工程热力学概念.

工程热力学概念.
工程热力学概念.

绪论

工程热力学与传热学分两部分,热力学与传热学,这两部分都是与热有关的学科。

我们先讲热力学,第二部分再讲传热学。

热力学中热指的是热能,力在我们工程热力学中主要指的是用它来做功,也就是机械能,简单地理解工程热力学主要研究的是热能和机械能之间的相互转化。也就是说由热产生力,进而对物体做功的过程,所以热力学主要研究的是热能和机械能之间的相互转化。

举个例子:比如汽车的发动机(内燃机),它是利用燃料(汽油)在汽缸中燃烧,燃烧后得到高温高压的烟气,烟气此时温度高,压力高,具有热能,那么高压的燃气会推动气缸的活塞做水平往复运动,活塞又通过曲柄连杆机构把水平往复运动转化成圆周运动,进而带动汽车运动,这就是一个热力学的例子。

工程热力学的研究重点是热能与机械能之间的转化规律,那么下面我们来详细的看一下工程热力学的研究内容:

①研究热力学中的一些基本概念和基本定律。基本概念像热力学系统、热力学状态、平衡过程、可逆过程等。基本定律有热力学第一定律和热力学第二定律,第一定律和第二定律是工程热力学的理论基础,其中热力学第一定律主要研究热能与机械能之间转化时的数量关系,热力学第二定律主要研究热能和机械能转换时的方向、条件、限度问题。

②研究工质的性质。我们热能和机械能之间的转化需要依靠一定的工作物质才能实现,因此,我们要研究热能和机械能之间的相互转化,我们首先要研实现这一工作的工质的性质。

③研究工质参与下,遵循热力学第一定律和第二定律在热力设备中进行的实际热力过程。

第一章基本概念

在我们研究工程热力学的过程中会用到许多术语,如工质、热力学系统、热力学状态、平衡状态、状态参数等。因此,要学好工程热力学我们首先要知道这些术语指的是什么。

我们先来看第一个概念:工质

一、工质

我们前面讲了,工程热力学是研究热能和机械能之间的相互转化,那么工质就是用来实现热能和机械能之间相互转化的工作物质。

工质大多数情况下只是在能量转化的过程中起媒介的作用,而不会直接参与能量的转化。像我们化学中学到的催化剂一样,工质这一物质本身并不发生化学性质的变化,发生变化的是工质的热力学状态(物理性质),像工质的温度、压力、体积等。也就是说工质在能量转化过程中起媒介的作用。

举个例子:

①就是前面我们举的汽车发动机。

这里面的工质是汽油燃烧后所产生的烟气,最初,烟气的温度很高,压力很高,它所具有的是热能,烟气在高温高压下会膨胀,对外做功,把它所具有的热能转化为机械能,并传递给汽车,烟气膨胀后,温度和压力都会降低,在这个能量转化过程中,工质烟气的化学性质并没有发生变化,工质还是工质,发生变化的仅仅是工质所呈现出来的状态,最初是高温高压,膨胀之后变为低温低压。

②锅炉中的蒸汽动力循环装置

在这个装置中,工质是水蒸气,水进入锅炉中,通过锅炉加热后,变成水蒸气,水蒸气推动汽轮机的叶轮旋转做功,做功后变成液体水,水再送回锅炉中加热循环使用。这个装置中就是通过工质——水的状态的不断变化将热能转化为机械能的,工质水本身并没有发生变化,水还是水,不管是以液体状态存在还是以蒸汽状态存在,发生变化的是水的物理状态,像水的温度、压力等。

综上:工质是实现热能和机械能之间相互转化的工作物质,是媒介物质。

二、热力学系统

1.热力学系统的概念

简单的说,热力学系统是认为地划分出来作为热力学研究对象的系统,也就是我们的研究对象,简称热力系。

热力系可以是一种真实的物质,如泵中被压缩的水,也可以是一个真实的设备,如锅炉,也可以是一种抽象出来的或假象的热力学模型。

2.边界与外界

热力学系统是人们在进行热力分析时,为方便起见,把研究对象从周围物体中分离出来的。那么系统周围的物体称为外界,热力系统与外界的分界面叫做边界。

外界可以是自然环境,也可以是另一个热力系统。自然环境是一类特殊的外界,它所经历的过程是可逆的,而且本身的性质不变。

边界可以是真实的,也可以是假想的,可以是固定不变的,也可以是运动可变的。

比如:若取前面我们讲的汽轮机中的工质——水蒸气作为热力学系统时,汽轮机的汽缸外壁是一个实际的边界,而水蒸气的进口和出口则是一个假想的虚拟的边界。

再举一个例子:活塞式压缩机的汽缸活塞系统,当我们取汽缸中的工质为热力系时,则边界的一部分——汽缸壁面是固定的,边界的另一部分——活塞顶就是运动的。

(a)汽轮机(b)活塞式压缩机汽缸

3.热力学系统的分类

通常情况下,“热力学系统”与“外界”之间会处于相互作用之中,他们通过“边界”相互交换能量或物质。我们根据两者之间相互作用的不同,把热力学系统分为几种:

(1)闭口系统

热力系(即研究对象)与外界无质量交换时,此系统称为闭口系统。闭口系统内的质量是保持恒定不变的,因此又叫做控制质量。如前图(b)所示的汽缸,热力学系统只通过汽缸壁和活塞杆与外界发生热和功的交换,汽缸中工质的质量

在能量转化过程中是保持不变的。此系统为闭口系统。

(2)开口系统

热力系通过边界与外界之间既有能量交换又有物质交换,则该热力系称为开口系统。如前图(a)所示的汽轮机。

(3)绝热系统

热力系与外界之间没有能量交换(可以有质量交换,也可以有其他形式的能量交换)。

(4)孤立系统

热力系与外界之间既无能量交换也无质量交换。

由于自然界中物体和物体之间是相互联系、相互作用的,而且也不存在绝对的绝热物质,因此,绝对的孤立系统和绝热系统是不存在的。只有系统与外界之间的热量和质量交换无限微弱或影响可忽略不计时,可简化处理,将热力系视为孤立系统或绝热系统。

三、热力学状态

1.热力学状态的概念

工质在热力设备中,必须通过吸热、膨胀、排热等过程才能完成将热能转化为机械能的工作,在这一转化过程中,工质的P、T、V等物理特性随时都在发生变化。我们把工质在热力变化过程中的某一瞬间所呈现的宏观物理状况成为工质的热力学状态,简称状态。

