浅谈民用飞机舱门密封结构的气密可靠性

浅谈民用飞机舱门密封结构的气密可靠性
浅谈民用飞机舱门密封结构的气密可靠性

浅谈民用飞机舱门密封结构的气密可靠性

【摘要】采用可靠性思想分析飞机舱门密封结构参数对密封性能的影响。对两种型号的舱门密封带进行整体规格的压缩实验,将关门行程、装配尺寸、挡件尺寸等视为随机变量,采用有限元软件对两种密封带的气密可靠性进行比较,得到了密封结构参数的均值灵敏度和方差灵敏度,对舱门密封带选型与结构的优化设计提供参考。

【关键词】舱门密封结构;密封带;气密可靠性;灵敏度

0.引言

飞机舱门的密封是防止舱内漏气或失压的重要保障,气密性能与密封结构的设计密切相关。飞机舱门组合密封结构主要由P型密封带、密封压条、Z型挡件、门体和门框组成。d1为门体与门框间隙;d2为挡件纵向距离;d3为Z型挡件横向尺寸;d4为关门行程;r为档件导角半径。但是,由于制造误差、安装同轴度以及使用过程中的磨损等因素,将导致密封结构的实际位置与设计值存在随机偏差,这种离散性威胁着舱门的气密可靠性。

密封带是一种能够发生大变形的高弹性橡胶材料,其压缩变形特性对舱门整体的气密刚度起主导作用,是选型的重要依据之一。已经有很多学者利用有限元分析方法分析了实心橡胶圈的压缩应力特性,研究对象涉及指尖密封、O型密封,球型密封等。在密封材料性能、仿真以及结构参数对密封性能的影响分析方面进行了十分有益的尝试。本工作选取目前飞机舱门中应用较为广泛的P型密封带组合密封结构,考虑了密封结构参数的随机性,基于密封带压缩实验结合有限元仿真,采用有限元软件抽样分析了密封结构气密可靠性和参数灵敏度。

1.确定性分析

1.1有限元模型

相比飞机舱门门体、门框和挡件材料(E=70GPa),密封圈材料的模量很小(E=0.0075GPa),密封带作为大柔度结构直接决定着门体的气密刚度,需要着重关注密封带的变形。因此,将门体、门框、密封压条和挡件近似为刚体,只考虑密封带的变形。建立舱门密封结构的有限元模型,单元类型选择四节点平面应变Herrmann单元,单元总数为650。

飞机舱门密封带一般设计有小孔,飞行过程中舱内压力能够通过这些眼孔渗透进入密封圈内,不但起到了加强密封的作用,还能够延长密封圈使用寿命。

圈内气压的作用效果可以采用有限元软件中特有的气囊空穴模型单元来模拟。正常飞行条件下,舱内保压恒压值设定为0.076MPa。摩擦模型为库仑模型,硬铝与橡胶的摩擦因数取0.25。

浅谈可靠度理论

浅谈可靠度理论

浅谈可靠度理论 工程结构的安全性历来是工程设计中的重大问题,这是因为结构工程的建造耗资巨大,一旦失效不仅会造成结构本身和人民生命财产的巨大损失,还往往产生难以估量的次生灾害和附加损失。 结构可靠度理论的形成始于人们对结构工程中各种不确定性的认识,人们开始较为集中的讨论结构安全度问题,将概率分析和概率设计的思想引入实际工程。如果一种理论分析的结果能指导工程实践,或者说能为工程带来巨大的经济或社会效应,那么这种理论就具有强大的生命力。可靠性科学作为一门与应用紧密相连的基础学科,其生存的立足点就在于推广其应用于工程实际。 1.结构可靠度概述 1.1结构可靠度相关概念 结构所要满足的功能要求是指结构在规定的设计使用年限内应满足下列功能要求: 1、在正常施工和正常使用时,能承受可能出现的各种作用 2、在正常使用时具有良好的工作性能 3、在正常维护下具有足够的耐久性 4、在设计规定的偶然事件发生时及发生后,仍能保持必要的整体稳定性 在以上四项功能要求中,第1、4两项通常指结构的强度、稳定,即所谓的安全性;第2项是指结构的适用性;第3项是指结构的耐久性,三者总称为结构的可靠性,即结构可靠性,是指结构在规定的时间内,在规定的条件下,完成预定功能的能力。 在工程上,一般所说的可靠度,指的就是结构可信赖或可信任的程度。工程结构中的可靠度可表示为能承受在正常施工和正常使用时,可能出现的各种作用;在正常使用时,具有良好的作用性能;在正常维修和保护下,具有足够的耐久性能:在偶然事件(如地震,爆炸,撞击等)发生实际发生后,仍能保持所需的整体稳定性。度量结构可靠性的数量指标称为结构可靠度即为:结构在规定的时间内,在规定的条件下,完成预定功能的概率。 结构的设计、施工和使用过程中存在大量的随机不确定性因素;荷载及结构

可靠性设计的主要内容

可靠性设计的主要内容 1、研究产品的故障物理和故障模型 搜集、分析与掌握该类产品在使用过程中零件材料的老化、损伤和故障失效等(均为受许多复杂随机因素影响的随机过程)的有关数据及材料的初始性能(强度、冲击韧性等)对其平均值的偏离数据,揭示影响老化、损伤这一复杂物理化学过程最本质的因素,追寻故障的真正原因。研究以时间函数形式表达的材料老化、损伤的规律,从而较确切的估计产品在使用条件下的状态和寿命。用统计分析的方法使故障(失效)机理模型化,建立计算用的可靠度模型或故障模型,为可靠性设计奠定物理数学基础,故障模型的建立,往往以可靠性试验结果为依据。 2、确定产品的可靠性指标及其等级 选取何种可靠性指标取决于产品的类型、设计要求以及习惯和方便性等。而产品可靠性指标的等级或量值,则应依据设计要求或已有的试验,使用和修理的统计数据、设计经验、产品的重要程度、技术发展趋势及市场需求等来确定。例如,对于汽车,可选用可靠度、首次故障里程、平局故障间隔里程等作为可靠性指标,对于工程机械则常采用有效度。 3、合理分配产品的可靠性指标值

