改性天然鳞片石墨锂离子电池负极材料的研究_吴其修

改性天然鳞片石墨锂离子电池负极材料的研究_吴其修
改性天然鳞片石墨锂离子电池负极材料的研究_吴其修

第42卷第17期2014年9月

广州化工

Guangzhou Chemical Industry

Vol.42No.17

Sep.2014

改性天然鳞片石墨锂离子电池负极材料的研究

吴其修1,2,李佳坤1,2,刘明东1,2,陈平1,2,赵娟3

(1湛江市聚鑫新能源有限公司,广东湛江524024;2广东东岛新能源有限公司,

广东湛江524024;3广东海洋大学,广东湛江524088)

摘要:对粒径为12μm的天然鳞片石墨进行表面碳包覆改性,并对包覆前后样品的微观结构和电化学性能进行了研究。结果表明:包覆改性提高了天然石墨的振实密度、表面形貌和电化学性能,在0.1C、0.2C、0.5C、1C、2C、5C和10C倍率下,对应的可逆容量分别为368.6mAh/g、362.6mAh/g、353.8mAh/g、340.6mAh/g、298.6mAh/g、228.2mAh/g和150.2mAh/g,相对于天然石墨,可逆容量分别提高了6.2mAh/g、20.9mAh/g、31.6mAh/g、42.1mAh/g、52.4mAh/g、80.0mAh/g和58.0mAh/g,碳包覆小粒径天然石墨表现出的良好的倍率性能,有望应用于电动车用锂离子电池中。

关键词:天然鳞片石墨;电化学性能;碳包覆;倍率性能

中图分类号:TM911文献标志码:A文章编号:1001-9677(2014)017-0076-03

Study of Surface-modified Natural Flake Graphite for Lithium Ion Batteries WU Qi-xiu,LI Jia-kun,LIU Ming-dong,CHEN Ping,ZHAO Juan

(1Zhanjiang Juxin new energy Co.,Ltd.,Guangdong Zhanjiang524024;

2Guangdong Dongdao New Energy Co.,Ltd.,Guangdong Zhanjiang524024;

3Engineering College,Guangdong Ocean University,Guangdong Zhanjiang524088,China)Abstract:The natural flake graphite with the particle size of12μm was coated by a layer of pitch,and the microstructure and electrochemical performance of natural flake graphite and surface modified graphite were studied.It was showed the surface modified graphite with high tap density,surface morphology and excellent electrochemical performance.The capacities of modified graphite were3368.6mAh/g,362.6mAh/g,353.8mAh/g,340.6mAh/g,298.6mAh/g,228.2mAh/g and150.2mAh/g,corresponding to the rates0.1C,0.5C,1C,2C,5C and10C,which increased to6.2mAh/g,20.9mAh/g,31.6mAh/g,42.1mAh/g,52.4mAh/g,80.0mAh/g and58.0mAh/g,relative to natural graphite.The good rate performance of carbon coated small-sized natural graphite for lithium-ion battery made it a promising candidate as anode materials for electric vehicle dynamic1ithium-ion batteries.

Key words:natural flake graphite;electrochemical performance;carbon coated;rate performance

锂离子电池因其工作电压高、能量密度大、循环寿命长、自放电小、无记忆效应等优点,成为20世纪90年代以来继镍氢电池之后的新一代二次电池[1-2]。国内外迫于能源危机与环境污染的双重压力,电动汽车的研究与开发引起了世界各国的关注。电动汽车发展的关键在于动力电池的发展,锂离子电池因其具有重量轻、比能量高、循环寿命长、使用温度范围宽且无记忆效应、绿色、环保等特点,被认为是最有发展前途的电动汽车用电池之一[3-4],国际上许多汽车制造商、电池生产厂及科研院校等积极开展了电动车用锂离子电池的研究开发工作。电动车用锂离子电池对电极材料有着更为严格的要求,特别是为满足电动汽车启动和爬坡的能量需求,需要电极材料在大电流下充放电的性能优异。天然石墨有很多优点,如来源广、价格低、充放电电压平台低、理论比容量高等,是一种十分理想的锂离子电池负极材料。目前市场上普遍使用的球形石墨是平均粒径在14 25μm,其中17μm的球形石墨使用最多。现有的研究表明小粒径天然石墨材料在大电流下循环性能性能比较好,可以满足电动车用锂离子电池的电极材料[5-6]。本文对粒径为12μm天然石墨材料进行表面包覆改性,并对其性能进行了研究。

1实验

1.1实验用主要设备

JEOL JSM-35型扫描电子显微镜(SEM);Malvern型激光粒度分布测试仪;Rigaku D/max rA型自动X-射ASAP2010型比表面测定仪(77.35K,样品0.2000g);DC-5型全自动电池性能测试仪,上海正方电子电器有限公司;HY-100型振实密度仪。

1.2改性天然球形石墨

将经整形和提纯后碳含量为99.9%的天然石墨置于三口烧瓶中,抽真空至-0.1MPa。准确称取一定量的高温煤沥青(炭化收率为80%)于烧杯中,加入50mL四氢呋喃,用玻璃棒搅拌均匀,随后超声振荡30min使沥青充分溶解。通过分液漏斗将沥青溶液加入三口烧瓶中,保持抽真空状态进行磁力搅拌10min。将真空浸渍后的样品在常压下加热除去溶剂,然后经

第42卷第17期吴其修,等:改性天然鳞片石墨锂离子电池负极材料的研究77

900?热处理得到理论炭包覆量为5%的沥青炭包覆石墨样品。

1.3电池组装及电化学性能测试

将样品、导电碳黑、SRB粘结剂按94∶3∶3的比例混合,

将其在乙醇溶液中充分混合后均匀碾压在10μm厚的铜箔上,

形成厚度约为65μm的碳膜,在真空干燥箱内于105?干燥

24h后取出,用打孔器制备所需大小的电极片。

以电极片作工作电极,锂片作对电极,Cell-gard2400微

孔聚丙烯膜做隔膜,含1mol·L-1LiPF6的溶液[V(EC)∶

V(DMC)∶V(EMC)=1∶1∶1]做电解液,在充满氩气的不锈

钢手套箱中装配成模拟扣式电池。进行恒电流充放电测试,充

放电电压0 2.0V,充放电电流密度0.35mA·cm-2。

2实验结果与讨论

2.1天然鳞片石墨的粒径分布图

图1为天然球形石墨的粒径分布图。从图1可以看出天然

球形石墨的粒径D50是11.278μm,其颗粒尺寸范围为3.802

26.308μm,其中绝大多数的石墨颗粒尺寸集中在11μm左右

图1天然鳞片石墨的粒径分布图

Fig.1Particle size distribution of raw flake graphite

表1对比列出了天然石墨和表面包覆改性样品的粒径、振实密度和比表面积。由表1可知,经真空浸渍和炭化处理后,表面包覆改性样品的BET比表面积减小了近1m2/g,振实密度从0.95g/cm3提高到1.08g/cm3。这显然是由于石墨颗粒表面包覆了一层沥青炭,而且采用真空浸渍有利于沥青溶液有效地渗透到石墨颗粒内部的孔隙中,使石墨内部的孔隙也能充分被沥青炭填充的结果。

表1天然石墨和表面包覆改性样品的粒径、

振实密度和比表面积

Table1Particle size,tap density and specific surface area of raw flake graphite and carbon coated graphite

样品名称中位径/μm 振实密度/

(g/cm3)

比表面积/

(m2/g)