下面我们介绍一个热力学系统中比较特殊的一个状态。

2.平衡状态

一个热力学系统,如果在不受外界影响的条件下,系统的状态能够始终保持不变,那么我们就说该系统处于热力平衡状态,简称平衡状态。

热力平衡包含两方面:热的平衡和力的平衡。

①热的平衡

当热力系内部各点温度均匀一致且等于外界温度时,组成热力系统的各部分之间以及热力系统与环境之间没有热量的传递,那么系统就处于热平衡状态。

②力的平衡

当热力系各部分之间没有相对位移(即内部无不平衡力,且作用在边界上的

力和外力达到平衡),则该热力系处于力的平衡状态。

同时具备了热的平衡和力的平衡的系统就处于热力平衡状态。

平衡状态的特点:

①处于热力平衡状态的系统,只要不受外界影响,他的状态就不会随时间而改变,即平衡状态不会自发被破坏。

②处于不平衡状态的系统,由于各部分之间的传热和位移,其状态将随时间而改变,随着状态的不断变化,传热和位移也会逐渐减弱,直到完全停止,此时会达到另一个新的平衡状态,所以我们说,处于不平衡状态的系统在没有外界影响的情况下总会自发地趋于平衡状态。

我们一般只对平衡状态进行分析研究,不涉及时间因素。

3.状态参数

即用来描述状态的参数。

工质所处的状态常用一些宏观物理量来描述,这种用来描述工质所处状态的宏观物理量称为状态参数。

状态参数和热力学状态是一一对应的,热力学状态一定,则状态参数就确定了,工质的热力学状态发生变化,那么状态参数也会随之发生变化。

状态参数的属性:

①状态参数只取决于状态,而与如何到达这一状态的途径无关。

如图:经过路径①到达状态2,与经过路径②到达状态2,我们表示热力学状态2所用的状态参数的数值是一样的。都是P2,v2压力是一定的,比容也是一定的e。

这类似于我们高中时学过的重力做功,只取决于前后的高度差,而与途径无关。举个例子:第一天早上吃牛肉面,心情很好,第二天早上吃的包子,和昨天心情一样好,那么这两天早上的心情状态时一样的,那么用来表示这两

天心情的状态参数,比如心情指数等,也都是一样的,与吃的包子还是吃的牛肉面无关,即与如何到达这一状态的路径无关。

4.基本状态参数

研究热力过程时,常用到的状态参数有六个,压力P,温度T,体积V,热力学能(内能)U,焓H,熵S。

这六个状态参数可以有两种分类方法:

①根据状态参数与质量的关系分为强度量和广延量

强度量:凡是与质量无关的量称为强度量,如P,T,1kg物体和2kg物体的温度是一样的,不随质量的不同而变化。强度量不具有加和性。

广延量:凡是与质量成比例的量成为广延量,如V,U,H,S,1kg气体的体积和2kg气体的体积是不一样的,体积是随质量是成比例关系增加的。广延量具有加和性。

我们还有一种参数,叫做比参数,比参数是由广延量除以质量得到的,如V/m得到比体积,U/m得到比内能,另外还有比焓、比熵等。即单位工质的体积、内能、焓、熵。比参数就属于强度量了,不具有加和性。

通常我们将热力系的广延参数用大写字母表示,其比参数用小写字母表示。如V→v,U→u,H→h,S→s

②第二种分类方法,把六个状态参数分为基本状态参数和导出状态参数

基本状态参数:六个状态参数中,P、T、V三个量可直接用仪器测量,称为基本状态参数。

导出状态参数:其余三个,U、H、S需利用前面三个基本状态参数间接推导得出,称为导出状态参数。

下面我们先介绍三个基本状态参数P、T、V,其他三个状态参数以后再介绍。

四、基本状态参数

1.温度

温度我们都很熟悉,是描述物体冷热状况的物理量,这是我们从宏观上的说法,从微观上看,温度标志着物质内部分子热运动的剧烈程度。

两个物体接触时,通过接触面上分子的碰撞,进行动能交换,这种微观

的动能交换就是宏观的热量交换。

为了给温度确定数值,需要建立温标,也就是说要确定这么热的程度用多大数值表示,即建立温度标准。

国际上规定,将热力学温标作为测量温度的最基本温标,热力学温标的温度单位是开尔文,符号K(开)。热力学温标的标准规定:把纯水的三相点温度,即水的气、液、固三相平衡共存时的温度作为基准点,并规定为273.16K。

热力学温标所表示的温度称为绝对温度,我们用符号T表示,除热力学温标外,在日常生活中我们常用的是摄氏温标,摄氏温标的温度单位是摄氏度,符号℃。摄氏温标的标准规定:以标准大气压下水的冰点为零点,水的沸点为100,中间平均划分为100等份而得出。

摄氏温标表示的温度我们用t表示。摄氏温标和热力学温标的关系为:t=T-273.15,T=t+273.15

即0℃→273.15K,100℃→373.15K

水的冰点为0℃,水的三相点为273.16K,即0.01℃,即水的三相点比冰点高0.01℃。

从上面热力学温标和摄氏温标的关系我们可以看出,两者并没有本质上的差别,仅仅是所选取的零点不同而已。像我们测量高度一样,所选起点不一样,测量的数值也不一样。

[知识]环境中所存在的物体,能够达到的最低温度只能是无限接近0K,即-273.15℃,即任何物体的温度都不会低于-273.15℃,也就是说自然界的物体都是绝对温度高于0K的物体。

2.压力P

热力学中我们所讲的压力等同于高中物理中所学的压强,即垂直作用于单位面积上的力,用符号P表示。对气体来说,压力是大量分子向容器壁撞击的平均结果。

压力的测量原理:

压力的测量采用压力计,利用力的平衡原理测取压差值

由于压力计本身处在大气压力作用下,所以我们用压力计所测得的压力是工质真实压力与环境介质压力之差,叫做表压或真空度。都是一个相对压

力。

当气体的真实压力>大气压力时,我们称为表压,当真实压力<大气压力时,我们称为真空度。

表压:Pg;真空度:Pv;绝对压力:P;大气压力:Pb

表压时:Pg=P-pb

真空度时:Pv=Pb-P

由于大气压力Pb是由地面上空气柱的重量造成的,它会随着各地的维度、高度和气候条件而不同,因此,即使工质的绝对压力不变,由于地点不同,所测得的表压力和真空度仍然会有所不同,所以为了在同一标准下比较两工质的压力,我们要用绝对压力来表示(基准都是绝对真空)。

