火致拉索损伤斜拉桥力学性能分析及评定

目录

目录

摘要……………………………………………………………………………………………………………………………..IAt'stract……………………………………………………………………………………………………………………..II

1.2国内外桥梁火灾概述………………………………………………………………………21.3工程概况……………………………………………………………………………………51.4本文主要研究内容…………………………………………………………………………92斜拉桥力学分析基础与拉索火致损伤模拟…………………………………………………102-1斜拉桥力学分析原理…………………………………………………………………….102.1.1斜拉索垂度效应………………………………………………………………………..102.1.2大变形效应……………………………………………………………………………..122.2斜拉索损伤的模拟……………………………………………………………………….122.2.1斜拉索损伤的因素……………………………………………………………………..122.2.2斜拉索损伤机理………………………………………………………………………..132.2_3拉索火致损伤模拟……………………………………………………………………..152.3本章小结………………………………………………………………………………….183四方台大桥斜拉索火致损伤分析……………………………………………………………193.1有限元分析模型的建立………………………………………………………………….193.1.1四方台有限元模型的建立……………………………………………………………一193.1.2有限元主要构件处理…………………………………………………………………一203.2拉索损伤斜拉桥静力性能分析………………………………………………………….213.2.1斜拉桥结构静力性能分析...……………………………………………………………213.2_2不同斜拉索熔断下主梁线形变化……………………………………………………一243.2.3不同斜拉索熔断下拉索索力变化……………………………………………………..273.2.4拉索不同火损程度下全桥结构静力分析……………………………………………..303.3拉索损伤斜拉桥动力性能分析………………………………………………………….333.3.1斜拉桥自振特性………………………………………………………………………..333.3.2不同拉索火损下全桥结构动力分析…………………………………………………。363.3.3拉索不同火损程度下全桥结构动力分析……………………………………………..463.4小结…………………………………………………………………………………………………………………….494四方台大桥灾后静力性能评定……………………………………………………………。504.1四方台大桥拉索过火后荷载试验……………………………………………………….504.1.1试验目的………………………………………………………………………………..50

目录

4.1.2试验方案………………………………………………………………………………..504.2试验结果分析及静力性能评定………………………………………………………….574.2.1火灾前后恒载状态分析……………………………………………………………….574.2.2灾后静载试验分析……………………………………………………………………..584.3本章小结………………………………………………………………………………….65结论……………………………………………………………………………………………………………………………66参考文献………………………………………………………………………………………。67攻读学位期间发表的学术论文………………………………………………………………..69致谢……………………………………………………………………………………………………………………………70

大桥斜拉索结冰解决方案

一、为什么大桥斜拉索PE外套管要进行表面涂层处理? 斜拉桥具有跨越能力大、造型美观等优点,是我国交通系统中大跨度桥梁的主要桥型之一,目前国内已修建斜拉桥数百座,约占全世界斜拉桥总数的三分之一,其中,斜拉索是斜拉桥主要的承重和传力构件,位于桥面之上。 在斜拉桥运营过程中,我国中部及北部地区由于气候原因引起的(冻)雨雪、结冰等现象,易对桥梁的结构及通行安全造成重大隐患。对于斜拉索而言,雨雪天气过后会有一部分雨雪留在拉索上面,温度低于0℃时则会结冰;值得注意的是,在我国中部地区(冬季最低温度在0℃附近),桥面温度还在0℃以上或者没有出现结冰现象,而靠近桥塔的拉索高空处已经处于0℃以下,留在拉索上面的雨雪凝结成冰,拉索表面结冰除了会对拉索结构产生破坏之外,同时拉索上凝结的冰块会受到气温上升、风吹或者拉索正常振动等外界因素的影响导致冰块从拉索上跌落,位置较高的冰块跌落时由于速度较大,会对桥面上正常行驶的车辆造成重大安全隐患,严重时甚至会引发连环交通事故,造成重大的人身财产损失,由此产生的公众舆论对社会稳定极为不利。近年来,已经发生了多起由于斜拉索掉冰而影响桥梁交通安全的事件,例如,2015年1月30日,荆岳长江大桥主桥斜拉索发生掉冰,砸坏了多辆机动车,桥面被冰渣所覆盖,导致了交通管制;2015年1月和2018年1月,武汉二七长江大桥斜拉索上的冰凌高空坠下,砸损若干车辆,影响了交通安全;南昌八一大桥主桥也发生过斜拉索掉冰,砸坏30多辆机动车,并砸伤了行人,危及了交通安

全和人身财产安全。此外,斜拉索积雪覆冰会改变斜拉索截面形状,从而改变其气动力特性,改变桥梁风致振动响应,威胁桥梁结构安全。 二、利用纳米疏水涂膜防结冰解决方案: 通过纳米无机化合物涂膜对现有的外套管涂装基础上进行纳米自洁涂膜涂装,自然固化后形成憎水耐候层,使现有PE套管在雨雾天气或冷热交替环境中不易附水着冰。 三、疏水涂膜特点: 本系列产品主要成分为纳米无机化合物,涂装后可形成高疏水,高疏油,高耐冷、高耐热、高硬度、高耐腐蚀及装饰性佳的透明涂膜;具有以下优点: 1、高疏水性:水接触角约120°(需视喷涂环境而定);使其具有自洁性,不易吸附灰尘等污染物,雨水冲刷即可自洁。 2、高疏油性:耐油性笔(马克笔)X24小时(可能更长,视喷涂环境而定),可采用干擦拭方式擦除油性笔划痕; 3、高硬度及耐磨性:可达6-8H,高温下硬度非常稳定;不易划痕 4、高耐温性:透明涂料可在200℃-600℃条件下长期使用,高温(<600℃)下不会黄变,不燃; 5、高透明度:视喷涂环境而定,无色透明涂料的透明度可达95-98%; 6、施工容易,可在常温下自干,喷涂一次成膜;

斜拉索桥梁工程施工工艺及技术措施方案

斜拉索桥梁工程施工工艺及技术措施方案 1斜拉索施工工艺流程图 2 钢绞线下料要求 本工程拉索数量较多,为提高现场挂索进度,方便施工,并且减少钢绞线损 工厂备料、运输 体内索张拉 料盘运输 工作平台搭设 钢绞线卸盘 起重牵引设施安装 张拉设备安装 HDPE 圆管安装 单根桂索、张拉 索箍、减振装置安 索体外防护 锚具防腐处理 循环N 次 锚具安装 预埋管、分丝管安装 浇筑混凝土并养护达到100%