天然石墨11.8550.98 6.73

包覆石墨13.902 1.01 5.83

2.2天然石墨和表面包覆改性样品的微观结构分析

图2示出了天然石墨和表面包覆改性样品的扫描电子显微镜(SEM)照片。由图2可以看出,天然石墨的颗粒粒径大多为11μm左右,天然石墨晶粒的边缘比较尖锐,石墨表面具有明显的鳞片状结构,片状晶粒之间存在大量的狭缝型孔隙。而包覆石墨的粒径大多为14μm左右,包覆后石墨颗粒的边缘和表面都变得更加致密和光滑。可见天然鳞片石墨的片状结构在包覆后已趋向于球形结构,实现了沥青对石墨的包覆

图2天然石墨和表面包覆改性样品的扫描电子显微镜照片

Fig.2SEM microphotographs of raw flake graphite and carbon coated graphite

2.3天然石墨和表面包覆改性样品不同倍率下充放电循环性能

图3为天然石墨和表面包覆改性样品的在不同倍率下充放电的循环性能曲线。在5个不同充放电倍率下,表面包覆改性样品都具有最高的可逆容量。在0.1C、0.2C、0.5C、1C、2C、5C和10C倍率下,对应的可逆容量分别为368.6mAh/g、362.6mAh/g、353.8mAh/g、340.6mAh/g、298.6mAh/g、228.2mAh/g和150.2mAh/g,而天然石墨的可逆容量分别是362.4mAh/g、341.7mAh/g、322.2mAh/g、298.5mAh/g、246.2mAh/g、148.2mAh/g、和92.2mAh/g,在7个不同倍率下,相对于天然石墨表面包覆改性样品的可逆容量分别高出了6.2mAh/g、20.9mAh/g、31.6mAh/g、42.1mAh/g、52.4mAh/g、80.0mAh/g和58.0mAh/g;由上面的分析结果可知天然石墨的大倍率性能较差,包覆改性有效的提高了石墨在大倍率充放电条件下的可逆容量,并且改善了石墨的循环性能。天然石墨在充放电条件下,尤其是大倍率充放电条件下,容易造成石墨体积膨胀使得石墨片层剥落,进而影响石墨的循环性能,但是表面包覆一层碳材料之后,石墨表面的那层壳结构能够抑制石墨在充放电过程中产生的体积膨胀,进而减少石墨片层的剥落,提高石墨的循环性能。并且包覆改性的样品在1C的倍率下,其可逆容量仍保持在340mAh/g以上,这主要是由于在天然石墨粒径减小的过程中缩短了锂离子在其中的传输通道,锂离子可以更快的扩散到石墨层间,实现快速度的充电和放电,改善其在大电流下充放电性能

图3天然石墨和表面包覆天然石墨的倍率性能

Fig.3The rate performance of carbon-coated natural

graphite and natural graphite

3结论

对粒径为12μm的天然鳞片石墨进行表面碳包覆改性,使

(下转第167页)

第42卷第17期刘欢:寒冷地区仪表设计167

用到玻璃钢桥架。一般玻璃钢材质做衬里或外衬可以到-40?。但作为受力载体,可用到的极限温度是-30?。在-30?低温以下时,由于主材化学配方的差异,有的脆化现象严重,持耐力急剧下降,常发生分层撕裂,导致整体桥架系统垮塌,严重影响生产。所以通常在低温环境下防腐桥架推荐选用成型聚合树脂材质。

4工程项目具体

兖矿新疆醇氨联产项目、伊犁新天煤制天然气项目厂址都位于新疆,属寒冷地区,下面谈一下设计中的体会:

(1)仪表检测系统被测物料种类繁多,而其冷凝温度等物理特性也不尽相同,要充分了解工艺流程,保证仪表的可靠运行。

例如,在低温甲醇洗装置中,从变换工序来的变换气中含有0.2%的饱和水,为了防止变换气中的水分冻结,影响压力变送器和流量计的测量,要注意伴热;到了水分离罐后,甲醇和水的混合物被分离出来,原料气中就不含水了,就不用再考虑伴热问题了。

(2)低温甲醇洗装置中,例如H

2

S浓缩塔上部液位一般为-50?以下,超出了普通硅油工作温度范围,这种情况可以选择罗斯蒙特1199远传膜片,硅油可以达到-75?;也可以选用磁致伸缩,磁致伸缩适用的温度范围可以达到:-200 200?,且具有精度高,屏蔽虚假信号功能强的优点,综合考虑后,装置中操作温度在-50?以下的,全部选用磁致伸缩液位计,在新疆这种低端温度在-41?的地区,相比差压液位变送器,选用磁致伸缩甩掉了保温箱,节约了能源。但是值得注意的是,对于会发生冻结、冷凝和析出的介质,不论选用磁致伸缩还是差压液位变送器,设备上的仪表接管处都要伴热。

(3)在寒冷地区,介质凝固点高于环境温度时,压力表也要进行伴热,即便采用压力表短安装也无法避免被冻的可能。

(4)气化装置中,除厂房内且有采暖措施外,高温硅油的毛细管都进行了伴热,保证了仪表的正确测量。

(5)在仪表安装上,也设计采取了一定的措施来应对低温环境。如多采用焊接的管件、阀门,少采用螺纹、卡套连接,从而避免了形成更多的泄漏点。

(6)建议业主控制缆线的敷设施工期,尽量避开低温期。另外,设计中要求现场电缆的敷设一定要遵循GB50093-2002《自动化仪表工程施工及验收规范》要求,塑料绝缘电缆敷设温度不低于0?;橡皮绝缘电缆敷设温度不低于-15?;及仪表管道、支架、底座、保护管、固定卡等在涂覆防锈漆和面漆时,施工环境温度宜控制在5 40?。

(7)项目中直接使用低温电缆密封接头,没有采用挠性管,因为挠性管PVC外护套在低温下极易老化、脆化。

(8)现在大多数仪表设备的电路板和主要电子元器件都可在-25?环境正常工作,一些高品质的仪表甚至在-40?时也可长时间正常工作。但有些仪表设备的液晶显示部分,在-15?时就会出现画面“变花”和“数字虚化”等现象,所以在项目中选型以模拟表头为主。

5结语

在寒冷地区,通过合理的仪表设计,包括常用仪表选型、仪表管线的保温伴热和安装材料的低温选择,能够保证仪表的可靠运行,使装置的生产运行更加安全、稳定。同时减少了维护工作量,节省不必要的能耗。

参考文献

[1]刘吉法.谈谈寒冷地区仪表选用的几点体会[J].石油化工自动化,1998(4):18-20.

[2]迟墨坡.工业温度仪表的选型与使用[J].中国计量,1998(11):16-19.

[3]王富义.关于寒冷地区仪表选型的探讨[J].石油化工自动化,1999(6):23-24.

[4]吴勇.仪表低温条件下的防冻保温[J].泸天化科技,2009(2):166-167.

[5]王秉坤.如果改善仪表伴热保温箱的使用效果[J].石油化工自动化,2007(1):

檵檵檵檵檵檵檵檵檵檵檵檵檵檵檵檵檵檵檵檵檵檵檵檵檵檵檵檵檵檵檵檵檵檵檵檵檵檵檵檵檵檵檵檵檵檵檵檵檵

81-82.

(上接第77页)

其具有较高的振实密度,包覆后石墨颗粒的边缘和表面都变得更加致密和光滑,趋向于球形结构。

在0.1C、0.2C、0.5C、1C、2C、5C和10C倍率下,对应的可逆容量分别为368.6mAh/g、362.6mAh/g、353.8mAh/g、340.6mAh/g、298.6mAh/g、228.2mAh/g和150.2mAh/g,相对于天然石墨,可逆容量分别提高了6.2mAh/g、20.9mAh/g、31.6mAh/g、42.1mAh/g、52.4mAh/g、80.0mAh/g和58.0mAh/g,碳包覆小粒径天然石墨表现出的良好的倍率性能,有望应用于电动车用锂离子电池中。

参考文献

[1]Broussely M.Lithium batteriesR&D activities in Europe[J].J Power Sources,1999,81-82:137-139.[2]Broussely M.Recent developments on lithium ion batteries at SAFT [J].J Power Sources,1999,81-82:140-143.