所以用压力表测量时,必须同时测定当地的大气压Pb,用气压计来测量。若绝对压力特别大,则我们可以把大气压力视为常数。

通常情况下,我们能测量得到的是Pg或Pv,而我们在计算及应用时,用到的是真实压力P,

∴P=Pb+Pg

或P=Pb-Pv

3.比容与密度

比容:单位质量工质所占的空间

v=V/m(m3/kg)

密度:单位体积工质的质量

ρ= m / V(kg / m3)

ρ?

v=1

重度:单位体积工质的重量

γ= G / V(N / m3)

一、状态方程

经验表明,表示系统所处状态的这些状态参数之间是相互联系的,并不是各自独立的。

当一定量的气体在固定容积的容器内加热时,体积会保持不变,而温度会升高,压力也会随温度的升高而增大,即气体的体积保持不变时,温度与压力成正比关系。

反之,如果保持压力不变,容器是体积可变的容器,对气体加热,那么随温度的升高,体积也会变大,即气体的压力保持不变时,温度与压力成正比关系。

而如果体积和压力都保持不变,则温度也就只能有一个确定的数值,若想对其加热,让温度升高,则体积和压力也一定会变化,不会继续保持不变的。

即PVT三个参数之间是相互联系的,并且他们之间的相互联系还服从一定的关系式,状态参数之间的这个关系式叫做状态方程。

即:f(P,v,T)=0

或P=f(v,T)

v=f(p,T)

T=f(P,v)

综上,状态方程就是用来描述处于平衡状态的系统,状态参数之间相互关系的方程式。

二、状态参数坐标图

根据状态方程的讲解,我们知道,对于简单可压缩的平衡系统,由两个参数就可以确定系统的状态,比如,P,v一定,则T就可知,P,T一定,则v 也可以确定,并且系统的热力学状态就一定。

那么我们知道,用两个参数就可以确定系统的状态,所以我们将两个参数表在平面直角坐标系中,用来描述系统所处的热力学状态,并用来分析状态到状态之间的变化过程。

这种由热力系状态参数所组成的坐标图就是状态参数坐标图。在我们热力学中,长采用的状态参数坐标图有压容图(P-v)、温熵图(T-s)和焓熵图

(h-s)。

注:只有平衡状态才能用状态参数坐标图上的一点来表示。

三、热力过程

一个处于平衡状态的热力系,如果没有外界影响,必将永远保持其平衡状态,这时热力系具有确定的状态参数,若热力系受到外界影响,与外界发生了能量传递,如吸热,就会使热力系偏离平衡状态而发生一系列变化,直至达到一个新的平衡状态,变化停止。

这种由于热力系与外界相互作用而引起的热力系由一个平衡状态经过连续的中间状态变化到一个新的平衡状态的全过程,称为热力过程。

下面我们主要讲几个热力过程中的特殊过程。

1.平衡过程

平衡过程指的是,在变化过程中,热力系在任何时刻都处于力的平衡和热的平衡,任何时刻系统内部都处处均匀一致。即由无数个平衡状态连在一起组成的变化过程,因此,可连成实线。

但平衡过程实际上是一个理想过程,现实当中是不存在这样的过程的。因为我们知道,系统由一个状态变化到另一个状态,这个过程得以实现的推动力是“不平衡”,即只有系统内部或系统与外界之间存在不平衡才会进行热力过程。若系统处于平衡状态,没有不平衡的存在,则系统的状态不会发生变化,会一直待在原地不动。

也就是说平衡过程是个理想过程,是认为想象出来的,现实中不存在,所以我们又提出了一个“准静态过程”。

2.准静态过程

我们把热力过程中一系列无限接近平衡状态的状态组合成的过程称为准静态过程。

准静态过程中,每一个微小过程与原平衡状态都只偏离无限小,并且在每次微小变化后及时地建立了新的平衡。

准静态过程的特点:

○1在过程中,热力系内部不断存在力的平衡和热的平衡,或平衡被破坏的程度无限小。

○2过程进行的无限慢,有足够的时间及时恢复平衡。我们把这个时间成为弛豫时间。即弛豫时间短。

○3在分析问题时,我们可以忽略其对平衡状态的偏离,中间状态仍以平衡态确定,因此,准静态过程在坐标图上可以用连续的实线描述。

3.实际热力过程-非平衡过程

通常情况下,热力系的吸热或放热是在温差下进行的,做机械功是在压差下进行的,显然,一切实际的热力过程都是热力系与外界之间的不平衡势差(温差、压差)作用的结果。

不平衡过程的中间状态的状态参数并不确定,不是平衡状态,不能在坐标图上用实点表示,因此,不平衡的过程也无法用一连续实线来表示。但为了方便说明问题,我们可以用一虚线来表示。

4.可逆过程与不可逆过程

可逆过程指当完成了某一过程后,如果能使工质沿相同的路径逆行而恢复到原来的状态,并使相互作用中所涉及的外界也恢复到原来状态,而不留下任何改变,则这一过程就叫做可逆过程,不满足这些条件的过程为不可逆过程。

即可逆过程主要有两个特点:

○1能沿原路返回

○2系统和外界都恢复初态,不留下任何变化

要使过程满足这两个特点,则过程在进行时需满足两个条件:

○1过程是(准)平衡过程

○2过程中无摩擦,即无任何耗散效应

可逆过程的基本特征是:过程进行的结果不给热力系及外界留下任何影响。

5.可逆过程、平衡过程、准静态过程的联系与区别

平衡过程和可逆过程两个概念并无实质上的区别,在热力学范围内两者是等效的。

而准静态过程和可逆过程:

共同点:

○1都满足平衡条件,过程中无推动力(即无压差和温差)

○2都可以在状态参数坐标图上表示

不同点:

○1准平衡过程只要求热力系内部维持平衡,无内摩擦

○2可逆过程还必须无外部摩擦,否则热力系将产生能量耗散,致使过程不能无条件地逆向复原。

所以,可逆过程必然是一个无能量耗散的准平衡过程,显然,可逆过程是一个完美的理想过程,现实中是不可能进行的,但可逆过程仍然具有十分重要的实际意义,作为研究实际过程的基础。

