空调温度控制系统的建模与仿真

空调温度控制系统的建模与仿真
空调温度控制系统的建模与仿真

过程控制工程课程设计

课题名称空调温度控制系统的建模与仿真

学院

专业

班级

学生姓名

学号

时间 6 月13日至6月19日

指导教师(签字)

2011 年 6 月19 日

目录

第一章设计题目及要求 (1)

1.1设计背景 (1)

1.2设计任务 (1)

1.3主要参数 (2)

1.3.1恒温室: (2)

1.3.2热水加热器ⅠSR、ⅡSR: (2)

1.3.3电动调节阀: (2)

1.3.4温度测量环节: (2)

1.3.5调节器: (2)

第二章空调温度控制系统的数学模型 (3)

2.1恒温室的微分方程 (3)

2.1.1微分方程的列写 (3)

2.1.2 增量微分方程式的列写 (5)

2.2 热水加热器对象的微分方程 (5)

2.3敏感元件及变送器的特性 (6)

2.3.1敏感元件的微分方程 (6)

2.3.2变送器的特性 (7)

2.3.3敏感元件及变送器特性 (7)

2.4 执行器的特性 (8)

第三章控制系统方案设计 (9)

3.1系统分析 (9)

3.2单回路控制系统设计 (9)

3.2.1单回路控制系统原理 (9)

3.2.2单回路系统框图 (10)

3.3串级控制系统的设计 (11)

3.3.1串级控制系统原理 (11)

3.3.2串级控制系统框图 (12)

第四章单回路系统调节器参数整定 (12)

5.1.1、PI控制仿真 (16)

5.1.2 PID控制仿真 (17)

5.1.3、PI与PID控制方式比较 (17)

第六章设计小结 (18)

参考文献 (18)

第一章设计题目及要求

1.1设计背景

设计背景为一个集中式空调系统的冬季温度控制环节,简化系统图如附图所示。

系统由空调房间、送风道、送风机、加热设备及调节阀门等组成。为了节约能量,利用一部分室内循环风与室外新风混合,二者的比例由空调工艺决定,并假定在整个冬季保持不变。用两个蒸汽盘管加热器1SR、2SR对混合后的空气进行加热,加热后的空气通过送风机送入空调房间内。本设计中假设送风量保持不变。

1.2设计任务

设计主要任务是根据所选定的控制方案,建立起控制系统的数学模型,然后

用MATLAB对控制系统进行仿真,通过对仿真结果的分析、比较,总结不同的控制方式和不同的调节规律对室温控制的影响。

1.3主要参数

1.3.1恒温室:

不考虑纯滞后时:

=1(千卡/ O C)

容量系数 C

1

送风量 G = 20(㎏/小时)

= 0.24(千卡/㎏·O C)

空气比热 c

1

围护结构热阻 r= 0.14(小时·O C/千卡)

1.3.2热水加热器ⅠSR、ⅡSR:

作为单容对象处理,不考虑容量滞后。

=2.5 (分)

时间常数 T

4

放大倍数 K

=15 (O C·小时/㎏)

4

1.3.3电动调节阀:

= 1.35

比例系数 K

3

1.3.4温度测量环节:

=0.8

按比例环节处理,比例系数K

2

1.3.5调节器:

根据控制系统方案,可采用PI或PID调节规律。调节器参数按照过程控制系统工程整定原则,结合仿真确定。

第二章 空调温度控制系统的数学模型

2.1恒温室的微分方程

为了研究上的方便,把图所示的恒温室看成一个单容对象,在建立数学模型,暂不考虑纯滞后。 2.1.1微分方程的列写

根据能量守恒定律,单位时间内进入恒温室的能量减去单位时间内由恒温室流出的能量等于恒温室中能量蓄存的变化率。即

,????????=+?? ? ? ?????????

恒温室内蓄每小时进入室内每小时室内设备照热量的变化率的空气的热量明和人体的散热量 ??

????-+?? ? ???????

每小时从事内排每小时室内向出的空气的热量室外的传热量

上述关系的数学表达式是:

1

11()()c a b n a d C Gc q Gc dt αθθθθ

θγ

-=+-+ (2-1) 式中 1C —恒温室的容量系数(包括室内空气的蓄热和设备与维护结构表层的 蓄热)

(千卡/ C ? );

a θ—室内空气温度,回风温度(C ?); G —送风量(公斤/小时); 1c —空气的比热(千卡/公斤 ); c θ —送风温度(C ?);

n q —室内散热量(千卡/小时); b θ—室外空气温度(C ?);

γ—恒温室围护结构的热阻(小时 C ?g /千卡)。 将式(2—1)整理为:

11

1111

111n b

a c a q d Gc C dt Gc Gc Gc θθθγ

θγγγ

++=+

+++g 11111n

a q Gc Gc Gc γθγ?

?+ ?

?=

+ ?+ ???

(2-2)

或 11()a a c f d T K dt θ

θθθ+=+ (2-3)

式中 111T R C = —恒温室的时间常数(小时)。 1111

R Gc γ

=

+

—为恒温室的热阻(小时 /千卡)

1111

Gc K Gc γ

=

+

—恒温室的放大系数(/C C ?);

1

b

n f q Gc θγ

θ+

=

—室内外干扰量换算成送风温度的变化(C ?)。

式(2—3)就是恒温室温度的数学模型。式中 和 是恒温的输入参数,或称输入量;而 是恒温室的输入参数或称被调量。输入参数是引起被调量变化的因素,其中起调节作用,而起干扰作用。输入量只输出量的信号联系成为通道。干扰量至被调量的信号联系成为干扰通道 。调节量至被调量的信号联系成为调节通道。

如果式中是f θ个常量,即0f f θθ=,则有 1

10()a

a c f d T K dt

θθθθ+=+ (2-4) 如果式中c θ是个常量,即c θ0c θ=,则有

1

10()a

a c f d T K dt

θθθθ+=+ (2-5) 此时式成为只有被调节量和干扰量两个的微分方程式.此式也称为恒温室

干扰通道的微分方程式。

2.1.2 增量微分方程式的列写

在自动调节系统中,因主要考虑被调量偏离给定值的过渡过程.所以往往希望秋初被调增量的变化过程.因此,我们要研究增量方程式的列写.所谓增量方程式就是输出参数增量与输入参数增量间关系的方程式。 当恒温室处在过渡过程中,则有:

0a a a θθθ=+?,0c c c θθθ=+?, 0f f f θθθ=+? (2-7)

式中带“?” 项增量.

将式(2—7)代入式(2—3)得: 1

01001()()a

a a c f c f d T K K dt

θθθθθθθ?+?=-+++?+? 将式(2—6)代入式(2—8)得: 1

1()a

a c f d T K dt

θθθθ?+?=?+? 式中(2—9)是恒温式增量微分方程式的一般表达式,显然,它与式(2—3)有相同的形式 。

对上式取拉式变换,恒温室的传递函数如下:

1

111

K W T S =

=+

2.2 热水加热器对象的微分方程

如前所述,水加热器可以是个双容对象,存在容量滞后,为了使研究问题简化,可以把图2—7水加热器看成水加热器看成是一个容量滞后的单容对象,这里掀不考虑它的纯滞后,那末水加热器对象特性了用下述微分方程式来描述:

4

40c

c f

d T K W dt θθθθ?+?=?+?+?

式中 c θ? —水加热器后空气温度的变化(C ?);

4T —水加热器的时间常数(小时);

W ?—热水流量变化( 3米/小时); 0θ?—水加器前送风温度的变化(C ?);

4

f θ

?—进入水加热器的热水温度的变化引起的散热量变化折合成送风温度的变化(C ?);

4K —水加热器的放大系数(/C ?g 小时公斤 )。他的物理意义是当热水流

量变化一个单位是引起的散热量变化社和送风温度的变化。

当热水器前送风温度为常量且进入水加热的温度不变时,即00θ?= ,

0f θ?= ,由上式可以得到热水加热器1SR 对象调节通道的微分方程式如下:

4

400c

c f

d T K W dt

θθθθ?+?=?+?+? 当热水加热器前送风温度为常量且进入加热器的热水流量变化为常量,即

00

θ?=,0W ?= ,由上述可得到热水加热器2SR 的对象

调节通道的微分方程式如下:

4

4c

c f

d T dt θθθ+?=?

