西城区七年级第一学期期末附加题)1.用“△”定义新运算:对于任意有理数a ,b ,当 a ≤ b 时,都有2a b a b ?=;当a >b 时,都有2a b ab ?=.那么, 2△6 = , 2 ()3 -△(3)-= . 答案:24,-6 4.(2018北京海淀区第二学期练习)定义:圆中有公共端点的两条弦组成的折线称为圆的一条折弦. 阿基米德折弦定理:如图1, AB 和BC 组成圆的折弦,AB BC >,M 是弧ABC 的中点, MF AB ⊥于F ,则AF FB BC =+. 如图2,△ABC 中,60ABC ∠=?,8AB =,6BC =,D 是AB 上一点,1BD =,作D E A B ⊥交△ABC 的外接圆于E ,连接EA ,则EAC ∠=________°. 答案60 5、(2018北京交大附中初一第一学期期末)如图,在平面内,两条直线l 1,l 2相交于点O ,对于平面内任意一点M ,若p 、q 分别是点M 到直线l 1,l 2的距离,则称(p ,q )为点M 的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有______个. 三、解答题 图2 图1 E A

6、(2018北京平谷区初一第一学期期末)阅读材料:规定一种新的运算:a c =b ad bc d -.例 如: 1214-23=-2.34 ××= (1)按照这个规定,请你计算 562 4 的值. (2)按照这个规定,当 52 12 2 4 2=-+-x x 时求x 的值. 答案(1)5 62 4 =20-12=8 (2) (2)由 5 2 122 4 2=-+-x x 得 522422 1 =++-)()(x x ...............................................................4 解得,x = 1 (5) 7、(2018北京海淀区七年级第一学期期末)对于任意四个有理数a ,b ,c ,d ,可以组成两个有理数对(a ,b )与(c ,d ).我们规定: (a ,b )★(c ,d )=bc -ad . 例如:(1,2)★(3,4)=2×3-1×4=2. 根据上述规定解决下列问题: (1)有理数对(2,-3)★(3,-2)= ; (2)若有理数对(-3,2x -1)★(1,x +1)=7,则x = ; (3)当满足等式(-3,2x -1)★(k ,x +k )=5+2k 的x 是整数时,求整数k 的值. 答案. 解:(1)﹣5……………………..2分 (2)1 ……………………..4分 (3)∵等式(-3,2x -1)★(k ,x +k )=5+2k 的x 是整数 ∴(2x ﹣1)k ﹣(﹣3)(x ﹢k )=5﹢2k ∴(2k ﹢3)x =5

相关文档
最新文档