[3]乐毅诚,石磊,吴飞.锂离子电池负极材料的研究进展[J].船电技术,2011,188(06):10-13.

[4]黄拥理,潘春跃,黄可龙.聚合物铿离子蓄电池技术与市场[J].电源技术,2001,25(5):371-374.

[5]Nagarajan G S,Van Zee J W,ApotnitzR.M.A mathematical model for intercalation electrode behavior.I.Effect of particle-size distribution on discharge capacity[J].J Electrochem Soc.,1998,145(3):771-779.

[6]宋怀河,杨树斌,陈晓红.影响锂离子电池高倍率充放电性能的因素[J].电源技术,2009,133(06):443-448.

石墨作为锂离子电池负极材料

石墨作为锂离子电池负极材料 锂离子电池是指以两种不同的能够可逆地嵌入及脱出锂离子的嵌锂化合物分别作为电池正极和负极的二次电池体系。充电时,锂离子从正极脱嵌,通过电解质和隔膜,嵌入到负极中;放电时则相反,锂离子从负极脱嵌,通过电解质和隔膜,嵌入到正极中。 锂离子电池的负极是由负极活性物质、粘合剂和添加剂混合制成糊状胶合剂均匀涂抹在铜箔两侧,经干燥、滚压而成。 石墨由于具备电子电导率高、锂离子扩散系数大、层状结构在嵌锂前后体积变化小、嵌锂容量高和嵌锂电位低等优点,成为目前主流的商业化锂离子电池负极材料。 石墨的嵌锂机理 石墨导电性好,结晶程度高,具有良好的层状结构,十分适合锂离子的反复嵌入-脱嵌,是目前应用最广泛、技术最成熟的负极材料。锂离子嵌入石墨层间后,形成嵌锂化合LixC6(0≤x≤1),理论容量可达372mAh/g(x=1),反应式为:xLi++6C+xe-→LixC6 锂离子嵌入使石墨层与层之间的堆积方式由ABAB变为AAAA,如下图所示。

●石墨的改性处理 由于石墨层间距(d002≤0.34nm)小于石墨嵌锂化合物LixC6的晶面层间距(0.37nm),致使在充放电过程中,石墨层间距改变,易造成石墨层剥落、粉化,还会发生锂离子与有机溶剂分子共同嵌入石墨层及有机溶剂分解,进而影响电池循环性能。 通过石墨改性,如在石墨表面氧化、包覆聚合物热解炭,形成具有核-壳结构的复合石墨,可以改善石墨的充放电性能,提高比容量。 ●其它负极材料 石墨是目前主流的商业化锂电负极材料,但由于石墨本身结构特性的制约,石墨负极材料的发展也遇到了瓶颈,比如比容量已经到达极限、不能满足大型动力电池所要求的持续大电流放电能力等。因此业界也开始把目光投向非石墨类材料,比如硬碳和其它非碳材料(氧化锡、硅碳合金、钛酸锂等)。 江苏凤谷节能科技有限公司专注于节能环保产品设计研发,主要从事高效燃烧器及控制系统的研发与应用,可提供设计、制造、成套配套、安装调试、人员培训等总承包服务的专业公司;凤谷节能科技在喷嘴的设计研发和产品开发方面拥有丰富的经验。 凤谷节能科技通过并购无锡市大禾机械有限公司进入到化工行业的细分领域,主要产品包括机械消泡器、清釜机、汽水混合器等化工设备及配件。

全面解读锂离子电池石墨负极材料

全面解读锂离子电池石墨负极材料 锂离子电池,又称为摇椅电池,他的主要组成部分是正极、负极、隔膜及电解液。当前锂离子动力电池正极一般采用尖晶石型LiMn2O4或镍基层状氧化物,负极以石墨为主,电解液为含LiPF6 的碳酸酯(EC,EMC)有机溶液。LiMn2O4是一种被认为最安全的材料,也是最廉价的正极材料,已经被多种型号的动力电池采用。Li(NiCo)O2 容量高,但安全性能较差,需通过掺杂改性并限制其使用电压等手段来改善其安全性能;从整车安全和电池成本考虑,磷酸铁锂LiFePO4 安全性好、寿命长是最适合在汽车动力电池上应用的锂离子电池正极材料。 锂离子电池能量密度在很大程度上取决于负极材料,从锂离子电池实现商业化到现在,所用的负极材料最成熟,应用最广的是碳材料,其中最主要的依然是石墨。石墨具有六元环碳网层状结构,碳碳之间是SP2 杂化的,层层之间是分子作用力连接。石墨中存在两种不同的晶体结构:六面体石墨(2H)和菱面体石墨(3R)。2H相具有ABABA特征堆积,3R 相的堆积结构则是ABCABC。两种相可以相互转变,2H相是热力学稳定,在石墨中较多,约占总体的五分之四在锂离子电池负极材料中,天然石墨和人造石墨一直是使用最大的负极材料,但是人造石墨由于在生产过程中需要高温处理,使其生产成本大幅提高并对环境产生不利影响,相对于人造石墨而言,天然石墨有很多优点,它的成本低、结晶程度高,提纯、粉碎、分级技术成熟,充放电电压平台低,理论比容量高等,这些为其在锂离子电池行业的应用奠定了良好的基础。 天然石墨分无定形石墨(土状石墨或微晶石墨)和鳞片石墨两种。理论容量为372 mAh/g。无定形石墨纯度低,石墨晶面间距(d002)为0.336 nm。主要为2H晶面排序结构,即石墨层按ABAB顺序排,单个微晶之间的取向呈现各项异性,但经过加工,微晶颗粒相互之间有一定的交互作用,形成块状或颗粒状的粒子时具有各向同性性质。且形成的块状颗粒容易粉碎成形状较好的颗粒。 在锂离子嵌入脱嵌过程中体积变化小,结构相对稳定,但是可逆比容量仅260 mAh/g,不可逆比容量在100 mAh/g 以上。鳞片石墨的结晶度高,片层结构单元化大,具有明显的

锂离子电池石墨负极材料的优点和缺点

锂离子电池石墨负极材料的优点和缺点 一、石墨定义: 1、石墨是元素碳的一种同素异形体,每个碳原子的周边连结着另外三个碳原子(排列方式呈蜂巢式的多个六边形)以共价键结合,构成共价分子。 2、由于每个碳原子均会放出一个电子,那些电子能够自由移动,因此石墨属于导电体。石墨是其中一种最软的矿物,它的用途包括制造铅笔芯和润滑剂。 二、石墨的特殊性质: 1、导电性:石墨的导电性比一般非金属矿高一百倍。石墨能够导电是因为石墨中每个碳原子与其他碳原子只形成3个共价键,每个碳原子仍然保留1个自由电子来传输电荷。 2、导热性:导热性超过钢、铁、铅等金属材料。导热系数随温度升高而降低,甚至在极高的温度下,石墨成绝热体。 3、耐高温性:石墨的熔点为3850±50℃,沸点为4250℃,即使经超高温电弧灼烧,重量的损失很小,热膨胀系数也很小。石墨强度随温度提高而加强,在2000℃时,石墨强度提高一倍。 4、润滑性:石墨的润滑性能取决于石墨鳞片的大小,鳞片越大,摩擦系数越小,润滑性能越好。由于其润滑性,在超细研磨里难度很高,使用叁星飞荣立式砂磨机可以研磨到纳米级别细度。 5、化学稳定性:石墨在常温下有良好的化学稳定性,能耐酸、耐碱和耐有机溶剂的腐蚀。 6、可塑性:石墨的韧性好,可碾成很薄的薄片。 7、抗热震性:石墨在常温下使用时能经受住温度的剧烈变化而不致破坏,温度突变时,石墨的体积变化不大,不会产生裂纹。 .