理想气体与实际气体

我们工程热力徐研究的主要内容是如何把工质的热能转变为能够被我们利用的机械能。

热能和机械能之间的转化需要通过工质的膨胀或压缩过程实现,因此我们所采用的工作物质—工质,应具有显著的涨缩能力,即其体积随温度、压力能有较大的变化。物质的三态:气、液、固中只有气态具有这一特性。因而实现热能和机械能转化的这些工质一般都采用气态物质。

一、理想气体的概念

理想气体是一种实际上并不存在的假想气体,理想气体有两点假设:

○1分子是些弹性的,不具体积的质点

○2分子间没有相互作用力

在这两点假设条件下,气体分子的运动规律极大地简化了,分子之间的碰撞为直线运动,且为弹性碰撞,无动能损失。

我们都知道,若组成系统的气体的压力和密度较小,那么系统内分子间的平均距离就会增大,当气体的压力和密度降低到一定程度时,即平均距离大到一定程度时,气体分子本身所占的体积就会远远小于分子所活动的空间,分子间平均距离远到分子间作用力极其微弱的状态时,就很接近理想气体。

因此理想气体是气体压力趋近于零,比容趋近于无穷大时的极限状态。

自然界中完全符合理想气体假设条件的气体是不存在的。但在我们工程中常用到的氧气、氮气、氢气、CO等,以及混合气体、燃气烟气等工质,在通常使用的温度、压力下都可以作为理想气体进行处理,简化计算,误差一般都在工程计算允许的精度范围之内。

但对于那些离液态不远的气态物质,如蒸汽动力装置中采用的工质水蒸汽,制冷装置的氟利昂蒸汽,氨蒸汽等,它们更接近液态,与理想气体性质差别较大,分子本身的体积以及分子与分子之间的作用力都不可忽略,因此它们不能当做理想气体处理,这些工质我们称为实际气体。

我们这门课主要研究理想气体。

二、理想气体状态方程

理想气体状态方程是用来揭示平衡状态下气体的压力、温度、比容之间相互

关系的方程式,它有几种表达方式,几种表达方式之间是等价的。

112212P v P v Pv T T T

const ==???== 即对于一定的系统,只要没有物质交换,不管工质的状态怎么变,他的Pv 乘积与T 的比值始终是一个常数。

或表示成

Pv RT =

其中R 称为气体常数,它是一个只与气体种类有关,而与气体所处状态无关的物理量,即只要气体一定了,不管状态怎么变,PVT 取何值,R 都是一定的,是常数。

状态方程有很多不同的表达形式,最基本的就是我们前面讲的两种,在后面我们还会详细介绍其他形式的状态方程。

下面我们先讲一下几个概念。

三、物质的量、摩尔质量、摩尔容积

1.物质的量

物质的量与我们比较熟悉的“质量”是一样的,都表示物质的多少,物质的量的单位是mol 。

1mol 指的是物质中所包含的的基本单元数与0.012kg 碳12的原子数相同时,这些物质的量就是1mol 。

0.012kg 碳12所包含的的原子数为6.0225×1023个。

基本单元可以是原子、分子、离子、电子以及其他微粒。在我们热力学中的工质是气体,那这个基本单元是分子。

也就是说,在热力学中,任何物质6.0225×1023个分子构成的物质的量就是1mol ,反过来,1mol 任何气体的分子数为6.0225×1023个。

物质的量用符号n 表示,单位是mol

2.摩尔质量

1mol 物质所具有的质量称为摩尔质量(即6.0225×1023个分子的质量)。用符号M 表示,单位是kg/mol 。试验表明:1mol 物质的质量,若以g 为单位时,数值上恰好等于该物质的相对分子质量。

若摩尔质量以kg/mol 表示时,应等于相对分子质量×10-3。

物质的量n 与摩尔质量M 之间的关系:

m n M

= 3.摩尔容积

1mol 物质所具有的体积。我们工程热力学中常用到的工质是气体,所以摩尔容积指的是1mol 气体的体积。

符号:Vm ,单位:m 3/mol 。

m M V ρ=

四、气体常数与通用气体常数

前面我们讲了理想气体状态方程式Pv=RT ,其中的R 称为气体常数,它是一个与气体所处状态无关的常数,但它却是与气体的种类有关,即对不同的气体,他们的气体常数是不一样的。

这样在计算时,需要查得不同气体各自的气体常数,这是非常麻烦的,但经过研究发现,我们可由阿伏伽德罗定律推导出一个适合于各种气体的一个常数Rm ,我们称为通用气体常数或摩尔气体常数。并且可以得出气体常数R 与通用气体常数Rm 之间的关系。

m R R M

= Rm 是常数,即与气体所处状态无关,又与气体种类无关。

由于Rm 与气体种类以及所处的状态无关,因此我们可以用任意气体在任一状态下的参数来确定。

我们用一个特殊状态—标准状态来确定,可以得出Rm 的数值。

Rm=8.314J/(mol.K) 所以任意气体的气体常数8.314m R R M M

== J/(kg.K) 因此,理想气体状态方程有不同的表达形式:

112212P v P v Pv T T T

const ==???== 1kg :Pv RT =

工程热力学与传热学课程总结与体会

工程热力学与传热学课 程总结与体会 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

工程热力学与传热学 题目:工程热力学与传热学课程总结与体 会 院系:水利建筑工程学院给排水科学与工 程 班级:给排水科学与工程一班 姓名:张琦文 指导老师:姚雪东 日期:2016年5月1日 认识看法地位作用存在问题解决措施未来 发展展望 传热学在高新技术领域中的应用 摘要: 热传递现象无时无处不在【2】它的影响几乎遍及现代所有的工业部门【1】也渗透到农业、林业等许多技术部门中。本文介绍了航空航天、核能、微电子、材料、生物

