自动调节系统

集气管压力自动调节系统使用说明(DOC)

集气管压力自控系统使用说明 操作要点 (斜体字部分为可选项,可能与实际不符) 1.工控机USB口上的U盘状运行锁一定不要在运行时取下,否则将损坏工控机! 2.若某一集气管压力变送器有故障(或未投产的焦炉),须将该集气管蝶阀的 控制方式转为“手动”,并将该集气管压力的设定值设成“0”,这样可以保证工控机对其它集气管的正常自动控制。 3.当故障恢复后转回为“自动”时,一定不要忘记将该集气管压力的设定值恢 复成正常值。 4.若集气管压力发生振荡而较长时间不能稳定下来时,可将振幅较大的集气管 压力控制方式转为“手动”——用鼠标小范围的修改阀位输出值,待系统稳定后再将其转回“自动”。 5.一旦鼓风机转速超出“高高限——低低限”的范围,工控机将发出语音报警, 弹出“鼓风机控制”界面,并同时将该鼓风机的控制方式转为“手动”。 6.在“鼓风机控制”界面内,根据鼓风机的实际情况,正确设置鼓风机状态— —界面上显示的鼓风机状态(运行或停止)要与该鼓风机的实际状态相符。 7.鼓风机转速超过上限、鼓风机前吸力低于低限、机后压力高于上限时,鼓风 机都将不再自动增速。 8.当“大循环”手动时,要通过“大循环”的辅助调节,使偶合器转速保持在 上下限的范围内——当偶合器转速接近下限时适当开大“大循环”、当偶合器转速远离下限时适当关小“大循环”。 9.当采用“循环优先”且转速手动时,要通过鼓风机转速的辅助调节使“大循 环”阀位在合适(上下限)的范围内。 10.当遇有停电时,要在UPS停止供电前将控制方式转到 DCS 或“手动”控制, 然后按停机操作步骤停工控机——工控机绝不许非法关机。 一.功能简述 该装置是以工控机作为控制单元,以集气管蝶阀执行器、鼓风机偶合器(大循环蝶阀执行器)为执行机构的工业自动控制装置。 我们知道,焦炉煤气的发生量是波动的,为了保证集气管压力的稳定,必须

4月全国自考电力系统自动装置试题及答案解析

全国2018年4月高等教育自学考试 电力系统自动装置试题 课程代码:02304 一、单项选择题(本大题共15小题,每小题1分,共15分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.单相自动重合闸动作时间应比三相自动重合闸时间() A.长 B.短 C.相同 D.取决于合闸断路器的类型 2.同步发电机自同步并列方式中,并列合闸前瞬间,发电机机端电压() A.取决于励磁电流的大小 B.接近额定电压 C.接近系统电压 D.接近零 3.自动准同步合闸控制电路不包括 ...() A.频差检查单元 B.电压差检查单元 C.导前时间形成单元 D.调差单元 4.AAT装置采用“慢速切换”模式时,厂用电母线失电时间为() A.1秒以内 B.1~1.5秒 C.2~2.5秒 D.3秒以上 5.具有正调差特性的发电机,其机端电压随输出无功功率的增加而() A.增加 B.降低 C.不变 D.不确定 6.欲平移同步发电机外特性曲线,需要改变() A.励磁调节器的基准电压 B.励磁调节器的放大倍数 C.励磁调节器调差系数 D.系统电压 7.三相半控整流桥励磁电路中,整流二极管的个数至少是() A.3 B.4 C.5 D.6 8.单机运行的同步发电机,若增加励磁电流则会使() A.输出无功功率增大 B.输出有功功率增大 C.机端电压升高 D.发电机频率升高 9.AAT装置应保证只动作一次,是为了防止() A.工作电源或设备无法断开 B.备用电源或设备提前投入 C.工作电源或设备多次受故障冲击 D.备用电源或设备多次受故障冲击 10.以高温高压火电厂为主的电力系统的自动低频减载装置的末级动作频率一般为() A.45~45.5Hz B.46~46.5Hz C.47~47.5Hz D.48~48.5Hz 11.不满足 ...重合闸动作条件的是() A.保护跳闸 B.误碰断路器跳闸 C.用控制开关跳闸 D.控制开关与断路器位置不对应 1

基于单片机的智能仓库温湿度控制系统

第一章引言 1.1 课题背景 在现代工业现场,随着科技的进步和自动化发展,温、湿度监测系统在某些行业中要求越来越高,特别是在大中型仓库管理系统中,由于温湿度过高或过低引起的仓库储藏物本身的水分过高或连续的高湿天气将导致储藏物新陈代谢加快而放出热量,放热引起的温升又是代谢进一步加剧以至发霉变质,因此仓库必须重视对空气温湿度精确的而又方便的实时监测,长期以来,由于受经济条件限制,我国仓库环境较差,而且管理落后。 仓库管理的重点之一就是要合理布置测温点,经常检查温度变化,以便及时发现储藏物发热点,减少损失。然而,堆积物的热传递又是那样的缓慢,使人感知极差,需要管理人员经常进入闷热、呛人的仓库内观察温、湿度,不断进行翻仓、加湿、通风和降温设备来控制温湿度,这样不但控制精度低、实时性差,而且操作人员的劳动强度大。这种繁重的体力劳动,不仅对人体有极大的伤害,而且不科学、不及时。所以,仓库储藏物虫蛀、霉变的情况时有发生。 我国的储藏物现均集中存放在地方或国家的仓库中。按照国家储藏物保护法,必须定期抽样检查粮食的温、湿度,以确保储藏质量。这就迫切需要温湿度监控系统来控制仓库。 本课题即以上述问题为出发点,设计仓库温、湿度监控系统,该系统不仅能采集仓库内的温、湿度值,而且能够迅速做出相应的处理,并将数据及处理结果显示给用户,并储存数据以方便以后的对比研究。 1.2 仓库温、湿度控制技术的国内外研究状况 近年来,由于超大规模集成电路技术、网络通信技术和计算机技术的发展,是监控系统在工农业生产等领域得到广泛引用,因此,仓库温、湿度监控技术的研究在软、硬件等方面都得到了一定的发展。 1.2.1 硬件技术 早期仓库温湿度检测主要采用温度计量算法,它是将温度计放入特定的插杆中,根据经验插入仓库的多个测温点,工作人员定期拔出读数,决定采取相应的措施。这种方法由于温度计精度、人工读数的人为因素等原因,温度检测不仅速度慢而且精度低,抽样不彻底,局部粮食温度过高不易被及时发现,局部粮食发霉变质引起大面积坏掉的情况时有发生。 随着科技的发展,温、湿度检测系统有了很大的改善和提高,系统在布线上采用矩阵式布线技术,简化了数据采集部分的线路;在传感器方面应用了热电偶、半导体等器件;在数据传输方面减少了传输线的根数,采用串行传输方式,他可对仓库的各个测试点进