三、石墨的中国产地: 1、我国以鸡西市恒山区密山市柳毛乡为最大的产地。以及省的七台河市、鹤岗市和双鸭山市等。 2、省莱西市为我国石墨重要产地之一。 3、省磐石市也是石墨产地之一。 4、乌拉特中旗高勒图矿区发现全国最大晶质石墨单体矿。 5、省煤田地质局一九四队在洋县发现3条石墨矿带。 四、石墨世界著名产地: 1、纽约Ticonderoga。 2、马达加斯加。 3、斯里兰卡(Ceylon)。 五、石墨分类: 1、天然石墨:石墨的工艺特性主要决定于它的结晶形态。结晶形态不同的石墨矿物,具有不同的工业价值和用途。 2、人造石墨:广义上,一切通过有机炭化再经过石墨化高温处理得到的石墨材料均可称为人造石墨,如炭纤维、热解炭、泡沫石墨等。而狭义上的人造石墨通常指以杂质含量较低的炭质原料为骨料、煤沥青等为粘结剂,经过配料、混捏、成型、炭化和石墨化等工序制得的块状固体材料,如石墨电极、等静压石墨等。 人造石墨就成型方式通常可分为:振动成型,挤压成型,模压成型,等静压成型。 3、块状石墨:块状石墨又叫致密结晶状石墨。此类石墨结晶明显晶体肉眼可见。颗粒直 .

锂离子电池石墨负极材料的优点和缺点

锂离子电池石墨负极材料的优点和缺点

锂离子电池石墨负极材料的优点和缺点 一、石墨定义: 1、石墨是元素碳的一种同素异形体,每个碳原子的周边连结着另外三个碳原子(排列方式呈蜂巢式的多个六边形)以共价键结合,构成共价分子。 2、由于每个碳原子均会放出一个电子,那些电子能够自由移动,因此石墨属于导电体。石墨是其中一种最软的矿物,它的用途包括制造铅笔芯和润滑剂。 二、石墨的特殊性质: 1、导电性:石墨的导电性比一般非金属矿高一百倍。石墨能够导电是因为石墨中每个碳原子与其他碳原子只形成3个共价键,每个碳原子仍然保留1个自由电子来传输电荷。 2、导热性:导热性超过钢、铁、铅等金属材料。导热系数随温度升高而降低,甚至在极高的温度下,石墨成绝热体。 3、耐高温性:石墨的熔点为3850±50℃,沸点为4250℃,即使经超高温电弧灼烧,重量的损失很小,热膨胀系数也很小。石墨强度随温度提高而加强,在2000℃时,石墨强度提高一倍。 4、润滑性:石墨的润滑性能取决于石墨鳞片的大小,鳞片越大,摩擦系数越小,润滑性能越好。由于其润滑性,在超细研磨里难度很高,使用叁星飞荣立式砂磨机可以研磨到纳米级别细度。 5、化学稳定性:石墨在常温下有良好的化学稳定性,能耐酸、耐碱和耐有机溶剂的腐蚀。 6、可塑性:石墨的韧性好,可碾成很薄的薄片。

7、抗热震性:石墨在常温下使用时能经受住温度的剧烈变化而不致破坏,温度突变时,石墨的体积变化不大,不会产生裂纹。 三、石墨的中国产地: 1、我国以黑龙江鸡西市恒山区密山市柳毛乡为最大的产地。以及黑龙江省的七台河市、鹤岗市和双鸭山市等。 2、山东省莱西市为我国石墨重要产地之一。 3、吉林省磐石市也是石墨产地之一。 4、内蒙古乌拉特中旗高勒图矿区发现全国最大晶质石墨单体矿。 5、陕西省煤田地质局一九四队在陕西洋县发现3条石墨矿带。 四、石墨世界著名产地: 1、纽约Ticonderoga。 2、马达加斯加。 3、斯里兰卡(Ceylon)。 五、石墨分类: 1、天然石墨:石墨的工艺特性主要决定于它的结晶形态。结晶形态不同的石墨矿物,具有不同的工业价值和用途。

石墨负极材料

1.负极材料企业 杉杉、BTR、长沙海容(摩根)、汕头诚翔、湖南辉宇、青岛大华、远东、弘光、红顶、金卡本、瑞富特、华容、斯诺、湖南星光、余姚宏远、北京创亚、佛山三高、大阪石墨、长沙星城、金润、江苏镇江华邦能源材料有限公司 目前在国内,负极材料领先企业主要包括深圳贝特瑞、上海杉杉和长沙海容。 而在全球范围内,负极材料的市场份额主要集中在日本日立、日本精工碳素、JFE日本钢铁、三菱、中国贝特瑞、杉杉股份6大厂家2.碳负极材料分类 锂电池中具实用价值和应用前景的碳主要有三种:(1)高度石墨化的碳;(2)软碳和硬碳;(3)碳纳米材料。 2.1石墨类碳负极材料(动力电池负极普遍用该种材料)

人造石墨(主流产品)是将易石墨化炭(如沥青焦炭)在N2气氛中于1900~2800℃经高温石墨化处理制得。常见人造石墨有中间相碳微球(MCMB)、石墨化碳纤维。MCMB的优点是可逆容量高、可大倍率充放电,应用方向为动力电池和倍率电池。缺点:价格略高、容量略低,在高容量和超高容量型产品中处于劣势(经常进行掺杂等改性手段制成高端产品)。 天然石墨一般都以天然石墨矿石出现。在锂电应用中需要提纯为含碳在91~99%的高碳石墨,多以常用化学方法提纯。天然石墨由于表面有较高的活性点,比表面高,不能直接用作负极材料,需要做表面改性处理。优点:嵌锂电化学容量高;放电电压平台平稳;来源广泛,加工工艺成熟,制造成本低;加工性能优秀。缺点:与电解液相容性差,电解液分解,SEI膜不稳定;溶剂共嵌入,石墨层剥离,循环稳定性差,衰减快,电池鼓胀;辊压造成各粒子晶体c轴平行且垂直板面,空隙小,大倍率充放电效率低。 3.碳负极材工艺流程

锂离子电池碳负极材料研究进展

锂离子电池碳负极材料的研究进展 赵永胜 (河北工业大学化工学院应用化学系,天津 300130) 摘要综述了锂离子电池碳负极材料中石墨化碳、无定形碳和碳纳米材料近几年的研究成果及发展方向,探讨了该类材料目前存在的问题及解决办法,对该类材料的发展趋势进行了展望。 关键词锂离子电池负极材料碳材料 Research progress of carbon anode materials for lithium ion batteries Zhao Yongsheng (Department of Applied Chemistry,School of Chemical Engineering and Technology,Hebei University of Technology,Tianjin 300130)Abstract:The research achievements on three main aspects in the field of lithium ion battery carbon anode materials in recent years. Graphitized carbon,amorphous carbon,carbon nano-materials are summarized. The problems in these materials and the feasible methods to solve the problems are discussed. Finally, the developing trend of lithium ion battery carbon anode materials is prospected. Keywords:Lithium ion batteries;anode materials;carbon materials 自1991年日本索尼公司开发成功以碳材料为负极的锂离子电池(LixC6/LiX In PC-EC(1:1)/Li1-x CoO2)以来(LiX为锂盐),锂离子电池已迅速向产业化发展,并在移动电话、摄像机、笔记本电脑、便携式电器上大量应用[1]。自锂离子电池的商品化以来,研究的负极材料有以下几种:石墨化碳材料、无定向碳材料、氮化物、硅基材料、锡基材料、新型合金[2]。本文着重对锂离子电池碳负极材料方面的研究进展进行评述。 1.碳基负极材料的分类 炭素材料的种类繁多,其结晶形式有金刚石、石墨、富勒烯、碳纳米管等,