将确定的产品可靠性指标的量值合理分配给零部件,以确定每个零部件的可靠性指标值,后者与该零部件的功能、重要性、复杂程度、体积、重量、设计要求与经验、已有的可靠性数据及费用等有关,这些构成对可靠性指标值的约束条件。采用优化设计方法将产品(系统、设备)的可靠性指标值分配给各个零部件,以求得最大经济效益下的各零部件可靠性指标值最合理的匹配。 4、以规定的可靠性指标值为依据对零件进行可靠性设计 即把规定的可靠性指标值直接设计到零件中去,使它们能够保证可靠性指标值的实现。

西工大可靠性设计大作业

机械可靠性设计大作业 题目:扭杆 姓名:刘昀 班号: 05021104 学号: 59 日期:机械可靠性设计大作业 一、题目: 扭杆:圆截面直径D为(μ,σ)=(20,)mm,受扭矩T为(μ,σ)=(677400,),工作循环次数N≥4000,材料疲劳极限S为(μ,σ)=(,)MPa。 二、思路: 给定强度分布与应力有关的随机参数分布条件,确定应力计算公式,计算相应的分布参数,假定各随机变量都服从正态分布。然后根据应力--强度干涉理论计算可靠度,主要考虑载荷的均值与方差两项变化可靠度如何变化,以上要求编程实现。 三、输入的数据:扭矩T的均值与标准差T(μ),T(σ) 四、输出的结果:可靠度R 五、计算的模型:

(1)几何参数(扭杆圆截面直径)D、扭矩T和工作循环次数大于等于4000时的材料疲劳极限,亦即此时的疲劳强度S,均为随机变量且服从正态分布; (2)应力--强度干涉模型: 大多数机电产品的应力和强度都是服从一定统计分布规律的随机变量,我们用L表示应力,S表示强度。它们的概率密度函数f(S)和f(L)两曲线出现部分交叉和重叠,亦即出现干涉时,有可能出现强度小于应力的情况,但可把这种引起失效的概率限制在允许的范围内。在干涉的情况下,我们研究的是如何在保证一定可靠度的前提下,使零件结构简单、重量较轻,价格较低。 对于强度和应力均为正态分布时,我们采用联结方程来计算可靠度,公式如下: SM称为可靠性系数,在已知、、、的条件下,利用上式可直接计算出SM,根据SM从标准正态分布表中查出可靠度R的值。也即: 六、程序流程图

Y 七、算例分析结果说明及结论 (1)程序运行结果 T(μ)↑,T(σ)不变时,可靠度R的变化情况:T(μ) T(σ) R 120677 180677 240677 300677 360677 420677 480677

土木工程结构可靠度理论与设计

土木工程结构可靠度理论与设计 发表时间:2018-11-06T16:15:05.490Z 来源:《防护工程》2018年第18期作者:寇晖[导读] 可靠度又包括安全性、适用性、耐久性三个方面的问题,其是指在一定条件下,完成的土木工程结构功能达到预期的概率。其计算要综合各方面地质环境和其他因素共同分析。寇晖身份证号:429001198xxxx44992 摘要:在土木工程的结构设计中,首要考虑的便是可靠度的问题,可靠度又包括安全性、适用性、耐久性三个方面的问题,其是指在一定条件下,完成的土木工程结构功能达到预期的概率。其计算要综合各方面地质环境和其他因素共同分析。关键词:土木工程结构,可靠度由于土木工程施工环境复杂多样,故而影响其结构可靠性的因素也是千变万化,再加上受可能发生的地质变化、气候变化或是自然灾害的随机影响,对土木工程结构预期功能的工作效率不能直接盖棺定论,只能以概率来表示其可能拥有的工作效率,自然而然的就出现了了土木工程的可靠性问题。 一、土木工程结构可靠度概述土木工程结构可靠度,是指在规定的条件下,规定的时间内,工程结构能够达到的安全性、适用性以及耐用性。其中安全性是指在施工过程中在各种施工环境下正常施工能给予施工人员的安全保障以及土木工程自身的抗灾害能力以及对高强度气候变化的耐受性两个方面,适用性则是指土木工程结构在完成后能达到预期功能,而耐久性是指在正常的后勤保障下能够正常使用的时间。简单来讲,土木工程结构可靠度就是指在特定是时间与空间条件下,该土木工程结构完成后能够达到预期功能的概率。也就是说,可靠度问题就是一个概率问题,其主要表达的是对投入的预期收入的概率性评价。土木工程可靠度的计算需要综合原材料质量与数理、预期荷载、相关参数、函数的数理准确性等因素来共同考虑,在土木工程学界将这些因工程变化而变化的具有随机性的因素称为基本变量,并且在长期的实践与改进中,对每一个基本变量学界经过大量的统计计算得出了一个恒定定的数理函数。 二、土木工程结构可靠度的影响因素土木工程因需求而产生,其结构设计要充分考虑到雇主的需要,而后结合现场的实际情况,充分考虑到现场的地质状况与当地的气候环境等各项影响因素,才能设计出符合雇主需要且具有相当可靠性的土木工程结构。(一)土木工程结构的随机性在实际工作中,土木工程结构设计以及施工除了受地理气候环境的影响外,还受到原材料以及包括道路、机电工程等基础设施的限制。材料强度是考察结构材料可靠性的一种重要性能指标,指当材料受力时,材料每单位面积抵挡破坏的能力。可靠性要求材料具备安全稳定的性能。例如,混凝土是经过水泥、石料和水混合搅拌硬化而成的人造石材。水泥的质量和强度等级和使用的水量与使用水泥的配比是影响混凝土强度的重要因素。此外,对混凝土的养护条件和施工条件也会影响混凝土的强度性能。每一次土木工程施工,哪怕在同一地点同一时期进行的工程建设,由于施工原材料和基础设施的安装等不确定因素,同样的操作也可能出现不同的结果。例如原材料中的石料、砖瓦,不必说不同产地不同生产商的石料和砖瓦,即使是同一产地同一生产商生产的石料和砖瓦其检测出来的数据参数都有细微的差距。而其他的诸如钢材、水泥等原材料也是如此,这也就是原材料的随机性。(二)土木工程结构的模糊性模糊性,现实生活中很少有事物是完全确定的,任何事物都必定有其或大或小的模糊的地方,可能是某个概率、也可能是包含的某些因素,或者是与另一类似物品的界别中的某些因素,这些都是模糊可能存在的地方。在土木工程结构设计中,包含着大量的相对确定的客观因素和不少的相对模糊的客观因素或主观因素。例如土木工程施工过程中,设备使用是否安全,人员操作是否完全符合安全保障需要,材料是否适用于该部分建设,这些都是存在一定模糊性的,也正是这些模糊的因素,使得整个土木工程结构也具有相当的模糊性,影响着土木工程结构的可靠度。(三)土木工程结构的不完整性一项事物的功能不是该事物已经发生变完全产生的,就土木工程本身而言,其功能是随着结构的不断完善而出现的。这也就使得工作人员对其功能的评估由于结构的不完整而难以准确进行。而这种不完整性,也是影响着土木工程结构可靠性的一大重点。在实际工程施工中,这种不完整性使得工作人员难以做出准确的功能评价,在面对突发事件时很难采取最正确的应对方案。同时,由于自身的不完整,土木工程本身的功能也可能出现部分缺失,在面对诸如暴雨、强风甚至是地震等外来的具有破坏力的因素干扰时可能抵抗效果无法达到预期设计,从而影响最终建成时的工程质量,从而影响土木工程结构的功能。 三、提高土木工程结构可靠性的建议土木工程结构可靠度的存在,说明这其还无法达到完美或者接近完美的程度。那么在工程设计与施工中一定存在一些控制与改善的措施,从而提高可靠度或者使可靠度变得精准便于计算得失从而做出决策规避损失。(一)进行技术革新近几年,我国的建筑业仍处在高速发展的黄金时期,虽然其未然如何难以确定,但就现阶段而言,随着各项建设的不但进行,我仍有非常多的土木工程在进行或者计划进行。但高速发展也不是没有代价的,高速发展也就意味着很多基础建设或者基础技术有可能跟不上其发展的步伐。至少我国建筑业目前是如此。当前我国建筑行业采用的施工技术和施工手段以及原材料都有很多没有达到国际一流水准的地方,这也是当前我国急需改进的地方。也因此,此时的技术革新将带来更大的进步同时也能为建筑业的稳定发展提供更坚实的基础。(二)规范设计标准当前我国土木工程建设虽然发展迅速,但目前我国却没有一套完整的经得起考验的土木工程结构设计标准。因此,为了能够更好的规范我国的土木工程结构设计,也为了使得我国土木工程建设行业更加系统规范便于管理。我国可以适当借鉴国外的优秀标准制度,制定我国的设计标准,并在此基础上加强我国土木工程设计行业的管理,从设计管理层面进一步提高土木工程结构设计的可靠性。结束语