对上加热器1SR 及2SR 取拉式变换,可得二者传递函数的传递函数如下:

()444151 2.51K W s T S S =

=++ '4411()1 2.51

W s T S S ==++ 2.3敏感元件及变送器的特性

敏感元件及变送器也是自动调节系统中的一个重要组成部分,他是自动调节系统的“感觉器官”,调节器根据特的信号作用。

2.3.1敏感元件的微分方程

根据热平衡原理,热电阻每小时有周围介质吸收的热量与每小时周围介质传入的热量相等,故无套管热电阻的热量平衡方程式为: 2

()z

a z d C F dt

θαθθ=- 式中 2C —热电阻热容量(/C ?千卡);

z θ —热电阻温度(C ?);

a θ —介质温度(C ?);

α —介质对热电阻的传热系数(2/C ?g g 千卡米小时);

F —热电阻的表面积 (2米);

由式 得 2

2z a d z

T K dt

θθθ+= 如令敏感元件的放大系数21K =,则上式可写成 2

z a d z

T dt

θθθ+= 式中 222T R C = —敏感元件的时间常数(小时),其中21

R F

α= 为敏感元件的热阻力系数(/C ?g 小时千卡)。

其时间常数与对象的时间常数相比较 ,一般都较小。当敏感元件的时间常数小道可以忽略时,式就变成 2z a K θθ=

2.3.2变送器的特性

采用电动单元组合仪表时,一般需要将被测的信号转换成统一0—10毫安的电流信号,采用气动单元组合仪表需转换成统一的0.2—1.0公斤/2厘米信号。他们在转换时其时间常数和之滞后时间都很小,可以略去不计。所以实际上相当于一个放大环节。此时变送器特性可用下式表示:

Z B Z

B K θ=

式中 Z B —经变送器将成比例变幻后的相应信号(2/毫安或公斤厘米);

Z θ—敏感元件反映的被测参数(温度)( C ? ); B K —变送器的防大系数。

2.3.3敏感元件及变送器特性

考虑到敏感元件为一阶惯性元件,二变送器为比例环节,将式(2—19)代入式(2—16)得:

2

2Z

Z B a dB T B K K dt

θ+= 其增量方程式:

22

Z

Z B a d B T

B K K dt θ?+?=? 如果敏感元件的时间常数的数值与对象常数比值可略去时,则有: 2Z B a B K K θ?=?

即敏感元件加变送器这一环节可以看成是一个比例环节。

对敏感器及变送器微分方程取拉式变换可得其传递函数如下:

()20.8

W s K ==

2.4 执行器的特性

执行器是调节系统中得一个重要组成部分,人们把它比喻成工艺自动化的“手脚”.它的特性也将直接印象调节系统的调节质量,根据流量平衡关系,可列出气动执行机构的微分方程式如下:

3

dW T W F P dt k α

+=?

式中 333

T R C = —气动执行机构的时间常数 (分);

3C —薄膜式的容量系数,并假定为常数3

3/?? ???米公斤厘米;

3R —是从调节器到调节阀之间到导管的阻力系数23

//??

??

?公斤厘米米小时; W —热水流量( 3

米/小时);

P —调节起来的气压信号(2

/公斤厘米);

α—流量系数;

k —执行器的弹簧的弹簧系数;

在实际应用中,一般都将气动调节阀作为一阶惯性环节来处理,其时间常数为数秒之数十秒之间,而对象时间常数较大时,可以把气动调节发作为放大环节来处理、则简化的调节系统的微分方程如下:

W F P

k

α

?=

?

3W K P

?=?

式中

3K k α

=

—气动调节阀的防大系数。

对敏感器及变送器微分方程取拉式变换可得其传递函数如下:

()33 1.35W s K == 第三章 控制系统方案设计

3.1系统分析

设计系统应能保证恒温室内的温度维持在某一定值,当室内温度与设定温度不同时,可以通过调节流入热水加热器的流量来改变进入恒温室的空气温度,实现对恒温室温度的调整。

在前文的建模过程中已经看到,系统存在一些主要的干扰影响恒温室内的温度,如新风送风量变化、加热器热水温度变化、加热器热水流量变化、空调房内人的散热量以及室外温度等等。设计系统应充分考虑这些干扰的影响。

3.2 单回路控制系统设计

3.2.1单回路控制系统原理

在此处单回路系统中,选择被控参数为恒温室的温度,控制参数为蒸汽盘管加热器ISR 控制工艺图,将IISR 的流量变化量作为主要干扰量,调节器可采用PI 或者PID 控制规律,通过MATLAB 仿真对这两种方式进行比较。

图为控制系统的工艺图图,选取恒温室的温度作为被控参数,ISR加热器热水流量作为控制参数。TT温度传感器的温度信号传入调节器TC后,与给定值比较得到偏差信号,偏差信号传至调节阀控制热水流量,从而实现对温度的控制。

3.2.2单回路系统框图

图1单回路系统框图

图中被控参数为恒温室的温度,控制参数为蒸汽盘管加热器ISR,存在的干扰为IISR加热器。x(t)为流量给定值,y(t)为系统输出是恒温室的温度, f1为室外温度干扰,f2为室内设备、人体散热干扰,f3为加热器IISR热水流量干扰,f4为加热器热水温度变化干扰,其中f3为主要干扰。

当系统稳定工作时,设备及人员等散发的热量不变,室外温度不变,热水加热器ISR及IISR的热水流量不变,调节阀保持一定的开度,此时恒温室内温度稳定在给定值x(t)上。

干扰破坏了平衡工作状态时,导致了恒温室内温度的变化,而此时恒温室内的温度感应器测量到了温度不符合给定值,将温度的变化通过变送器将信号传递到调节器处理,调节器根据一定的调节规律给调节阀发出校正信号,通过控制调节阀的开度来调节ISR热水加热器的热水流量而改变混合空气的温度,最终将变温后的混合空气送入恒温室,来使恒温室温度重新回到给定值,来克服上述扰动对恒温室温度的影响,最终使恒温室温度达到给定值。

3.3串级控制系统的设计

3.3.1串级控制系统原理

采用单回路时,从干扰出现到检测到空调房温度改变有很大延迟,因此可以考虑采用串级控制,以提高系统对干扰响应的速度。在此处串级控制系统中,选择被控参数为恒温室的温度与进风口温度,控制参数为蒸汽盘管加热器1SR热水流量,干扰量为加热器ⅡSR热水流量变化。

图为控制系统的工艺图图,选取恒温室的温度作为主被控参数,进风口温度作为副被控参数,ISR加热器热水流量作为控制参数。TT温度传感器的温度信号

传入调节器TC后,与给定值比较得到偏差信号,偏差信号传至调节阀控制热水流量,从而实现对温度的控制

3.3.2串级控制系统框图

图2串级系统框图

当系统稳定工作时,设备及人员等散发的热量不变,室外温度不变,热水加热器ISR及IISR的热水流量不变,调节阀保持一定的开度,此时恒温室内温度稳定在给定值x(t)上。

热水加热器ISR 受到干扰时,尤其当扰动为热水加热器IISR的热水流量f

3、

和IISR的热水温度f

时,扰动在副回路内,则副回路检测到温度偏离设定值后,

4

副调节器立即发出校正信号,克服扰动影响。主回路对该扰动进行进一步的调节。

串级控制系统的方块图,恒温室的温度作为主被控参数,进风口温度作为副被控参数,ISR加热器热水流量作为控制参数,存在的干扰为IISR加热器。x(t)为流量给定值,y(t)为系统输出是恒温室的温度