温度数据采集系统

第三章系统硬件设计 温度数据采集系统和接收显示硬件电路主要包含温度数据采集、发送、接收和显示等模块,温度数据采集采用数字式温度传感器DS18B20,数据的发送和接收采用无线数据收发模块PTR2000,整个系统采用单片机STC89C52进行各模块的协调控制,下面对各个模块进行介绍。 3.1 数字温度传感器DS18B20 3.1.1 DS18B20 的性能特点 DS18B20 是由DALLAS 半导体公司生产的单线型智能数字温度传感器,是新一代适配微处理器的智能温度传感器,广泛应用于工业、农业等领域,具有体积小、接口方便和传输距离远的特点,在一根通信线上可以挂很多个DS18B20,很方便。具有以下特点: (1)具有独特的1-Wire 接口,只需要一个端口引脚就可以进行通信; (2)具备多节点能力,能够简化分布式温度检测应用中的设计; (3)不需要外部元件; (4)可以直接从数据线供电,电源电压范围在3~5.5V; (5)在待机状态下可以不消耗电源电量; (6)测量温度范围在-55~+125℃; (7)在-10~+85℃时测量精度在±0.5℃; (8)可以用程序设定9~12 位分辨率; (9)用户可根据需要定义温度的上下限报警设置。 DS18B203 脚封装的管脚排列图如图3.1.1 所示。

图 3.1.1 DS18B20 管脚排列图 DS18B20 只有三个引脚。其中,引脚1 和3 分别是GND 和VDD,引脚2 是DQ 端,是用于数据信息的输入和输出。当给DS18B20 加电后,单片机可以通过DQ 端写入命令,并可以读出含有温度信息的数字量。在使用寄生电源情况下,可以向DS18B20 提供电源。 3.1.2 DS18B20 的内部结构 DS18B20的内部框图如图3.1.2所示。 图3.1.2 DS18B20的内部框图 DS18B20主要由64位ROM、温度传感器、非易失性温度报警触发器TH和TL及暂存器四部分组成。64位ROM存储器具有独一无二的序列号,可以看作是该DS18B20的地址系列号,是在出厂前就被光刻好的。暂存器各字节具有不同的意义,0和1字节是用于存储温度传感器数字输出的温度寄存器;2字节和3字节分别是非易失性上限报警触发寄存器(TH)和下限报警触发寄存器(TL);4字节的配置寄存器能够用来设置温度转换的精度; 5、6和7字节作为内部保留使用。DS18B20有两种供电方式,可以使用寄生电源供电,也可以使用外部电源。在使用寄生电源的时候,不用外部电源,而是在总线为高时由DQ端提供电源,同时向内部电容充电,以求在总线拉低时为DS18B20提供电量。上电后,DS18B20进入空闲状态;当MCU向DS18B20发出Convert T [44h]的命令后,DS18B20 向MCU传送转换状态,开始温度测量和A/D转换。温度数据以带符号位的补码形式存储在温度寄存器中,温度寄存器格式如图3.1.3所示。 图3.1.3 DS18B20温度寄存器格式 温度的正负值是由符号为来说明的,正为0,负为1。表3.1给出一部分数字数据与温度的对应关系。 表3.1 DS18B20温度与数据对应关系

自动调节系统的组成机方框图

利用各种仪表和设备代替人的一些复杂性、重复性的劳动,按照人们所预定的要求,自动的进行生产和操作,这种管理生产的办法,称为工业生产自动化。 同其它工业生产一样,在石油和天然气开采和储运工艺过程中,也可以广泛地采用自动化技术。比如,在采输工艺管线和站库上装有各种自动化仪表,对原油及天然气的压力、温度、流量、液位等参数进行自动检测和调节。也可采用“三遥”装置,对远距离泵站的单井的油气压力和温度进行遥测,对井口电动球阀进行遥控,对其阀位状态进行遥讯。 自动化系统是由自动检测系统、自动信号联锁保护系统、自动操作系统、自动调节系统组成。自动调节系统在石油、天然气开采和储运中应用最多,也是最主要的系统,本篇将主要介绍自动调节系统。 一、自动调节系统的组成 自动调节系统是在人工调节荃础上产生和发展起来的。所以,在开始介绍自动调节的时候,先分析人工调节,并与自动调节加以比较,对分析和了解自动调节系统是有裨益的。图7-1所示是一个人工液位调节示意图。图中是一个液体储罐,储罐上装有玻璃管液位计。根据工艺要求选择玻璃管液位计中间某一点作为正常工作时的液位高度,通过改变出液流量q0作为调节手段,当进液流量qi增加时,调节阀开大,使q0也增加,直到液位稳定在工艺要求的高度为止。反之,当qi减少时,液位下降,应关小阀门,使q0也减少。 自力式压力调节阀:https://www.360docs.net/doc/a112335571.html,/ 归纳起来,人的工作过程可用方框图7-2来表示。 人工操作过程往往十分紧张和繁忙,劳动强度大,调节质量也不高。在总结了人工调节的基础上,人们创造了用仪表代替人的大脑、手和眼的作用,实现了自动调节。 图7-3所示,为液位自动调节系统。