石墨负极材料项目可行性报告

石墨负极材料项目可行性报告 规划设计/投资分析/产业运营

石墨负极材料项目可行性报告 负极是锂电池的主要组成部分,它是由负极活性物质、粘合剂和添加 剂混合制成糊状均匀涂抹在铜箔两侧,经干燥、滚压而成。我们所谈的负 极材料主要指的是负极活性物质。负极可分为碳材料和非碳材料两大类, 碳材料包括人造石墨、天然石墨、中间相碳微球和硬碳软碳等,非碳材料 包括硅基材料、锡基材料和钛酸锂等。 该石墨负极材料项目计划总投资15248.38万元,其中:固定资产投资12738.50万元,占项目总投资的83.54%;流动资金2509.88万元,占项目 总投资的16.46%。 达产年营业收入19120.00万元,总成本费用15233.02万元,税金及 附加273.93万元,利润总额3886.98万元,利税总额4697.05万元,税后 净利润2915.24万元,达产年纳税总额1781.82万元;达产年投资利润率25.49%,投资利税率30.80%,投资回报率19.12%,全部投资回收期6.73年,提供就业职位413个。 坚持“实事求是”原则。项目承办单位的管理决策层要以求实、科学 的态度,严格按国家《建设项目经济评价方法与参数》(第三版)的要求,在全面完成调查研究基础上,进行细致的论证和比较,做到技术先进、可

靠、经济合理,为投资决策提供可靠的依据,同时,以客观公正立场、科学严谨的态度对项目的经济效益做出科学的评价。 ......

石墨负极材料项目可行性报告目录 第一章申报单位及项目概况 一、项目申报单位概况 二、项目概况 第二章发展规划、产业政策和行业准入分析 一、发展规划分析 二、产业政策分析 三、行业准入分析 第三章资源开发及综合利用分析 一、资源开发方案。 二、资源利用方案 三、资源节约措施 第四章节能方案分析 一、用能标准和节能规范。 二、能耗状况和能耗指标分析 三、节能措施和节能效果分析 第五章建设用地、征地拆迁及移民安置分析 一、项目选址及用地方案

石墨负极改性研究

石墨负极的改性研究 黄文达, 汤帅 摘要:以石墨本身的物理化学性质为探究起点,概述了石墨作为锂离子电池负极材料的常用改性方法,如表面氧化还原处理、包覆法、非金属与金属掺杂法、机械研磨法等。总结分析了石墨负极改性前后的可逆容量Q R、大电流放电特性、循环性能等电化学性能变化情况。 关键词:石墨;锂离子电池;改性方法;电化学性能 环境污染、能源危机日渐成为人们关注的焦点。就在电池领域中,干电池(一次电池)、Ni-Cr电池、铅酸蓄电池等,其所产生的MnO2、HgO、Cr、沥青烟气、Pb、酸雾等都给环境造成了非常严重的污染。紧随着在ZEV法案(汽车尾气零排放法案)的颁布与实施,更加推动了人们对新能源的开发力度,其中以锂离子蓄电池倍受关注。锂离子电池作为一种绿色环保电池,其负极材料一直是研究的重点课题,因为它是获得更安全、更高比能量电池的途径。目前负极材料主要是碳基材料,包括石墨化碳材料(人造石墨、天然石墨、石焦油、碳黑、碳纤维等)及其高温处理得到的无定形碳两大类。而石墨以资源丰富、价格低廉、可逆容量高Q R(理论值372mA?h/g),充放电压平台低、无电压滞后、优良导电性等特点,迅速受到广泛研究。为探索我国天然石墨应用于锂离子电池的新技术,这无疑具有极其重大的社会经济效益。 1 石墨的结构性质 石墨具有六边形的层状晶体结构,每层中碳原子以σ键和π键相连,而层层之间又靠范德华力相结合。石墨这种层间力作用小且层间距较大(0.3354nm)结构,使得一些原子、基团或离子容易插入层间形成石墨层间化合物(GICs),因此做为负极材料具有很高的比能量。 2 石墨作为锂离子蓄电池负极材料的缺点 (1)与电解液相溶性差,且对其选择性高 在首次充放电过程中锂和碳形成的插入化合物在电解液中很不稳定,其很容易与电解液(非质子极性溶剂)发生反应,其生成物一小部分溶于电解液中,而另一部分则在负极与电解液表面形成SEI膜(固体电解液膜)。SEI膜能阻止电解液分子继续共插入石墨负极,从而终止了对负极的不可逆影响,也大大提高了电池的使用寿命。但是,在石墨表面形成的SEI膜往往致密度不高、厚度不均匀、缺乏弹性、易破裂等不足。电解液分子既而会对其进行修补,这样将造成Li+插入负极阻抗增

经典-天然石墨与人造石墨的区别

天然石墨与人造石墨负极材料辨别方法剖析 锂离子电池发展20年来,理论与学术界均未对锂离子电池用碳(石墨类)负极材料:天然石墨和人造石墨负极材料的辨别方法进行深入剖析,并明确科学的辨别与判定方法,因此行业出现了天然石墨和人造石墨负极材料边界不清,鱼龙混杂的现象,给材料的合理、有效使用造成了极大影响。 天然石墨负极材料系采用天然鳞片晶质石墨,经过粉碎、球化、分级、纯化、表面等工序处理制得,其高结晶度是天然形成的。而人造石墨负极材料是将易石墨化碳如石油焦、针状焦、沥青焦等在一定温度下煅烧,再经粉碎、分级、高温石墨化制得,其高结晶度是通过高温石墨化形成的。正是由于两者在原料和制备工艺上存在本质的差别,使其在微观形貌、晶体结构、电化学性能、加工性能上存在明显差异。为了统一标准、科学辨别、正确判定天然与人造石墨负极材料,现将经过多年探索、反复验证、切实可行的科学辨别方法公之于众: 1、天然石墨与人造石墨负极材料微观形貌差异——SEM剖面分析法 天然石墨负极材料SEM剖面图人造石墨负极材料SEM剖面图 在微观结构上,天然石墨是层状结构,其SEM剖面图中保留了鳞片石墨的层状结构,片状结构间有大量空隙存在;而人造石墨负极材料为焦类、中间相类在高温石墨化过程中,晶体结构按ABAB结构重新排列,并聚合收缩,其内部致密、无缝隙。 2、天然石墨与人造石墨负极材料晶体结构差异——X射线衍射法

从晶体结构看,天然石墨负极材料结晶度高,在XRD图谱上其(002)晶面衍射峰角度更高,层状结构完整、层间距小、取向性(I002/I110)明显,从43-45度对应的(101)晶面衍射峰位置及46-47度的对应的(012) 晶面衍射峰位置,可以看出天然石墨存在明显的2H相和3R相,而人造石墨只存在2H相。六方石墨(2H)和菱方石墨(3R)的XRD谱图如下: 3、天然石墨与人造石墨负极材料无序度(ID/IG)差异——拉曼光谱分析法 对于未经石墨化处理的天然石墨与人造石墨,除了根据SEM剖面图、XRD晶体结构图及其参数进行区别外,拉曼光谱测试的无序度ID/IG也是区别这两类石墨的有效方法。天然球形石墨的无序度ID/IG一般为0.4~0.85,未经石墨化处理的表面包覆天然石墨无序度ID/IG一般为0.9~1.6,未经石墨化处理的新型改性天然石墨无序度ID/IG一般为0.2~0.6。人造石墨的无序度ID/IG一般为 0.04~0.34。整体上,未经高温石墨化处理的天然石墨负极材料的无序度ID/IG 比人造石墨负极材料的无序度ID/IG大。经石墨化处理的表面包覆天然石墨无序度ID/IG一般为0.17~0.36,人造石墨的无序度ID/IG一般为0.04~0.34,经石