第四章单回路系统调节器参数整定

单回路控制系统的调节器可采用PI控制或者PID控制规律,我们将采用工程整定的方法对调节器的参数进行整定,并对这两种控制效果做一比较。对于本系统,以系统阶跃响应的相关性能指标确定最佳整定值。因此,要求整定后系统

阶跃响应过渡过程曲线余差为零、衰减率在0.75~0.9之间、过渡时间较短(本系统中,因为是房间内的温度,不可能很快的变化,所以认为过渡时间在30分钟左右即可)。

单回路控制系统的仿真模型:

工程上整定调节器参数的方法有很多,如Ziegler-Nichols 整定法,临界比例度法、衰减曲线法等,Ziegler-Nichols 整定方法步骤:

(1)、先整定比例系数P K ,将积分时间常数Ti 置于最大T i ∞(=),微分时间常数置于最小D (T =0),仿真时候把积分和微分断开,系统反馈环节断开,使系统成为开环状态,并且是P K =1;

(2)、给系统加阶跃信号,求取系统的阶跃响应;

(3)、从阶跃响应曲线中求取过程滞后时间常数τ、放大系数K 和时间常数T (4)根据下表的经验公式确定P K 、i T 、D T :

仿真模型:

图10 开环阶跃响应曲线

由可得K=6.51,τ=0.013、T=0.177

所以P控制整定时,比例放大系数K p=2.1

PI控制整定时,比例放大系数K p=1.9,积分时间常数T i=0.043 PID整定参数K p=2.5;T i=0.026;T d=0.006。

系统PID控制时的单位阶跃响应曲线如下:

图系统PID控制时的单位阶跃响应曲线

选择PID调节规律,所以根据上表将调节器的跟部分参数进行整定,将积分

器和微分器输出连线连上,对输入型号给予阶跃扰动仿真模型如图进行仿真得到如图的仿真结果。由于K

p

值越大,被调量变化越快,但过分又容易出现振荡,

K

p

值小,系统容易稳定,但过小,控制作用减弱,稳态误差增大(不存在积分作

用时),空调系统中一般取1/K

p =20%--60%;积分作用与T

i

成反比,T

i

值越小,

积分作用越显著,系统消除稳态误差能力强,但太小,过渡过程振荡激烈;微分时间T

d

=0.006.过大会使系统过渡过程超调量增大,过小,超前微分作用不显著。

第五章单回路系统仿真

单回路控制系统simulink模型

5.1.1、PI控制仿真

系统PI控制时的单位阶跃响应曲线

由于K p值越大,被调量变化越快,但过分又容易出现振荡,K p值小,系统容易稳定,但过小,控制作用减弱,稳态误差增大(不存在积分作用时),空调系统中一般取1/K p =20%--60%;积分作用与T i成反比,T i值越小,积分作用越显著,系统消除稳态误差能力强,但太小,过渡过程振荡激烈;微分时间T d=0.006.过大会使系统过渡过程超调量增大,过小,超前微分作用不显著。

对单回路系统,以加热器ⅡSR热水流量变化为主要干扰,在阶跃干扰作用下,通过仿真确定K p=3;T i=0.0357;T d=0.01。仿真时间为0.8h,得出如图14所示的仿真结果。

5.1.2 PID控制仿真

系统PID控制仿真结果

模型中只设置热水加热器IISR的热水流量干扰,此干扰为主要干扰,由建模过程,可以得知,干扰的传递函数即为加热器IISR的输出温度与热水流量间

。按照要求选择IISR热水加热器为主要敢要,的传递函数,即为w f=15

0.0417S+1

并对其进行仿真分析,所以忽略室内外干扰对系统的影响,加入了IISR干扰的仿真

5.1.3、PI与PID控制方式比较

最后我们简单对PI和PID控制系统对干扰的控制性能做一比较,即将图重绘于同一坐标系,如图所示:

PI和PID控制系统对干扰的控制性能比较

图中可以看出,PID的抗干扰性能要明显优于PI控制系统,这是因为微分的超前校正作用。

第六章设计小结

本次过程控制课程设计有两个题目,经过分析,考虑到空调这个题目能够用到的只是比较多,能够将以前学的复习一下,就选了这个。但是在做这个科室的过程中,我发现原来这个课设真是不容易,要参考很多课外资料,还要将学的不是很多的matlab拿过来用。在此过程中同学的帮助也是很大的,很多自己解决不了的问题都要靠他们的帮助才能完成。

当然,在这个过程中我发现了自己在知识方面存在的很多问题,自己以前课本知识掌握不牢固让我在此次课设中很被动。自己的学以致用的方法还没有运用好,没有很强的自主意识。这也就是课设的另一个目的吧,让我们发现自身的不足,以后多加改进。

参考文献

1、郭宽阳,王正林《过程控制工程及仿真》电子工业出版社2009年

2、孙光伟《水暖与空调电气控制技术》中国建筑工业出版社2010年

3、邵裕森戴先中《过程控制工程》(第二版) 机械工业出版社2010年

4、张晋格陈丽兰《控制系统CAD-基于MATLAB语言》(第2版)

机械工业出版社2010年

空调温度控制系统

目录 第一章过程控制课程设计任务书 (2) 一、设计题目 (2) 二、工艺流程描述 (2) 三、主要参数 (2) 四、设计内容及要求 (3) 第二章空调温度控制系统的数学建模 (4) 一、恒温室的微分方程 (4) 二、热水加热器的微分方程 (6) 三、敏感元件及变送器微分方程 (7) 四、敏感元件及变送器微分特性 (8) 五、执行器特性 (8) 第三章空调温度控制系统设计 (9) 一、工艺流程描述 (9) 二、控制方案确定 (10) 三、恒温室串级控制系统工作过程 (13) 四、元器件选择 (13) 第四章单回路系统的MATLAB仿真 (17) 第五章设计小结 (19)

第一章过程控制课程设计任务书 一、设计题目:空调温度控制系统的建模与仿真 二、工艺过程描述 设计背景为一个集中式空调系统的冬季温度控制环节,简化系统图如附图所示。

系统由空调房间、送风道、送风机、加热设备及调节阀门等组成。为了节约能量,利用一部分室内循环风与室外新风混合,二者的比例由空调工艺决定,并假定在整个冬季保持不变。用两个蒸汽盘管加热器1SR、2SR对混合后的空气进行加热,加热后的空气通过送风机送入空调房间内。本设计中假设送风量保持不变。 设计主要任务是根据所选定的控制方案,建立起控制系统的数学模型,然后用MATLAB对控制系统进行仿真,通过对仿真结果的分析、比较,总结不同的控制方式和不同的调节规律对室温控制的影响。 三、主要参数 (1)恒温室: 不考虑纯滞后时: 容量系数C1=1(千卡/ O C) 送风量G = 20(㎏/小时) 空气比热c1= 0.24(千卡/㎏·O C) 围护结构热阻r= 0.14(小时·O C/千卡) (2)热水加热器ⅠSR、ⅡSR: 作为单容对象处理,不考虑容量滞后。 时间常数T4=2.5 (分) 放大倍数K4=15 (O C·小时/㎏) (3)电动调节阀: 比例系数K3= 1.35 (4)温度测量环节:

基于单片机的温度测量系统设计

基于STC单片机的温度测量系统的研究 摘要:本文针对现有温度测量方法线性度、灵敏度、抗振动性能较差的不足,提出了一种基于STC单片机,采用Pt1000温度传感器,通过间接测量铂热电阻阻值来实现温度测量的方案。重点介绍了,铂热电阻测量温度的原理,基于STC实现铂热电阻阻值测量,牛顿迭代法计算温度,给出了部分硬件、软件的设计方法。实验验证,该系统测量精度高,线性好,具有较强的实时性和可靠性,具有一定的工程价值。 关键词:STC单片机、Pt1000温度传感器、温度测量、铂热电阻阻值、牛顿迭代法。 Study of Temperature Measurement System based on STC single chip computer Zhang Yapeng,Wang Xiangting,Xu Enchun,Wei Maolin Abstract:A method to achieve temperature Measurement by the Indirect Measurement the resistance of platinum thermistor is proposed. It is realized by the single chip computer STC with Pt1000temperature sensor.The shortcomings of available methods whose Linearity, Sensitivity, and vibration resistance are worse are overcame by the proposed method. This paper emphasizes on the following aspects:the principle of temperature measurement by using platinum thermistor , the measurement of platinum thermistor’s resistance based on STC single chip computer, the calculating temperature by Newton Iteration Method. Parts of hardware and software are given. The experimental results demonstrate that the precision and linearity of the method is superior. It is also superior in real-time character and reliability and has a certain value in engineering application. Keywords: STC single chip computer,Pt1000temperature sensor,platinum thermistor’s resistance,Newton Iteration Method 0 引言 精密化学、生物医药、精细化工、精密仪器等领域对温度控制精度的要求极高,而温度控制的核心正是温度测量。 目前在国内,应用最广泛的测温方法有热电偶测温、集成式温度传感器、热敏电阻测温、铂热电阻测温四种方法。 (1) 热电偶的温度测量范围较广,结构简单,但是它的电动势小,灵敏度较差,误差较大,实际使用时必须加冷端补偿,使用不方便。 (2) 集成式温度传感器是新一代的温度传感器,具有体积小、重量轻、线性度好、性能稳定等优点,适于远距离测量和传输。但由于价格相对较为昂贵,在国内测温领域的应用还不是很广泛。 (3) 热敏电阻具有灵敏度高、功耗低、价格低廉等优点,但其阻值与温度变化成非线性关系,在测量精度较高的场合必须进行非线性处理,给计算带来不便,此外元件的稳定性以及互换性较差,从而使它的应用范围较小。 (4)铂热电阻具有输出电势大、线性度好、灵敏度高、抗振性能好等优点。虽然它 的价格相对于热敏电阻要高一些,但它的综合性能指标确是最好的。而且它在0~200°C范

基于PLC的中央空调温度控制系统的设计

基于PLC的中央空调温度控制系统的设计 目前中央空调已经广泛应用于各类建筑,在传统的设计中,中央空调根据最大负荷外加一定裕量设计,无论季节、气候等怎样变化,中央空调都始终在工频状态下全速运行。实际冷负荷根本远远达不到最大负荷,这样就造成了极大的能源浪费。本设计采用西门子S7-200 PLC作为主控制器,基于传统的PID算法,通过西门子MM430变频器控制水泵转速,采用了亚控Kingview进行组态。 标签:中央空调;变频器;PLC;PID 一、引言 目前中央空调已经被广泛地应用于各类建筑中,起着维持建筑物内温湿度恒定的作用。在传统的设计中,中央空调系统的容量的选择一般是依据建筑物的最大制冷、制热负荷或新风交换量的需求,而且保留了充足余量。但是实际上在一年的绝大部分时间中,实际冷负荷根本远远达不到最大负荷,这样就造成了极大的能源浪费。因此,对中央空调进行节能改造的重要性不言而喻。合理地控制中央空调的能耗,就可以减少不必要的能源浪费、节能减排,有利于构建节约型、环保型社会。 二、中央空调系统的节能改造方案 基本控制系统包括四个部分,简单地说,控制系统分为两个部分:控制器、广义对象。其中广义对象包括三部分:测量变送器、执行器、被控对象。为了实现控制系统的稳定,保证控制质量,需要依据工艺要求来为控制器选择合适的控制规律并且运用某种整定方法来对控制器参数进行整定,从而找寻到最佳的控制器参数。本论文所要讨论的是中央空调温度控制系统的设计,采用的算法为传统的PID算法。本系统为温差闭环控制系统。闭环控制的实质是利用负反馈的作用来减小误差。 三、硬件设计 (一)温度传感器选型 传感器是将生产过程工艺参数转换为电参数的装置,当温度超过150℃后,铜在空气中容易被氧化而失去线性特性,因此铜电阻不适宜在腐蚀性环境和高温环境下应用。而且由于铜的电阻率较小,这样铜电阻的机械强度就会变得很低。镍电阻虽然比较灵敏,但是它的热稳定性较差。在本设计中,综合比较铂电阻、铜电阻、镍电阻的特性以及分析中央空调温度控制系统的特点后,选择了Pt100温度传感器。 (二)PLC及扩展模块选型

【CN109974256A】一种室内温湿度控制系统及控制方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910264380.2 (22)申请日 2019.04.03 (71)申请人 南京福加自动化科技有限公司 地址 210001 江苏省南京市经济技术开发 区恒业路6-3号 (72)发明人 李新美 王岑佳 刘守超 吴敢  (74)专利代理机构 南京经纬专利商标代理有限 公司 32200 代理人 曹翠珍 (51)Int.Cl. F24F 11/89(2018.01) (54)发明名称 一种室内温湿度控制系统及控制方法 (57)摘要 本发明涉及一种室内温湿度控制系统及控 制方法,运用自动化技术,实时检测获得送风侧 温湿度平均值和回风侧温湿度平均值,并据此针 对空调装置(1),实现表冷段(3)、蒸汽加热段 (4)、蒸汽加湿段(5)的精确控制输出,并通过左 右侧送回风向的定时切换,结合室内轴流风扇切 换控制组推动中间气流,提高左右侧室内空气混 合效率,使得室内各区域温湿度更加接近和均 衡,从而最终提高了整个室内环境的温湿度精 度, 进而提高了养殖质量和养殖收益。权利要求书2页 说明书5页 附图2页CN 109974256 A 2019.07.05 C N 109974256 A

权 利 要 求 书1/2页CN 109974256 A 1.一种室内温湿度控制系统,通过空调装置(1)实现对室内环境的恒温恒湿控制,其特征在于:包括控制模块(20)、送回风阀切换控制组和传感器检测组,其中,控制模块(20)与空调装置(1)相连接,进行制冷、制热、加湿、除湿功能控制,针对空调装置(1)内部回风区内气流实现温湿度控制,并输送至空调装置(1)内部的出风区;空调装置(1)内部出风区设置两个出风口,并定义为第一出风口和第二出风口,同时,空调装置(1)内部回风区设置两个进风口,并定义为第一进风口和第二进风口;室内环境中彼此相对的两侧壁上分别固定设置一组主导风装置,各组主导风装置分别均包括至少一个子导风装置,各子导风装置上分别均设置两端导风口,各子导风装置上的两端导风口敞开、且彼此连通; 送回风阀切换控制组包括左侧回风切换风阀(7)、左侧送风切换风阀(8)、右侧回风切换风阀(9)、右侧送风切换风阀(10),控制模块(20)分别与送回风阀切换控制组中的各切换风阀进行连接控制;第一出风口经管路对接左侧送风切换风阀(8)的其中一端,第一进风口经管路对接左侧回风切换风阀(7)的其中一端,左侧送风切换风阀(8)另一端与左侧回风切换风阀(7)另一端相对接,并且该对接位置经各根管路分别连通其中一组主导风装置中各子导风装置上的其中一端导风口;第二出风口经管路对接右侧送风切换风阀(10)的其中一端,第二进风口经管路对接右侧回风切换风阀(9)的其中一端,右侧送风切换风阀(10)另一端与右侧回风切换风阀(9)另一端相对接,并且该对接位置经各根管路分别连通另一组主导风装置中各子导风装置上的其中一端导风口; 传感器检测组包括两个温湿度检测组,各温湿度检测组分别与各组主导风装置彼此一一对应,各温湿度检测组分别均包括至少一个温湿度传感器,各温湿度检测组中温湿度传感器的数量与对应主导风装置中子导风装置的数量相同,温湿度检测组中各个温湿度传感器分别与对应主导风装置中各个子导风装置一一对应,各温湿度检测组中各温湿度传感器分别设置于对应主导风装置中对应子导风装置上的另一端导风口,控制模块(20)分别与各个温湿度传感器相连,分别获取对应子导风装置上导风口位置的温湿度数据。 2.根据权利要求1所述一种室内温湿度控制系统,其特征在于:还包括室内轴流风扇切换控制组,室内轴流风扇切换控制组包括至少一个送风轴流风扇组,室内轴流风扇切换控制组设置于所述室内环境中、两组主导风装置之间的位置,各送风轴流风扇组分别均包括正向送风轴流风扇组和反向送风轴流风扇组,所述控制模块(20)分别与各送风轴流风扇组中的正向送风轴流风扇组、反向送风轴流风扇组相连接、进行两向送风控制,针对两组主导风装置之间的气流进行引导。 3.根据权利要求2所述一种室内温湿度控制系统,其特征在于:还包括左侧送风风压传感器(21)和右侧送风风压传感器(6),所述左侧送风切换风阀(8)另一端与所述左侧回风切换风阀(7)另一端相对接位置串联左侧送风风压传感器(21)后、经各根管路分别连通其中一组主导风装置中各子导风装置上的其中一端导风口;所述右侧送风切换风阀(10)另一端与所述右侧回风切换风阀(9)另一端相对接位置串联右侧送风风压传感器(6)后、经各根管路分别连通另一组主导风装置中各子导风装置上的其中一端导风口;所述控制模块(20)分别与左侧送风风压传感器(21)、右侧送风风压传感器(6)相连接,获取各个风压传感器所设管路位置中气流流动的压力数据。 4.根据权利要求2所述一种室内温湿度控制系统,其特征在于:所述各组主导风装置分别均包括三个子导风装置,各组主导风装置中各个子导风装置呈纵向排列布局设置,即上 2