自动控制原理课程设计速度伺服控制系统设计样本

自动控制原理课程设计题目速度伺服控制系统设计 专业电气工程及其自动化 姓名 班级 学号 指引教师 机电工程学院 12月

目录一课程设计设计目 二设计任务 三设计思想 四设计过程 五应用simulink进行动态仿真六设计总结 七参照文献

一、课程设计目: 通过课程设计,在掌握自动控制理论基本原理、普通电学系统自动控制办法基本上,用MATLAB实现系统仿真与调试。 二、设计任务: 速度伺服控制系统设计。 控制系统如图所示,规定运用根轨迹法拟定测速反馈系数' k,以 t 使系统阻尼比等于0.5,并估算校正后系统性能指标。 三、设计思想: 反馈校正: 在控制工程实践中,为改进控制系统性能,除可选用串联校正方式外,经常采用反馈校正方式。常用有被控量速度,加速度反馈,执行机构输出及其速度反馈,以及复杂系统中间变量反馈等。反馈校正采用局部反馈包围系统前向通道中一某些环节以实现校正,。从控制观点来看,采用反馈校正不但可以得到与串联校正同样校正效果,并且尚有许多串联校正不具备突出长处:第一,反馈校正能有效地变化

被包围环节动态构造和参数;第二,在一定条件下,反馈校正装置特性可以完全取代被包围环节特性,反馈校正系数方框图从而可大大削弱这某些环节由于特性参数变化及各种干扰带给系统不利影响。 该设计应用是微分负反馈校正: 如下图所示,微分负反馈校正包围振荡环节。其闭环传递函数为 B G s ()=00t G s 1G (s)K s +()=22t 1T s T K s ζ+(2+)+1 =22'1T s 21Ts ζ++ 试中,'ζ=ζ+t K 2T ,表白微分负反馈不变化被包围环节性质,但由于阻尼比增大,使得系统动态响应超调量减小,振荡次数减小,改进了系统平稳性。 微分负反馈校正系统方框图

房间温湿度控制系统定稿 (2)汇总

第六届大学生电子设计竞赛初赛房间温湿度控制系统 参赛学院:电气与信息工程学院 指导老师: 参赛队员及学号:任吉龙 2011302516 项敏剑 2011302523 钱调整 2011302518

目录 摘要 (1) 引言 (2) 一、方案设计 (2) 二、方案选择 (2) 2.1传感器选择方案 (2) 2.2显示器选择方案 (3) 2.3 单片机主芯片选择方案 (3) 三、详细说明及参数计算 (4) 3.1 硬件部分 (4) 3.1.1硬件设计 (5) 3.1.2控制系统 (5) 3.1.3测量部分 (6) 3.1.4显示部分 (8) 3.1.5控制部分 (10) 3.2 软件部分 (11) 四、其它功能拓展 (12) 4.1 房间灯光控制和调整 (12) 4.2 室内空气净化控制 (13) 4.3 其它拓展 (13) 五、结论 (13) 六、附件 (14)

房间温湿度控制系统(E题) 摘要 本设计为基于单片机的温湿度检测控制系统,采用模块化、层次化设计。用新型的智能温湿度传感器DHT11,主要实现对温度、湿度的控制,将温度湿度信号通过传感器进行信号的采集并转换成数字信号,再运用单片机STC89C52进行数据的分析和处理,为显示提供信号,显示部分采用字符型LCD1602液晶显示器显示所测温度和湿度值,控制部分采用加湿设备、除湿设备、加温设备、降温设备控制温湿度的高低。 关键词温湿度 DHT11 单片机 STC89C52 控制

引言 温湿度与人类的生活有着密切的关系。室内的温度、湿度不但对人体健康有影响,而且对物品的存放也有影响。室内温度、湿度过高,会使衣服发霉、虫蛀,各种食品发霉变质。因此,应该经常注意调整,使室内保持适宜的温度和湿度。 因此我们需要一种造价低廉、使用方便且计算精确的温湿度控制仪器。利用单片机对温、湿度控制,具有控温、湿精度高、功能强、体积小、价格低,简单灵活等优点。我们可以通过基于单片机的温湿度检测控制系统,采用模块化、层次化设计。用新型的智能温湿度传感器,主要实现对温度、湿度的控制,将温度湿度信号通过传感器进行信号的采集并转换成数字信号,再运用单片机进行数据的分析和处理,为显示提供信号,显示部分采用液晶显示器显示所测温度和湿度值,控制部分采用加湿设备、除湿设备、加温设备、降温设备控制温湿度的高低。本设计思路要求系统电路简单、集成度高、工作稳定、调试方便、检测精度高,具有一定的实用价值。 一、方案设计 设计思路 设计控制器使用单片机STC89C52,数字温湿度传感器使用DHT11,用LCD1602液晶屏实现温湿度显示,用加湿设备、除湿设备、加温设备、降温设备控制温湿度的高低,所以本设计能满足设计任务要求。基于单片机控制的数字温湿度控制系统,本系统属于多功能温湿度计,可以设置上下报警温湿度,当温湿度不在设置范围内时,可以报警并且进行控制。 二、方案选择 2.1传感器选择方案 方案一:选用DS18B20温度传感器作为温度检测模块。DS18B20是一线式数字温度传感器。具有独特的单线式接口方式。测量范围在—55℃~125℃,—10℃~85℃,误差范围在-\+0.5℃。最高精度可达0.0625℃。 HS1101是电容式湿度传感器。可测量相对湿度范围在0%~100%RH。误差为-\+2%RH。 方案二:选用DHT11作为设计的温湿度检测模块。DHT11是一款集成型的数字温湿度一体传感器。