建筑结构可靠度设计统一标准GB50068-2001

建筑结构可靠度设计统一标准GB 50068-2001 中华人民共和国国家标准 建筑结构可靠度设计统一标准 Unified standard for reliability design of building structures GB 50068-2001 主编部门:中华人民共和国建设部 批准部门:中华人民共和国建设部 施行日期:2002年3月1日 关于发布国家标准《建筑结构可靠度设计统一标准》的通知 建标[2001]230 号 根据我部“关于印发《一九九七年工程建设标准制订、修订计划的通知》”(建标[1997]108号)的要求,由建设部会同有关部门共同修订的《建筑结构可靠度设计统一标准》,经有关部门会审,批准为国家标准,编号为GB 50068-2001 ,自2002年3月1日起施行。其中1.0.5,1.0.8为强制性条文,必须严格执行,原《建筑结构设计统一标准》GBJ 68-84 于2002年12月31日废止。 本标准由建设部负责管理,中国建筑科学研究院负责具体解释工作。建设部标准定额研究所组织中国建筑工业出版社出版发行。 中华人民共和国建设部 2001年11月13日 前言 本标准是根据建设部建标[1997]108 号文的要求,由中国建筑科学研究院会同有关单位对原《建筑结构设计统一标准》(GBJ 68-84)共同修订而成的。 本次修订的内容有:

1.标准的适用范围:鉴于《建筑地基基础设计规范》、《建筑抗震设计规范》在结构可靠度设计方法上有一定特殊性,从原标准要求的"应遵守"本标准,改为"宜遵守"本标准; 2.根据《工程结构可靠度设计统一标准》(GB 50153-92)的规定,增加了有关设计工作状况的规定,并明确了设计状况与极限状态的关系; 3.借鉴最新版国际标准ISO 2394:1998 《结构可靠度总原则》,给出了不同类型建筑结构的设计使用年限; 4.在承载能力极限状态的设计表达式中,对于荷载效应的基本组合,增加了永久荷载效应为主时起控制作用的组合式; 5.对楼面活荷载、风荷载、雪荷载标准值的取值原则和结构构件的可靠指标以及结构重要性系数等作了调整; 6.首次对结构构件正常使用的可靠度做出了规定,这将促进房屋使用性能的改善和可靠度设计方法的发展; 7.取消了原标准的附件。 本标准黑体字标志的条文为强制性条文,必须严格执行。 本标准将来可能需要进行局部修订,有关局部修订的信息和条文内容将刊登在《工程建设标准化》杂志上。 为了提高标准质量,请各单位在执行本标准的过程中,注意总结经验,积累资料,随时将有关的意见和建议寄给中国建筑科学研究院,以供今后修订时参考。 本标准主编单位:中国建筑科学研究院 本标准参编单位:中国建筑东北设计研究院,重庆大学,中南建筑设计院,四川省建筑科学研究院,福建师范大学。 本标准主要起草人:李明顺胡德炘史志华陶学康陈基发白生翔苑振芳戴国欣陈雪庭王永维钟亮戴国莹林忠民 1 总则 1.0.1 为统一各类材料的建筑结构可靠度设计的基本原则和方法,使设计符合技术先进,经济合理、安全适用、确保质量的要求,制定本标准。 1.0.2 本标准适用于建筑结构,组成结构的构件及地基基础的设计。