某温度控制系统的MATLAB仿真

课程设计报告 题目某温度控制系统的MATLAB仿真(题目C)

过程控制课程设计任务书 题目C :某温度控制系统的MATLAB 仿真 一、 系统概况: 设某温度控制系统方块图如图: 图中G c (s)、G v (s)、G o (s)、G m (s)、分别为调节器、执行器、过程对象及温度变送器的传递函数;,且电动温度变送器测量范围(量程)为50~100O C 、输出信号为4~20mA 。G f (s)为干扰通道的传递函数。 二、系统参数 二、 要求: 1、分别建立仿真结构图,进行以下仿真,并求出主要性能指标: (1)控制器为比例控制,其比例度分别为δ=10%、20%、50%、100%、200%时,系统广义对象输出z(t)的过渡过程; (2)控制器为比例积分控制,其比例度δ=20%,积分时间分别为T I =1min 、3min 、5min 、10min 时,z(t)的过渡过程; 0m v o 0f o o =5min =2.5min =1.5(kg/min)/mA =5.4C/(kg/min) =0.8 C C T T K K K x(t)=80f(t)=10; ;;; ;给定值; 阶跃扰动

(3)控制器为比例积分微分控制,其比例度δ=10%,积分时间T I=5min,微分时间T D = 0.2min时,z(t)的过渡过程。 2、对以上仿真结果进行分析比对,得出结论。 3、撰写设计报告。 注:调节器比例带δ的说明 比例控制规律的输出p(t)与输入偏差信号e(t)之间的关系为 式中,K c叫作控制器的比例系数。 在过程控制仪表中,一般用比例度δ来表示比例控制作用的强弱。比例度δ定义为 式中,(z max-z min)为控制器输入信号的变化范围,即量程;(p max-p min)为控制器输出信号的变化范围。 = c p(t)K e(t) max min ( ) =100% ) max min e z z p(p-p δ - ?

空调机温度控制系统

单片机课程(设计) (设计目)题:空调机温度控制系统 学院:明德学院 专业:机械设计制造及其自动化 班级:机电12151 学号: 学生姓名: 指导教师:

2015年6月 贵州大学单片机课程(设计) 诚信责任书 本人郑重声明:本人所呈交的课程设计,是在指导老师的指导下独立进行研究所完成。在文本设计中凡引用他人已经发表或未发表的成果、数据、观点等,均已明确注明出处。 特此声明。 课程(设计)作者签名: 日期:

空调机温度控制系统 摘要 新世纪里,人们生活质量不断提高,同时也对高科技电子产业提出了更高的要求,为了使人们生活更人性化、智能化。我设计了这一个基于单片机的空调温度控制系统,人们只有生活在一定的温度环境内才能长期感觉舒服,才能保证不中暑不受冻,所以对室内温度要求要高。对于不同地区空调要求不同,有的需要升温,有的需要降温。一般都要维持在22~26°C。 目前,虽然我国大量生产空调制冷产品,但由于我国人口众多,需求量过盛,在我国的北方地区,还有好多家庭还没有安装有效地室内温控系统。温度不能很好的控制在一定的范围内,夏天室内温度过高,冬天温度过低,这些均对人们正常生活带来不利的影响,温度、湿度均达不到人们的要求。以前温度控制主要利用机械通风设备进行室内、外空气的交换来达到降低室内温度,实现室内温度适宜人们生活。以前通风设备的开启和关停,均是由人手动控制的,即由人们定时查看室内外的温度、湿度情况,按要求开关通风设备,这样人们的劳动强度大,可靠性差,而且消耗人们体力,劳累成本过高。为此,需要有一种符合机械温控要求的低成本的控制器,在温差和湿度超过用户设定值范围时,启动制冷通风设备,否则自动关闭制冷通风设备。鉴于目前大多数制冷设备现在状况,我设计了一款基于MCS51单片机空调温度控制系统。

温度控制系统测试.

温度控制系统测试 实验目的 1.在自动控制理论实验基础上,控制实际的模拟对象,加深对理论的理解; 2.掌握闭环控制系统的参数调节对系统动态性能的影响。 实验设备 1.自动控制理论及计算机控制技术实验装置; 2.数字式万用表、示波器(自备); 3.温度对象、控制对象。 实验原理 图 1 温度控制系统框图如图1所示,由给定、PID调节器、可控硅调制(使用全隔离单相交流调压模块)、加温室(采用经高速风扇吹出热风)、温度变送器(PT100输入0-100°输出2-10V电压)和输出电压反馈等部分组成。在参数给定的情况下,经过PID运算产生相应的控制量,使加温室里的温度稳定在给定值。 给定Ug由自动控制理论及计算机控制技术的实验面板单元U3的O1提供,电压变化范围为1.3V~10V。 PID调节器的输出作为可控硅调制的输入信号,经控制电压改变可控硅导通角从而改变输出电压的大小,作为对加温室里电热丝的加热信号。 温度测量采用PT100热敏电阻,经温度变送器转换成电压反馈量,温度输入范围为0~100℃,温度变送器的输出电压范围为DC2~10V。 根据实际的设计要求,调节反馈系数β,从而调节输出电压。

实验电路原理图 实验电路由自动控制理论及计算机控制技术实验板上的运放和备用元件搭建而成,实验参考参数如下:R0=R1=R2=100KΩ,R3=100KΩ,R4=10M,C1=10uF,R5=430K。Rf/Ri=1; 具体的实验步骤如下: 1.先将自动控制理论及计算机控制技术面板上的电源船形开关均放在“OFF”状态。 2.利用实验板上的单元电路U9、U13和U15,设计并连接如图2所示的闭环系统。 图2 在进行实验连线之前,先将U9单元两个输入端的100K可调电阻均逆时针旋转到底(即调至最小),使电阻R0、R1均为100K; 将U15单元输入端的100K可调电阻逆时针旋转到底(即调至最小),使输入电阻R3的总阻值为100K;C1在U15单元模块上。R4取元件库单元上的10M电阻。R5取元件库单元上的的430K电阻; U13单元作为反相器单元,将U13单元输入端的100K可调电阻均顺时针旋转到底(即调至最大),使电阻Ri为200K;保证反馈系数为1。 注明:所有运放单元的+端所接的100K电阻均已经内部接好,实验时不需外接。 (1)将数据采集系统U3单元的O1接到Ug; (2)给定输出接PID调节器的输入,这里参考电路中Kd=0,R4的作用是提高PI调节器的动态特性。 (3)经过PID运算调节器输出(0~10V)接到温度的检测和控制单元的脉宽调制的