过热汽温控制课程设计

目录 概述 - - - - - - - - - - - - - - - - - - - - -1 中英文摘要 - - - - - - - - - - - - - - - - - -3第一章绪论 - - - - - - - - - - - - - - - - -5 1.1控制系统基本原理及组成 1.2汽温控制系统的被控对象 1.3本课程设计的题目及任务 第二章过热汽温控制 - - - - - - - - - - - - - -8 2.1 过热汽温控制的任务 2.2 过热汽温控制的难点及设计原则 2.3 过热汽温对象模型的建立及其特性 第三章过热汽温控制系统的设计 - - - - - - - - -15 3.1 过热汽温系统的串级控制方案 3.2 具体设计方案 3.3 设计的论证 3.4 控制系统的切换 第四章课程设计总结及体会 - - - - - - - - - - -28 4.1课程设计总结 4.2体会 结束语 - - - - - - - - - - - -- - - - - - - -31 参考文献 - - - - - - - - - - - - - - - - - -32

概述 单元机组是由锅炉、汽轮发电机和辅助设备组成的庞大的设备群。由于其工艺流程复杂,设备众多,管道纵横交错,有上千个参数需要监视、操纵或控制,而且电能生产还要求有高度的安全可靠性和经济性,因此,目前,采用以分散微机为基础的集散型控制系统(TDCS)组成一个完整的控制、保护、监视、操作及计算等多功能自动化系统。 在现代火力发电厂热工控制中,锅炉过热蒸汽温度是影响锅炉生产过程安全性和经济性的重要参数,也是整个汽水行程中工质的最高温度,对电厂的安全经济运行有重大影响。由于过热器正常运行时的温度已接近材料允许的极限温度,因此,必须相当严格地将过热汽温控制在给定值附近。过热汽温偏高会使蒸汽管道、汽轮机内某些零部件产生过大的热膨胀变形而损坏,威胁机组的安全运行。过热汽温偏低则会降低机组的热效率,增加燃料消耗量,浪费能源,同时会使汽轮机最后几级的蒸汽湿度增加,加速汽轮机叶片的水蚀,从而缩短汽轮机叶片的使用寿命,所以过热蒸汽温度过高或过低都是生产过程所不允许的。 过热蒸汽温度一般可以看作多容分布参数受控对象,其动态特性描述可用多容惯性环节表示,该对象具有明显的滞后特性。现代锅炉机组大多采用那些大容量、高参数、高效率的大型锅炉,其过热器管道加长,结构也更复杂。在锅炉运行中,影响过热器出口蒸汽温度的因素很多,有蒸汽流量、燃烧状况、锅炉给水温度、流经过热器的烟气温度、流量、流速等等。在这些因素的共同作用下,过热汽温对象除了具有多容、大惯性、大延迟特性之外,往往表现出一定的非线性和时变特性,因此,过热汽温控制是锅炉各项控制中较为困难的任务之一。针对上述情况设计的过热汽温控制系统,既要求对烟气侧扰动及负荷扰动等较大外扰具有足够快的校正速度,同时又要求对减温水内扰有较强的抑制能力,从而使系统具有足够的稳定性和良好的控制品质,并能保证系统运行的安全性。因此,能否对过热汽温进行有效的控制,研究如何改善过热汽温系统的控制品质,对电厂能否安全稳定运行来说是至关重要的,在经济性上也有十分重要的意义。

长沙理工大学《自动控制原理》模拟试卷B

2012年2月份《自动控制原理》课程考试 模拟试卷 考试形式:闭卷试卷类型:(B) 一、单项选择题(本大题共10小题,每小题2分,共20分) 1、无惯性环节指的是( A )。 A.比例环节B.惯性环节 C.积分环节D.振荡环节 2、( C )是由一些符号组成的,有表示信号输入和输出的通路及箭头,有表示信号进行加减的综合点以及引出点。 A.微分方程B.传递函数 C.结构图D.信号流图 3、系统开环传递函数为 5 () (2) s G s s s + = + ,则系统的开环零点为( D )。 A.0.1B.2- C.0D.5- 4、如果系统输入大部分是随时间逐渐增加的信号时,则选用( B )作为实验信号。 A.阶跃函数B.斜坡函数 C.抛物线函数D.脉冲函数 5、控制系统开环传递函数为 (1) ()() (4)(5) K s G s H s s s s + = ++ ,则该系统根轨迹有( B )条渐近线。 A.1B.2 C.3D.4 6、工程实际中往往习惯把二阶系统设计成( A )工作状态。 A.欠阻尼B.过阻尼 C.负阻尼D.临界阻尼 7、幅值比随( B )变化的特性称为幅频特性。 A.时间B.频率 C.角速度D.振幅 8、从频率特性的角度看,任一时间信号都可以看成是由一系列的( A )叠加而成。