医学工程、环境工程、新能源以及农业工程等诸多高新技术领域在不同程度上应用传热研究的最新成果。可以说除了极个别的情况以外,很难发现一个行业、部门或者工业过程和传热完全没有任何关系。不仅传统工业领域,像能源动力、冶金、化工、交通、建筑建材、机械以及食品、轻工、纺织、医药等要用到许多传热学的有关知识【1】而且诸如航空航天、核能、微电子、材料、生物医学工程、环境工程、新能源以及农业工程等很多高新技术领域也都在不同程度上有赖于应用传热研究的最新成果,并涌现出像相变与多相流传热、(超)低温传热、微尺度传热、生物传热等许多交叉分支学科。在某些环节上,传热技术及相关材料设备的研制开发甚至成为整个系统成败的关键因素。 前言:通过对传热学这门课程的学习,了解了传热的基本知识和理论。发现传热学是一门基础学科应用非常广泛,它会解决许许多多的实际问题更是与机械制造这门学科息息相关。传热学是研究由温度差异引起的热量传递过程的科学。传热现象在我们的日常生活中司空见惯。早在人类文明之初人们就学会了烧火取暖。随着工业革命的到来,蒸汽机、内燃机等热动力机械相继出现,传热研究更是得到了飞速的发展,被广泛地应用于工农业生产与人们的日常生活之中。当今世界国与国之间的竞争是经济竞争,而伴随着经济的高速发展也带来了资源、人口与环境等重大国

工程热力学基本概念及重要公式

第一章基本概念 1.基本概念 热力系统:用界面将所要研究的对象与周围环境分隔开来,这种人为分隔的研究对象,称为热力系统,简称系统。 边界:分隔系统与外界的分界面,称为边界。 外界:边界以外与系统相互作用的物体,称为外界或环境。 闭口系统:没有物质穿过边界的系统称为闭口系统,也称控制质量。 开口系统:有物质流穿过边界的系统称为开口系统,又称控制体积,简称控制体,其界面称为控制界面。 绝热系统:系统与外界之间没有热量传递,称为绝热系统。 孤立系统:系统与外界之间不发生任何能量传递和物质交换,称为孤立 系统。 单相系:系统中工质的物理、化学性质都均匀一致的系统称为单相系。 复相系:由两个相以上组成的系统称为复相系,如固、液、气组成的三 相系统。 单元系:由一种化学成分组成的系统称为单元系。 多元系:由两种以上不同化学成分组成的系统称为多元系。 均匀系:成分和相在整个系统空间呈均匀分布的为均匀系。 非均匀系:成分和相在整个系统空间呈非均匀分布,称非均匀系。 热力状态:系统中某瞬间表现的工质热力性质的总状况,称为工质的热力状态,简称为状态。 平衡状态:系统在不受外界影响的条件下,如果宏观热力性质不随时间而变化,系统内外同时建立了热的和力的平衡,这时系统的状态称为热力平衡状态,简称为平衡状态。 状态参数:描述工质状态特性的各种物理量称为工质的状态参数。如温度(T)、压力(P)、比容(υ)或密度(ρ)、内能(u)、焓(h)、熵(s)、自由能(f)、自由焓(g)等。 基本状态参数:在工质的状态参数中,其中温度、压力、比容或密度可以直接或间接地用仪表测量出来,称为基本状态参数。

温度:是描述系统热力平衡状况时冷热程度的物理量,其物理实质是物质内部大量微观分子热运动的强弱程度的宏观反映。 热力学第零定律:如两个物体分别和第三个物体处于热平衡,则它们彼此之间也必然处于热平衡。 压力:垂直作用于器壁单位面积上的力,称为压力,也称压强。 相对压力:相对于大气环境所测得的压力。如工程上常用测压仪表测定系统中工质的压力即为相对压力。 比容:单位质量工质所具有的容积,称为工质的比容。 密度:单位容积的工质所具有的质量,称为工质的密度。 强度性参数:系统中单元体的参数值与整个系统的参数值相同,与质量多少无关,没有可加性,如温度、压力等。在热力过程中,强度性参数起着推动力作用,称为广义力或势。 广延性参数:整个系统的某广延性参数值等于系统中各单元体该广延性参数值之和,如系统的容积、内能、焓、熵等。在热力过程中,广延性参数的变化起着类似力学中位移的作用,称为广义位移。 准静态过程:过程进行得非常缓慢,使过程中系统内部被破坏了的平衡有足够的时间恢复到新的平衡态,从而使过程的每一瞬间系统内部的状态都非常接近平衡状态,整个过程可看作是由一系列非常接近平衡态的状态所组成,并称之为准静态过程。 可逆过程:当系统进行正、反两个过程后,系统与外界均能完全回复到初始状态,这样的过程称为可逆过程。 膨胀功:由于系统容积发生变化(增大或缩小)而通过界面向外界传递的机械功称为膨胀功,也称容积功。 热量:通过热力系边界所传递的除功之外的能量。 热力循环:工质从某一初态开始,经历一系列状态变化,最后又回复到初始状态的全部过程称为热力循环,简称循环。 第二章气体的热力性质 1.基本概念

工程热力学期末总结

《工程热力学》期末总结 一、闭口系能量方程的表达式有以下几种形式: 1kg 工质经过有限过程:w u q +?= (2-1) 1kg 工质经过微元过程:w du q δδ+= (2-2) mkg 工质经过有限过程:W U Q +?= (2-3) mkg 工质经过微元过程:W dU Q δδ+= (2-4) 以上各式,对闭口系各种过程(可逆过程或不可逆过程)及各种工质都适用。 在应用以上各式时,如果是可逆过程的话,体积功可以表达为: pdv w =δ (2-5) ? = 2 1 pdv w (2-6) pdV W =δ (2-7) ? = 2 1 pdV W (2-8) 闭口系经历一个循环时,由于U 是状态参数,?=0dU ,所以 W Q ??= δδ (2-9) 式(2-9)是闭口系统经历循环时的能量方程,即任意一循环的净吸热量与净功量相等。 二、稳定流动能量方程 t s w h w z g c h q +?=+?+?+?=2 21 (2-10) (适用于稳定流动系的任何工质、任何过程) ? - ?=2 1 vdp h q (2-11) (适用于稳定流动系的任何工质、可逆过程) 三、几种功及相互之间的关系(见表一) 表一 几种功及相互之间的关系

四、比热容 1、比热容的种类(见表二) 。 )/3 kg m 2、平均比热容:1 21 1221 20 t t t t c t t c t t c - -= (2-12) 3、利用平均比热容计算热量:11220 t t c t t c q -= (2-13) 4、理想气体的定值比热容(见表三)

