自控实验

自控实验
自控实验

实验名称:线性系统的时域分析方法1

实验目的:

1.传递函数的代数式与零极点式互换

2.由开环传递函数求闭环传递函数的方法

3.系统的单位阶跃响应图和单位控制响应图的画法

实验仪器设备:

PC机,MATLAB软件

实验原理及步骤:

1.tf2zpk 函数说明

>> help tf2zpk

tf2zpk Discrete-time transfer function to zero-pole conversion.

[Z,P,K] = tf2zpk(NUM,DEN) finds the zeros, poles, and gain:

(z-Z(1))(z-Z(2))...(z-Z(n))

H(z) = K ---------------------------

(z-P(1))(z-P(2))...(z-P(n))

from a single-input, single-output transfer function in polynomial form:

NUM(z)

H(z) = --------

DEN(z)

EXAMPLE:

[b,a] = butter(3,.4);

[z,p,k] = tf2zpk(b,a)

翻译:

Tf2zpk 离散传递函数zero-pole转换

[Z,P,K] = tf2zpk(NUM,DEN)找到零点、极点并且得到:

(z-Z(1))(z-Z(2))...(z-Z(n))

H(z) = K ---------------------------

(z-P(1))(z-P(2))...(z-P(n))

对于从单变量多项式形式的传递函数:

NUM(z)

H(z) = --------

DEN(z)

例如:[b,a] = butter(3,.4);

[z,p,k] = tf2zpk(b,a)

2.expand函数说明

>> help expand

--- help for sweepset/expand ---

expand Expand records into sweeps

S = expand(S,t) turns each record into a sweep by replicating it N

times. The number of times to replicate each record is specified by the

(1-by-NUMRECS) vector t.

Overloaded methods:

sym/expand

dtree/expand

翻译:

帮助sweepset/扩展

扩大记录扩展到扫描

S = expand(S,t) 通过复制N次把每一个记录变成一个扫描。复制每个记录的次数是指定的通过(1-by-NUMRECS) 向量t。

重载的方法:sym/expand dtree/expand

3.feedback 函数说明

>> help feedback

feedback Feedback connection of two input/output systems.

M = feedback(M1,M2) computes a closed-loop model M for the feedback loop:

u --->O---->[ M1 ]----+---> y

| | y = M * u

+-----[ M2 ]<---+

Negative feedback is assumed and the model M maps u to y. To apply

positive feedback, use the syntax M = feedback(M1,M2,+1).

M = feedback(M1,M2,FEEDIN,FEEDOUT,SIGN) builds the more general feedback interconnection:

+------+

v --------->| |--------> z

| M1 |

u --->O---->| |----+---> y

| +------+ |

| |

+-----[ M2 ]<---+

The vector FEEDIN contains indices into the input vector of M1 and

specifies which inputs u are involved in the feedback loop. Similarly,

FEEDOUT specifies which outputs y of M1 are used for feedback. If SIGN=1

then positive feedback is used. If SIGN=-1 or SIGN is omitted, then

negative feedback is used. In all cases, the resulting model M has the

same inputs and outputs as M1 (with their order preserved).

If M1 and M2 are arrays of models, feedback returns a model array M of

the same dimensions where

M(:,:,k) = feedback(M1(:,:,k),M2(:,:,k)) .

For dynamic systems SYS1 and SYS2,

SYS = feedback(SYS1,SYS2,'name')

connects SYS1 and SYS2 by matching their I/O names. The I/O names of

SYS1 and SYS2 must be fully defined.

See also lft, parallel, series, connect, InputOutputModel, DynamicSystem.

Overloaded methods:

InputOutputModel/feedback

iddata/feedback

翻译:

Feedback 反馈连接的两个输入/输出系统。

M = feedback(M1,M2) 计算一个闭环反馈回路模型M

u --->O---->[ M1 ]----+---> y

| | y = M * u

+-----[ M2 ]<---+

负反馈是假定的并且模型M是u映射到y。运用正反馈,使用语句M = feedback(M1,M2,+1).

M = feedback(M1,M2,FEEDIN,FEEDOUT,SIGN) 构建更多一般的反馈。

连接:

+------+

v --------->| |--------> z

| M1 |

u --->O---->| |----+---> y

| +------+ |

| |

+-----[ M2 ]<---+

向量FEEDIN包含指标输入向量的M1和指定输入u参与的反馈循环。同样的,FEEOUT 指定输出向量M1的y用于反馈。如果SIGN=1,然后使用正反馈,如果SIGN=-1或者SIGN省略,用于负反馈。在所有情况下,所产生的模型M有相同的输入和输出作为M1(命令保存)。

如果M1和M2是一个数组模型,反馈返回一个相同维数的数组的模型M M(:,:,k) = feedback(M1(:,:,k),M2(:,:,k)) .

对于动态系统SYS1和SYS2, SYS = feedback(SYS1,SYS2,'name')

连接SYS1和SYS2通过匹配它们的I/O名字,SYS1和SYS2的I/O

名字必须完全定义。

重载方法: InputOutputModel/feedback iddata/feedback

实验内容:

1.将传递函数=)(s G 368

17979143877238323423+++++++s s s s s s s 转化为零极点表达式 >> num=[3 38 72 87];

>> den=[3 14 79 179 368];

>> sys=tf(num,den)

sys =

3 s^3 + 38 s^2 + 72 s + 87

-------------------------------------

3 s^

4 + 14 s^3 + 79 s^2 + 179 s + 368

Continuous-time transfer function.

>> [z p k]=tf2zp(num,den)

z =

-10.6725 + 0.0000i

-0.9971 + 1.3127i

-0.9971 - 1.3127i

p =

-0.4934 + 3.6870i

-0.4934 - 3.6870i

-1.8399 + 2.3409i

-1.8399 - 2.3409i

k =

1

2. 画出开环传递函G(s)=

10

2132++s s 的单位阶跃响应图和单位脉冲响应图 >> num=[13];

>> den=[1 2 10];

>> sys=tf(num,den)

sys =

13

--------------

s^2 + 2 s + 10

Continuous-time transfer function.