A.正弦信号B.余弦信号 C.脉冲信号D.数字信号 9、在离散控制系统中采用( A )来恢复离散信号。 A.零阶保持器B.一阶保持器 C.二阶保持器D.高阶保持器 10、(C )不受系统阶次的限制,且所得结果也比较符合实际。 A.相平面法B.相轨迹法 C.描述函数法D.逆系统法 二、选择判断题(本大题共10小题,每小题2分,共20分) 1、传递函数是在初始条件为零时定义的。( A ) A.正确B.错误 2、抛物线函数可由对斜坡函数的微分而得到。( B ) A.正确B.错误 3、自动控制系统的稳定性完全由系统闭环特征方程的根来决定。( A ) A.正确B.错误 4、根轨迹与虚轴的交点坐标可以应用劳斯判据列表的方法确定。( A ) A.正确B.错误 5、惯性环节具有明显的低通滤波特性。( A ) A.正确B.错误 6、反馈校正可以消除不可变部分的参数波动。( A ) A.正确B.错误 7、一阶保持器是具有高频衰减特性的低通滤波器。( B ) A.正确B.错误 8、当串联环节之间无采样开关时,系统的脉冲传递函数等于各环节传递函数之积的Z变换。( A ) A.正确B.错误 9、含有非线性元件的系统称为非线性系统。( A ) A.正确B.错误 10、在系统设计中应避免产生极限环。( A )

温湿度检测控制系统

1 前言 温度和湿度的检测和控制是许多行业的重要工作之一,不论是货品仓库、生产车间,都需要有规定的温度和湿度,然而温度和湿度却是最不易保障的指标,针对这一情况,研制可靠且实用的温度和湿度检测与控制系统就显得非常重要。 温湿度的检测与控制是工业生产过程中比较典型的应用之一,随着传感器在生产和生活中的更加广泛的应用。在生产中,温湿度的高低对产品的质量影响很大。由于温湿度的检测控制不当,可能使我们导致无法估计的经济损失。为保证日常工作的顺利进行,首要问题是加强生产车间温度与湿度的监测工作,但传统的方法过于粗糙,通过人工进行检测,对不符合温度和湿度要求的库房进行通风、去湿和降温等工作。这种人工测试方法费时费力、效率低,且测试的温度及湿度误差大,随机性大。目前,在低温条件下(通常指100℃以下),温湿度的测量已经相对成熟。利用新型单总线式数字温度传感器实现对温度的测试与控制得到更快的开发。但人们对它的要求越来越高,要为现代人工作、科研、学习、生活提供更好的更方便的设施就需要从数字单片机技术入手,一切向着数字化,智能化控制方向发展。 对于国外对温湿度检测的研究,从复杂模拟量检测到现在的数字智能化检测越发的成熟,随着科技的进步,现在的对于温湿度研究,检测系统向着智能化、小型化、低功耗的方向发展。在发展过程中,以单片机为核心的温湿度控制系统发展为体积小、操作简单、量程宽、性能稳定、测量精度高,等诸多优点在生产生活的各个方面实现着至关重要的作用。 温湿度传感器除电阻式、电容式湿敏元件之外,还有电解质离子型湿敏元件、重量型湿敏元件(利用感湿膜重量的变化来改变振荡频率)、光强型湿敏元件、声表面波湿敏元件等。湿敏元件的线性度及抗污染性差,在检测环境湿度时,湿敏元件要长期暴露在待测环境中,很容易被污染而影响其测量精度及长期稳定性。 2002年Sensiron公司在世界上率先研制成功SHT10型智能化温度/温度传感器,体积与火柴头相近。它们不仅能准确测量相对温度,还能测量温度和露点。测量相对温度的围是0~100%,分辨力达0.03%RH,最高精度为±2%RH。测量温度的围是-40℃~

基于单片机的温湿度采集管理系统

基于单片机的温湿度采集管理系统

目录 摘要 (1) 第1章绪论 (1) 1.1 系统开发背景 (1) 1.2 课题设计目的和意义 (2) 1.3 课题研究内容 (2) 第2章无线温湿度采集管理系统总体设计 (3) 2.1 系统的总体设计 (3) 2.2 系统设计的功能 (4) 第3章无线温湿度传输系统硬件设计 (4) 3.1 nRF905高频头通信模块 (5) 3.1.1 nRF905概述 (5) 3.1.2 nRF905无线模块硬件结构 (5) 3.1.3 nRF905天线 (6) 3.1.4 nRF905频率调制 (6) 3.1.5 nRF905输出频率 (6) 3.1.6 高频头输出接口电路 (7) 3.2 AT89S52单片机 (8) 3.2.1 单片机与nRF905通信 (9) 3.2.2 单片机与主机通信 (11) 3.2.3 单片机程序下载模块 (12)

3.3 DS18B20温度传感器 (12) 3.3.1 温度传感器概述 (12) 3.3.2 温度传感器构成及原理 (12) 3.3.3 温度传感器寄生电源 (13) 3.3.4 传感器温度测量 (14) 3.4 DHT11传感器 (14) 3.4.1 DHT11温湿度传感器概述 (14) 3.4.2DHT11构成及其工作原理 (15) 3.4.3 测量分辨率 (16) 3.5 系统电源模块 (16) 第4章无线温湿度传输系统软件(下位机)设计 (16) 4.1 无线温湿度传输系统软件总体设计 (17) 4.2 单片机串口通信 (18) 4.2.1 SBUF数据缓冲寄存器 (19) 4.2.2 SCON串行口控制寄存器 (19) 4.2.3 PCON特殊功能寄存器 (20) 4.2.4 串口通信波特率选择 (20) 4.2.5 IE中断允许控制寄存器 (21) 4.3 nRF905与单片机通信 (21) 4.3.1 nRF905的数据发送 (21) 4.3.2 nRF905的数据接收 (22) 4.3.3 掉电模式 (24)