中央空调温度控制系统

过程控制课程设计报告 ——中央空调温度控制系统 一、课程设计目的 1、熟悉并掌握组态王软件的基本使用; 2、通过组态王软件的使用,进一步掌握了解过程控制理论基础知识; 3、培养自主查找资料、收索信息的能力; 4、培养实践动手能力与合作精神。 二、选题背景 随着计算机技术、信息技术、控制理论的快速发展,人们对生活质量和工作环境的要求也不断增长,智能建筑应运而生。中央空调是智能建筑的重要组成部分,中央空调的能耗占整个建筑能耗的50%~70%,因此中央空调系统的监控是楼宇自动化系统研究的重点。在民航业中,中央空调系统是航站楼内最为重要的系统之一,其系统的性能直接影响到旅客的感受。 三、设计任务 由于中央空调系统非常复杂,本设计选取温度作为主要被控对象,使用组态王设计温度监控画面,能实现被控环境的温度设定并实时监控温度的变化趋势,控制器采用PID控制算法,可以在监控界面上对PID参数进行整定,实现稳态误差小于5%。 四、详细设计 1、监控界面说明 监控界面主要由三部分组成:系统组成部分、PID调节部分和显示部分,如图1所示。 系统组成部分位于画面左上侧,由被控环境、温度传感器、A/D模块、控制器、D/A模块、变频器、风机和管道组成。温度传感器检测被控环境的温度,经过A/D模块传送至控制器,与温度设定值比较,输出控制值,经D/A模块传送至变频器,控制风机的转速。值0-10对应管道流速,0为不流动,10为最快,运行时点击“系统运行”按钮,管道出现流动效果。 PID调节部分位于画面右侧,包括PID控件、环境温度设定显示按钮和PID参数输入按钮。利用系统PID控件内置的PID实现温度的控制,点击相应的按钮可输入值。 显示部分位于画面左下侧和右上侧,包括实时温度曲线、历史温度曲线、报警窗口和实时报表。实时温度曲线显示温度的调节变化过程。

基于51单片机的温度控制系统的设计

基于单片机的温度控制系统设计 1.设计要求 要求设计一个温度测量系统,在超过限制值的时候能进行声光报警。具体设计要求如下: ①数码管或液晶显示屏显示室内当前的温度; ②在不超过最高温度的情况下,能够通过按键设置想要的温度并显示;设有四个按键,分别是设置键、加1键、减1键和启动/复位键; ③DS18B20温度采集; ④超过设置值的±5℃时发出超限报警,采用声光报警,上限报警用红灯指示,下限报警用黄灯指示,正常用绿灯指示。 2.方案论证 根据设计要求,本次设计是基于单片机的课程设计,由于实现功能比较简单,我们学习中接触到的51系列单片机完全可以实现上述功能,因此可以选用AT89C51单片机。温度采集直接可以用设计要求中所要求的DS18B20。报警和指示模块中,可以选用3种不同颜色的LED灯作为指示灯,报警鸣笛采用蜂鸣器。显示模块有两种方案可供选择。 方案一:使用LED数码管显示采集温度和设定温度; 方案二:使用LCD液晶显示屏来显示采集温度和设定温度。 LED数码管结构简单,使用方便,但在使用时,若用动态显示则需要不断更改位选和段选信号,且显示时数码管不断闪动,使人眼容易疲劳;若采用静态显示则又需要更多硬件支持。LCD显示屏可识别性较好,背光亮度可调,而且比LED 数码管显示更多字符,但是编程要求比LED数码管要高。综合考虑之后,我选用了LCD显示屏作为温度显示器件,由于显示字符多,在进行上下限警戒值设定时同样可以采集并显示当前温度,可以直观的看到实际温度与警戒温度的对比。LCD 显示模块可以选用RT1602C。

3.硬件设计 根据设计要求,硬件系统主要包含6个部分,即单片机时钟电路、复位电路、键盘接口模块、温度采集模块、LCD 显示模块、报警与指示模块。其相互联系如下图1所示: 图1 硬件电路设计框图 单片机时钟电路 形成单片机时钟信号的方式有内部时钟方式和外部时钟方式。本次设计采用内部时钟方式,如图2所示。 单片机内部有一个用于构成振荡器的高增益反相放大器,引脚XTAL1和XTAL2分别为此放大器的输入端和输出端,其频率范围为~12MHz ,经由片外晶体振荡器或陶瓷振荡器与两个匹配电容一 起形成了一个自激振荡电路,为单片机提供时钟源。 复位电路 复位是单片机的初始化操作,其作用是使CPU 和系统中的其他部件都处于一个确定的初始状态,并从这个状态开始工作,以防止电源系统不稳定造成CPU 工作不正常。在系统中,有时会出现工作不正常的情况,为了从异常状态中恢复,同时也为了系统调试方便,需要设计一个复位电路。 单片机的复位电路有上电复位和按键复位两种形式,因为本次设计要求需要有启动/复位键,因此本次设计采用按键复位,如图3。复位电路主要完成系统 图2 单片机内部时钟方式电路 图3 单片机按键复位电路

智能型温度测量控制系统

河北农业大学 毕业论文﹙设计﹚开题报告 题目智能型温度测量控制系统-开题报告 学生姓名学号 所在院(系)信息工程学院 专业班级通信工程2010140 指导教师 2014年02月23日

题目基于单片机的温度控制系统设计 一、选题的目的及研究意义 温度的测量及控制对保证产品质量、提高生产效率、节约能源、生产安全、促进国民经济的发展起到非常重要的作用,是工业对象中主要的被控参数之一。在单片机温度测量系统中的关键是测量温度、控制温度和保持温度。在日常生活中,也可广泛实用于地热、空调器、电加热器等各种家庭室温测量及工业设备温度测量场合。随着微机测量和控制技术的迅速发展与广泛应用,以单片机为核心的温度采集与控制系统的研发与应用在很大程度上提高了生产生活中对温度的控制水平。近年来,温度的检测在理论上发展比较成熟,但在实际测量和控制中,如何保证快速实时地对温度进行采样,确保数据的正确传输,并能对所测温度场进行较精确的控制,仍然是目前需要解决的问题。这次毕业设计选题的目的主要是让生活在信息时代的我们,将所学知识应用于生产生活当中,掌握系统总体设计的流程,方案的论证,选择,实施与完善。通过对温度控制通信系统的设计、制作、了解信息采集测试、控制的全过程,提高在电子工程设计和实际操作方面的综合能力,初步培养在完成工程项目中所应具备的基本素质和要求。培养研发能力,通过对电子电路的设计,初步掌握在给定条件和要求的情况下,如何达到以最经济实用的方法、巧妙合理地去设计工程系统中的某一部分电路,并将其连接到系统中去。提高查阅资料、语言表达能力和理论联系实际的技能。 当今社会温度的测量与控制系统在生产与生活的各个领域中扮着越来越重要的角色,大到工业冶炼,物质分离,环境检测,电力机房,冷冻库,粮仓,医疗卫生等方面,小到家庭冰箱,空调,电饭煲,太阳能热水器等方面都得到了广泛的应用,温度控制系统的广泛应用也使得这方面研究意义非常的重要。 二、综述与本课题相关领域的研究现状、发展趋势、研究方法及应用领域等 国外对温度控制技术研究较早,始于20世纪70年代。先是采用模拟式的组合仪表,采集现场信息并进行指示、记录和控制。80年代末出现了分布式控制系统。目前正开发和研制计算机数据采集控制系统的多因子综合控制系统。现在世界各国的温度测控技术发展很快,一些国家在实现自动化的基础上正向着完全自动化、无人化的方向发展。我国对于温度测控技术的研究较晚,始于20世纪80年代。我国工程技术人员在吸收发达国家温度测控技术的基础上,才掌握了温度室内微机控制技术,该技术仅限于对温度的单项环境因子的控制。我国温度测控设施计算机应用,在总体上正从消化吸收、简单应用阶段向实用化、综合性应用阶段过渡和发展。在技术上,以单片机控制的单参数单回路系统居多,尚无真正意义上的多参数综合控制系统,与发达国家相比,存在较大差距。我国温度测量控制现状还远远没有达到工厂化的程度,生产实际中仍然有许多问题困扰着我们,存在着装备配套能力差,产业化程度低,环境控制水平落后,软硬件资源不能共享和可靠性差等缺点。在今后的温控系统的研究中会趋于智能化,集成化,系统的各项性能指标更准确,更加稳定可靠。应用领域非常的广泛,①冷冻库,粮仓,储罐,电信机房,电力机房,电缆线槽等测温和控制领域。 ②轴瓦,缸体,纺机,空调等狭小空间工业设备测温和控制。③汽车空调,冰箱,冷柜以及中低温干燥箱等。④太阳能供热,制冷管道热量计量,中央空调分户热能计量等。温度是一种最基本的环