>> t=0:0.05:2.5;

>> step(sys,t)

>> grid on

>> impulse(sys,t)

>> grid on

自动控制原理实验报告

院系:电子信息工程系

专业班级:电信1301

学号:1305141031

姓名:汪敏

指导教师:孙锴

自控实验报告 控制系统串联校正

自动控制原理实验报告(III)

一、实验名称:控制系统串联校正 二、实验目的 1. 了解和掌握串联校正的分析和设计方法。 2. 研究串联校正环节对系统稳定性及过渡过程的影响。 三、实验内容 1. 设计串联超前校正,并验证。 2. 设计串联滞后校正,并验证。 四、实验原理 1. 系统结构如图3-1 图3-1 其中G c(s)为校正环节,可放置在系统模型中来实现,也可使用模拟电路的方式由模拟机来实现。 2. 系统模拟电路如图3-2 图3-2 各电阻电容取值 R3=2MΩ R4=510KΩ R5=2MΩ C1=0.47μF C2=0.47μF 3. 未加校正时G c s=1 (a >1) 4. 加串联超前校正时G c s=aTs+1 Ts+1 给定 a = 2.44 , T = 0.26 , 则G c s=0.63s+1 0.26s+1 (0

(1)未加校正 (2)超前校正 (3)滞后校正

3. 系统波特图 (1)未加校正环节系统开环传递函数G s= 4 s2+s (2)串联超前校正系统开环传递函数G s= 2.52s+4 0.26s3+1.26s2+s

(3)串联滞后校正系统开环传递函数G s= 40s+4 83.33s3 + 84.33s2+s 六、数据分析 1、无论是串入何种校正环节,或者是否串入校正环节,系统最终都会进入稳态,即三个系统都是稳定系统。 2、超前校正:系统比未加校正时调节时间短,即系统快速性变好了,而且超调量也减小了。从频率角度来看,戒指频率减小,相位稳定域度增大,系统稳定性变好。

自控实验4

东南大学自动化学院 实验报告 课程名称:控制基础 第 4 次实验 实验名称:串联校正研究 院(系):自动化学院专业:自动化 姓名:徐丽娜学号:08011308 实验室:416 实验组别: 同组人员:刘燊燊实验时间:2013年12月20日评定成绩:审阅教师:

一、实验目的: (1)熟悉串联校正的作用和结构 (2)掌握用Bode图设计校正网络 (3)在时域验证各种网络参数的校正效果 二、实验原理: (1)校正的目的就是要在原系统上再加一些由调节器实现的运算规律,使控制系统满足性能指标。 由于控制系统是利用期望值与实际输出值的误差进行调节的,所以,常常用“串联校正”调节方法,串联校正在结构上是将调节器Gc(S)串接在给定与反馈相比误差之后的支路上,见下图。 设定校正网络Gc(S) 被控对象H(S) 实际上,校正设计不局限这种结构形式,有局部反馈、前馈等。若单从稳定性考虑,将校正网络放置在反馈回路上也很常见。 (2)本实验取三阶原系统作为被控对象,分别加上二个滞后、一个超前、一个超前-滞后四种串联校正网络,这四个网络的参数均是利用Bode图定性设计的,用阶跃响应检验四种校正效果。由此证明Bode图和系统性能的关系,从而使同学会设计校正网络。 三、实验设备: THBDC-1实验平台 THBDC-1虚拟示波器 四、实验线路: 五、实验步骤:

(1)不接校正网络,即Gc(S)=1,如总图。观察并记录阶跃响应曲线,用Bode 图解释; (2)接人参数不正确的滞后校正网络,如图4-2。观察并记录阶跃响应曲线,用Bode 图解释; (3)接人参数较好的滞后校正网络,如图4-3。观察并记录阶跃响应曲线,用Bode 图解释; (4)接人参数较好的超前校正网络,如图4-4。观察并记录阶跃响应曲线,用Bode 图解释; (5)接人参数较好的混合校正网络,如图4-5,此传递函数就是工程上常见的比例-积分-微分校正网络,即PID 调节器。观察并记录阶跃响应曲线,用Bode 图解释; 六、预习与回答: (1) 写出原系统和四种校正网络的传递函数,并画出它们的Bode 图,请预先得出各种校正后的阶跃响 应结论,从精度、稳定性、响应时间说明五种校正网络的大致关系。 (2) 若只考虑减少系统的过渡时间,你认为用超前校正还是用滞后校正好? (3) 请用简单的代数表达式说明用Bode 图设计校正网络的方法 七、报告要求: (1)画出各种网络对原系统校正的BODE 图,从BODE 图上先得出校正后的时域特性,看是否与阶跃响应曲线一致。 (2)为了便于比较,作五条阶跃曲线的坐标大小要一致。 八、预习题回答 一、 预习思考 (1)写出原系统和四种校正网络的传递函数,并画出它们的Bode 图,请预先得出各种校正后的阶跃响应结论,从精度、稳定性、响应时间说明五种校正网络的大致关系。 答:原系统开环传递函数:)1051.0)(1094.0)(12.0(2 .10)(+++=s s s s G 原系统的Bode 图:

自动控制根轨迹实验(二)

2 线性系统的根轨迹研究 2.1 实验目的 (1) 考察闭环系统根轨迹的一般形成规律。 (2) 观察和理解引进零极点对闭环根轨迹的影响。 (3) 观察、理解根轨迹与系统时域响应之间的联系。 (4) 初步掌握利用产生根轨迹的基本指令和方法。 2.2 实验内容 根轨迹绘制的指令法、交互界面法;复平面极点分布和系统响应的关系。 已知单位负反馈系统的开环传递函数为2 )^54()2()(2+++=s s s K s G ,实验要求: (1) 试用MATLAB 的rlocus 指令,绘制闭环系统根轨迹。(要求写出指令,并绘出图 形。) num=[1 2] num = 1 2 >> den=[1 0 16 0 25] den = 1 0 16 0 25 >> rlocus(tf(num,den));

(2)利用MATLAB的rlocfind指令,确定根轨迹的分离点、根轨迹与虚轴的交点。(要求写出指令,并给出结果。) (3)利用MATLAB的rlocfind指令,求出系统临界稳定增益,并用指令验证系统的稳定性。 >> rlocfind(G) Select a point in the graphics window selected_point = -0.0000 + 3.6025i ans = 65.8411