通用的可靠性设计分析方法

通用的可靠性设计分析方法 1.识别任务剖面、寿命剖面和环境剖面 在明确产品的可靠性定性定量要求以前,首先要识别产品的任务剖面、寿命剖面和环境剖面。 (1)任务剖面“剖面”一词是英语profile的直译,其含义是对所发生的事件、过程、状态、功能及所处环境的描述。显然,事件、状态、功能及所处环境都与时间有关,因此,这种描述事实上是一种时序的描述。 任务剖面的定义为:产品在完成规定任务这段时间内所经历的事件和环境的时序描述。它包括任务成功或致命故障的判断准则。 对于完成一种或多种任务的产品,均应制定一种或多种任务剖面。任务剖面一般应包括:1)产品的工作状态; 2)维修方案; 3)产品工作的时间与程序; 4)产品所处环境(外加有诱发的)时间与程序。 任务剖面在产品指标论证时就应提出,它是设计人员能设计出满足使用要求的产品的最基本的信息。任务剖面必须建立在有效的数据的基础上。 图1表示了一个典型的任务剖面。 (2)寿命剖面寿命剖面的定义为:产品从制造到寿命终结或退出使用这段时间内所经历的全部事件和环境的时序描述。寿命剖面包括任务剖面。 寿命剖面说明产品在整个寿命期经历的事件,如:装卸、运输、储存、检修、维修、任务剖面等以及每个事件的持续时间、顺序、环境和工作方式。 寿命剖面同样是建立产品技术要求不可缺少的信息。 图2表示了寿命剖面所经历的事件。

(3)环境剖面环境剖面是任务剖面的一个组成部分。它是对产品的使用或生存有影响的环境特性,如温度、湿度、压力、盐雾、辐射、砂尘以及振动冲击、噪声、电磁干扰等及其强度的时序说明。 产品的工作时间与程序所对应的环境时间与程序不尽相同。环境剖面也是寿命剖面和任务剖面的一个组成部分。 2.明确可靠性定性定量要求 明确产品的可靠性要求是新产品开发过程中首先要做的一件事。产品的可靠性要求是进行可靠性设计分析的最重要的依据。 可靠性要求可以分为两大类:第一类是定性要求,即用一种非量化的形式来设计、分析以评估和保证产品的可靠性;第二类是定量要求,即规定产品的可靠性指标和相应的验证方法。 可靠性定性要求通常以要求开展的一系列定性设计分析工作项目表达。常用的可靠性定性设计工作项目见表1。

系统可靠性设计与分析

可靠性设计与分析作业 学号:071130123 姓名:向正平一、指数分布的概率密度函数、分布函数、可靠度函数曲线 (1)程序语言 t=(0:0.01:20); Array m=[0.3,0.6,0.9]; linecolor=['r','b','y']; for i=1:length(m); f=m(i)*exp(-m(i)*t); F=1-exp(-m(i)*t); R=exp(-m(i)*t); color=linecolor(i); subplot(3,1,1); title('指数函数概率密度函数曲线'); plot(t,f,color); hold on subplot(3,1,2); title('指数函数分布函数函数曲线'); plot(t,F,color); hold on subplot(3,1,3); title('指数指数分布可靠度函数曲线 plot(t,R,color); hold on end (3)指数分布的分析 在可靠性理论中,指数分布是最基本、最常用的分布,适合于失效率为常数 的情况。指数分布不但在电子元器件偶然失效期普遍使用,而且在复杂系统和整 机方面以及机械技术的可靠性领域也得到使用。 有图像可以看出失效率函数密度f(t)随着时间的增加不断下降,而失效率随 着时间的增加在不断的上升,可靠度也在随着时间的增加不断地下降,从图线的 颜色可以看出,随着m的增加失效率密度函数下降越快,而可靠度的随m的增加 而不断的增加,则失效率随m的增加减小越快。 在工程运用中,如果某零件符合指数分布,那么可以适当增加m的值,使零 件的可靠度会提升,增加可靠性。 二、正态分布的概率密度函数、分布函数、可靠性函数、失效率函数曲线 (1)程序语言 t=-10:0.01:10; m=[3,6,9]; n=[1,2,3]; linecolor=['r','b','y'];

论述可靠性理论在国内外规范中的应用情况

论述可靠性理论在国内外规范中的应用情况 1 引言 工程结构的安全性历来是设计中的重大问题,这是因为结构工程的建造耗资巨大,一旦失效不仅会造成结构本身和人民生命财产的巨大损失,还往往产生难以估量的次生灾害和附加损失。结构安全性的设定是一个涉及国家政策、经济发展水平、社会文化背景、历史传统等多方面的问题,在相当程度上反映在一个国家的设计规范中。 2 涉及结构可靠性的国际机构、标准和大型会议 2.1国际标准化组织ISO与国际标准ISO 2394 ISO是由世界上148个国家组成的国际标准机构,是一个非政府组织,遵循一个国家为 一个代表的原则。1947年2月23日成立,总部设在瑞士日内瓦。 ISO/TC 98为结构设计基础委员会,该委员会的职责是从总体上分析和协调制订有关结 构(包括钢、砖石、混凝土、木等)可靠性的基本要求。所以说ISO/TC 98是协调、组织建筑和土木工程领域国际标准的一个机构。其主要工作领域为: 结构可靠性中的术语和符号(ISO/TC98/SCI)结构可靠性(ISO TC 98/ SC 2)结构上的荷载、力及其他作用(ISO/TC 98/ SC 3) ISO'TC 98/SC 2目前编制的国际标准包括ISO2394: 1998《结构可靠性总原则》,ISO 10137 : 1992《结构设计基础一建筑物抗振适用性》,ISO 12491:1997《建筑材料和构件质量控制中的统计方法》和ISO/ FDIS 13822《结构设计基础一已有结构评定》。 ISO 2394 : 1998《结构可靠性总原则》是一本关于结构可靠性设计方法的国际标准。1986年的版本只有十几页,而1998年的版本有六十多页,内容增加很多,如增加了疲劳可 靠性、已有结构可靠性评估、基于试验的结构可靠性设计等方面的内容,有些方面的内容也更加详尽,如引进了结构使用年限的概念、环境影响等与结构耐久性有关的内容。ISO 2394 在国际上有很大影响,许多国家有关规范编制、修订都参考了该标准。 2.2国际结构安全度联合会JCSS与概率模式规范 1971年,协调六个国际土木工程协会活动的联络委员会创建了国际结构安全度联合会JCSS。JCSS先后起草并出版了多个有关结构安全性的文件,这些文件成为编制不同类型结构设计和建造指导文件的背景材料,其中包括ISO文件、CEB和ECCS模式规范。1985年JCSS 改组后制定的主要工作目标是: a)将新的基础科学知识转化为规范编制前可以应用的原理。