自动调节系统解读

第十二篇自动调节系统 第一章自动调节系统试验 1.试验项目与质量要求 1.1调节阀门方向性试验 自动调节系统在“手动”或“切换”状态时,远方操作开关向“开”方向时,调节阀门应向开启方向动作,开度表的示值应增大。 1.2自动跟踪试验 自动调节系统由“手动”状态切至“切换”状态时,阀门开度应保持不变,实现无扰动切换,扰动量应小于±1%阀位量程。同时,调节器输出信号应跟踪阀门开度信号,跟踪精度应小于±1%阀位量程。 1.3执行机构小回路检查 自动调节系统在“手动”或“切换”状态时,远方操作,使调节阀门保持一定开度。将系统切至“自动”状态时,阀门开度表应在原位置向关小方向动作。否则说明位置反馈为正反馈,应改变位置信号的接线方向,使其成为负反馈。 1.4测量信号方向试验 按照调节系统的原理接线图,检查各信号所标的极性应与生产过程的实际要求一致。

调节系统原理图上的“+”号表示信号电流增大时,调节阀门应开大;“-”号表示信号电流增大时,调节阀门应关小。用信号发生器或机械式万用表(R×10档)试验测量信号方向应正确。 1.5调节器组态及参数设置检查 调节器组态应满足自动调节系统方框图中各项控制及逻辑功能要求,参数设置应根据计算出的数值进行初始设置。 调节器组态及参数设置应在自动调节系统试投过程中逐步进行完善。 1.6调节阀门特性和调节对象动态特性试验 机组运行稳定后,应对调节阀门特性及调节对象动态特性分别进行试验,质量要求见以下各自动调节系统有关内容。 1.7自动调节系统试投 以上各项试验符合要求后,再进行自动调节系统进行试投。 系统切为“自动”方式运行,观察被调对象的变化过程,记录有关参数曲线,对调节参数进一步整定。当出现异常情况时,应立即切除自动,做进一步的检查。 自动调节系统投入运行后,控制参数应符合以下各自动调节系统有关质量指标要求,执行器动作次数应每分钟不超过5次。 1.8自动调节系统扰动试验

B侧再热汽温调节系统内扰试验方案

B侧再热汽温调节系统内扰试验方案 1试验项目 B侧再热汽温调节系统减温水流量内扰试验。 2试验目的 检验B侧再热汽温调节系统的调节品质。 3试验仪器及数据记录 a)试验设备:工程师站1台,操作员站1台。 b)记录参数:机组负荷,B侧再热汽温,B侧再热汽温设定值,B侧再热减温器后汽温,B侧再热减温水调节门指令及开度。 4试验条件 a)锅炉运行正常,机组负荷在在70%ECR-100%ECR范围内,且负荷稳定; b)主蒸汽各级温度、再热汽温度指示准确; c)减温水调节门有足够的调节裕量; d)M/A操作站工作正常,跟踪信号正确,无切手动信号。 5试验步骤 a)投入B侧再热汽温调节系统自动。 b)运行人员将B侧再热汽温设定值设定为572℃,并等待B侧再热出口汽温稳定10—20分钟。 c)运行人员将B侧再热汽温调节系统切至手动,并迅速增加减温水流量10%(额定值)后重新将B侧再热汽温调节系统投入自动。 d)热控专业试验人员同时计算减温水流量恢复到扰动前的值的时间,并打印记录曲线。

6质量指标 a)锅炉稳定运行时,再热蒸汽温度允许偏差为:±5℃。 b)执行器不应频繁动作。 c)内扰:减温水扰动10%时,再热汽温从投入自动开始到扰动消除时的过渡过程时间应不大于2min; d)定值扰动:再热汽温给定值改变±4℃时,控制系统衰减率Ψ=0.75~1、稳定时间为:小于12min。 e)机组协调控制系统负荷变动速率小于或等于1%ECR/min时,再热汽温最大偏差不应超过±5℃; f)机组协调控制系统负荷变动速率小于或等于3%ECR/min时,再热汽温最大偏差不应超过±10℃; 7安全措施 a)试验正式开始前将试验方案发至各相关部门; b)试验前由生产经营部生技分部组织参加试验人员详细讨论试验方案; c)试验过程中参加试验人员听从当值值长的统一指挥; d)建议在试验过程中增加一名运行人员,一人操作,一人监视。 e)试验过程中如遇危及设备和人身安全的不安全因素应立即终止试验。 f)发生以下情况时,运行人员可根据实际情况将调节系统切至手动: ──锅炉稳定运行时,再热汽温超出报警值; ──减温水调节门已全开,而汽温仍继续升高或减温水调节门已全关,而汽温仍继续下降; ──控制系统工作不稳定,减温水流量大幅度波动,汽温出现周期性不衰减波动; ──减温水调节门内漏流量大于其最大流量的15%; ──锅炉运行不正常,再热汽温低于额定值。 g)试验后水位调节系统参数与状态恢复原运行方式。 8试验分工 a)指挥:当值值长; b)操作:当值运行人员; c)记录曲线设定:维修部热控分部; d)参数记录:热控专业试验人员;

大工2014年3月份自动化控制原理考试及答案A

大连理工大学网络教育学院 2014年3月份《自动控制原理》课程考试 考试形式:闭卷试卷类型:(A) 一、单项选择题(本大题共10小题,每小题3分,共30分) 1、只有输入支路没有输出支路的节点称为( A )。 A.输出节点 B.输入节点 C.混合节点 D.前向通路 2、在实际系统中,微分环节由理想微分环节和( C )组成。 A.比例环节 B.微分环节 C.惯性环节 D.积分环节 3、等加速度函数指的是( C )。 A.阶跃函数 B.斜坡函数 C.抛物线函数 D.脉冲函数 4、线性系统的稳定性仅与系统( C )的分布有关。 A.开环传递函数的极点 B.开环传递函数的零点 C.闭环传递函数的极点 D.闭环传递函数的零点 5、系统开环传递函数为,则系统的开环零点为( D )。 A.1 B.-0.5 C.5 D.-0.2