中央空调温控器操作说明

现在很多小伙伴家里在装修的时候,都安装了中央空调,随之配套的还有中央空调的温控器,很多小伙伴还不知道温控器怎么操作,下面就一起来看看温控器的操作说明吧。 中央空调温控器分爲电子式和机器式两种,按显示不同分爲液晶显示和调理式。中央空调温控器是经过顺序编辑,用顺序来控制并向执行器收回各种信号,从而到达控制空调风机盘管以及电动二通阀的目的。 机器式 机器盘管温控器使用于商业、工业及民用修建物。可对采暖、冷气的中央空调末端风机盘管、水阀停止控制。使所控场所环境温度恒定爲设定温度范围内。温度设定拔盘指针应设定爲所需恒定温度地位。拔动开关功用辨别爲:电源开关(开ON—关OFF);运转形式开关(暖气HEAT—冷气COOL),FAN风速开关(低速L—中速M—高速H)。可控制设备:三档风机盘管风速,三线电动阀,二线电动阀,也可接电磁阀、开关型风阀或三线型风阀。外型尺寸。

操作办法 1、开关机:把拨动开关拨动到ON地位,温控器开机;把开关拨动到OFF 地位,温控器关机。 2、打工形式设定:把拨动开关拨动到COOL地位,温控器设定爲制冷形式;把拨动开关拨动到HEAF地位,温控器设定爲制热形式。 3、温度设定:机器式温控器,采用旋钮式设定温度,把红点对着面板标明的温度数据即可。 4、风速设定:把开关拨动到LOW地位;温控器设定爲高档风速;把开关拨动到WED地位,温控器设定爲中档风速;把开关拨动到High地位,温控器设定爲高档风速。 快益修以家电、家居生活为主营业务方向,提供小家电、热水器、空调、燃气灶、油烟机、冰箱、洗衣机、电视、开锁换锁、管道疏通、化粪池清理、家具维修、房屋维修、水电维修、家电拆装等保养维修服务。

温湿度独立控制空调系统

摘要:本文在分析了目前热湿联合处理空调系统所面临的主要问题的基础上,提出了热湿独立控制空调策略:采用新风去除室内的余湿、承担室内空气质量的任务,采用高温冷源去除室内的余热。并提出了温湿度独立控制空调方式对室内末端装置、新风处理、制备高温冷源的要求与影响,介绍了温湿度独立控制系统的应用实践工程。 关键词:温湿度独立控制新风高温冷源 1 引言 从热舒适与健康出发,要求对室内温湿度进行全面控制。夏季人体舒适区为25ºc,相对湿度60%,此时露点温度为16.6ºc。空调排热排湿的任务可以看成是从25ºc 环境中向外界抽取热量,在16.6ºc的露点温度的环境下向外界抽取水分。目前空调方式的排热排湿都是通过空气冷却器对空气进行冷却和冷凝除湿,再将冷却干燥的空气送入室内,实现排热排湿的目的。现有的热湿联合处理的空调方式存在如下问题。 (1)热湿联合处理的能源浪费。由于采用冷凝除湿方法排除室内余湿,冷源的温度需要低于室内空气的露点温度,考虑传热温差与介质输送温差,实现16.6ºc的露点温度需要约7ºc的冷源温度,这是现有空调系统采用5~7ºc的冷冻水、房间空调器中直接蒸发器的冷媒蒸发温度也多在5ºc的原因。在空调系统中,占总负荷一半以上的显热负荷部分,本可以采用高温冷源排走的热量却与除湿一起共用5~7ºc的低温冷源进行处理,造成能量利用品位上的浪费。而且,经过冷凝除湿后的空气虽然湿度(含湿量)满足要求,但温度过低,有时还需要再热,造成了能源的进一步浪费与损失。 (2)难以适应热湿比的变化。通过冷凝方式对空气进行冷却和除湿,其吸收的显热与潜热比只能在一定的范围内变化,而建筑物实际需要的热湿比却在较大的范围内变化。一般是牺牲对湿度的控制,通过仅满足室内温度的要求来妥协,造成室内相对湿度过高或过低的现象。过高的结果是不舒适,进而降低室温设定值,通过降低室温来改善热舒适,造成能耗不必要的增加;相对湿度过低也将导致由于与室外的焓差增加使处理室外新风的能耗增加。 (3)室内空气品质问题。大多数空调依靠空气通过冷表面对空气进行降温除湿,这就导致冷表面成为潮湿表面甚至产生积水,空调停机后这样的潮湿表面就成为霉菌繁殖的最好场所。空调系统繁殖和传播霉菌成为空调可能引起健康问题的主要原因。另外,目前我国大多数城市的主要污染物仍是可吸入颗粒物,因此有效过滤空调系统引入的室外空气是维持室内健康环境的重要问题。然而过滤器内必然是粉尘聚集处,如果再漂溅过一些冷凝水,则也成为各种微生物繁殖的最好场所。频繁清洗过滤器既不现实,也不是根本的解决方案。 (5)输配能耗的问题。为了完成室内环境控制的任务就需要有输配系统,带走余热、余湿、co2、气味等。在中央空调系统中,风机、水泵消耗了40~70%的整个空调系统的电耗。在常规中央空调系统中,多采用全空气系统的形式。所有的冷量全部用空气来传送,导致输配效率很低。 此外,随着能源问题的日益严重,以低品位热能作为夏季空调动力成为迫切需要。目前北方地区大量的热电联产集中供热系统在夏季由于无热负荷而无法运行,使得电力负荷出现高峰的夏季热电联产发电设施反而停机,或者按纯发电模式低效运行。如果可以利用这部分热量驱动空调,既省下空调电耗,又可使热电联产电厂正常运行,增加发电能力。这样即可减缓夏季供电压力,又提高能源利用率,是热电联产系统继续发展的关键。由于空调负荷在一天内变化显著,与热电联产电厂提供热能并不是很好匹配,如何实现有效的蓄能,以协调二者的矛盾也是热能使用当中存在的问题。 综上所述,空调的广泛需求、人居环境健康的需要和能源系统平衡的要求,对目前空调方式提出了挑战。新的空调应该具备的特点为: 加大室外新风量,能够通过有效的热回收方式,有效的降低由于新风量增加带来的能耗增大

温度控制系统曲线模式识别及仿真

锅炉温度定值控制系统模式识别及仿真专业:电气工程及其自动化姓名:郭光普指导教师:马安仁 摘要本文首先简要介绍了锅炉内胆温度控制系统的控制原理和参数辨识的概念及切线近似法模式识别的基本原理,然后对该系统的温控曲线进行模式识别,而后着重介绍了用串级控制和Smith预估器设计一个新的温度控制系统,并在MATLAB的Simulink中搭建仿真模型进行仿真。 关键词温度控制,模式识别,串级控制,Smith预测控制 ABSTRACT This article first briefly introduced in the boiler the gallbladder temperature control system's control principle and the parameter identification concept and the tangent approximate method pattern recognition basic principle, then controls the curve to this system to carry on the pattern recognition warm, then emphatically introduced designs a new temperature control system with the cascade control and the Smith estimator, and carries on the simulation in the Simulink of MATLAB build simulation model. Key Words:Temperature control, Pattern recognition, Cascade control, Smith predictive control