耗,保证斜拉索剥皮段油脂清理干净,下料长度精准,采用生产厂家工厂内下料方式,(反之,如果现场下料,要求有非常大的平整场地,专门配备下料班,至少二十工人,下料的长度控制不精准,剥皮长度误差大,油脂清洗不干净,容易划伤钢绞线外层PE及环氧涂层,钢绞线材料损耗相当大)。下料长度及要求由双方确认后方可有效,双方为施工方、总承包方。 3 HDPE管焊接 3.1 焊接长度计算 L 焊= L /2-L 6 -A 5 - L 7 -L 8 - L 9 /2+L 10 ,式中: L ——两侧梁端垫板底面之间的中心线或弧长(mm),该数据由设计院提供; L 6 ——梁端预埋管长度及钢垫板厚度之和(mm); A 5 ——梁端钢质索箍厚度(mm); L 7 ——塔端连接装置长度(mm); L8——塔端锚固筒长度(mm); L9——分丝管长度(mm); L10——HDPE外套管进入塔端连接装置长度(mm)。 3.2 焊接工艺 HDPE管的连接采用专用HDPE发热式工具对焊,其焊接工艺流程图见图4。 图8. 4 HDPE焊接工艺流程 3.3 焊接条件 HDPE管焊接时,根据管材规格,其焊接条件为: 管材格规预热温 (℃) 预热压力 (b a r) 加热时间 (s) 切换 (s) 焊接压力 (bar) 冷却时间 (min) 焊接准备HDPE管端面刨平、加热撤离发热工具、切换 加压焊接、冷却 焊接结束 循环 N次

1使用MIDAS Civil做斜拉桥分析时的一些注意事项

使用MIDAS/Civil做斜拉桥分析时的一些注意事项 斜拉桥的设计过程与一般梁式桥的设计过程有所不同。对于梁式桥梁结构,如果结构尺寸、材料、二期恒载都确定之后,结构的恒载内力也随之基本确定,无法进行较大的调整。对于斜拉桥,由于其荷载是由主梁、桥塔和斜拉索分担的,合理地确定各构件分担的比例是十分重要的。因此斜拉桥的设计首先是确定其合理的成桥状态,即合理的线形和内力状态,其中起主要调整作用的就是斜拉索的张拉力。 确定斜拉索张拉力的方法主要有刚性支承连续梁法、零位移法、倒拆和正装法、无应力状态控制法、内力平衡法和影响矩阵法等,各种方法的原理和适用对象请参考刘士林等编著的公路桥梁设计丛书-《斜拉桥》。 MIDAS/Civil程序针对斜拉桥的张拉力确定、施工阶段分析、非线性分析等提供了多种解决方案,下面就一些功能的目的、适用对象和注意事项做一些说明。 1.未闭合力功能 通常,在进行斜拉桥分析时,第一步是进行成桥状态分析,即建立成桥模型,考虑结构自重、二期恒载、斜拉索的初拉力(单位力),进行静力线性分析后,利用“未知荷载系数”的功能,根据影响矩阵求出满足所设定的约束条件(线形和内力状态)的初拉力系数。此时斜拉索需采用桁架单元来模拟,这是因为斜拉桥在成桥状态时拉索的非线性效应可以看作不是很大,而且影响矩阵法的适用前提是荷载效应的线性叠加(荷载组合)成立。 第二步是利用算得的成桥状态的初拉力(不再是单位力),建立成桥模型并定义倒拆施工阶段,以求出在各施工阶段需要张拉的索力。此时斜拉索采用只受拉索单元来模拟,在施工阶段分析控制对话框中选择“体内力”。 第三步是根据倒拆分析得到的各施工阶段拉索的内力,将其按初拉力输入建立正装施工阶段的模型并进行分析。此时斜拉索仍需采用只受拉索单元来模拟,但在施工阶段分析控制对话框中选择“体外力”。 但是设计人员会发现上述过程中,倒拆分析和正装分析的最终阶段(成桥状态)的结果是不闭合的。这是因为合拢段在倒拆分析和正装分析时的结构体系差异,导致正装分析时得到的最终阶段(成桥阶段)的内力与单独做成桥阶段分析(平衡状态分析)的结果有差异。即,初始平衡状态分析(成桥阶段分析)时,同时考虑了全部结构的自重、索拉力以及二期荷载的影响;而在正装分析时,合拢之前所有阶段的加劲梁会因为自重、索拉力产生变形,合拢时合拢段只受自身的自重影响而不受其它结构的自重和索拉力的影响。 MIDAS/Civil能够在小位移分析中考虑假想位移,以无应力长为基础进行正装分析。这种通过无应力长与索长度的关系计算索初拉力的功能叫未闭合配合力功能。未闭合配合力具体包括两部分,一是因为施工过程中产生的结构位移和结构体系的变化而产生的拉索的附加初拉力,二是为使安装合拢段时达到设计的成桥阶段状态合拢段上也会产生附加的内力。利用此功能可不必进行倒拆分析,只要进行正装分析就能得到最终理想的设计桥型和内力结果。 重新说明一下的话,首先倒拆分析和正装分析的结果是不可避免存在差异的,设计人员需要根据倒拆分析得到的施工阶段张力,利用自己的经验进行进一步地调索或者调整施工步骤或施工工法,从而才能得到既满足施工阶段的结构安全要求,又满足成桥状态的线形和内力条件的斜拉索张力。 其次利用MIDAS/Civil的未闭合力功能,设计人员可以不必繁琐地建立倒拆施工阶段的

南京长江第二大桥斜拉索制作及检测

南京长江第二大桥斜拉索制作及检测 金平张国良 (上海浦江缆索有限公司) 【摘要】由于南京长江第二大桥本身的特点,对斜拉索制作提出了更高的质量要求。本文主要介绍南京长江第二大桥斜拉索的制作及其检测,从原材料直至成品,确保产品质量达到精品工程的要求。 【关键词】南京二桥斜拉索准备制作检测 一、概况 南京长江第二大桥位于长江在南京河段的八卦洲汊道处。其中南汊主航道桥为双塔双索面钢箱梁斜拉索桥,主跨628m,每一索面由20对斜拉索组成,全桥共80对,主塔处拉索从左至右的编号为 A20~A1和 J1~J20。最大索长 333.494m,最小索长 99.219m。全桥斜拉索有五种规格,分别为 SNS/S-7 X 139, 163, 199,241,265,一端为张拉端,另一端为固定端。全桥共用钢丝约2244t。 二、斜拉索主要技本要求 1.主要原材料 (l)原材料 a.高强度钢丝 钢丝强度等级为1670MPa,低松驰,镀锌后钢丝直径为7mm。具体技术要求见表1。

b.锚具 每套冷铸锚具由锚杯、螺母、锚板、连接筒、挡圈、0型圈、透盖等几部分组成。锚杯及螺母所用锻件材质应符合 YB/T036.7-92中 35CrMo牌号的有关规定。其他各部件的材料符合相应国家或部颁标准。锻件须进行超声波探伤检验,评定质量按 GB/T4162-91中 A级要求执行;表面进行磁粉探伤,其应符合JB3965中201条与202条中Ⅱ级的要求。同一规格锚具的相同部件应具有互换性。锚具表面镀锌处理,镀锌厚度为10~40μm进行镀锌处理,镀锌后须脱氢处理。 c.高密度聚乙烯 南京二桥斜拉索为双护层型,内层为黑色高密度聚乙烯,外层为白色高密度聚乙烯。具体技术要求见表2、表3。 2.成品拉索主要技术要求 斜拉索应符合《斜拉索热挤聚乙烯拉索技术条件》(JT/T6-94)及以下要求:

转体斜拉桥斜拉索主要施工方法

转体斜拉桥斜拉索主要施工方法 1.1施工准备 1.1.1成品索的检验 斜拉索出厂前按设计要求,对斜拉索有关性能进行检验。 斜拉索到达现场后,查验并索取每根成品索的质量保证书(质量保证书含本批交货的数量、质量及各种检验结果);如果进行了非常规试验,需提供检验报告。 1.1.2索导管的处理 斜拉索锚头外径与索套管的内径相差很小,挂索时极易产生位置偏差,从而造成锚头外螺牙和斜拉索PE保护套的损伤,因此斜拉索挂设前应对塔、梁端的索套管进行全面的检查,对索套管内的焊渣、毛刺等进行打平磨光。 1.2 斜拉索上桥和桥面水平运输 根据斜拉索安装计划,斜拉索制造厂将验收后待交付的斜拉索陆路运输运至适当位置。斜拉索采用汽车吊提升上桥面置于卧式放索机上,吊装时为了避免对斜拉索外包PE的伤害,采用大直径纤维绳、或直接使用10t软吊带进行吊装。 1.3 斜拉索的塔端挂设及桥面展开 7~8#索长度比较短,塔端挂设完成后斜拉索已基本展开,

直接采用塔吊提升剩余斜拉索即可完成桥面展开。1~6#索稍长,需采用以下步骤进行桥面展索。 1)7~8#索的塔端挂设方法(硬牵引) 具体步骤: 具体步骤: 第一步:塔吊提升锚头,同时转动放索机,放松斜拉索,当塔吊将塔端锚头提升一定高度后,缓慢落钩将塔端锚头置于锚头小车上。 第二步:在塔端锚头处安装内衬套和张拉杆以及在合适位置安装索夹,连接塔吊。 第三步:塔内下放牵引绳,将其与张拉端头连接。 第四步:塔内牵引绳与塔吊做到同步起吊,塔吊提供主动力,同时与塔内牵引绳协助调整张拉杆及斜拉索前端角度,塔内进行临时锚固,将螺母至少拧上三牙以上,塔吊松钩,拆除连接夹具。 2)1~6#索的塔端挂设及桥面展开(软牵引) 具体步骤如下: 第一步:塔吊提升锚头,同时转动放索机,放松斜拉索,当塔吊将塔端锚头提升一定高度后,缓慢落钩将塔端锚头置于锚头小车上。 第二步:在塔端锚头处安装软牵引装置以及在合适位置安装索夹,连接塔吊。

斜拉桥斜拉索的主要病害及成因分析

斜拉桥斜拉索的主要病害及成因分析 斜拉桥斜拉索的主要病害及成因分析 摘要:我国的斜拉桥起步较晚,1975年建成的跨径76m的四川云阳桥是国内第一座斜拉桥,80年代中后期是我国斜拉桥发展的鼎盛时期,至今为止建成或正在施工的斜拉桥共有100余座,其中跨径大于200m的有52座。跨度超过400m的斜拉桥已达20座,居世界首位。由于斜拉桥的成桥使用条件比较复杂且防护技术也不完善,因此,在斜拉桥运营若干年之后,桥体不可避免地会出现许多病害。 拉索是斜拉桥的主要受力构件,对斜拉结构桥梁的结构安全和实用寿命具有直接的重要影响。然而,斜拉索从出现时起,就不可避免地受到腐蚀退化、振动疲劳衰减等各种不利因素的作用。 关键词:斜拉索;防护系统;主要病害;成因分析 中图分类号: U448 文献标识码: A 1.拉索病害及成因分析 在斜拉桥设计、施工和使用过程中,尽管对斜拉索采取了各种防腐、减隔振措施,但由于方法、工艺、材料等不合理,使得斜拉索病害已成为制约斜拉桥使用寿命的关键性因素。因此,分析斜拉索病害原因,在设计、施工和使用斜拉桥时给予足够的重视,并采取各种有效措施延长拉索的使用寿命。 1.1拉索腐蚀 腐蚀是物质与介质作用而引起的变质或破坏。由于腐蚀过程是自发的,所以在斜拉桥整个寿命期内,拉索的腐蚀破坏将会始终存在。 ①拉索腐蚀部位 拉索钢丝腐蚀程度基本上取决于橡胶护套的破损程度,因为这是雨水或露水顺钢索流入或渗入护套内产生的结果,所以钢丝腐蚀有两个明显特点:腐蚀程度大体遵循“上轻下重”规律,即处于较高位置的钢丝腐蚀较轻,处于较低位置的钢丝腐蚀较重;腐蚀较严重的部位,往往是靠近护套破损的部位以及破损处以下的一段部位。 ②拉索腐蚀成因

斜拉桥斜拉索施工工艺流程及作业指导(优秀工作范文)

斜拉桥斜拉索施工工艺流程及作业指导 1.目的 明确斜拉桥斜拉索施工作业工艺流程、操作要点和相应的工艺、质量标准,指导、规范桩基成孔作业. 2.编制依据 (1)《斜拉桥施工图设计-拉索结构施工图设计》; (2)《公路桥涵施工技术规范》(JTJ041-2000); (3)《公路斜拉桥设计规范》(试行)JTJ027-96; (4)《斜拉桥热挤聚乙烯高强钢丝拉索技术条件》GB/T18635-2001; (5) 斜拉索安装的相关技术资料; (6)《公路斜拉桥设计细则》(JTG/TD65-1-2007). 3.适用范围 适用于斜拉桥高强平行钢丝成品索配合对称悬灌主梁施工的斜拉索施工. 4.技术准备 4.1内业准备 (1)开工前组织技术人员认真审核施工设计图纸和有关设计资料,澄清有关技术问题,熟悉规范和技术标准,编制斜拉桥斜拉索实施性施工组织设计,制定施工安全保证措施,提出应急预案. (2)从事起重机械作业、登高架设作业、机动车辆驾驶等特种作业的人员必须持有特种作业证.对所有施工人员进行岗前技术培训,作业前进行技术交底. 4.2外业准备 4.2.1施工前检查工作 (1)对已施工完成的塔柱和主梁段进行检查,并将检查结果报监理工程师进行审核,合格后方能进行斜拉索作业施工. (2)在锚垫板上放出孔道口十字中心线,以便对中,如若锚头安装偏位会造成锚头外螺纹与孔口磨擦,影响斜拉索张拉力精度. (3)对施工所用的平行钢丝斜拉索、斜拉索锚具生产厂家进行调查,选用供货商.成品索进场后根据质保单进行严格查验,检查锚具,PE在运输过程中是否有损伤,如有损伤,及时采取修理措施并妥善保管;检验并核对成品索合同内的质量证明文件等是否齐全完整.对需要进行试验和检验的项目要按规定进行试验和检验,确保工程材料的质量和数量满足设计、规范和施工的要求.