6、控制系统开环传递函数为,则该系统根轨迹有( D )条渐近线。 A.1 B.2 C.3 D.4 7、微分环节的传递函数为,其对数相频特性为( A )。 A. B. C. D. 8、定值控制系统也叫( A )。 A.恒值控制系统 B.随动控制系统 C.复合控制系统 D.伺服控制系统 9、( B )反映系统响应的快速性。 A.峰值时间 B.调节时间 C.延滞时间 D.上升时间 10、具有线性型外推规律的保持器称为( B )。 A.零阶保持器 B.一阶保持器 C.二阶保持器 D.高阶保持器 二、判断题(本大题共10小题,每小题2分,共20分) 1、在离散系统中,一个采样周期也称为一拍。( A ) A.正确 B.错误2、相平面内的所有封闭曲线都是极限环。( B ) A.正确 B.错误3、负反馈可增强参数变化对系统性能的影响。( B )

温度数据采集系统

第三章 系统硬件设计温度数据采集系统和接收显示硬件电路主要包含温度数据采集、发送、接收和显示等模块,温度数据采集采用数字式温度传感器 DS18B20,数据的发送和接收采用无线数据收 发模块PTR2000,整个系统采用单片机STC89C52进行各模块的协调控制,下面对各个模块进行介绍。 3.1 数字温度传感器DS18B20 3.1.1 DS18B20 的性能特点 DS18B20 是由 DALLAS 半导体公司生产的单线型智能数字温度传感器,是新一代适配微处理器的智能温度传感器,广泛应用于工业、农业等领域,具有体积小、接口方便和传输距离远的特点,在一根通信线上可以挂很多个 DS18B20,很方便。具有以下特点:(1)具有独特的 1-Wire 接口,只需要一个端口引脚就可以进行通信;(2)具备多节点能力,能够简化分布式温度检测应用中的设计;(3)不需要外部元件; (4)可以直接从数据线供电,电源电压范围在 3~5.5V ;(5)在待机状态下可以不消耗电源电量;(6)测量温度范围在-55~+125℃;(7)在-10~+85℃时测量精度在±0.5℃;(8)可以用程序设定 9~12 位分辨率;(9)用户可根据需要定义温度的上下限报警设置。DS18B203 脚封装的管脚排列图如图 3.1.1 所示。、管路敷设技术通过管线敷设技术不仅可以解决吊顶层配置不规范高中资料试卷问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标高等,要求技术交底。管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内,强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。 、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

自动调节系统解析与PID整定

自动调节系统解析与PID整定 变态调节 理想的水位调节是这样的:如果没有机组负荷等大的干扰,稳定工况下,当水位产生波动的时候,执行机构能够及时动作,只需要动作一次,就足以抑制水位波动,一次半都不需要。如果动作了两次,就说明你的参数有优化的空间。 有人会说:太玄了吧?我们的不是动作了一次,而是动作了好多次,都数不清几次了,而且都看不出来水位是哪一次波动,而是水位一直在波动。但是我们的水位也稳定了啊。 恩,我承认水位调节系统没有必要做的太完美,只要能充分抑制干扰就可以了。但是如果你想认识高水平的调节是什么样子的,呵呵,艺无止境啊。 下图是执行机构线性极其恶化后的调节品质:

上图中,本来用这个所谓的变态调节方法已经足够解决许多问题,但是执行机构线性继续恶化,执行器每动作一次,流量就要波动40吨左右,造成给水流量(白色曲线)大幅度扰动。经过进一步整定,最终,不对执行机构采取任何动作,只整定参数,就起到了良好的调节效果。 下图是执行机构由多次调节到一次调节成功的实际曲线截图: 工程应用是复杂多变的,实际应用过程中我们会遇到各种各样的问题。那么往往传统的方法会有这样那样的局限。我自己摸索出了一种独特的参数整定方法,相对于传统调节方式,因为此

参数过于特殊,有悖于正常的调节思维,咱们暂且称之为变态调节。呵呵,自虐了。 根据目前的观察来看,它对参数的大小很不敏感,对各厂矿的适应能力超强,系统应用最稳定,抗各种干扰能力最强,执行机构动作次数最少,可以应用到各种复杂的干扰很大的汽包水位调节系统中。稳定工况下,它使执行机构平均每1-3分钟动作1次。下面是实际应用过程中的截图: 上图可以看到:20分钟内,给水流量变化了9次,其中几个缓慢波动是因为给水压力或者蒸汽压力的改变造成的波动。