其中:M M R R g 83140= = [J/(kg ·K)] M —气体的摩尔质量,如空气的摩尔质量为28.96kg/kmol 。 空气的kmol /kg 96.28K)kmol /(J 83140?= = M R R g =287[J/(kg ·K)],最好记住空气的气体常数。 引入比热容比k 后,结合梅耶公式,又可得: g p R k k c 1 -= (2-14) g V R k c 1 1-= (2-15) 五、理想气体的热力学能、焓、熵(见表四) (焓的定义:pv u h += kJ/kg , 焓是状态参数) 六、气体主要热力过程的基本计算公式(见表五)

工程热力学概念.doc

绪论 工程热力学与传热学分两部分,热力学与传热学,这两部分都是与热有关的学科。 我们先讲热力学,第二部分再讲传热学。 热力学中热指的是热能,力在我们工程热力学中主要指的是用它来做功,也就是机械能,简单地理解工程热力学主要研究的是热能和机械能之间的相互转 化。也就是说由热产生力,进而对物体做功的过程,所以热力学主要研究的是热能和机械能之间的相互转化。 举个例子:比如汽车的发动机(内燃机),它是利用燃料(汽油)在汽缸中燃烧,燃烧后得到高温高压的烟气,烟气此时温度高,压力高,具有热能,那么 高压的燃气会推动气缸的活塞做水平往复运动,活塞又通过曲柄连杆机构把水平往复运动转化成圆周运动,进而带动汽车运动,这就是一个热力学的例子。 工程热力学的研究重点是热能与机械能之间的转化规律,那么下面我们来详细的看一下工程热力学的研究内容: ①研究热力学中的一些基本概念和基本定律。基本概念像热力学系统、热力学状态、平衡过程、可逆过程等。基本定律有热力学第一定律和热力学第二定律,第一定律和第二定律是工程热力学的理论基础,其中热力学第一定律主要研究热能与机械能之间转化时的数量关系,热力学第二定律主要研究热能和机械能转换 时的方向、条件、限度问题。 ②研究工质的性质。我们热能和机械能之间的转化需要依靠一定的工作物质 才能实现,因此,我们要研究热能和机械能之间的相互转化,我们首先要研实现这一工作的工质的性质。 ③研究工质参与下,遵循热力学第一定律和第二定律在热力设备中进行的实 际热力过程。 第一章基本概念 在我们研究工程热力学的过程中会用到许多术语,如工质、热力学系统、热力学状态、平衡状态、状态参数等。因此,要学好工程热力学我们首先要知道这 些术语指的是什么。

工程热力学概念公式

第一部分(第一章~第五章) 一、概念 (一)基本概念、基本术语 1、工程热力学:工程热力学是从工程的观点出发,研究物质的热力性质、能量转换以及热 能的直接利用等问题。 2、热力系统:通常根据所研究问题的需要,人为地划定一个或多个任意几何面所围成的空 间作为热力学研究对象。这种空间的物质的总和称为热力系统,简称系统。 3、闭口系统:没有物质穿过边界的系统称为闭口系统。系统包含的物质质量为一不变的常 量,所以有时又称为控制质量系统。 4、开口系统:有物质流穿过边界的系统称为开口系统。开口系统总是一种相对固定的空间, 故又称开口系统为控制体积系统,简称控制体。 5、绝热系统:系统与外界之间没有热量传递的系统,称为绝热系统。 6、孤立系统:系统与外界之间不发生任何能量传递和物质交换的系统,称为孤立系统。 7、热力状态:我们把系统中某瞬间表现的工质热力性质的总状况,称为工质的热力状态, 简称为状态。 8、状态参数:我们把描述工质状态特性的各种物理量称为工质的状态参数。 9、强度性状态参数:在给定的状态下,凡系统中单元体的参数值与整个系统的参数值相同, 与质量多少无关,没有可加性的状态参数称为强度性参数。 10、广延性状态参数:在给定的状态下,凡与系统所含物质的数量有关的状态参数称为广延 性参数。 11、平衡状态:在不受外界影响(重力场除外)的条件下,如果系统的状态参数不随时间变 化,则该系统所处的状态称为平衡状态。 12、热力过程:把工质从某一状态过渡到另一状态所经历的全部状态变化称为热力过程。 13、准静态过程:理论研究可以设想一种过程,这种过程进行得非常缓慢,使过程中系统部 被破坏了的平衡有足够的时间恢复到新的平衡态,从而使过程的每一瞬间系统部的 状态都非常接近平衡状态,于是整个过程就可看作是由一系列非常接近平衡态的状 态所组成,并称之为准静态过程。 14、可逆过程:当系统进行正、反两个过程后,系统与外界均能完全回复到初始状态,而不 留下任何痕迹,这样的过程称为可逆过程。 15、热力循环:把工质从某一初态开始,经历一系列状态变化,最后又回复到初始状态的全 部过程称为热力循环,简称循环。 16、循环热效率:正循环中热转换功的经济性指标用循环热效率表示,循环热效率等于循环 中转换为功的热量除以工质从热源吸收的总热量。 17、卡诺循环:由两个可逆定温过程与两个可逆绝热过程组成的,我们称之为卡诺循环。