斜拉桥的拉索防护问题

土木工程研究进展与施工方法课程报告九 讲座题目:斜拉桥拉索防护与耐久性设计 演讲人:陈惟珍老师 斜拉桥的拉索防护问题 在上一次的土木工程研究进展与施工方法课上,来自同济大学的陈惟珍老师为我们介绍了斜拉桥拉索防护问题的最新进展情况,使我感触很深,于是课后又查阅了相关文献,对混凝土桥梁预制拼装施工技术有了更进一步的认识,基于这些,本篇文章将简单总结一下自己对斜拉桥拉索防护的一点浅薄认识,以供大家交流学习。 一.斜拉桥拉索防护问题概述 斜拉索桥具有跨度较大、造型美观、施工方便等特点,是目前应用较多的一种桥型。斜拉索是斜拉桥的主要承重传力结构件,它主要由高强度钢丝(钢绞线)束和锚具锚固组成,斜拉索长期承受疲劳荷载,又处于跨江河、跨海湾地域,长期暴露在风雨、潮湿和污染空气的环境中,既有“应力腐蚀”,“疲劳腐蚀”,又有“金属腐蚀”,钢丝索体和锚具结构件容易遭受腐蚀破坏,国内已有早期斜拉索腐蚀破坏失效,而不得不实施换索的实例,造成不良社会影响和经济损失。斜拉索的防腐蚀问题是保证斜拉桥长期安全可靠营运的重要课题。 二.斜拉索结构特点和腐蚀问题 斜拉桥的应用曾历经波折,由于新技术、新材料、新工艺的应用,使斜拉桥得以推广、发展和提高。现在实用较多的有两种拉索结构形式,一种索体材料是高强度钢丝成束,两端用冷铸锚结构组件锚固 (或用热铸锚组件锚固)。另一种索体材料是高强度钢绞线,两端用专用夹片群锚组件锚固。 图1 平行钢丝冷铸锚结构示意图图2平行钢绞线夹片群锚结构示意图理论分析和试验表明,斜拉索锚具端口处是疲劳破坏的薄弱环节,容易造成断丝破坏。经过改进结构和锚固方式,已经提高了斜拉索的抗疲劳破坏能力,加之斜拉索设计比较保守,安全系数较大;同时通过材料改进,钢丝质量提高,实际强度高于设计标准值等原因,使得实用上,应力腐蚀和疲劳腐蚀的破坏实际上小于环境腐蚀。由于发生拉索腐蚀破坏失效,国内已对多座斜拉桥实施了换索工程,实践中人们发现“对于大跨度斜拉桥的长拉索,由于钢丝长度增加,在拉索自由长度内的钢丝缺陷也相应增加,使其在自由长度内破坏的可能性也增大。 更细致的观察可以发现,钢丝本身和成品索防护不良,是造成斜拉索生锈腐蚀、断丝失效的主要原因斜拉桥工程中,一直把拉索的防护问题作为重要的技术工艺控制项目。应力腐蚀、疲劳腐蚀的防范主要通过结构措施和材料保护措施来保证。 三.国内外拉索防护工艺的发展

斜拉桥拉索自振频率分析

斜拉桥拉索自振频率分析 摘要:应用数理方程知识和有限元理论,分别求得斜拉索自振频率的解析解和数值解,并将两种方法得到的结果进行比对,证明了解析法和有限单元法的可靠性,为拉索的风雨激振和参数共振分析提供基础。 关键词:斜拉桥;拉索;自振频率 Abstract: the application of mathematical equations knowledge and finite element theory, respectively given.according vibration frequency of stay-cables analytical solution and the numerical solution, and will by the two methods than the results, and proves the analytic method and finite element method of reliability, for the storm of the lasso excitation and parameter resonance analysis provides the foundation. Keywords: cable-stayed bridge; The lasso; The natural frequency of vibration of 1. 引言 随斜拉桥跨度的不断增大,斜拉索变得越来越长,因为索的大柔度、小质量和小阻尼等特点,极易在风雨、地震及交通等荷载激励下发生振动[1]。长拉索前几阶频率在0.2-0.3Hz时,模态阻尼比只有0.1%,更有可能发生大幅的摆动。迄今,已有许多斜拉索风致振动的报导:日本结构工程协会(Japan Institute of Construction Engineering) 在1988 年一年内对日本的五座斜拉桥斜拉索振动进行了观测和测量,发现它们的最大振幅如下:Brotoni桥达600毫米,Kofin桥达1000毫米,Meikeh桥达600毫米,Aratsu桥达300毫米,大约为直径的两倍。在国内,1992 年南浦大桥在一次风雨联合作用的情况下浦西岸尾部几根斜拉索发生了较大的振动;杨浦大桥尾索在风雨共振作用下也发生过剧烈的振动,最大振幅超过l米。2001年,在南京长江二桥通车前,桥上斜拉索在风雨激振下发生大幅摆动,导致安装在梁端的部分油阻尼器损坏[3-5]。 目前对斜拉索风致振动的研究主要集中在单索的风致振动,已经发现的斜拉索可能的振动类型主要包括以下六类:(1) 顺向风振动;(2) 风雨激振;(3) 横风向驰振;(4) 涡激共振;(5) 参数共振。 1. 顺向风振动是拉索振动最常见的一种。由于风速可以分解为平均风速和脉动风速,风对拉索的作用也表现为平均风引起的静内力、静位移和脉动风引起拉索的振动响应,包括动内力、动位移和振动加速度。