>> sym G G=tf([1 2],[1 8 26 40 25]); sym p den=[1 8 26 40 25]; p=roots(den) ans = G ans = p p = -2.0000 + 1.0000i -2.0000 - 1.0000i -2.0000 + 1.0000i -2.0000 - 1.0000i (4)利用SISOTOOL交互界面,获取和记录根轨迹分离点、根轨迹与虚轴的交点处的关键参数,并与前面所得的结果进行校对验证。(要求写出记录值,并给出说明。)

自控实验八

东南大学能源与环境学院 实验报告 课程名称:自动控制基础 实验名称:采样控制系统的分析 院(系):能源与环境学院专业:热能与动力工程 姓名:周兴学号:03011127 实验室:417 实验组别:XX 同组人员:张亚丽实验时间:2013年12月12 日评定成绩:审阅教师:

目录 一.实验目的 (3) 二.实验设备 (3) 三.实验原理 (3) 四.实验内容 (4) 五.实验步骤 (4) 六.报告要求 (5) 七.实验结果与分析 (5) 八.思考与回答 (9) 九.实验总结 (9)

一.实验目的 1. 熟悉并掌握Simulink 的使用; 2. 通过本实验进一步理解香农定理和零阶保持器ZOH 的原理及其实现方法; 3. 研究开环增益K 和采样周期T 的变化对系统动态性能的影响; 二.实验设备 装有Matlab 软件的PC 机一台。 三.实验原理 1. 采样定理 图2-1为信号的采样与恢复的方框图,图中X(t)是t 的连续信号,经采样开关采样后,变为离散信号)(*t x 。 图2-1 连续信号的采样与恢复 香农采样定理证明要使被采样后的离散信号X *(t)能不失真地恢复原有的连续信号X(t),其充分条件为: m a x 2ωω≥S 式中S ω为采样的角频率,max ω为连续信号的最高角频率。由于T S π ω2=,因而式可为: max ωπ ≤T 其中:T 为采样周期。 2. 采样控制系统性能的研究 图2-2为二阶采样控制系统的方块图。 图2-2 采样控制系统稳定的充要条件是其特征方程的根均位于Z 平面上以坐标原点为圆心的单位圆内,且这种系统的动、静态性能均只与采样周期T 有关。

自动控制原理实验报告

实验报告 课程名称:自动控制原理 实验项目:典型环节的时域相应 实验地点:自动控制实验室 实验日期:2017 年 3 月22 日 指导教师:乔学工 实验一典型环节的时域特性 一、实验目的 1.熟悉并掌握TDN-ACC+设备的使用方法及各典型环节模拟电路的构成方法。

2.熟悉各种典型环节的理想阶跃相应曲线和实际阶跃响应曲线。对比差异,分析原因。 3.了解参数变化对典型环节动态特性的影响。 二、实验设备 PC 机一台,TD-ACC+(或TD-ACS)实验系统一套。 三、实验原理及内容 下面列出各典型环节的方框图、传递函数、模拟电路图、阶跃响应,实验前应熟悉了解。 1.比例环节 (P) (1)方框图 (2)传递函数: K S Ui S Uo =) () ( (3)阶跃响应:) 0()(≥=t K t U O 其中 01/R R K = (4)模拟电路图: (5) 理想与实际阶跃响应对照曲线: ① 取R0 = 200K ;R1 = 100K 。 ② 取R0 = 200K ;R1 = 200K 。

2.积分环节 (I) (1)方框图 (2)传递函数: TS S Ui S Uo 1 )()(= (3)阶跃响应: ) 0(1)(≥= t t T t Uo 其中 C R T 0= (4)模拟电路图 (5) 理想与实际阶跃响应曲线对照: ① 取R0 = 200K ;C = 1uF 。 ② 取R0 = 200K ;C = 2uF 。

1 Uo 0t Ui(t) Uo(t) 理想阶跃响应曲线 0.4s 1 Uo 0t Ui(t) Uo(t) 实测阶跃响应曲线 0.4s 10V 无穷 3.比例积分环节 (PI) (1)方框图: (2)传递函数: (3)阶跃响应: (4)模拟电路图: (5)理想与实际阶跃响应曲线对照: ①取 R0 = R1 = 200K;C = 1uF。 理想阶跃响应曲线实测阶跃响应曲线 ②取 R0=R1=200K;C=2uF。 K 1 + U i(S)+ U o(S) + Uo 10V U o(t) 2 U i(t ) 0 0 .2s t Uo 无穷 U o(t) 2 U i(t ) 0 0 .2s t

经典自控实验报告

控制理论: 实验一 典型环节的电路模拟与软件仿真 1. 比例(P )环节 1.1 实验电路 图中后一个单元为反相器,其中R 0=200K 。 1.2 实验设备 阶跃信号发生器(单位阶跃输入);电路单元U 6,U 12;直流数字电压表(测输入电压);“THBDC-1”软件 1.3实验数据及实验响应曲线 R 1=100K ,R 2=200K(K=2),R 0=200K 时 红色曲线为输入u i ,蓝色曲线为输出u o 。 注:为了更好的观测实验曲线,实验时可适当调节软件上的分频系数(一般调至刻度2)和“ ” 按钮(时基自动),以下实验同样。 2. 积分(I )环节 2.1 实验电路 图中后一个单元为反相器,其中R 0=200K 。 2.2 实验设备 阶跃信号发生器(单位阶跃输入),电路单元U 6,U 12,直流数字电压表(测输入电压),

“THBDC-1”软件 2.3实验数据及实验响应曲线 R=100K,C=10 uF,R0=200K ,(T=RC=100K×10uF=1)时, 红色曲线为输入u i,蓝色曲线为输出u o。 注:当实验电路中有积分环节时,实验前一定要用锁零单元进行锁零。 3. 比例积分(PI)环节 3.1 实验电路 图中后一个单元为反相器,其中R0=200K。 3.2实验设备 阶跃信号发生器(单位阶跃输入),电路单元U6,U12,直流数字电压表(测输入电压),“THBDC-1”软件 3.3实验数据及实验响应曲线 R1=100K,R2=100K,C=10uF ,R0=200K ,(K= R2/ R1=1,T=R1C=100K×10uF=1)时 红色曲线为输入u i,蓝色曲线为输出u o。 4. 比例微分(PD)环节