可靠性设计的基本概念与方法

4.6 可靠性设计的基本概念与方法 一、结构可靠性设计概念 1.可靠性含义 可靠性是指一个产品在规定条件下和规定时间内完成规定功能的能力;而一个工业产品(包括像飞机这样的航空飞行器产品)由于内部元件中固有的不确定因素以及产品构成的复杂程度使得对所执行规定功能的完成情况及其产品的失效时间(寿命)往往具有很大的随机性,因此,可靠性的度量就具有明显的随机特征。一个产品在规定条件下和规定时间内规定功能的概率就称为该产品的可靠度。作为飞机结构的可靠性问题,从定义上讲可以理解为:“结构在规定的使用载荷/环境作用下及规定的时间内,为防止各种失效或有碍正常工作功能的损伤,应保持其必要的强刚度、抗疲劳断裂以及耐久性能力。”可靠度则应是这种能力的概率度量,当然具体的内容是相当广泛的。例如,结构元件或结构系统的静强度可靠性是指结构元件或结构系统的强度大于工作应力的概率,结构安全寿命的可靠性是指结构的裂纹形成寿命小于使用寿命的概率;结构的损伤容限可靠性则一方面指结构剩余强度大于工作应力的概率,另一方面指结构在规定的未修使用期间内,裂纹扩展小于裂纹容限的概率.可靠性的概率度量除可靠度外,还可有其他的度量方法或指标,如结构的失效概率F(c),指结构在‘时刻之前破坏的概率;失效率^(().指在‘时刻以前未发生破坏的条件下,在‘时刻的条件破坏概率密度;平均无故障时间MTTF(MeanTimeToFailure),指从开始使用到发生故障的工作时间的期望值。除此而外,还有可靠性指标、可靠寿命、中位寿命,对可修复结构还有维修度与有效度等许多可靠性度量方法。 2..结构可靠性设计的基本过程与特点 设计一个具有规定可靠性水平的结构产品,其内容是相当丰富的,应当贯穿于产品的预研、分析、设计、制造、装配试验、使用和管理等整个过程和各个方面。从研究及学科划分上可大致分为三个方面。 (1)可靠性数学。主要研究可靠性的定量描述方法。概率论、数理统计,随机过程等是它的重要基础。 (2)可靠性物理。研究元件、系统失效的机理,物理成固和物理模型。不同研究对象的失效机理不同,因此不同学科领域内可靠性物理研究的方法和理论基础也不同. (3)可靠性工程。它包含了产品的可靠性分析、预测与评估、可靠性设计、可靠性管理、可靠性生产、可靠性维修、可靠性试验、可靠性数据的收集处理和交换等.从产品的设计到产品退役的整个过程中,每一步骤都可包含于可靠性工程之中。 由此我们可以看出,结构可靠性设计仅是可靠性工程的其中一个环节,当然也是重要的环节,从内容上讲,它包括了结构可靠性分析、结构可靠性设计和结构可靠性试验三大部分。结构可靠性分析的过程大致分为三个阶段。 一是搜集与结构有关的随机变量的观测或试验资料,并对这些资料用概率统计的方法进行分析,确定其分布概率及有关统计量,以作为可靠度和失效概率计算的依据。

结构可靠度基本理论

结构可靠度基本理论 摘要:目前,在结构工程领域,人们越来越认识到,只有用概率和统计的方法,才能正确地处理结构设计和分析中存在的大量不确定因素,从而对结构的安全性做出科学的评估。近三十年来,结构可靠性理论得到了迅速的发展。它以概率论和统计学为数学工具,形成了一个相当完整的理论体系,它还发展了许多便于在工程实际中应用的计算方法,为结构安全性评估提供了强有力的手段。 关键词:疲劳失效、可靠度、可靠性指标 长期以来,在船舶与海洋工程领域,对结构的疲劳现象已进行了大量的研究,并在此基础上建立了可供实际应用的疲劳设计与分析方法。通常,结构的疲劳损伤和疲劳寿命采用Miner 线性累计损伤理论和S—N 曲线来计算。近年来,更为先进的断裂力学方法也越来越受到重视,并逐步得到了应用。目前,这两种方法已成为船舶与海洋工程结构疲劳设计与分析的两种相互补充的基本方法。但是,这两种方法以往都是在确定性的意义上使用的,在分析过程中,有关的参数都认为有确定的数值。而事实上,船舶与海洋工程结构的疲劳是一个受到大量因素影响的极其复杂的现象,大多数的影响因素从本质上说是随机的。例如,海洋中的波浪无规则地运动,由此引起结构内的交变应力就是一个随机过程。一艘船或海洋平台,用确定性方法进行疲劳分析时,若有关参数都取均值,那么计算所得的疲劳寿命可能是规定的设计寿命的数倍甚至数十倍。从表面上看,可以认为是充分安全 的。但是,若考虑到各参赛的不确定性,在同样的条件下,疲劳寿命大于 设计寿命的概率却可能很低,实际上并不能满足安全性的要求。

在结构可靠性理论中,各种影响结构安全的不确定因素都用随机变量或随机过程来描述;在充分考虑这些不确定因素的基础上,一个结构安全与否,用该结构在规定服务期内不发生破坏的概率来度量,这一概率称为结构的可靠度。很显然,对于受到大量不确定因素影响的船舶与海洋工程结构的疲劳问题,用结构可靠度理论来加以研究是非常适当的,可以对结构在疲劳方面的安全性做出比用确定性方法更加合理的评估。下面我将从以下几个方面来介绍我学到的结构可靠度基本理论: 极限状态 在工程实际中,结构受载后的响应必须满足一定的要求,例如安全性的要求、适应性的要求,或其他一些衡准。结构的极限状态定义为若超过此状态,结构就不能满足某一特定的要求。结构的极限状态主要有两类:一类是承载能力极限状态,它与结构的安全性要求有关,如屈服、失稳、疲劳、断裂等引起的结构破坏的状态;另一类是正常使用极限状态,它与结构的适应性要求有关,如过度的变形、过度的振动等导致结构不能正常使用的状态。结构超过极限状态称为“失效”,因此极限状态又称为“失效模式” 失效概率和可靠度 结构可靠性分析的任务就是要计算在规定时间内结构超过极限状态的概率,这一概率成为“失效概率”。可把在规定时间内结构不达到极限状态的概率定义为结构的“可靠度”。若用

建筑结构可靠度设计统一标准

建筑结构可靠度设计统一标准

————————————————————————————————作者:————————————————————————————————日期: ?