改性天然鳞片石墨锂离子电池负极材料的研究_吴其修

第42卷第17期2014年9月 广州化工 Guangzhou Chemical Industry Vol.42No.17 Sep.2014 改性天然鳞片石墨锂离子电池负极材料的研究 吴其修1,2,李佳坤1,2,刘明东1,2,陈平1,2,赵娟3 (1湛江市聚鑫新能源有限公司,广东湛江524024;2广东东岛新能源有限公司, 广东湛江524024;3广东海洋大学,广东湛江524088) 摘要:对粒径为12μm的天然鳞片石墨进行表面碳包覆改性,并对包覆前后样品的微观结构和电化学性能进行了研究。结果表明:包覆改性提高了天然石墨的振实密度、表面形貌和电化学性能,在0.1C、0.2C、0.5C、1C、2C、5C和10C倍率下,对应的可逆容量分别为368.6mAh/g、362.6mAh/g、353.8mAh/g、340.6mAh/g、298.6mAh/g、228.2mAh/g和150.2mAh/g,相对于天然石墨,可逆容量分别提高了6.2mAh/g、20.9mAh/g、31.6mAh/g、42.1mAh/g、52.4mAh/g、80.0mAh/g和58.0mAh/g,碳包覆小粒径天然石墨表现出的良好的倍率性能,有望应用于电动车用锂离子电池中。 关键词:天然鳞片石墨;电化学性能;碳包覆;倍率性能 中图分类号:TM911文献标志码:A文章编号:1001-9677(2014)017-0076-03 Study of Surface-modified Natural Flake Graphite for Lithium Ion Batteries WU Qi-xiu,LI Jia-kun,LIU Ming-dong,CHEN Ping,ZHAO Juan (1Zhanjiang Juxin new energy Co.,Ltd.,Guangdong Zhanjiang524024; 2Guangdong Dongdao New Energy Co.,Ltd.,Guangdong Zhanjiang524024; 3Engineering College,Guangdong Ocean University,Guangdong Zhanjiang524088,China)Abstract:The natural flake graphite with the particle size of12μm was coated by a layer of pitch,and the microstructure and electrochemical performance of natural flake graphite and surface modified graphite were studied.It was showed the surface modified graphite with high tap density,surface morphology and excellent electrochemical performance.The capacities of modified graphite were3368.6mAh/g,362.6mAh/g,353.8mAh/g,340.6mAh/g,298.6mAh/g,228.2mAh/g and150.2mAh/g,corresponding to the rates0.1C,0.5C,1C,2C,5C and10C,which increased to6.2mAh/g,20.9mAh/g,31.6mAh/g,42.1mAh/g,52.4mAh/g,80.0mAh/g and58.0mAh/g,relative to natural graphite.The good rate performance of carbon coated small-sized natural graphite for lithium-ion battery made it a promising candidate as anode materials for electric vehicle dynamic1ithium-ion batteries. Key words:natural flake graphite;electrochemical performance;carbon coated;rate performance 锂离子电池因其工作电压高、能量密度大、循环寿命长、自放电小、无记忆效应等优点,成为20世纪90年代以来继镍氢电池之后的新一代二次电池[1-2]。国内外迫于能源危机与环境污染的双重压力,电动汽车的研究与开发引起了世界各国的关注。电动汽车发展的关键在于动力电池的发展,锂离子电池因其具有重量轻、比能量高、循环寿命长、使用温度范围宽且无记忆效应、绿色、环保等特点,被认为是最有发展前途的电动汽车用电池之一[3-4],国际上许多汽车制造商、电池生产厂及科研院校等积极开展了电动车用锂离子电池的研究开发工作。电动车用锂离子电池对电极材料有着更为严格的要求,特别是为满足电动汽车启动和爬坡的能量需求,需要电极材料在大电流下充放电的性能优异。天然石墨有很多优点,如来源广、价格低、充放电电压平台低、理论比容量高等,是一种十分理想的锂离子电池负极材料。目前市场上普遍使用的球形石墨是平均粒径在14 25μm,其中17μm的球形石墨使用最多。现有的研究表明小粒径天然石墨材料在大电流下循环性能性能比较好,可以满足电动车用锂离子电池的电极材料[5-6]。本文对粒径为12μm天然石墨材料进行表面包覆改性,并对其性能进行了研究。 1实验 1.1实验用主要设备 JEOL JSM-35型扫描电子显微镜(SEM);Malvern型激光粒度分布测试仪;Rigaku D/max rA型自动X-射ASAP2010型比表面测定仪(77.35K,样品0.2000g);DC-5型全自动电池性能测试仪,上海正方电子电器有限公司;HY-100型振实密度仪。 1.2改性天然球形石墨 将经整形和提纯后碳含量为99.9%的天然石墨置于三口烧瓶中,抽真空至-0.1MPa。准确称取一定量的高温煤沥青(炭化收率为80%)于烧杯中,加入50mL四氢呋喃,用玻璃棒搅拌均匀,随后超声振荡30min使沥青充分溶解。通过分液漏斗将沥青溶液加入三口烧瓶中,保持抽真空状态进行磁力搅拌10min。将真空浸渍后的样品在常压下加热除去溶剂,然后经

锂离子电池石墨负极材料的优点和缺点

锂离子电池石墨负极材料的优点和缺点 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

锂离子电池石墨负极材料的优点和缺点 一、石墨定义: 1、石墨是元素碳的一种同素异形体,每个碳原子的周边连结着另外三个碳原子(排列方式呈蜂巢式的多个六边形)以共价键结合,构成共价分子。 2、由于每个碳原子均会放出一个电子,那些电子能够自由移动,因此石墨属于导电体。石墨是其中一种最软的矿物,它的用途包括制造铅笔芯和润滑剂。 二、石墨的特殊性质: 1、导电性:石墨的导电性比一般非金属矿高一百倍。石墨能够导电是因为石墨中每个碳原子与其他碳原子只形成3个共价键,每个碳原子仍然保留1个自由电子来传输电荷。 2、导热性:导热性超过钢、铁、铅等金属材料。导热系数随温度升高而降低,甚至在极高的温度下,石墨成绝热体。 3、耐高温性:石墨的熔点为3850±50℃,沸点为4250℃,即使经超高温电弧灼烧,重量的损失很小,热膨胀系数也很小。石墨强度随温度提高而加强,在2000℃时,石墨强度提高一倍。 4、润滑性:石墨的润滑性能取决于石墨鳞片的大小,鳞片越大,摩擦系数越小,润滑性能越好。由于其润滑性,在超细研磨里难度很高,使用叁星飞荣立式砂磨机可以研磨到纳米级别细度。