自动控制原理学生实验:二阶开环系统的频率特性曲线

实验三 二阶开环系统的频率特性曲线 一.实验要求 1.研究表征系统稳定程度的相位裕度γ和幅值穿越频率c ω对系统的影响。 2.了解和掌握欠阻尼二阶开环系统中的相位裕度γ和幅值穿越频率c ω的计算。 3.观察和分析欠阻尼二阶开环系统波德图中的相位裕度γ和幅值穿越频率ωc ,与计算值作比对。 二.实验内容及步骤 本实验用于观察和分析二阶开环系统的频率特性曲线。 由于Ⅰ型系统含有一个积分环节,它在开环时响应曲线是发散的,因此欲获得其开环频率特性时,还是需构建成闭环系统,测试其闭环频率特性,然后通过公式换算,获得其开环频率特性。 自然频率:T iT K = n ω 阻尼比:KT Ti 2 1= ξ (3-2-1) 谐振频率: 2 21ξωω-=n r 谐振峰值:2 121lg 20)(ξ ξω-=r L (3-2-2) 计算欠阻尼二阶闭环系统中的幅值穿越频率ωc 、相位裕度γ: 幅值穿越频率: 24241ξξωω-+? =n c (3-2-3) 相位裕度: 4 24122arctan )(180ξξξω?γ++-=+=c (3-2-4) γ值越小,Mp%越大,振荡越厉害;γ值越大,Mp%小,调节时间ts 越长,因此为使 二阶闭环系统不致于振荡太厉害及调节时间太长,一般希望: 30°≤γ≤70° (3-2-5) 本实验所构成的二阶系统符合式(3-2-5)要求。 被测系统模拟电路图的构成如图1所示。 图1 实验电路 本实验将数/模转换器(B2)单元作为信号发生器,自动产生的超低频正弦信号的频率从低到高变化(0.5Hz~16Hz ),OUT2输出施加于被测系统的输入端r (t),然后分别测量被测系统的输出信号的开环对数幅值和相位,数据经相关运算后在虚拟示波器中显示。 实验步骤: (1)将数/模转换器(B2)输出OUT2作为被测系统的输入。 (2)构造模拟电路:安置短路套及测孔联线表同笫3.2.2 节《二阶闭环系统的频率特性曲线测试》。 (3)运行、观察、记录: ① 将数/模转换器(B2)输出OUT2作为被测系统的输入,运行LABACT 程序,在界面 的自动控制菜单下的线性控制系统的频率响应分析-实验项目,选择二阶系统,就会弹出虚拟示波器的界面,点击开始,实验开始后,实验机将自动产生0.5Hz~16H 等多种频率信号,等待将近十分钟,测试结束后,观察闭环对数幅频、相频曲线和幅相曲线。 ② 待实验机把闭环频率特性测试结束后,再在示波器界面左上角的红色‘开环’或‘闭

自控实验二

《自动控制理论》 实验报告 专业:电气工程及其自动化班号:1406111 学号:1140610217 姓名:田晨晨 电气工程及其自动化实验中心二零一六年十一月二十四日

实验五 线性系统的时域分析 一、实验目的 1、学会使用MATLAB 绘制控制系统的单位阶跃响应曲线; 2、研究二阶控制系统中 、 对系统阶跃响应的影响 3、掌握系统动态性能指标的获得方法及参数对系统动态性能的影响。 二、 实验设备 Pc 机一台,MATLAB 软件。 三、实验内容 1、已知二阶单位反馈闭环传递函数系统: 求:(1)当 及 时系统单位阶跃响应的曲线。 (2)从图中求出系统的动态指标: 超调量M p 、上升时间t p 及过渡过程调 节时间t s 。 (3)分析二阶系统中 、 的值变化对系统阶跃响应曲线的影响。 4.0=n ω,3 5.0=ξ,P M =0.31,s t =27.5S,p t =3.48S 4.0=n ω,5.0=ξ, P M =0.16,s t =20.2S,p t =4.1S ξ越大,超调量越小,调节时间越短,上升时间越长

2.0=n ω,35.0=ξ,P M =0.31,s t =54.9S,p t =6.95S 6.0=n ω,35.0=ξ,P M =0.31,s t =18.3S,p t =2.33S n ω越大,上升时间越小,调节时间越小,超调量不变 2、已知三阶系统单位反馈闭环传递函数为 求: (1) 求取系统闭环极点及其单位阶跃响应,读取动态性能指标。 闭环极点:1234,1,1S S i S i =-=-+=-- 1.03, 3.64,0.27p s P t S t S M === 改变系统闭环极点的位置

自动控制系统实验报告

自动控制系统实验报告 学号: 班级: 姓名: 老师:

一.运动控制系统实验 实验一.硬件电路的熟悉和控制原理复习巩固 实验目的:综合了解运动控制实验仪器机械结构、各部分硬件电路以及控制原理,复习巩固以前课堂知识,为下阶段实习打好基础。 实验内容:了解运动控制实验仪的几个基本电路: 单片机控制电路(键盘显示电路最小应用系统、步进电机控制电路、光槽位置检测电路) ISA运动接口卡原理(搞清楚译码电路原理和ISA总线原理) 步进电机驱动检测电路原理(高低压恒流斩波驱动电路原理、光槽位置检测电路)两轴运动十字工作台结构 步进电机驱动技术(掌握步进电机三相六拍、三相三拍驱动方法。) 微机接口技术、单片机原理及接口技术,数控轮廓插补原理,计算机高级语言硬件编程等知识。 实验结果: 步进电机驱动技术: 控制信号接口: (1)PUL:单脉冲控制方式时为脉冲控制信号,每当脉冲由低变高是电机走一步;双 脉冲控制方式时为正转脉冲信号。 (2)DIR:单脉冲控制方式时为方向控制信号,用于改变电机转向;双脉冲控制方式 时为反转脉冲信号。