众智软件 1 总则 1.0.1 为统一各类材料的建筑结构可靠度设计的基本原则和方法,使设计符合技术先进、经济合理、安全适用、确保质量的要求,制定本标准。 1.0.2 本标准适用于建筑结构,组成结构的构件及地基基础的设计。 1.0.3 制定建筑结构荷载规范以及钢结构、薄壁型钢结构、混凝土结构、砌体结构、木结构等设计规范应遵守本标准的规定;制定建筑地基基础和建筑抗震等设计规范宜遵守本标准规定的原则。 1.0.4 本标准所采用的设计基准期为50年。 1.0.5结构的设计使用年限应按表1.0.5采用。 1.0.6结构在规定的设计使用年限内应具有足够的可靠度。结构可靠度可采用以概率理论为基础的极限状态设计方法分析确定。 1.0.7 结构在规定的设计使用年限内应满足下列功能要求:?1在正常施工和正常使用时,能承受可能出现的各种作用;?2在正常使用时具有良好的工作性能; 3 在正常维护下具有足够的耐久性能;?4在设计规定的偶然事件发生时及发生后,仍能保持必需的整体稳定性。 1.0.8 建筑结构设计时,应根据结构破坏可能产生的后果(危及人的生命、造成经济损失、产生社会影响等)的严重性,采用不同的安全等级。建筑结构安全等级的划分应符合表1.0.8的要求。

1.0.9建筑物中各类结构构件的安全等级,宜与整个结构的安全等级相同。对其中部分结构构件的安全等级可进行调整,但不得低于三级。 1.0.10 为保证建筑结构具有规定的可靠度,除应进行必要的设计计算外,还应对结构 材料性能、施工质量、使用与维护进行相应的控制。对控制的具体要求,应符合有关勘察、设计、施工及维护等标准的专门规定。 1.0.11 当缺乏统计资料时,结构设计应根据可靠的工程经验或必要的试验研究进行。

可靠度理论及应用

建筑物改造可靠度分析及结构可靠度理论 的应用现状及发展趋势 刘宏伟,吴胜兴, 唐业清,韩宁旭 (东北大学资源与土木学院李盼 1101625) 摘要:已有建筑结构的可靠性鉴定及加固技术是综合性较强的研究领域,涉及多学科与较宽知识面,研究难度较大。但开展本课题研究具有广泛的市场应 用前景和产业化转化途径。同时简要叙述了结构可靠度设计理论的发展历史和结构设计方法的演变过程。对目前可靠度研究中的抗力随时间变化的结构可靠度;腐蚀环境下结构的可靠度:已有结构的可靠度评估和最佳维修决策:结构动力可靠度方面等方面的研究现状加以评述。提出了结构可靠度理论研究的发展趋势。 关键词:已有建筑;可靠性鉴定;加固;模糊评判法;层次分析法_;结构工程;可靠度;应用现状;发展趋势 对已有建筑结构的维修加固改造业是二十一世纪最受欢迎的九大行业之一,受维修改造需求的驱动和现代化技术的发展,已有建筑结构的可靠性鉴定与加固改造技术作为一门新的学科正在逐渐形成并迅速发展。本文在研究近十年来结构可靠性鉴定与加固技术发展的基础上,结合多项工程鉴定加固工作实际,对已有建筑结构的可靠性鉴定和加固技术进行了系统的分析和理论探讨。研究主要内容有: 1、概括论述了国内外加固改造业的发展;简要介绍了结构可靠度理论发展和研究现状;介绍了己有建筑结构可靠性鉴定和维修加固方法的发展;有针对性提出了现行建筑物鉴定、加固工作发展方向。 2、简明扼要地介绍了结构可靠性理论基本知识及用一次二阶矩分析计算结构构件可靠度计算方法;对已有建筑与拟建建筑的可靠性的不同之处进行了对比;分析了已有结构的荷载、抗力问题;建立了已有建筑结构失效概率与可靠度指标间对应关系,简要给出了己有结构可靠性判定的基本计算原则和方法。【1】 3、论述了已有建筑可靠性鉴定与拟建建筑设计区别,可靠性鉴定中结构力学分析和构件校核原则;系统介绍了现行国家可靠性鉴定标准中评定体系和评定方法【2】;对现行鉴定体系的基本原则和适用性进行了分析,并结合工程鉴定实例说明结构安全性鉴定程序及具体方法。 4、研究了模糊综合评判法及层次分析法基本理论;将模糊评估方法引入结构可靠性分析领域,并建立了结构可靠性评价的多级评价模型i 【3,4】。通过用层次分析法确定各层构件在结构体系中的权重,建立了以结构构件权重系数评价结构安全性等级的评判模型。 5、综合分析已有建筑结构加固设计的基本原则;以棍凝土结构加固为例,对加固结构中的新旧材料共同工作问题进行了研究;对加大截面加固法、外包型钢加固法、粘贴纤维复合材料加固法、粘贴钢板加固法的加固机理、计算方法进行了介绍【5】。并结合加固工程实例,对粘贴纤维复合材料及粘贴钢板加固法的设计方法进行了分析。