5、化学稳定性:石墨在常温下有良好的化学稳定性,能耐酸、耐碱和耐有机溶剂的腐蚀。 6、可塑性:石墨的韧性好,可碾成很薄的薄片。 7、抗热震性:石墨在常温下使用时能经受住温度的剧烈变化而不致破坏,温度突变时,石墨的体积变化不大,不会产生裂纹。 三、石墨的中国产地: 1、我国以黑龙江鸡西市恒山区密山市柳毛乡为最大的产地。以及黑龙江省的七台河市、鹤岗市和双鸭山市等。 2、山东省莱西市为我国石墨重要产地之一。 3、吉林省磐石市也是石墨产地之一。 4、内蒙古乌拉特中旗高勒图矿区发现全国最大晶质石墨单体矿。 5、陕西省煤田地质局一九四队在陕西洋县发现3条石墨矿带。 四、石墨世界着名产地: 1、纽约Ticonderoga。 2、马达加斯加。 3、斯里兰卡(Ceylon)。 五、石墨分类: 1、天然石墨:石墨的工艺特性主要决定于它的结晶形态。结晶形态不同的石墨矿物,具有不同的工业价值和用途。 2、人造石墨:广义上,一切通过有机炭化再经过石墨化高温处理得到的石墨材料均可称为人造石墨,如炭纤维、热解炭、泡沫石墨等。而狭义上的人造石墨通常指以杂质含量较低的炭质原料为骨料、煤沥青等为粘

锂离子电池的组成部分之负极

锂离子电池的组成部分之负极(非常详细) 2、负极(1) 此主题相关图片如下: 2、负极(2) 在负极材料部分,锂电池的负极材料主要是: A、石墨系碳(graphite) a、天然石墨 b、人工石墨 c、类石墨(如 MCMB , Meso Carbon Micro Beads) B、非石墨碳材(如焦碳系,coke) 由于石墨系的重量能量密度较高且材料本身的结构具有较高的规则性,所以第一次放电的不可逆电容量会较低,另外石墨系负极材料具有平稳工作电压作用,对电子产品的使用和充电器的设计较具优势。而另一种类的焦炭系与碳黑系﹝carbon black﹞的负极材料在第一次充放电反应的不可逆电容量很高,但是此材料可以在较高的C- rate下作充放电,另外此材料的放电曲线较斜,有利于使用电压来监控电池容量的消耗。 负极(3) 石墨为层状结构,由碳网平面沿C轴堆积而成,层间距为3.36A。平面碳层由碳原子呈六角形排列并向二维方向延伸,碳层间以弱的范德华力结合,锂嵌在碳层之间 石墨的实际比容量为320—340mAh/g。平均嵌锂电位约为0.1V(VS Li+/Li),第一周充放电效率约为82—84%,循环性能好,且价格低廉(<10元/Kg)。 A、石墨类的制备 ①中间相碳微球(Mesophase Carbon Micro Beads, MCMB)是用煤焦油沥青、石油重质油

等在350—500℃温度下加热并经分离、洗涤、干燥和分级等过程制得的平均粒径6-10微米的碳微球,然后于28000C下进行石墨化热处理制得的碳材料。其外形呈球形,晶体结构同石墨基本一致。MCMB的实际比容量约为310—330mAh/g,平均嵌锂电位约为0.15V(VS Li+/Li),第一周充放电效率约为88%—90%,循环性及大电流性能好,是目前为止最为理想的负极材料,但价格昂贵(约300元/Kg)负极(4) A、石墨类的制备 ②气相成长碳纤(Vapor-Grown Carbon Fiber, VGCF) 以碳氢化合物经化学蒸镀(CVD)反应,再用不同温度经热处理而成 负极(5) B、非石墨类的制备 ①可石墨化碳类 ---- 软碳主要为焦碳﹝Coke﹞类,可由沥青或煤渣而来 2、负极(6) B、非石墨类的制备 ②不可石墨化类 ---- 硬碳(最具发展潜力) 硬碳不易石墨化。是一种与石墨不同的近似非晶结构的碳材料,晶体尺寸较小,通常在几个纳米以下,呈无规则排列,有细微空隙存在,是利用高分子先驱物(polymer precursor),在不同温度下经热解所形成的无次序碳材而得到。其主要特点:嵌锂容量高,一般可达600mAh/g以上。问题: A、第一周充放电效率低,一般不超过60% B、循环性能差 此主题相关图片如下: 负极(7)-锡基金属间化合物及复合物、锡基复合氧化物 Sn与Li能可逆地形成组成为Li4.4Sn的合金,七十年代开始就引起了人们的广泛关注。由于Sn 贮锂—脱锂过程体积膨胀超过200%,极易引起电极粉化,导致循环性能迅速衰减。如何稳定材料结构,防止电极粉化是一直以来研究的重点。 近年来,人们发现将Sn均匀的分布在对锂惰性的金属或化合物、复合物中,可较好地缓冲电极

锂离子电池石墨负极材料的优点和缺点

锂离子电池石墨负极材料得优点与缺点 一、石墨定义: 1、石墨就是元素碳得一种同素异形体,每个碳原子得周边连结着另外三个碳原子(排列方式呈蜂巢式得多个六边形)以共价键结合,构成共价分子。 2、由于每个碳原子均会放出一个电子,那些电子能够自由移动,因此石墨属于导电体。石墨就是其中一种最软得矿物,它得用途包括制造铅笔芯与润滑剂。 二、石墨得特殊性质: 1、导电性:石墨得导电性比一般非金属矿高一百倍。石墨能够导电就是因为石墨中每个碳原子与其她碳原子只形成3个共价键,每个碳原子仍然保留1个自由电子来传输电荷。 2、导热性:导热性超过钢、铁、铅等金属材料。导热系数随温度升高而降低,甚至在极高得温度下,石墨成绝热体。 3、耐高温性:石墨得熔点为3850±50℃,沸点为4250℃,即使经超高温电弧灼烧,重量得损失很小,热膨胀系数也很小。石墨强度随温度提高而加强,在2000℃时,石墨强度提高一倍。 4、润滑性:石墨得润滑性能取决于石墨鳞片得大小,鳞片越大,摩擦系数越小,润滑性能越好。由于其润滑性,在超细研磨里难度很高,使用叁星飞荣立式砂磨机可以研磨到纳米级别细度。 5、化学稳定性:石墨在常温下有良好得化学稳定性,能耐酸、耐碱与耐有机溶剂得腐蚀。 6、可塑性:石墨得韧性好,可碾成很薄得薄片。 7、抗热震性:石墨在常温下使用时能经受住温度得剧烈变化而不致破坏,温度突变时,石墨得体积变化不大,不会产生裂纹。

三、石墨得中国产地: 1、我国以黑龙江鸡西市恒山区密山市柳毛乡为最大得产地。以及黑龙江省得七台河市、鹤岗市与双鸭山市等。 2、山东省莱西市为我国石墨重要产地之一。 3、吉林省磐石市也就是石墨产地之一。 4、内蒙古乌拉特中旗高勒图矿区发现全国最大晶质石墨单体矿。 5、陕西省煤田地质局一九四队在陕西洋县发现3条石墨矿带。 四、石墨世界著名产地: 1、纽约Ticonderoga。 2、马达加斯加。 3、斯里兰卡(Ceylon)。 五、石墨分类: 1、天然石墨:石墨得工艺特性主要决定于它得结晶形态。结晶形态不同得石墨矿物,具有不同得工业价值与用途。 2、人造石墨:广义上,一切通过有机炭化再经过石墨化高温处理得到得石墨材料均可称为人造石墨,如炭纤维、热解炭、泡沫石墨等。而狭义上得人造石墨通常指以杂质含量较低得炭质原料为骨料、煤沥青等为粘结剂,经过配料、混捏、成型、炭化与石墨化等工序制得得块状固体材料,如石墨电极、等静压石墨等。 人造石墨就成型方式通常可分为:振动成型,挤压成型,模压成型,等静压成型。 3、块状石墨:块状石墨又叫致密结晶状石墨。此类石墨结晶明显晶体肉眼可见。颗粒直