(3)OPTO :为PUL 、DIR 、ENA 的共阳极端口。 (4)ENA :使能/禁止信号,高电平使能,低电平时驱动器不能工作,电机处于自由状 态。 电流设定: (1)工作电流设定: (2)静止电流设定: 静态电流可用SW4 拨码开关设定,off 表示静态电流设为动态电流的一半,on 表示静态电流与动态电流相同。一般用途中应将SW4 设成off ,使得电机和驱动器的发热减少,可靠性提高。脉冲串停止后约0.4 秒左右电流自动减至一半左右(实际值的60%),发热量理论上减至36%。 (3)细分设定: (4)步进电机的转速与脉冲频率的关系 电机转速v = 脉冲频率P * 电机固有步进角e / (360 * 细分数m) 逐点比较法的直线插补和圆弧插补: 一.直线插补原理: 如图所示的平面斜线AB ,以斜线起点A 的坐标为x0,y0,斜线AB 的终点坐标为(xe ,ye),则此直线方程为: 00 00Y Ye X Xe Y Y X X --= -- 取判别函数F =(Y —Y0)(Xe —Xo)—(X-X0)(Ye —Y0)

自动控制原理实验1-6

实验一MATLAB 仿真基础 一、实验目的: (1)熟悉MATLAB 实验环境,掌握MATLAB 命令窗口的基本操作。 (2)掌握MATLAB 建立控制系统数学模型的命令及模型相互转换的方法。 (3)掌握使用MATLAB 命令化简模型基本连接的方法。 (4)学会使用Simulink 模型结构图化简复杂控制系统模型的方法。 二、实验设备和仪器 1.计算机;2. MATLAB 软件 三、实验原理 函数tf ( ) 来建立控制系统的传递函数模型,用函数printsys ( ) 来输出控制系统的函数,用函数命令zpk ( ) 来建立系统的零极点增益模型,其函数调用格式为:sys = zpk ( z, p, k )零极点模型转换为多项式模型[num , den] = zp2tf ( z, p, k ) 多项式模型转化为零极点模型 [z , p , k] = tf2zp ( num, den ) 两个环节反馈连接后,其等效传递函数可用feedback ( ) 函数求得。 则feedback ()函数调用格式为: sys = feedback (sys1, sys2, sign ) 其中sign 是反馈极性,sign 缺省时,默认为负反馈,sign =-1;正反馈时,sign =1;单位反馈时,sys2=1,且不能省略。 四、实验内容: 1.已知系统传递函数,建立传递函数模型 2.已知系统传递函数,建立零极点增益模型 3.将多项式模型转化为零极点模型 1 2s 2s s 3s (s)23++++=G )12()1()76()2(5)(332 2++++++= s s s s s s s s G 12s 2s s 3s (s)23++++= G )12()1()76()2(5)(3322++++++=s s s s s s s s G

自控实验1

实验报告 课程名称:___自动控制理论实验____________指导老师:_ 吴越__ _成绩:实验名称: 典型环节的模拟电路 实验类型:_ __________同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 实验1 典型环节的模拟电路 一. 实验目的 1.熟悉慢扫描示波器的性能和使用方法; 2.掌握典型环节的电模拟方法及其参数测试方法; 3.测量典型环节的阶跃响应曲线,了解参数变化对动态特性的影响。 二,实验内容 1,了解双线示波器的使用方法和性能; 2,画出测试电路图及典型环节的模拟电路图; 3,观察并记录s 5.0/1s G =)(环节的动态波形,)1/(2s 1+=s G )(和)15.0/(1s 2+=s G )(;积分环节:s s G s s G 5.0/1)(2/1)(1==和比例积分环节s s G s S G 5.0/12)(2/11)(1+=+=和;观察并记录比例积分微分环节的动态波形。 三,实验仪器设备 1.电子模拟实验装置一台 2.超低频慢扫描示波器一台 3.万用表一只 四,实验原理 本实验采用复合网络来模拟各种典型环节,即是设置运算放大器不同的输入网络和反馈网络来模拟各种典型环节,根据实域等效电路来求各典型环节的等效模拟电路电路。 五,实验数据记录 1.(1))1/(2s 1+=s G )(对应R3=1000K,R2=500K,C=1UF

阶跃脉冲为+4.5V输入时,稳定输出值为-9.0V,时间τ=2.0S (2),)1 =s G) (: 2+ s /( 5.0 1 R3=500k,R2=500K,C=1UF 输入阶跃脉冲为+4.5V时,稳定输出值为-4.5V,时间常数τ=1.0s

自动控制原理_实验2(1)

实验二 线性系统时域响应分析 一、实验目的 1.熟练掌握step( )函数和impulse( )函数的使用方法,研究线性系统在 单位阶跃、单位脉冲及单位斜坡函数作用下的响应。 2.通过响应曲线观测特征参量ζ和n ω对二阶系统性能的影响。 3.熟练掌握系统的稳定性的判断方法。 二、基础知识及MATLAB 函数 (一)基础知识 时域分析法直接在时间域中对系统进行分析,可以提供系统时间响应的全部 信息,具有直观、准确的特点。为了研究控制系统的时域特性,经常采用瞬态响应(如阶跃响应、脉冲响应和斜坡响应)。本次实验从分析系统的性能指标出发,给出了在MATLAB 环境下获取系统时域响应和分析系统的动态性能和稳态性能的方法。 用MATLAB 求系统的瞬态响应时,将传递函数的分子、分母多项式的系数分 别以s 的降幂排列写为两个数组num 、den 。由于控制系统分子的阶次m 一般小于其分母的阶次n ,所以num 中的数组元素与分子多项式系数之间自右向左逐次对齐,不足部分用零补齐,缺项系数也用零补上。 1.用MATLAB 求控制系统的瞬态响应 1) 阶跃响应 求系统阶跃响应的指令有: step(num,den) 时间向量t 的范围由软件自动设定,阶跃响应曲线随 即绘出 step(num,den,t) 时间向量t 的范围可以由人工给定(例如t=0:0.1:10) [y ,x]=step(num,den) 返回变量y 为输出向量,x 为状态向量 在MATLAB 程序中,先定义num,den 数组,并调用上述指令,即可生成单位 阶跃输入信号下的阶跃响应曲线图。 考虑下列系统: 25 425)()(2++=s s s R s C 该系统可以表示为两个数组,每一个数组由相应的多项式系数组成,并且以s 的降幂排列。则MATLAB 的调用语句:

自控实验报告-系统校正

西安邮电学院 自动控制原理 实验报告

实验三系统校正 一,实验目的 1.了解和掌握系统校正的一般方法。 2.熟悉掌握典型校正环节的模拟电路构成方法。二.实验原理及电路 1.未校正系统的结构方框图 图1 2.校正前系统的参考模拟方框图 图2 3.校正后系统的结构方框图