结构可靠性理论的现状与发展

结构可靠性理论的现状与发展 1.引言 工程结构设计的主要目的在于以最经济的途径来满足建筑物的功能要求,而可 靠度是满足这一目的的有效控制参数。可靠度理论是在20世纪40年代开始提出的。最早源于军事需要用来提高电子元件的可靠度。将可靠度理论引入结构工程并加以发展无疑是结构工程学科的重大进展之一,并在许多方面得到成功应用。我国对结构可靠度理论的研究工作开展得较晚。20世纪60年代土木工程界曾广泛开展过结构安全度的研究和讨论;20世纪70年代把半经验半概率的方法用于结构设计规范中,并于1980年提出《结构设计统一标准》,从此,结构可靠度理论的应用才在国内开展。 结构可靠性通常定义为:在规定的使用条件和环境下,在给定的使用寿命期间,结构有效地承受载荷和耐受环境而正常工作的能力。结构可靠性的数t指标通常用概率表示,称为结构可靠度。结构可靠性是一个广义概念,通常包含结构的安全性、适用性和耐久性三个方面。 为保证结构的可靠性,首先要研究建造结构所使用材料的各项力学性能,结构上各种作用的特性,结构的内力分析方法及结构的破坏机理,除此之外,还要做到精心设计,选取合理的结构布置方案和保证结构具有明确的传力路径;精心施工,严格按照施工规程进行操作;正常使用,按设计要求使用结构并进行正常维护。然而,即便如此,也不能保证结构绝对的安全或可靠,这是因为在结构的设计、建造和使用过程中,还存在着种种影响结构可靠性的不确定性。即随机性、模糊性和知识的不完善性,合理、正常的设计、施工和使用只是保证结构具有一定可靠性的前提和基本条件。 自20世纪20年代起,国际上开展了结构可靠性基本理论的研究,并逐步扩展到结构分析和设计的各个方面,包括我国在内,研究成果已应用于结构设计规范,促进了结构设计基本理论的发展。本文将基于大量的研究文献,从结构可靠性分析方法、结构体系可靠度、结构承载能力与正常使用极限状态可靠度、结构疲劳与动力可靠度、钢筋混凝土结构施工期与老化期可靠度五个方面对国内外工程结构可靠度理论和应用的发展现状作概括性地介绍, 2.结构可靠性分析方法 2.1 一次二阶矩法 在实际工程中,占主流的一次二阶矩法应用相当广泛,已成为国际上结构可靠度分析和计算的基本方法。其要点是非正态随机变量的正态变换及非线性功能函数的线性化由于将非线性功能函数作了线性化处理,所以该类方法是一种近似的计算方法,但具有很强的适用性,计算精度能够满足工程需求。均值一次二阶矩法、改进的一次二阶矩法、Jc法、几何法都是以一次二阶矩法为基础的可靠度计算方法。 (1)均值一次二阶矩法。早期结构可靠度分析中,假设线性化点x 0t 就是均值点 m ,而由此得线性化的极限状态方程,在随机变量X t (i=1,2,?,n)统计独立的条 件下,直接获得功能函数z的均值m x 及标准差σ x ,由此再由可靠指标β的定义求取 β= m x/σx。该方法对于非线性功能函数,因略去二阶及更高阶项,误差将随着线

结构可靠度理论在桥梁工程中的应用

工程管理 95 企业家天地 0结构可靠度理论在桥梁工程中的应用 杨 敏 李玉荣 摘 要:随着可靠度理论的发展与成熟,结构可靠度理论在桥梁工程中的应用也得到了长足的发展,在各个方面都有所突破。本文介绍了可靠度理论在桥梁工程中的应用,特别介绍了大跨度桥梁风振可靠度研究进展。 关键词:结构可靠度;桥梁工程;应用进展中图分类号:T B114.2 文献标识码:A 文章编号:CN 43-1027/F(2011)04-095-02 作 者:重庆市实力公路开发有限公司;重庆,401147 一、结构可靠度计算方法 结构可靠度的计算方法是可靠度理论中的一个重要研究内容,它直接关系到结构可靠度理论在工程中的应用。计算结构的可靠度,首先要获得结构的功能函数,但是,在实际问题中,结构的功能函数可能是非线性函数,且大多数基本变量不服从正态分布,在这种情况下,结构的功能函数一般也不服从正态分布,因而不能通过概率直接积分计算结构的可靠度。这时需要进行结构可靠度的近似计算。近似概率法是计算可靠度的常用方法,它通常仅用各基本变量的平均值(一阶原点矩)和方差(二阶中心矩)来描述其统计特征,而且,当功能函数为非线性时,也都按线性化处理,故亦将其称为一次二阶矩法。该法可将一个复杂的多重积分问题转化为一个简单的数值计算问题,计算效率高。当然,这些计算方法都是针对功能函数具有明确表达式的情况。而实际工程中,由于结构本身构造复杂,往往不能给出功能函数的明确表达式,若直接应用上述方法就会遇到困难。所以必须选取别的计算方法处理,如响应面法或随机有限元法。同时,在计算机高速发展的今天,也使蒙特卡罗法得以在可靠度分析中发挥作用。 二、结构可靠度理论在桥梁工程中的应用进展 现代桥梁向长、轻、柔方向发展,桥梁结构的可靠度分析就变得越来越重要。在经济与技术许可的情况下,对桥梁进行可靠度研究,可以使设计方案更加合理经济,桥梁的技术改造决策更加科学,从而提高桥梁的承载能力,延长其使用寿命及改善其安全性能。因此,对桥梁结构进行可靠度研究具有重要的社会意义、经济价值和广泛的应用前景。 公路工程结构可靠度设计统一标准 规定,桥梁结构必须满足下列功能要求: 缩钢筋网以外,还在连续段内布设预应力钢束。简支连续梁正弯矩区段及墩顶负弯矩区段按部分预应力混凝土A 类构件设计,各施工阶段和使用阶段的应力应满足规范要求,并应满足承载能力极限状态强度要求。采用桥梁博士程序计算配筋,钢束布置为:边跨边梁、中梁跨中分别布置33,30根?j15.24钢绞线;中跨边梁、中梁跨中分别采用27,24根?j15.24钢绞线;现浇段负弯矩钢束:边梁均布25根?j15.24钢绞线;中梁均布21根?j15.24钢绞线。负弯矩预应力钢索由支点分别往前后延伸10m 和14m 。 四、变形计算与验算 (一)变形计算 预应力混凝土连续T 梁的变形包括短期荷载和长期荷载作用下的挠度,其中,短期荷载作用下的挠度可采用规范规定的构件刚度用材料力学的方法计算;长期荷载作用下的挠度,可按该荷载下的初始弹性挠度乘以[1+ (t, )]求得, (t, )为徐变系数。在张拉过程随时注意上拱度的变化,张拉时弹性上拱值与计算误差按 0.5cm 控制(表1),张拉后对锚具及时作临时防护处理。 注:表中括号外值对应于钢柬张拉完成时,括号内值对应于存梁一个月时。 (二)变形验算及预拱度设置 T 梁的预制要提早进行,为了防止预制梁上拱过大、减轻桥梁建成后呈波浪形对车辆行驶的影响,要求存梁期按30d 控制;为防止预制梁与现浇桥面混凝土由于龄期的不同而产生过大的收缩差,预制梁与现浇桥面混凝土时间差控制在60d 之内。存梁期密切注意梁的累计上拱值,若超过规定值,应采取控制措施。根据计算,边板、中板在恒载与汽车荷载作用下的挠度fg +y ,+f 汽>L/1600,均需设置预拱度。同时为保证现浇桥面板和沥青铺装层厚度,各预制T 梁的跨中设置在跨长范围内按二次抛物线变化的下预拱度(表2),预制梁纵向顶面线型与底面线型一致,以保证后期桥面混凝土现浇层的厚度。 参考文献: [1]JT J023 85,公路钢筋混凝土及预应力混凝土桥涵设计规范[s]. [2]JT J021 89,公路桥涵设计通用规范[s ]. (责任编辑:谢嵩)