工程热力学基本概念

第一章 1.基本概念 热力系统:用界面将所要研究的对象与周围环境分隔开来,这种人为分隔的研究对象,称为热力系统,简称系统。 边界:分隔系统与外界的分界面,称为边界。 外界:边界以外与系统相互作用的物体,称为外界或环境。 闭口系统:没有物质穿过边界的系统称为闭口系统,也称控制质量。 开口系统:有物质流穿过边界的系统称为开口系统,又称控制体积,简称控制体,其界面称为控制界面。 绝热系统:系统与外界之间没有热量传递,称为绝热系统。 孤立系统:系统与外界之间不发生任何能量传递和物质交换,称为孤立系统。 单相系:系统中工质的物理、化学性质都均匀一致的系统称为单相系。 复相系:由两个相以上组成的系统称为复相系,如固、液、气组成的三相系统。 单元系:由一种化学成分组成的系统称为单元系。 多元系:由两种以上不同化学成分组成的系统称为多元系。 均匀系:成分和相在整个系统空间呈均匀分布的为均匀系。 非均匀系:成分和相在整个系统空间呈非均匀分布,称非均匀系。 热力状态:系统中某瞬间表现的工质热力性质的总状况,称为工质的热力状态,简称为状态。 平衡状态:系统在不受外界影响的条件下,如果宏观热力性质不随时间而变化,系统内外同时建立了热的和力的平衡,这时系统的状态称为热力平衡状态,简称为平衡状态。 状态参数:描述工质状态特性的各种物理量称为工质的状态参数。如温度(T)、压力(P)、比容(υ)或密度(ρ)、内能(u)、焓(h)、熵(s)、自由能(f)、自由焓(g)等。 基本状态参数:在工质的状态参数中,其中温度、压力、比容或密度可以直接或间接地用仪表测量出来,称为基本状态参数。 温度:是描述系统热力平衡状况时冷热程度的物理量,其物理实质是物质内部大量微观分子热运动的强弱程度的宏观反映。 热力学第零定律:如两个物体分别和第三个物体处于热平衡,则它们彼此之间也必然处于热平衡。 压力:垂直作用于器壁单位面积上的力,称为压力,也称压强。 相对压力:相对于大气环境所测得的压力。如工程上常用测压仪表测定系统中工质的压力即为相对压力。 比容:单位质量工质所具有的容积,称为工质的比容。 密度:单位容积的工质所具有的质量,称为工质的密度。 强度性参数:系统中单元体的参数值与整个系统的参数值相同,与质量多少无关,没有可加性,如温度、压力等。在热力过程中,强度性参数起着推动力作用,称为广义力或势。

工程热力学知识点总结

工程热力学大总结 '

… 第一章基本概念 1.基本概念 热力系统:用界面将所要研究的对象与周围环境分隔开来,这种人为分隔的研究对象,称为热力系统,简称系统。 边界:分隔系统与外界的分界面,称为边界。 外界:边界以外与系统相互作用的物体,称为外界或环境。 闭口系统:没有物质穿过边界的系统称为闭口系统,也称控制质量。 ) 开口系统:有物质流穿过边界的系统称为开口系统,又称控制体积,简称控制体,其界面称为控制界面。 绝热系统:系统与外界之间没有热量传递,称为绝热系统。 孤立系统:系统与外界之间不发生任何能量传递和物质交换,称为孤立系统。 单相系:系统中工质的物理、化学性质都均匀一致的系统称为单相系。 复相系:由两个相以上组成的系统称为复相系,如固、液、气组成的三相系统。 单元系:由一种化学成分组成的系统称为单元系。 多元系:由两种以上不同化学成分组成的系统称为多元系。 } 均匀系:成分和相在整个系统空间呈均匀分布的为均匀系。 非均匀系:成分和相在整个系统空间呈非均匀分布,称非均匀系。 热力状态:系统中某瞬间表现的工质热力性质的总状况,称为工质的热力状态,简称为状态。 平衡状态:系统在不受外界影响的条件下,如果宏观热力性质不随时间而变化,系统内外同时建立了热的和力的平衡,这时系统的状态称为热力平衡状态,简称为平衡状态。 状态参数:描述工质状态特性的各种物理量称为工质的状态参数。如温度(T)、压力(P)、比容(υ)或密度(ρ)、内能(u)、焓(h)、熵(s)、自由能(f)、自由焓(g)等。 基本状态参数:在工质的状态参数中,其中温度、压力、比容或密度可以直接或间接地用仪表测量出来,称为基本状态参数。

工程热力学的公式大全

5.梅耶公式: R c c v p =- R c c v p 0''ρ=- 0R MR Mc Mc v p ==- 6.比热比: v p v p v p Mc Mc c c c c ===''κ 1-= κκR c v 1 -=κnR c p 外储存能: 1. 宏观动能: 221mc E k = 2. 重力位能: mgz E p = 式中 g —重力加速度。 系统总储存能: 1.p k E E U E ++= 或mgz mc U E ++ =221 2.gz c u e ++=221 3.U E = 或u e =(没有宏观运动,并且高度为零) 热力学能变化: 1.dT c du v =,?=?2 1dT c u v 适用于理想气体一切过程或者实际气体定容过程 2.)(12T T c u v -=? 适用于理想气体一切过程或者实际气体定容过程(用定值比热计算) 3.102000121221t c t c dt c dt c dt c u t vm t vm t v t v t t v ?-?=-==???? 适用于理想气体一切过程或者实际气体定容过程(用平均比热计算)

4.把()T f c v =的经验公式代入?=?2 1dT c u v 积分。 适用于理想气体一切过程或者实际气体定容过程(用真实比热公式计算) 5.∑∑====+++=n i i i n i i n u m U U U U U 1121Λ 由理想气体组成的混合气体的热力学能等于各组成气体热力学能之和,各组成气体热力学能又可表示为单位质量热力学能与其质量的乘积。 6.?-=?21pdv q u 适用于任何工质,可逆过程。 7.q u =? 适用于任何工质,可逆定容过程 8.?=?21pdv u 适用于任何工质,可逆绝热过程。 9.0=?U 适用于闭口系统任何工质绝热、对外不作功的热力过程等热力学能或理想气体定温过程。 10.W Q U -=? 适用于mkg 质量工质,开口、闭口,任何工质,可逆、不可逆过程。 11.w q u -=? 适用于1kg 质量工质,开口、闭口,任何工质,可逆、不可逆过程 12.pdv q du -=δ 适用于微元,任何工质可逆过程 13.pv h u ?-?=? 热力学能的变化等于焓的变化与流动功的差值。 焓的变化: 1.pV U H += 适用于m 千克工质 2.pv u h += 适用于1千克工质 3.()T f RT u h =+= 适用于理想气体 4.dT c dh p =,dT c h p ?=?2 1 适用于理想气体的一切热力过程或者实际气体的定压过程

工程热力学概念公式复习过程

工程热力学概念公式

第一部分 (第一章~第五章) 一、概念 (一)基本概念、基本术语 1、工程热力学:工程热力学是从工程的观点出发,研究物质的热力性质、能量 转换以及热能的直接利用等问题。 2、热力系统:通常根据所研究问题的需要,人为地划定一个或多个任意几何面 所围成的空间作为热力学研究对象。这种空间内的物质的总和称为热力 系统,简称系统。 3、闭口系统:没有物质穿过边界的系统称为闭口系统。系统内包含的物质质量 为一不变的常量,所以有时又称为控制质量系统。 4、开口系统:有物质流穿过边界的系统称为开口系统。开口系统总是一种相对 固定的空间,故又称开口系统为控制体积系统,简称控制体。 5、绝热系统:系统与外界之间没有热量传递的系统,称为绝热系统。 6、孤立系统:系统与外界之间不发生任何能量传递和物质交换的系统,称为孤 立系统。 7、热力状态:我们把系统中某瞬间表现的工质热力性质的总状况,称为工质的 热力状态,简称为状态。 8、状态参数:我们把描述工质状态特性的各种物理量称为工质的状态参数。 9、强度性状态参数:在给定的状态下,凡系统中单元体的参数值与整个系统的 参数值相同,与质量多少无关,没有可加性的状态参数称为强度性参 数。