图3 4.校正后系统的模拟电路图 图4 三.实验内容及步骤 1.测量未校正系统的性能指标 (1)按图2接线 (2)加入阶跃电压观察阶跃响应曲线,并测出超调量和调节时间,并将曲线和参数记录出来。 2.测量校正系统的性能指标 (1)按图4接线

(2)加入阶跃电压,观察阶跃响应曲线,并测出超调量以及调节时间。 四.实验结果 未校正系统 理论值σ% = 60.4% t s = 3.5s 测量值σ% = 60% t s = 2.8s 校正后系统 理论值σ% = 16.3% t s = 0.35s 测量值σ% = 5% t s = 0.42s

五.心得体会 在课本的第六章,我们学习了线性系统的校正方法,包括串联校正、反馈校正以及复合校正等矫正方法,相对于之前学习的内容,理解起来相对难一些,做起实验来也不容易上手。试验期间,遇到了很多难题,反复调整修改甚至把连接好的电路全都拆了重连,最后终于完成了实验。相对于之前的几次试验,这次实验师最让人头疼的,幸好之前积累了些经验,才使得我们这次实验的时候不至于手忙脚乱,但是也并不轻松。 虽然遇到的困难很多,但是我们却收获的更多,线性系统的校正是自动控制原理中重要的部分,通过理论课的学习,再加上实验课的实践,我终于对这些内容有个系统的理解。

自动控制实验报告.

计算机控制原理实验报告 姓名:房甜甜 学号:130104010072 班级:计算机三班 指导教师:胡玉琦 完成时间:2015年10月11日

实验一 二阶系统闭环参数n ω和ξ对时域响应的影响 一、实验目的 1.研究二阶系统闭环参数 n ω和ξ对时域响应的影响 2.研究二阶系统不同阻尼比下的响应曲线及系统的稳定性。 二、实验要求 1. 从help 菜单或其它方式,理解程序的每个语句和函数的含义; 2.分析ξ对时域响应的影响,观察典型二阶系统阻尼系数ξ在一般工程系统中的选择范围; 三、实验内容 1、如图1所示的典型二阶系统,其开环传递函数为) 2s(s G(S)2n n ξωω+=,其中,无阻尼自 然震荡角频率n ω=1,ξ为阻尼比,试绘制ξ分别为0, 0.2, 0.4, 0.6, 0.9, 1.2, 1.5时,其单位负反馈系统的单位阶跃响应曲线(绘制在同一张图上)。 图1 典型二阶系统方框图 2、程序代码 wn=1; sigma=[0,0.2,0.4,0.6,0.9,1.2,1.5];(1) num=wn*wn; t=linspace(0,20,200)';(2) for j=1:7(3) den=conv([1,0],[1,2*wn*sigma(j)]);(4) s1=tf(num,den);(5) sys=feedback(s1,1)(6); y(:,j)=step(sys,t);(7) end plot(t,y(:,1:7));(8) grid;(9) gtext('sigma=0');(10) gtext('sigma=0.2'); gtext('sigma=0.4'); ) 2s(s 2 n n ξωω+ R(s) C(s)

自动控制原理实验报告73809

-150-100 -50 50 实验一 典型环节的模拟研究及阶跃响应分析 1、比例环节 可知比例环节的传递函数为一个常数: 当Kp 分别为0.5,1,2时,输入幅值为1.84的正向阶跃信号,理论上依次输出幅值为0.92,1.84,3.68的反向阶跃信号。实验中,输出信号依次为幅值为0.94,1.88,3.70的反向阶跃信号, 相对误差分别为1.8%,2.2%,0.2%. 在误差允许范围内可认为实际输出满足理论值。 2、 积分环节 积分环节传递函数为: (1)T=0.1(0.033)时,C=1μf (0.33μf ),利用MATLAB ,模拟阶跃信号输入下的输出信号如图: T=0.1 T=0.033 与实验测得波形比较可知,实际与理论值较为吻合,理论上T=0.033时的波形斜率近似为T=0.1时的三倍,实际上为8/2.6=3.08,在误差允许范围内可认为满足理论条件。 3、 惯性环节 i f i o R R U U -=TS 1 CS R 1Z Z U U i i f i 0-=-=-=15 20

惯性环节传递函数为: K = R f /R 1,T = R f C, (1) 保持K = R f /R 1 = 1不变,观测T = 0.1秒,0.01秒(既R 1 = 100K,C = 1μf , 0.1μf )时的输出波形。利用matlab 仿真得到理论波形如下: T=0.1时 t s (5%)理论值为300ms,实际测得t s =400ms 相对误差为:(400-300)/300=33.3%,读数误差较大。 K 理论值为1,实验值2.12/2.28, 相对误差为(2.28-2.12)/2.28=7%与理论值 较为接近。 T=0.01时 t s (5%)理论值为30ms,实际测得t s =40ms 相对误差为:(40-30)/30=33.3% 由于ts 较小,所以读数时误差较大。 K 理论值为1,实验值2.12/2.28, 相对误差为(2.28-2.12)/2.28=7%与理论值较为接近 (2) 保持T = R f C = 0.1s 不变,分别观测K = 1,2时的输出波形。 K=1时波形即为(1)中T0.1时波形 K=2时,利用matlab 仿真得到如下结果: t s (5%)理论值为300ms,实际测得t s =400ms 相对误差为:(400-300)/300=33.3% 读数误差较大 K 理论值为2,实验值4.30/2.28, 1 TS K )s (R )s (C +-=

自控实验报告华中科技大学

自 动 控 制 原 理 实 验 报 告 实验九/十 自动化学院 班级:测控技术与仪器1301 姓名:陈梦焱 学号:U201314488

实验报告: 1.模拟继电特性 理想继电特性 理想死区特性数学描述: 分析: 我们看到模拟输出的继电特性的输出是从一点缓慢增加,逐渐趋于一个定值,而数字继电特性便是标准的继电特性图像,实验中采用了稳压二极管,具有正向导通反向截至的特性,5-5.7伏变化,于是产生了缓慢变化的过程,最后正向导通电压输出为稳定值。