锅炉汽温调节系统

汽包锅炉蒸汽温度自动调节系统 一、蒸汽温度自动调节系统 锅炉蒸汽温度自动调节包括过热蒸汽温度和再热蒸汽温度调节。调节的任务是维持锅炉过热器及再热器的出口汽温在规定的允许范围之内。 1、过热汽温调节任务和特点 过热汽温是锅炉运行质量的重要指标之一。过热汽温过高或过低都会显著地影响电厂的安全性和经济性。过热汽温过高,可能会造成过热器、蒸汽管道和汽机的高压部分金属损坏,因为超温会引起汽轮机金属内部过大的热应力,会缩短使用寿命,还可能导致叶片根部的松动;过热汽温过低,会引起机组热耗上升,并使汽机轴向推力增大而可能造成推力轴承过载。过热汽温过低还会引起汽轮机尾部叶片处蒸汽湿度增加,从而降低汽轮机的内效率,并加剧对尾部叶片的水蚀。所以,在锅炉运行中,必须保持过热汽温长期稳定在规定值附近(一般范围为额定值541±5℃)。过热汽温调节对象的静态特性是指过热汽温随锅炉负荷变化的静态关系。过热器的传热形式、结构、布置都将直接影响过热器的静态特性。对流式过热器和辐射式过热器的过热汽温静态特性完全相反。对于对流式过热器,当负荷增加时,通过其烟气的温度和流速都增加,因而使过热汽温升高。而对于辐射式过热器,由于负荷增加时炉膛温度升高不多,而炉膛烟温升高所增加的辐射热量小于蒸汽负荷增大所需要的吸热量。我们的过热器系统采取了对流式、辐射式和屏式(半辐射式)交替串联布置的结构,这有利于减小过热器出口汽温的偏差,并改善了过热汽温调节对象的静态特性。 引起过热蒸汽温度变化的原因很多,如蒸汽流量变化、燃烧工况变化、进入过热器的蒸汽温度变化、流过过热器的烟气温度和流速变化等。归结起来,过热汽温调节对象的扰动主要来自三个方面:蒸汽流量变化(机组负荷变化),加热烟气的热量变化和减温水流量变化(过热器入口汽温变化)。 过热汽温调节对象的动态特性是指引起过热汽温变化的扰动与过热汽温之间的动态关系。在各种扰动下的过热汽温调节对象动态特性的特点是有迟延和惯性,典型的过热汽温阶跃反应曲线如下图所示。. 当机组负荷扰动时,蒸汽流量的变化使沿整个过热器管路长度上各点的蒸汽流速几乎同时改变,从而改变过热器的对流放热系数,使过热器各点的蒸汽温度也几乎同时改变。所以,在机组负荷扰动下,过热汽温的迟延和惯性比较小。当烟气热量扰动(烟气温度和流速发生变化)时,由于烟气流速和温度的变化也是沿整个过热器同时改变的,与蒸汽流量变化对传热影响的情况类似,所以过热汽温的反应也是较快的。当减温水流量扰动时,改变了高温过热器的入口汽温,从而影响了过热器出口汽温。由于过热器管路很长,因此汽温的反应是较慢的。 由此,在不同扰动作用下,过热汽温动态特 )有较大的差别,例、K性参数的数值(τ、Tc远大于如:减温水扰动时汽温反应的迟延时间t 烟气侧扰动时的迟延时间。使调正确选择调节过热汽温的手段,因此,(即调节机构动作节机构动作后能及时影响汽温 应尽可能小)是τ时,汽温动态特性的迟延时间调节对象在调节作用下的迟但目前广泛采用喷水减温作为调节过热汽温的手段,很重要的。太大,如果只根据汽温偏差来改变喷水量往往不能满足生产上的要和时间常数Tct延时间以便好地控制汽温的因此,在设计自动调节系统时应该设法减小调节对象的惯性迟延,求。变化。 、过热汽温调节基本方案2从过热汽温调节对象的阶跃试验曲线可以看出:若从动态特性的角

2020年10月全国自考自动控制理论(二)试题及答案解析

1 全国2018年10月高等教育自学考试 自动控制理论(二)试题 课程代码:02306 一、单项选择题(本大题共15小题,每小题2分,共30分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.控制系统中,基本环节的划分,是根据( ) A .元件或设备的形式 B .系统的物理结构 C .环节的连接方式 D .环节的数学模型 2.单位斜坡函数r(t)的数学表达式是r(t)=( ) A .a 2t B .t 2 C .t D .vt 3.在实际中很少单独使用的校正方式是( ) A .串联校正 B .并联校正 C .局部反馈校正 D .前馈校正 4.滞后校正装置的最大滞后相角可趋近( ) A .-90° B .-45° C .45° D .90° 5.若受控对象存在较大的延迟和惯性,效果较好的控制方式是( ) A .比例控制 B .积分控制 C .比例微分控制 D .比例积分控制 6.当二阶系统的根分布在根平面的虚轴上时,系统的阻尼比ζ为( ) A .ζ<0 B .ζ=0 C .0<ζ<1 D .ζ≥1 7.设二阶振荡环节的传递函数G (s )= 16s 4s 162++,则其对数幅频特性渐近线的转角频率为( ) A .2rad/s B .4rad/s C .8rad/s D .16rad/s 8.设某环节频率特性为G(j ω)14j 2+ω= ,当ω∞→,其频率特性相位移)(ωθ为( ) A .-180° B .-90°

2 C .0° D .45° 9.控制系统的稳态误差e ss 反映了系统的( ) A .稳态控制精度 B .相对稳定性 C .快速性 D .平稳性 10.已知单位负反馈控制系统的开环传递函数为) 5s )(1s (s )1s (10)s (G +-+=,该系统闭环系统是 ( ) A .稳定的 B .条件稳定的 C .临界稳定的 D .不稳定的 11.系统的开环传递函数为)1TS (s 2 )s (G k +=,当T=1s 时,系统的相位裕量为( ) A .30° B .45° C .60° D .90° 12.开环传递函数为)35.0(s ) 2s 5.0)(1s 5.0(k )s (G +++=,其根轨迹的起点为( ) A .0,-3 B .-1,-2 C .0,-6 D .-2,-4 13.设系统?x =[]x 01y ,u 10x 1010=??? ?????+???? ????-,则该系统( ) A .状态可控且可观测 B .状态可控但不可观测 C .状态不可控且不可观测 D .状态不可控且可观测 14.函数t cos e at ω-的拉氏变换是( ) A .22)a s (ω++ω B .22)a s (a ω++ C .22)a s (1ω++ D .22)a s (a s ω+++ 15.设某闭环传递函数为1s 101 )s (R )s (Y +=,则其频带宽度为( ) A .0~10 rad/s B .0~1 rad/s C .0~0.1 rad/s D .0~0.01 rad/s 二、填空题(本大题共10小题,每小题1分,共10分) 请在每小题的空格中填上正确答案。错填、不填均无分。 16.常规控制器中放大元件的作用是把_________放大,并为反馈信号提供信号源。

相关文档
最新文档