南澳岛跨海大桥斜拉索的破损安全技术应用

桥梁拉索的破损安全技术,其核心在于,在组成拉索(或系统)的钢丝间形成寿命差:先断者警示—立即拆换,以排除斜拉索骤断毁桥的危险。 研究与应用,经历了三个阶段: 其一,以实现…断索不毁桥?为目标的,研究破损安全拉索系统(如双吊杆)及其工程应用(图1)。 图1:拉萨柳梧大桥采用破损安全(交叉)双吊杆系统2006年建成 其二,基于…以应力差实现寿命差?准则,研究破损安全拉索FSC(Failuer Safety Cable) [7~11]及其工程应用。 其三,目前,已进了第三阶段的研究,基于…以钢丝强度差实现寿命差?准则,研究破损安全拉索FSCM。其内容为: FSCM拉索的构成、设计、工况分析及安全性评估;同时研究开发了FSCM的断丝信号控制技术。 图2:广东汕头南澳跨海工程主桥矮塔斜拉桥 将以广东省南澳跨海工程之矮塔斜拉桥(图2) FSCM拉索的工程为背景,阐明FSCM的基本原理及技术

应用。 1FSCM构造与原理 1.1 FSCM的原理 FSCM的技术原理:基于…以强度差,实现寿命差?准则,在通常的拉索中(图3),分别取不同的破断强度的钢绞线(或钢丝)组成,则钢束(丝)间先后破断:先断者警示,立即拆换,实现破损—安全。 如图3左所示,取定图中黄色钢束为F束,兰色的为S束:S束的破断强度较F束高,则在全截面均匀受力时,F束将先行破断--发出警示,设计保证了这时S束一定不断。 图3:FSCM(左)与常规拉索(右)的构造示意 1.2 FSCM的构造 南澳大桥的斜拉索,按施工图设计方案,采用37-Φ15.2环氧喷涂无粘结钢绞线、夹片锚。按FSCM设计时,单根拉索的截面仍然为37-Φ15.2钢绞线,所不同者,为分别取: F束,取6-Φ15.2钢绞线,其破断强度为1670 Mpa,示意如图1左中黄色钢束。 S束,取31-Φ15.2钢绞线,但其破断强度为1960 Mpa,示意如图1左中兰色钢束。 1.3 FSCM的目标 FSCM的根本目标,在于排除拉索骤断毁桥的危险,实现的方式为: 1.3.1断丝不断索,分析和实验均表明,上述之FSCM可实现断丝不断索,断丝警示,拉索随断(F束)随换,断一换一。 勿需如常规拉索的…疑断就换?;勿需…三年一检测、十(或二十)年一拆换?。

火致拉索损伤斜拉桥力学性能分析及评定

目录 目录 摘要……………………………………………………………………………………………………………………………..IAt'stract……………………………………………………………………………………………………………………..II 1.2国内外桥梁火灾概述………………………………………………………………………21.3工程概况……………………………………………………………………………………51.4本文主要研究内容…………………………………………………………………………92斜拉桥力学分析基础与拉索火致损伤模拟…………………………………………………102-1斜拉桥力学分析原理…………………………………………………………………….102.1.1斜拉索垂度效应………………………………………………………………………..102.1.2大变形效应……………………………………………………………………………..122.2斜拉索损伤的模拟……………………………………………………………………….122.2.1斜拉索损伤的因素……………………………………………………………………..122.2.2斜拉索损伤机理………………………………………………………………………..132.2_3拉索火致损伤模拟……………………………………………………………………..152.3本章小结………………………………………………………………………………….183四方台大桥斜拉索火致损伤分析……………………………………………………………193.1有限元分析模型的建立………………………………………………………………….193.1.1四方台有限元模型的建立……………………………………………………………一193.1.2有限元主要构件处理…………………………………………………………………一203.2拉索损伤斜拉桥静力性能分析………………………………………………………….213.2.1斜拉桥结构静力性能分析...……………………………………………………………213.2_2不同斜拉索熔断下主梁线形变化……………………………………………………一243.2.3不同斜拉索熔断下拉索索力变化……………………………………………………..273.2.4拉索不同火损程度下全桥结构静力分析……………………………………………..303.3拉索损伤斜拉桥动力性能分析………………………………………………………….333.3.1斜拉桥自振特性………………………………………………………………………..333.3.2不同拉索火损下全桥结构动力分析…………………………………………………。363.3.3拉索不同火损程度下全桥结构动力分析……………………………………………..463.4小结…………………………………………………………………………………………………………………….494四方台大桥灾后静力性能评定……………………………………………………………。504.1四方台大桥拉索过火后荷载试验……………………………………………………….504.1.1试验目的………………………………………………………………………………..50

杭州湾大桥斜拉索要求

杭州湾跨海大桥斜拉索制作技术要求 中交公路规划设计院 2006年5月

1. 范围 1.1 本技术要求为杭州湾跨海大桥斜拉索制作的依据,是结合杭州湾跨海大桥特点而提出的。其内容包括:所有制作材料的提供,斜拉索的制作、试验、防护和锚具、减震阻尼器的制作以及产品的储存。 1.2 斜拉索结构特征 斜拉索采用直径为7mm的低松弛超高强度镀锌钢丝,钢丝抗拉强度1670MPa,本工程斜拉索为高强度平行钢丝拉索,共分7种规格,钢丝根数分别为109、121、139、151、163、187、199丝,斜拉索断面呈正六边形或缺角六边形紧密排列,经左旋轻度扭绞而成。为确保钢丝防护的可靠性,制索时按图纸规定在其外热挤双层PE防护套,外层PE防护套的颜色根据景观要求选用银灰色。 斜拉索的各项技术标准应符合图纸及国标《斜拉桥热挤聚乙烯高强钢丝拉索技术条件》(GB/T18365-2001)的要求,当国标与本技术要求不一致时,以本技术要求为准。 2. 材料 2.1 盘条 (1) 盘条技术要求 a. 制造钢丝用盘条应采用日本或德国进口盘条,盘条应满足通过拔丝模加工而成的钢丝符合图纸要求。 b. 硫、磷含量各不得超过0.025%,铜含量不得超过0.2%。 c. 制造钢丝用盘条应采用经索氏体化处理后的盘条。 d. 盘条用钢应以平炉、氧气转炉或电炉冶炼,盘条以热轧状态交货。 e. 盘条表面质量 (a) 盘条应将头尾有害缺陷部分切除,盘条的截面不得有分层及夹层。 (b) 盘条表面应光滑,不得有裂纹、折叠、耳子、结疤,不得有夹杂及其他有害缺陷。 f. 每批盘条的检验项目、试验方法及取样部位应按表1的规定执行。 g. 盘条应成批验收,每批由同一炉(罐)号、同一牌号、同一尺寸组成。 h. 特殊要求:根据需方要求,经供需双方协议,可进行化学成分、力学性能试验,各项检验的指标由供需双方协议规定。 (2) 钢丝制造 a. 承包人应编制拉丝工艺设计及钢丝镀锌工艺设计,并在开始生产镀锌钢丝前30d,报请监理工程师审查批准。 b. 盘条加工前应用酸洗方法清除表面的氧化铁皮,再将洗清后的盘条表面