天然石石墨负极所用的锂离子电池的电解液

天然石墨负极锂离子电池用的电解液 骆宏钧;周冬兰;程琳 摘要 本发明公开了天然石墨负极锂离子电池用的电解液,该电解液中含有如下结构式的添加剂,式中R1为芳基、Cl-4烷基或氢;R2为氢、氟、Cl-4烷基或芳基;R3为氢、氟、Cl-4烷基或芳基,添加剂加入量为电解质质量的0.5%~5%。该电解液有利于在天然石墨负极表面还原形成稳定有效地固体电解质界面膜,从而提高锂离子电池容量,使天然石墨负极锂离子电池具有循环性能和高低温综合性能好的优点。 1、天然石墨负极锂离子电池的电解液,其特征在于:电解液中含有如下结构式的添加剂, 式中R1为芳基、Cl-4烷基或氢;R2为氢、氟、Cl-4烷基或芳基;R3为氢、氟、Cl-4烷基或芳基,添加剂加入量为电解液质量的0.5%~5%。 2、根据权利要求1所述的电解液,其特征在于:所述添加剂中的芳基中的-H可任选被一个或多个独立选自卤素、OH或CN取代;所述的烷基中的-H可任选被一个或多个氟原子取代。 3、根据权利要求1所述的电解液,其特征在于:所述的添加剂中的R1为苯基;R2为氢,R3为氢。

4、根据权利要求1所述的电解液,其特征在于:所述的添加剂中的R1为2-溴苯基,R2为氢,R3为氢。 5、根据权利要求1或2或3所述的电解液,其特征在于:所述的电解液所用的电解质为LiPF 6、LiBF4、LiCF3SO3、LiN(CF2SO2)2、LiClO4、Li(C2O4)2B或LiAsF6中的至少一种。 6、根据权利要求1或2或3所述的电解液,其特征在于:所述的电解液所用的溶剂为碳酸乙烯酯、碳酸丙烯酯、碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯、γ-丁内酯或环丁砜中的至少一种,电解液浓度0.5~1.2mol/L。 7、根据权利要求1或2或3所述的电解液,其特征在于:所述的锂离子电池中的正极活性物质选自钴酸锂、锰酸锂、镍酸锂、磷酸铁锂或钴锰镍三元材料。

锂电池负极材料简介

负极材料: 负极材料作为锂离子电池的重要组成部分,其研究对象多种多样,归纳起来:主要分为两太类:第一类是碳材料,包括石墨化碳材料和无定形碳材料:第二类是非碳材料,主要包括硅基材料、锡基材料、过渡金属氧化物、金属氮化物及其它合金负极材料等。 石墨材料是商业化应用最多的负极材料,主要包括天然石墨、人造石墨和各种石墨化碳(如石墨化碳纤维和石墨化中间相碳微球)三类。石墨材料的结构为层状结构,碳原子呈六方形排列并向二维方向延伸构成石墨片层,这些石墨片层以一定的方式堆积起来便构成了不同的石墨晶体结构,即六方结构(2H)和菱形结构(3R)。在石墨材料中一般两种结构共存,石墨片层间通过范德华力相互结合在一起.理想石墨晶体的层间距为0.3354nm,密度2.2g/cm3。 天然石墨的缺陷:由于成膜不稳定,导致不可逆容量高,循环性能差。但天然石墨中的鳞片石墨电化学性能相对较好。 石墨化碳材料除了石墨之外,还包括石墨化中间相碳微球(McMB)、碳纳米管(cNT)及碳纳米纤维(CNFs)等。McMB颗粒呈球形,表面光滑,比表面积较小,堆积密度较高,因此,体积能量密度比较大,首次嵌锂过程中的不可逆容量损失较少。而且McMB球形颗粒具有高度有序的层面堆积结构,有利于锂离子从各个方向嵌入和脱出,从而解决了普通石墨类材料由于各向异性过高引起的石墨片溶涨、塌陷,循环性能差,以及不能快速大电流放电等问题。 碳纳米管(CNT)可以看成是由单层或多层石墨片状结构卷曲而成的准一维无缝中空管,长度一般在微米级,直径约几个到几百个纳米,分为多壁碳纳米管(MWNT)和单壁碳纳米管(SWNT)两种。这类石墨化碳材料因导电性好、机械强度高、化学性质稳定、长径比大,比表面积大,且储锂容量太于372 mAh/g的优点而得到了广泛的研究。 无定形碳材料因为制各温度很低,石墨化过程进行得很不完全,得到的碳材料主要由石墨微晶和无定形区组成。通常,无定形碳材料可主要通过将小分子有机物进行催化裂解:将高分子材料直接低温裂解;低温处理其它碳前驱体等3种方法制得。采用以上原料和方法制备的无定形碳材料,其微晶尺寸一般比石墨微晶小2-3个数量级,且材料中古有大量纳微米孔隙,所以它的锂离子扩散系数和首次嵌/脱锂比容量要比石墨的要大。但是,由于它的晶体化程度比较低、结构不规整,锂离子从碳材料中嵌入,脱出时的极化较大,且材料比表面积也很大.因此,无定形碳材料的嵌,脱锂时,没有明显的电压平台,电压滞后明显,且不可逆容量损失较大,首次效率较低,循环稳定性很差。 氧化石墨(Gmpjlite Oxide,GO)是指石墨在强氧化剂的作用下被氧化,氧原子进入到石墨层间,使碳平面上的大Ⅱ键断裂,并以C-OH、C=O、-COOH等官能团的形式与密实的碳平面内的碳原子结合而形成的共价键型石墨层间化合物。氧化石墨仍然会保持着石墨的层状结构,但石墨材料的致密结构因氧化剂分子的插入而变得膨胀疏松,层间距一般大于0.6mn. 。这些微孔的出现对不完全氧化改性石墨负极而言是有利于增大材料的储锂容量及增加锂离子的进出通道的。但碳平面内大∏键的破坏会使得GO不再具备导电性,且较多含氧官能目的出现也会导致更多的不可逆容量损失,因此,欲通过氧化的方法得到较理想的氧化石墨负极材料,就需要适当控制石墨被氧化的程度。

人造石墨负极材料项目可行性研究报告

人造石墨负极材料项目可行性研究报告 中咨国联出品

目录 第一章总论 (9) 1.1项目概要 (9) 1.1.1项目名称 (9) 1.1.2项目建设单位 (9) 1.1.3项目建设性质 (9) 1.1.4项目建设地点 (9) 1.1.5项目负责人 (9) 1.1.6项目投资规模 (10) 1.1.7项目建设规模 (10) 1.1.8项目资金来源 (12) 1.1.9项目建设期限 (12) 1.2项目建设单位介绍 (12) 1.3编制依据 (12) 1.4编制原则 (13) 1.5研究范围 (14) 1.6主要经济技术指标 (14) 1.7综合评价 (16) 第二章项目背景及必要性可行性分析 (17) 2.1项目提出背景 (17) 2.2本次建设项目发起缘由 (19) 2.3项目建设必要性分析 (19) 2.3.1促进我国人造石墨负极材料产业快速发展的需要 (20) 2.3.2加快当地高新技术产业发展的重要举措 (20) 2.3.3满足我国的工业发展需求的需要 (21) 2.3.4符合现行产业政策及清洁生产要求 (21) 2.3.5提升企业竞争力水平,有助于企业长远战略发展的需要 (21) 2.3.6增加就业带动相关产业链发展的需要 (22) 2.3.7促进项目建设地经济发展进程的的需要 (22) 2.4项目可行性分析 (23) 2.4.1政策可行性 (23) 2.4.2市场可行性 (23) 2.4.3技术可行性 (23) 2.4.4管理可行性 (24) 2.4.5财务可行性 (24) 2.5人造石墨负极材料项目发展概况 (24) 2.5.1已进行的调查研究项目及其成果 (25) 2.5.2试验试制工作情况 (25) 2.5.3厂址初勘和初步测量工作情况 (25)

相关文档
最新文档