基于NTC热敏电阻的温度测量与控制系统设计(论文)

题目名称:基于NTC热敏电阻的温度测量与控 制系统设计 摘要:本系统由TL431精密基准电压,NTC热敏电阻(MF-55)的温度采集,A/D和D/A转换,单片机STC89C51为核心的最小控制系统,LCD1602的显示电路等构成。温度值的线性转换通过软件的插值方法实现。该系统能够测量范围为0~100℃,测量精度±1℃,并且能够记录24小时内每间隔30分钟温度值,并能够回调选定时刻的温度值,能计算并实时显示24小时内的平均温度、温度最大值、最小值、最大温差,且有越限报警功能。由于采用两个水泥电阻作为控温元件,更有效的增加了温度控制功能。 关键词: NTC TL431 温度线性转换 Abstract: The system is composed of TL431 as precise voltage,the temperature acauisition circuit with NTC thermistors (MF-55), the transform circuit of A/D and D/A, the core of the minimum control system with STC89C51, 1the display circuit usingLCD1602, etc. Get the temperature of the linear transformation by the software method. The range of the measure system is 0 ~ 100 ℃, measurement accuracy + 1 ℃.It can record 24 hours of each interval temperature by per 30 minutes selected of temperature.The time can be calculated and real-time display within 24 hours of the average temperature, maximum temperature and minimum temperature, maximum value, and each temperature sensor has more all the way limit alarm function. Due to the two cement resistance as temperature control components, the more effective increase the temperature control function. Keyword: NTC TL431 temperature linear conversion

基于PLC的变频中央空调温度控制系统的毕业设计说明

唐山学院 毕业设计 设计题目:基于PLC的变频中央空调温度控制系统设计 系别:智能与信息工程学院 班级: 姓名: 指导教师:田丽欣 2016年6月 1 日

基于PLC的变频中央空调温度控制系统 设计 摘要 为了保证环境温度和湿度的舒适,大多酒店、大型商场、工厂车间、写字楼甚至学校等都装有中央空调系统,方便管理以及节约能源。但传统的中央空调能源利用率还是相对较低,普遍存在30%左右的无效能耗。传统的中央空调能源消耗大,而效率相对低下,无论负荷的大小,电机已及系统都是在全负荷的状态下工作的,当用户不需要这么大的负荷时,就造成了资源的浪费。 中央空调系统由空调主机,冷却水泵、冷却塔,冷冻水泵、风机、盘管系统等组成。冷冻水是流过空调主机后,经过空调主机制冷降温,通过冷冻泵输送到各个房间中,然后通过盘管系统,和室内的空气进行热交换,最后再流回空调主机,形成循环。而冷却水系统则主要是给空调主机降温,在冷却泵的作用下,冷却水流经空调主机,把空调主机的热量带走,再在冷却塔处经由却塔风机进行散热,最后再流回空调主机,形成循环。冷冻水、冻却水作为热量的载体,不断地把室内的热量带到室外。 本论文所研究的中央空调系统可在PLC的控制下,利用PT-100温度变送器采集室内温度,通过EM235模拟量输入输出模块将采集到的温度度数转化为模拟量,进行PID计算,转化后输送给变频器,变频器再带动电机做出相应的加减速转动,使室内温度发生变化,从而形成闭环控制,实现最优控制,低能源高效率,保证居住、工作环境的温度和湿度的同时,最大空间的节约能源,提高能源利用率。 关键词:中央空调温度控制PLC EM235 变频器PID控制

室内温度自动调节控制系统

室内温度自动调节控制系统 摘要 在人们日常生产及生活过程中,经常要用到温度的检测和控制。随着微型计算机和传感器技术的迅速发展,自动检测领域发生了巨大变化,室内温度自动检测控制方面的研究有了很大进展。同时现代电子产品性能进一步提高,产品更新换代的节奏越来越快。本次课程设计是基于STC89C52单片机基础板所做的温度检测调节系统,不仅对于学习单片机技术等专业知识有实际意义,而且还可以增强动手能力。 这次设计的系统,硬件电路主要包括单片机最小系统电路,温度采集电路,显示电路,语音播报电路,按键电路,继电器电路等。软件程序主要包括主程序,读出温度子程序,计算温度子程序,显示温度刷新子程序,语音播报程序等。我们利用DS18B20温度传感器采集温度通过STC89C5单片机系统在应用板上利用LCD1602液晶显示屏显示实时测得的温度,通过程序进行语音播报;当温度超过设定的上限时,继电器闭合,并驱动动机工作,以实现降温。 经过调试,结果显示LCD屏准确显示了室温,并能进行语音播报。当温度超过设定上限时,继电器闭合,风扇工作,开始降温;实现了系统设计要求的功能。 关键词:室内温度,自动控制,STC89C52单片机,语音播报。

目录 0 前言 (1) 1总体方案设计 (2) 1.1设计方案论证 (3) 1.2 主控制器 (3) 1.3 LCD液晶显示 (3) 1.4 温度传感器 (3) 2硬件电路设计 (6) 2.1.主控制器 (6) 2.1.1 电源部分 (7) 2.1.2 串口电路 (7) 2.1.3晶振电路 (8) 2.1.4复位电路 (9) 2.2 显示电路 (9) 2.3 数据采集电路 (9) 2.4语音电路 (10) 2.5按键电路 (11) 3 软件设计 (11) 3.1 主程序设计..................................................................................... 错误!未定义书签。 3.2 温度转换程序 (13) 3.3 温度显示程序 (13) 4 调试分析 (14) 4.1 硬件调试 (14) 4.1.1硬件调试方法 (14) 4.1.2 电源调试 (14) 4.1.3 语音模块调试 (14) 4.2 软件调试 (14) 5 结论 (17) 参考文献 (18) 附录1 电路原理图 (19) 附录2 .PCB图 (20) 附录3主程序 (21)

温度控制系统的设计与仿真

: 远程与继续教育学院 本科毕业论文(设计) 题目:温控系统的设计及仿真(MATLAB) 、 学习中心: 学号: 姓名: 专业:机械设计制造及自动化 指导教师: " 2013 年 2 月 28 日

) 摘要 温度是工业对象中一个主要的被控参数,它是一种常见的过程变量,因为它直接影响燃烧、化学反应、发酵、烘烤、煅烧、蒸馏、浓度、挤压成形,结晶以及空气流动等物理和化学过程。温度控制不好就可能引起生产安全,产品质量和产量等一系列问题。温度控制是许多设备的重要的构成部分,它的功能是将温度控制在所需要的温度范围内,以利于进行工件的加工与处理。 一直以来,人们采用了各种方法来进行温度控制,都没有取得很好的控制效果。如今,随着以微机为核心的温度控制技术不断发展,用微机取代常规控制已成必然,因为它确保了生产过程的正常进行,提高了产品的数量与质量,减轻了工人的劳动强度以及节约了能源,并且能够使加热对象的温度按照某种指定规律变化。 实践证明,用于工业生产中的炉温控制的微机控制系统具有高精度、功能强、经济性好的特点,无论在提高产品质量还是产品数量,节约能源,还是改善劳动条件等方面都显示出无比的优越性。 本设计以89C51单片机为核心控制器件,以ADC0809作为A/D转换器件,采用闭环直接数字控制算法,通过控制可控硅来控制热电阻,进而控制电炉温度,最终设计了一个满足要求的电阻炉微型计算机温度控制系统。 关键词:1、单片机;2、PLC;3、MATLAB &

( 目录 1单片机在炉温控制系统中的运用 (6) 1、1系统的基本工作原理 (6) 2温控系统控制算法设计 (7) 温度控制算法的比较 (7) 数字PID算法 (11) 、 3 结论 (21) 致谢 (22) 参考文献 (23) [

相关文档
最新文档