斜拉桥斜拉索施工作业指导书

斜拉桥斜拉索施工作业指导书 1.目的 明确斜拉桥斜拉索施工作业工艺流程、操作要点和相应的工艺、质量标准,指导、规桩基成孔作业。 2.编制依据 (1)《斜拉桥施工图设计-拉索结构施工图设计》; (2)《公路桥涵施工技术规》(JTJ041-2000); (3)《公路斜拉桥设计规》(试行)JTJ027-96; (4)《斜拉桥热挤聚乙烯高强钢丝拉索技术条件》GB/T18635-2001; (5) 斜拉索安装的相关技术资料; (6)《公路斜拉桥设计细则》(JTG/TD65-1-2007)。 3.适用围 适用于斜拉桥高强平行钢丝成品索配合对称悬灌主梁施工的斜拉索施工。 4.技术准备 4.1业准备 (1)开工前组织技术人员认真审核施工设计图纸和有关设计资料,澄清有关技术问题,熟悉规和技术标准,编制斜拉桥斜拉索实施性施工组织设计,制定施工安全保证措施,提出应急预案。 (2)从事起重机械作业、登高架设作业、机动车辆驾驶等特种作业的人员必须持有特种作业证。对所有施工人员进行岗前技术培训,作业前进行技术交底。 4.2外业准备 4.2.1施工前检查工作 (1)对已施工完成的塔柱和主梁段进行检查,并将检查结果报监理工程师进行审核,合格后方能进行斜拉索作业施工。 (2)在锚垫板上放出孔道口十字中心线,以便对中,如若锚头安装偏位会造成锚头外螺纹与孔口磨擦,影响斜拉索拉力精度。 (3)对施工所用的平行钢丝斜拉索、斜拉索锚具生产厂家进行调查,选用供货商。成品索进场后根据质保单进行严格查验,检查锚具,PE在运输过程中是否有损伤,如有损伤,及时采取修理措施并妥善保管;检验并核对成品索合同的质量证明文件等是否齐全完整。对需要进行试验和检验的项目要按规定进行试验和检验,确保工程材料的质量和数量满足设计、规和施工的要求。

(完整版)斜拉桥斜拉索施工方案

斜拉桥斜拉索施工方案 1、概况 该桥斜拉索采用填充型环氧涂层钢绞线斜拉索,塔上设置张拉端,梁下为锚固端;每侧主塔设12对斜拉索,全桥共24对斜拉索,其规格为15-27、15-31、15-34、15-37、15-43、15-55、15-61共7种,斜拉索采用平行钢绞线斜拉索体系。斜拉索由固定端锚具、过渡段、自由段、HDPE护套管、张拉端锚具及索夹、减振器等构成。 2、斜拉索施工工艺 本工程主梁采用前支点挂篮悬臂现浇施工,斜拉索挂索方式与支架现浇和后支点挂篮施工有所不同,需在挂篮上设置索力转换装置。其基本工艺流程详见附《表3 施工工艺框图》。 3、斜拉索施工准备 (1)、施工前准备工作 施工前准备工作包括:施工平台、施工机具的准备;施工人员的工作分配;斜拉索锚具的组装和安装;HDPE外套管的焊接等。 ①、施工平台准备 斜拉索挂索施工前,在主塔和箱梁处设置施工平台,以方便施工人员操作。主塔施工处在塔内、外均设置施工平台,箱梁处施工平台设置在挂篮上。施工平台的搭设满足施工要求,并采取适当的安全措施,确保人员和设备的安全可靠。 ②、施工机具准备 正式施工前,所有施工机具就位。张拉用千斤顶、油泵和传感器经过有资质的第三方进行配套标定。因本工程斜拉索规格较大,采用机械穿索方式进行挂索施工,双塔双索面同时施工时,主要施工设备清单如下。

③、施工人员分配 为有效安排斜拉索施工的各环节,统一协调指挥,斜拉索施工前,需进行人员的工作分配。按本工程双塔双索面斜拉索同时施工的要求,每个索面需进行如下主要人员及岗位配置。 备注:HDPE管焊接和锚具组装安装在挂索前完毕,张拉工和穿索工经过培训后可上岗操作; ④、斜拉索锚具组装和安装 斜拉索各部件单独包装运输,现场组装。 斜拉索挂索前,对锚具进行组装和安装。对于张拉端锚具,将固定端锚板与密封装置组装好,旋上螺母后安装于箱梁上混凝土锚块处,并临时将其与锚垫板固定。对于张拉端锚具,将锚板与密封装置组装好后安装与塔内钢锚箱的锚固端处,并临时将其与锚垫板固定。安装张拉端和固定端锚具时,在锚具上做好标记,确保上下锚具孔位严格对应一致。 ⑤、HDPE管焊接 HDPE外套管为定尺生产,其标准长度一般为6m/根或9m/根。斜拉索挂索施工前,将标准长度的HDPE管焊接成设计长度,采用热熔焊接机进行HDPE 管的焊接。 4、钢绞线穿索张拉 (1)、HDPE管吊装 ①、准备工作 依次将防水罩、延伸管套到HDPE管上,安装临时抱箍,并穿入首根钢绞线。 将带法兰的延伸管套到塔柱端的HDPE外套管上,直至大约1.5m的外套管

35_斜拉桥的正装分析(未闭合配合力功能介绍)