2.模拟饱和特性 理想饱和特性 理想饱和特性数学描述: Y= 分析: 我们看到模拟输出的饱和特性的输出是开始增加过程为近似线性,而后没有明显的拐点,缓慢的到达饱和定值,而数字饱和特性便是标准的饱和特性图像,还是稳压二极管的原因,(讨论正向情况,反向同理)电压输入刚开始值比较小,未达到稳压二极管正向导通电压,相当于开路,通过与其并联的电阻输出,近似线性。二极管两端到达5V以后,逐渐导通,输出呈现非线性,5.7V以后二极管相当于导线将并联电阻短路,输出电压呈现稳定值,即为饱和。

3.死区特性 模拟死区特性: 数字死区特性: 数学描述: 分析:两图无差别,实验电路纯电阻电路,误差很小,可近似理想情况。

4.模拟间隙特性 数字间隙特性 间隙特性数学描述: 分析: 模拟间隙特性在两拐点均会产生一定的偏移,这是由于实验电路中有电容的存在,当电压由正向反偏的时候,电容会有充放电过程,导致拐点电位偏移,这也是为什么我们在实验的时候要按住锁零按钮3S的原因。

思考题: 1.一般继电特性在什么情况下可以分别近似为间隙特性和死区特性? 带死区的继电特性: 带回环的继电特性: ??? ??? ?-<<<>--><>>=0000,0,0,,0,0,)(e e e e e e M e e e e e e M t x 由图可知,当继电特性存在定值的稳态误差时就可以近似为死区特性看待,而继电特性存在定值的稳态误差并且前一状态变量的正负有变化的时候可以近似等效为间隙特性看待。 实验心得与体会: 这次实验是让我们通过模拟电路实现各种非线性的特性再通过数字电路直接产生来作比较,我们看到,在实际的模拟电路中总会因为器件原因使器材不能满足理想的特性曲线,而带来一些问题,二极管存在导通电压,电容具有充放电效应,通过这次实验我更加深入的了解了各种非线性的产生和理想化模型和实际问题之间的区别,而实际中为了更近似理想化要用一些补偿措施去达到近似目的,减小误差。这次实验我也更深入了解了自动控制原理的含义。

自控第二次实验报告

成绩 实验报告

实验二频率特性测试与频域分析法建模实验 实验时间第12周周三上午实验编号 同组同学无 一、实验目的 1.掌握频率特性的测试原理及方法。 2.学习根据所测定出的系统的频率特性,确定系统传递函数的方法。 二、实验内容 1.测定给定环节的频率特性。 系统模拟电路图及系统结构图分别如图 2.2.1及图 2.2.2。 取Ω===M R R R 10.432,F C C μ121==,Ω==k 101R R 系统传递函数为: 1=K 时,取Ω=K R 10,则10 1010 )(2++= s s s G 2=K 时,取Ω=K R 20,则10 1020 )(2 ++=s s s G 若正弦输入信号为)sin()(1t A t Ui ω=,则当输出达到稳态时,其输出信号为)sin()(20?ω+=t A t U 。改变输入信号频率π ω 2= f 值,便可测得二组2 1 A A 和ψ随f(或ω)变化的 数值,这个变化规律就是系统的幅频特性和相频特性。 2.根据测定的系统频率特性,确定系统的传递函数。

三、实验原理 1.幅频特性即测量输入与输出信号幅值A 1及A 2,然后计算其比值A 2/A 1。 2.实验采用“李萨如图形”法进行相频特性的测试。以下简单介绍一下这种测试方法的原理。 设有两个正弦信号: )sin()(t X t X m ωω=) sin()(?ωω+=t Y t Y m 若以X (ωt )为横轴,Y (ωt )为纵轴,而以ω作为参变量,则随着ωt 的变化, X (ωt )和Y (ωt )所确定的点的轨迹,将在X -Y 平面上描绘出一条封闭的曲线。这个图形就是物理学上所称的“李萨如图形”,如图2.2.3所示。 图2.2.3李沙育图形 3.相位差角的求法: 对于)sin()(t X t X m ωω=及) sin()(?ωω+=t Y t Y m 当0=t ω时,有0)0(=X ;)sin()0(?m Y Y =即)/)0(arcsin(m Y Y =?,2/0π?≤≤时成立 4.记录实验结果数据填写表2.2.1。 表2.2.1实验结果数据表 编号 1 2 3 … 10 ω A 2/A 1Y 0/Y m

自动控制实验指导书

第一章THBCC-1型控制理论实验平台硬件组成及使用 一、直流稳压电源 “THBCC-1”实验平台有两个直流稳压电源,主要用于给实验平台提供电源。其中一个直流稳压电源有±5V/0.5A、±15V/0.5A及+24V/1.0A五路,每路均有短路保护自恢复功能。它们的开关分别由相应的钮子开关控制,并由相应发光二极管指示。其中+24V主要用于温度控制单元和直流电机单元。 实验前,启动实验平台左侧的空气开关和实验台上的电源总开关。并根据需要将±5V、±15V钮子开关拔到“开”的位置。 另一个直流稳压电源的功能与前一个相比,是无+24V直流电源。 实验时,也可通过2号连接导线将直流电压接到需要的位置。 二、阶跃信号发生器 “THBCC-1”实验平台有两个阶跃信号发生器,主要提供实验时的给定阶跃信号,其输出电压范围约为-10V~+10V,正负档连续可调。使用时根据需要可选择正输出或负输出,具体通过“阶跃信号发生器”单元的钮子开关来实现。当按下复位按钮时,单元的输出端输出一个可调(选择正输出时,调节RP1电位器;选择负输出时,调节RP2电位器)的阶跃信号(当输出电压为1V时,即为单位阶跃信号),实验开始;当不按复位按钮时,单元的输出端输出电压为0V。 注:单元的输出电压可通过实验台上左面板的直流数字电压表来进行测量,同时可通过2号连接导线将阶跃信号接到需要的位置 三、函数信号发生器 “THBCC-1”实验平台有两个函数信号发生器,一个为低频函数信号发生器,主要用于低频信号输出;另一个为函数信号发生器,主要用于高频输出。 低频函数信号发生器由单片集成函数信号发生器专用芯片及外围电路组合而成,主要输出有正弦信号、三角波信号、方波信号、斜坡信号和抛物坡信号(其中斜坡、抛物坡信号在T1档输出)。输出频率分为T1、T2、T3三档。其中正弦信号的频率范围分别为0.1Hz~3.3Hz、2Hz~70Hz、64Hz~2.5KHz三档,V p-p值为14V。 使用时先将信号发生器单元的钮子开关拔到“开”的位置,并根据需要选择合适的波形及频率的档位,然后调节“频率调节”和“幅度调节”微调电位器,以得到所需要的频率和幅值,并通过2号连接导线将其接到需要的位置。 而用于高频输出的函数信号发生器主要输出有正弦信号、三角波信号、方波信号,输出频率分为T1、T2、T3三档,其中正弦波频率可达90k左右,V p-p值为14V。 四、锁零按钮 锁零按钮用于实验前运放单元中电容器的放电。当按下按钮时,通用单元中的场效应管处于短路状态,电容器放电,让电容器两端的初始电压为0V;当按钮复位时,单元中的场效应管处于开路状态,此时可以开始实验。 注:在实验时,必须用2号导线将通用单元(U3~U14)的G输出端与U0输出端相连时,锁零按钮才有效。 五、频率计 “THBCC-1”实验平台有两个频率计,一个为低频频率计,主要用于测量低频函数信号