宁波大学结构可靠性设计基础考试复习题

一﹑单项选择题 1.我国现行规范中一般建筑物的设计使用年限为 A .5年 B 。25年 C .50年 D 。100年 2.对普通房屋和构筑物,《建筑结构可靠度设计统一标准》给出的设计使用年限为 A .5年 B 。25年 C .50年 D 。100年 3.对临时性结构,《建筑结构可靠度设计统一标准》给出的设计使用年限为 A .5年 B 。25年 C .50年 D 。100年 4.我国现行建筑规范中设计基准期为 A .10年 B 。30年 C .50年 D 。100年 5. 现行《建筑结构荷载规范》规定的基本风压值的重现期为 A.30年 B.50年 C.100年 D.150年 6. 称确定可变作用及与时间有关的材料性能的取值而选用的时间参数为 A. 结构设计基准期 B. 结构设计使用年限 C. 结构使用年限 D. 结构全寿命 7.下面哪一个变量不是随机变量? A .结构构件抗力 B .荷载最大值 T Q C .功能函数Z D .永久荷载标准值 8.结构可靠性是指 A .安全性 B 。适用性 C .耐久性 D 。安全性﹑适用性和耐久性的总称 9.在结构可靠度分析中,描述结构的极限状态一般用 A .功能函数 B 。极限状态方程 C .可靠度 D 。失效概率 10.裂缝超标破坏属于哪个极限状态范畴. A .承载力极限状态 B. 正常使用极限状态 C. 稳定极限状态 D. 强度极限状态 11.规定时间规定条件预定功能相同时,可靠指标 越大,结构的可靠程度 A.越高 B.越低 C.不变 D.视情况而定 12. 结构的失效概率与可靠度之和 A.等于1 B.大于1 C.小于1 D.不确定 13.当功能函数服从哪一个分布时,可靠指标与失效概率具有一一对应关系。 A .正态分布 B 。均匀分布 C .极值分布 D .指数分布 14. 结构的失效概率 f P 与结构抗力R 和荷载效应S 的概率密度干涉面积。

可靠性的发展史

可靠性理论的发展史 摘要:从可靠性的诞生开始,阐述了可靠性在各个时代的理论和应用上的状态;介绍了可靠性的基本内容、发展过程、研究现状和方法的各自特点;并提出了未来系统可靠性发展可能存在的问题。 关键字:可靠性发展历史 Abstract: This essay introduces the states of theories and applications of reliability in each development periods from its birth; and introduces the basics, development, current situation and approaches of reliability study; and makes a discussion about the problems which might be faced in the future study. Keywords: Reliability, Development, History 可靠性是指产品在规定的条件下和规定的时间内完成规定功能的能力。可靠性又可分为两种:一种是固有可靠性,是指产品在设计、制造过程中,产品对象已经赋予的固有属性,这部分的可靠性是在产品在设计开发时可以控制的;一种是使用可靠性,是指产品在实际使用过程中表现出来的可靠性,除了固有可选性的影响因素外,还需要考虑产品安装、操作使用、维修保障等各方面因素的影响。 可靠性和质量不可分离,其前身是伴随着兵器的发展而诞生和发展。在公元前26世纪的冷兵器时期,到1703年英法两国完全取消长矛为止,前后经历了4000年发展成长的漫长过程中,人类已经对当时所制作的石兵器进行了简单检验。在殷商时代已有的文字记载中,就有关于生产状况和产品质量的监督和检验,对质量和可靠性方面已有了朴素的认识。热兵器的成熟期在国际上二战时期德国使用火箭和美国使用原子弹为标志。当时,德国发射的火箭不可靠及美国的航空无线电设备不能正常工作。德国使用V-2火箭袭击伦敦,有80枚火箭没有起飞就爆炸,还有的火箭没有到达目的地就坠落;美国当时的航空无线电设备有60%不能正常工作,其电子设备在规定的使用期限内仅有30%的时间能有效工作。二战期间,因可靠性引起的飞机损失惨重,损失飞机2100架,是被击落飞机的1.5倍。 其实,与可靠性有关的数学基础理论很早就发展起来了。可靠性最主要的理论基础概率论早在17 世纪初就逐步确立;另一主要基础理论数理统计学在20世纪30 年代初期也得到了迅速发展;作为与工程实践的结合,除了三、四十年代提出的机械维修概率、长途电话强度的概率分布、更新理论、试件疲劳与极限理论的关系外,1939 年瑞典人威布

相关文档
最新文档