用MIDAS/Civil做斜拉桥正装分析 1. 斜拉桥正装分析和未闭合配合力功能 在斜拉桥设计中,可通过成桥阶段分析得到结构的一些必要数据、拉索的截面和张力等,除此之外斜拉桥还需要进行施工阶段分析。 根据施工方法的不同,斜拉桥的结构体系会发生显著的变化,施工中有可能产生比成桥阶段更不利的结果,所以斜拉桥的设计要做施工阶段分析。按施工的顺序进行分析的方法叫施工阶段的正装分析(Forward Analysis)。一般通过正装分析验算各个施工阶段的产生应力,检查施工方法的可行性,最终找出最佳的施工方法。 进行正装分析比较困难的是如何输入拉索的初始张拉力,为了得到初始张拉力值通常先进行倒拆分析,然后再利用求出的初始张拉力进行正装分析。 采用这种分析方法,工程师普遍会经历的困惑是: 1) 在进行正装分析时可以看出正装和倒拆的张力不闭合。 2) 因为合拢段在倒拆分析和正装分析时的结构体系差异,导致正装分析时得到的最终阶段(成桥阶段)的内力与单独做成桥阶段分析(平衡状态分析)的结果有差异。初始平衡状态分析(成桥阶段分析)时,同时考虑了全部结构的自重、索拉力以及二期荷载的影响。但在正装分析时,合拢之前所有阶段的加劲梁会因为自重、索拉力产生变形,合拢时合拢段只受自身的自重影响而不受其它结构的自重和索拉力的影响。如上所述,结构体系的差异导致了初始平衡状态分析(成桥阶段分析)与正装分析的最终阶段的结果产生了差异。 产生上述张力不闭合的原因,大部分是因为工程师没有完全把握索的基本原理或没有适当的分析软件。实际上是不应该产生内力不闭合的,其理由如下: 1) 从理论上讲,在弹性范围内正装分析和倒拆分析在同一阶段的结果应该相同。 2) 如果在计算时考虑合拢段在合拢时的闭合力,就能够得出与初始平衡状态分析(成桥阶段分析)相同的结果。 从斜拉索的基本原理上看,倒拆分析就是以初始平衡状态(成桥阶段)为参考计算出索的无应力长,再根据结构体系的变化计算索的长度变化,从而得出索的各阶段张力。一个可行的施工阶段设计,其正装分析同样可以以成桥阶段的张力为基础求出索的无应力长,然后考虑各施工阶段的索长变化得出各施工阶段索的张力。目前以上述理论为基础的程序都是大位移分析为主,其原因是悬臂法施工在安装拉索时的实际长度取值是按实际位移计算的。一般来说新安装的构件会沿着之前安装的构件切线方向安装,进行大位移分析时时,因为切线安装产生的假想位移是很容

桥梁拉索体系损伤的检测和监测方法

收稿日期:2005-01-13 作者简介:杨少军(1970-),男,四川省达州市人,本科,工程师1 桥梁拉索体系损伤的检测和监测方法 杨少军 (重庆万桥交通科技发展有限公司,重庆市 400067) 摘 要:结合拉索体系介绍了拉索的检测和监测技术。关键词:拉索;检测;监测;损伤 文章编号:1009-6477(2005)03-0130-05 中图分类号:U443.38 文献标识码:B Te st and Monitoring Methods of Cable Stayed System Trauma s of Bridge s Y ANG Shao 2jun 斜拉桥是二战后出现的新型桥型,由于其外型美观,施工方便和造价经济,现已成为大跨度桥梁的主要桥型。我国现已建大量的斜拉桥和悬索桥,仅近10年内就有超过20余座跨径400m 以上的斜拉桥相继建成,更有一批跨径处于世界前列的斜拉桥在建设或筹建中。 缆索结构体系是大跨径桥梁的主要承重构件,其安全性和耐久性对桥梁的正常使用和整体安全是极为重要的。由于缆索结构体系是缆索承重桥梁的生命线,一旦因耐久性和安全性不足出现病害与劣化,其承接能力丧失会导致公路桥梁垮塌的恶性事故,造成恶劣的社会影响和巨大的经济损失。目前已建成且在运营中的多座桥梁已发生过大的振动、严重的锈蚀或断索事故,如广州海印大桥断索,重庆綦江彩虹桥整体垮塌,四川宜宾小南门大桥吊杆断裂等。还有一些桥梁已全桥换索或正准备换索,如济南黄河桥、四川犍为桥、上海恒丰路斜拉桥、广东九江大桥、云南三达地桥等等。桥梁缆索体系耐久性和安全性不足的问题已引起桥梁工程界的高度关注,并积极在探索研究解决之中。如何监测和评价斜拉桥拉索和吊索(杆)的安全性、耐久性,已成为主管部门和工程技术人员十分关注的问题。 拉索体系的损伤主要有锈蚀、疲劳断丝、滑丝和断裂等几种,对它们的检测与监测的技术也主要是针对上述损伤形式开展的。下面分别就目前通用的几种检测方法做一个简单的介绍。 1 索体损伤检测技术  1.1 人工检测法 长期以来,人们对于大跨径桥的索体的检测主要采取人工检测,主要是检查索体是否遭受腐蚀,各紧固件是否松动,定期对索体各部件涂刷防护漆,对已锈蚀的及时除锈,清查索腐蚀的钢丝数量,判断其腐蚀程度。对于第三代缆索体系(PE 防护拉索)目前采用目测方法,先观测护套的表面,然后再根据表面的情况确定是否需要打开锚固区或在某些部位凿开护套,使钢丝外露以了解锈蚀、断丝等情况,在必要时对部分钢丝取样,并进行相关的物理和力学试验,以确定缆索的状态。桥梁缆索结构常规检测的实际操作情况如图1所示。 用常规检测方法主要是根据拉索腐蚀的程度等级来提出是否需要更换此索,其依据见表1或者根据建设部行业标准《城市桥梁养护技术规范C JJ 99-2003》对缆索的安全性方面提出了定量的指标:以断丝面积2%或钢丝总面积损失10%作为斜拉桥拉索是否需要换索的阈值;对于悬索桥吊杆的更换,则只规定对“需要更换者”,应进行力学分析、制定更换方案。 1.2 磁漏检测法 无损检测对于构件锈蚀、裂纹等缺陷的检测其方法日趋成熟,在众多的无损检测方法中磁检测原理是最佳的无损检测方法之一。而磁漏法是无损检 公路交通技术 2005年6月 第3期 T echnology of Highway and Transport Jun.2005 No.3

【桥梁方案】斜拉索施工方案

斜拉索施工方案 拉索由锚固段+过渡段+自由段+塔柱内段+自由段+过渡段+锚固段构成(见结构示意图(二)、(三))。 1、锚固段+过渡段组成——锚板、夹片、螺母、支承筒、密封装置、承压板、预埋管、减振器和防松装置等组成。 1.1在锚固段张拉锚具中,夹片、锚板、支承筒、螺母是加工上主要控制件,也是结构上的主要受力件。 1.2密封装置:其主要起防止漏浆、防水的密封作用。它由隔板、O型密封圈、内外密封板、密封圈构成。 1.3预埋管、支承筒在体系中起承力作用,预埋管除起锚固区的支承筒空间外,还由于它和砼结构接触面大而比承压板传力更大,管内应该有排水孔道。 1.4减振器:对索体的横向振动起减振作用,从而提高锚固效率及索整体寿命而不影响调索。 1.5防松装置:主要由锁紧螺母和压板构成,在钢绞线单根张拉结束后整体调索之前安装。对夹片起防松、挡护作用。 2自由段组成——由带HDPE护套的镀锌钢绞线、索夹及外护套防护HDPE套管构成。 2.1钢绞线为拉索的传力单元。 2.2管口索夹因受力大而采用钢质索夹。它是在紧索完成后安装的。 2.3外防护HDPE管:主要对钢绞线起防护作用,本工程采用整体圆式段管为7米的HDPE套管。其连接方式采用发热式工具对焊。