自控实验报告5

实验报告(5) 实验名 称 实验五线性系统串联校正 实验日期2014-6-6 指导教 师 于海春

一、实验目的 1.熟练掌握用MATLAB 语句绘制频域曲线。 2.掌握控制系统频域范围内的分析校正方法。 3.掌握用频率特性法进行串联校正设计的思路和步骤。 二、预习要求 1.熟悉基于频率法的串联校正装置的校正设计过程。 2.熟练利用MATLAB 绘制系统频域特性的语句。 三、实验内容 1.某单位负反馈控制系统的开环传递函数为4 ()(1) G s s s = +,试设计一超前校正装置,使校正后系统的静态速度误差系数120v K s -=,相位裕量050γ=,增益裕量20lg 10g K dB =。 2.某单位负反馈控制系统的开环传递函数为3 ()(1)k G s s = +,试设计一个合适的滞后校正网络,使系统阶跃响应的稳态误差约为0.04,相角裕量约为045。 3.某单位负反馈控制系统的开环传递函数为()(1)(2) K G s s s s = ++,试设计一滞后-超前校正 装置,使校正后系统的静态速度误差系数110-=s K v ,相位裕量0 50=γ,增益裕量 dB K g 10lg 20≥。 三、实验结果分析 1.开环传递函数为的系统的分析及其串联超前校正: (1)取K=20,绘制原系统的Bode 图: ①源程序代码: num0=20; den0=[1,1,0]; w=0.1:1000; [gm1,pm1,wcg1,wcp1]=margin(num0,den0); [mag1,phase1]=bode(num0,den0,w); [gm1,pm1,wcg1,wcp1] margin(num0,den0)

自动控制原理实验(全面)

自动控制原理实验 实验一 典型环节的电模拟及其阶跃响应分析 一、实验目的 ⑴ 熟悉典型环节的电模拟方法。 ⑵ 掌握参数变化对动态性能的影响。 二、实验设备 ⑴ CAE2000系统(主要使用模拟机,模/数转换,微机,打印机等)。 ⑵ 数字万用表。 三、实验内容 1.比例环节的模拟及其阶跃响应 微分方程 )()(t Kr t c -= 传递函数 = )(s G ) () (s R s C K -= 负号表示比例器的反相作用。模拟机排题图如图9-1所示,分别求取K=1,K=2时的阶跃响应曲线,并打印曲线。 图9-1 比例环节排题图 图9-2 积分环节排题图 2.积分环节的模拟及其阶跃响应 微分方程 )() (t r dt t dc T = 传递函数 s K Ts s G ==1)( 模拟机排题图如图9-2所示,分别求取K=1,K=0.5时的阶跃响应曲线,并打印曲线。 3.一阶惯性环节的模拟及其阶跃响应 微分方程 )()() (t Kr t c dt t dc T =+ 传递函数 1 )(+=TS K S G 模拟机排题图如图3所示,分别求取K=1, T=1; K=1, T=2; K=2, T=2 时的阶跃

响应曲线,并打印曲线。 4.二阶系统的模拟及其阶跃响应 微分方程 )()() (2)(2 22 t r t c dt t dc T dt t c d T =++ξ 传递函数 121 )(22++=Ts s T s G ξ2 2 2 2n n n s s ωξωω++= 画出二阶环节模拟机排题图,并分别求取打印: ⑴ T=1,ξ=0.1、0.5、1时的阶跃响应曲线。 ⑵ T=2,ξ=0.5 时的阶跃响应曲线。 四、实验步骤 ⑴ 接通电源,用万用表将输入阶跃信号调整为2V 。 ⑵ 调整相应系数器;按排题图接线,不用的放大器切勿断开反馈回路(接线时,阶跃开关处于关断状态);将输出信号接至数/模转换通道。 ⑶ 检查接线无误后,开启微机、打印机电源;进入CAE2000软件,组态A/D ,运行实时仿真;开启阶跃输入信号开关,显示、打印曲线。 五.实验预习 ⑴ 一、二阶系统的瞬态响应分析;模拟机的原理及使用方法(见本章附录)。 ⑵ 写出预习报告;画出二阶系统的模拟机排题图;在理论上估计各响应曲线。 六.实验报告 ⑴ 将每个环节的实验曲线分别整理在一个坐标系上,曲线起点在坐标原点上。分析各参数变化对其阶跃响应的影响,与估计的理论曲线进行比较,不符请分析原因。 ⑵ 由二阶环节的实验曲线求得σ﹪、t s 、t p ,与理论值进行比较,并分析σ﹪、t s 、t p 等和T 、ξ的关系。 实验二 随动系统的开环控制、闭环控制及稳定性 一.实验目的 了解开环控制系统、闭环控制系统的实际结构及工作状态;控制系统稳定的概念以及系统开环比例系数与系统稳定性的关系。 二.实验要求 能按实验内容正确连接实验线路,正确使用实验所用测试仪器,在教师指导下独立

相关文档
最新文档