3塔柱内段组成——由内管、外管、塔顶锚碇板和抗滑索夹组成。外管埋设于砼塔内,内管置于外管内,斜拉索穿过内管。在两侧斜拉索出口处设抗滑索夹,以防止斜拉索相对滑动。 施工工艺及方案 1、工艺流程

2、下料及运输 2.1下料场地 根据施工现场及拉索钢绞线下料长度等具体情况,下料无法在桥面进行。所有钢绞线必须在桥址附近地面下料,下料场地要求清理平整、无堆积杂物且坚实。占地面积约为8×200m,,下料时应保护钢绞线HDPE护套不受损伤。 2.2下料用机具设备及辅助材料(见一览表)

斜拉桥_拉索初应变

河南科技大学 课程设计说明书 课程名称力学软件应用 题目考虑初始预应变的无背索斜 拉桥自重状态下的变形及应力 分析 院系土木工程 班级工力111 学生姓名 指导教师 日期2017年09月18日

目录 第一章选题背景 (1) 1.1无背索斜拉桥介绍及意义 (1) 1.2 课程设计内容和要求 (1) 1.3 建模目的及意义 (4) 第二章建模与求解 (5) 2.1 建模步骤 (5) 2.2 划分网格 (10) 2.3 设置约束 (10) 2.4 加载并求解 (11) 第三章结果分析 (13) 3.1自重下该桥梁变形 (13) 3.2 自重下该桥梁应变 (14) 第四章结论与总结 (15)

第一章选题背景 1.1无背索斜拉桥介绍及意义 斜拉桥又称斜张桥,是将主梁用许多拉索直接拉在桥塔上的一种桥梁,是由承压的塔、受拉的索和承弯的梁体组合起来的一种结构体系。其可看作是拉索代替支墩的多跨弹性支承连续梁。其可使梁体内弯矩减小,降低建筑高度,减轻了结构重量,节省了材料。斜拉桥主要由索塔、主梁、斜拉索组成。中国至今已建成各种类型的斜拉桥100多座,其中有52座跨径大于200米。20世纪80年代末,我国在总结加拿大安那西斯桥的经验基础上,1991年建成了上海南浦大桥(主跨为423米的结合梁斜拉桥),开创了中国修建400米以上大跨度斜拉桥的先河。我国已成为拥有斜拉桥最多的国家。 1.2 课程设计内容和要求 设计内容:利用ANSYS有限元分析软件对给定无背索斜拉桥进行应力和变形分析。 技术条件:无背索斜拉桥尺寸及计算参数见附件。 要求:建立有限元模型,简述建模过程主要方法,列出关键数据列表;计算在给定的约束条件下各数据点对应的位移和应力图,并对计算结果做出分析说明。 问题介绍如下: 无背索斜拉桥的尺寸及计算参数 如图所示无背索斜拉桥梁模型,利用这一模型完成指定结构分析。

桥梁吊杆及拉索的健康诊断_汤国栋

文章编号:0451-0712(2002)09-0036-05 中图分类号:U443.36 文献标识码:B 桥梁吊杆及拉索的健康诊断 汤国栋1,杨 弘2,朱正刚3,陈 兵1,梁利辉4 (1.四川大学 成都市 610000;2.重庆市政设计研究院;3.重庆大学 重庆市 400000;4.中国路桥集团公路一局) 摘 要:桥梁吊杆及拉索的健康隐患危及安全,阐述了健康诊断的含义和诊断实例,进而对拱桥吊杆的若干问题,表达了研究见解。 关键词:拱桥;吊杆;健康诊断 拱桥吊杆在结构功能、结构构造及荷载行为上,与斜拉桥的拉索,具有很大的相似性和互通性。这里的论述以拱桥吊杆为主,同时在若干方面二者都将涉及。 我国是一个桥梁大国,因此既有的桥梁吊杆及拉索的安全性怎样,存在什么隐患;应该如何养护、监控;吊杆设计中存在哪些问题等等,应引起充分重视。 在这一形势的驱动下,对中、下承式拱桥进行了初步调查:全国带吊杆的拱桥总数达70座以上,四川省及重庆地区占了30座左右;其中多为平行单吊杆体系;早期以采用简单的P.C夹片锚具为主,最近逐渐采用了镦头类锚具(HiAm)。 吊杆、斜缆断损和换索的事例,国内外均不罕见[16],例如: 德国Kohibrand Estuary桥,建成3年后换索,耗资6000万美元,为原造价的4倍; 美国Pasco-Kennew ick桥,建成仅3~5年,拉索失效拆换,原计划寿命为25年; 著名的委内瑞拉Maracaibo桥,使用16年后,斜缆失效,全部换索,耗资达5000万美元; 广州海印斜拉桥,使用6年后部分换索; 山东济南黄河桥,建成13年后换索; 四川宜宾南门中承式R.C肋拱桥,使用10年后换索。 无论斜拉桥和带吊杆的拱桥,换索费用都在原桥总造价的一倍以上,为原吊杆造价的数十倍;工程实例表明,拉索、吊杆的寿命一般仅3~16年。严峻的事例,使人们对以下问题提出了质疑: 吊杆的荷载行为、破损原因,以及设计准则,可靠性判据,适用规范等; 吊杆的布置、构造、防护及拆换; 既有拱桥吊杆的健康检测、诊断、剩余寿命; 确保大桥安全服役的健康监控。 考察发达国家和地区,关于中(下)承式拱桥及吊杆体系已有相当长时间和较深入的研究和实践。20世纪80年代,日本在跨径为60~100m,乃至200m左右的桥梁,广泛使用中(下)承式提篮拱,其中80%以上为交叉的双吊杆,即使少量采用平行吊杆,也是双吊杆;平行单吊杆几乎没有。对此,挪威、德国以及前苏联[16]也有广泛的研究。 基于“破损安全”原则,考察单吊杆体系存在的危险:一根失效,殃及全桥,拆换不易,费用很高。 关于设计安全系数的取值,国内无专门的直接规范,大多借鉴斜拉桥或吊桥取定,对此国内外大致相同。但关于荷载效应中的冲击系数、车道折减,钢丝束设计强度的有效系数,特别是疲劳寿命等,国内多未考虑,于是吊杆的安全度,实际上比设计判据要小得多。 在我国,当前最为迫切的现实问题是:面对正在服役的数十乃至成百座带吊杆和拉索的桥梁,数以千计的吊杆、拉索,如何确保安全? 1 桥梁的健康诊断与修复工程 在我国各条公路上,分布着数量巨大、结构复杂的现代结构桥梁,要求其日夜畅通。保证结构的健康服役,是十分重要和迫切的问题。 1.1 健康诊断技术  公路 2002年9月 第9期 HIG HW A Y Sep.2002 N o.9

相关文档
最新文档