10、广延性状态参数:在给定的状态下,凡与系统内所含物质的数量有关的状 态参数称为广延性参数。 11、平衡状态:在不受外界影响(重力场除外)的条件下,如果系统的状态参 数不随时间变化,则该系统所处的状态称为平衡状态。 12、热力过程:把工质从某一状态过渡到另一状态所经历的全部状态变化称为 热力过程。 13、准静态过程:理论研究可以设想一种过程,这种过程进行得非常缓慢,使 过程中系统内部被破坏了的平衡有足够的时间恢复到新的平衡态,从而 使过程的每一瞬间系统内部的状态都非常接近平衡状态,于是整个过程 就可看作是由一系列非常接近平衡态的状态所组成,并称之为准静态过 程。 14、可逆过程:当系统进行正、反两个过程后,系统与外界均能完全回复到初 始状态,而不留下任何痕迹,这样的过程称为可逆过程。 15、热力循环:把工质从某一初态开始,经历一系列状态变化,最后又回复到 初始状态的全部过程称为热力循环,简称循环。 16、循环热效率:正循环中热转换功的经济性指标用循环热效率表示,循环热 效率等于循环中转换为功的热量除以工质从热源吸收的总热量。 17、卡诺循环:由两个可逆定温过程与两个可逆绝热过程组成的,我们称之为 卡诺循环。 18、卡诺定理:卡诺定理可表达为:①所有工作于同温热源与同温冷源之间的 一切热机,以可逆热机的热效率为最高。②在同温热源与同温冷源之间 的一切可逆热机,其热效率均相等。

工程热力学 名词解释

1. 第一章 基本概念及定义 2. 热能动力装置:从燃料燃烧中得到热能,以及利用热能所得到动力的整套设备(包括辅助设备)统称热能动力装置。 3. 工质:热能和机械能相互转化的媒介物质叫做工质,能量的转换都是通过工质状态的变化实现的。 4. 高温热源:工质从中吸取热能的物系叫热源,或称高温热源。 5. 低温热源:接受工质排出热能的物系叫冷源,或称低温热源。 6. 热力系统:被人为分割出来作为热力学分析对象的有限物质系统叫做热力系统。 7. 闭口系统:如果热力系统与外界只有能量交换而无物质交换,则称该系统为闭口系统。(系统质量不变) 8. 开口系统:如果热力系统与外界不仅有能量交换而且有物质交换,则称该系统为开口系统。(系统体积不变) 9. 绝热系统:如果热力系统和外界间无热量交换时称为绝热系统。(无论开口、闭口系统,只要没有热量越过边界) 10. 孤立系统:如果热力系统和外界既无能量交换又无物质交换时,则称该系统为孤立系统。 11. 表压力:工质的绝对压力>大气压力时,压力计测得的差数。 12. 真空度:工质的绝对压力<大气压力时,压力计测得的差数,此时的压力计也叫真空计。 13. 平衡状态:无外界影响系统保持状态参数不随时间而改变的状态。充要条件是同时到达热平衡和力平衡。 14. 稳定状态:系统参数不随时间改变。(稳定未必平衡) 15. 准平衡过程(准静态过程):过程进行的相对缓慢,工质在平衡被破环后自动恢复平衡所需的时间很短,工质有足够的时间来恢复平衡,随时都不致显著偏离平衡状态,那么这样的过程就称为准平衡过程。它是无限接近于平衡状态的过程。 16. 可逆过程:完成某一过程后,工质沿相同的路径逆行回复到原来的状态,并使相互作用所涉及的外界亦回复到原来的状态,而不留下任何改变。可逆过程=准平衡过程+没有耗散效应(因摩擦机械能转变成热的现象)。 17. 准平衡与可逆区别:准平衡过程只着眼工质内部平衡;可逆过程是分析工质与外界作用产生的总效果,不仅要求工质内部平衡,还要求工质与外界作用可以无条件逆复。 18. 功:功是热力系统通过边界而传递的能量,且其全部效果可表现为举起重物。 19. 热量:热力系统与外界之间仅仅由于温度不同而通过边界传递的能量。 20. 两者不同:功是有规则的宏观运动的能量传递,在做功的过程中往往伴随着能量形态的转化。热量则是大量微观粒子杂乱热运动的能量传递,传递过程中不出现能量形态的转化。功转变成热量是无条件的而热量转变成功是有条件的。 21. 正向循环(热动力循环):热能转化成机械能的循环叫做正循环,它使外界得到功Wnet 。 22. 逆向循环:工质在循环中消耗机械能(或其他能量)把热量从低温热源传给高温热源的过程称为逆循环,消耗外功。 23. 第二章 热力学第一定律 24. 热力学第一定律:自然界中的一切物质都具有能量,能量不可能被创造,也不可能被消灭,但可以从一种形态转变为另一种形态,在能量的转换过程中能量的总量保持不变。(热力学第一定律就是能量守恒和转换定律在热现象中的体现)。内能的改变方式有两个:做功和热传递 ΔU = W + Q 。 25. 第一类永动机:不消耗能量便可以永远对外做功的动力机械。 26. 热力学能(内能):分子间的不规则运动的内动能,分子间的相互作用的内位能,维持分子结构的化学能,原子核内部的原子能,电磁场作用下的电磁能等一起构成热力学能。 27. 总能(总存储能):内能(热力学能),外能(宏观运动动能及位能)的总和称总能。 28. 推动功:工质在开口系统中流动而传递的功称为推动功mpv 。 29. 流动功:系统为维持工质流动所需的功称为流动功(推动功差p2V2-p1V1)。 30. 技术功:机械能可以全部转变为技术上可以利用的功,称为技术功(技术上可资利用的功)。 31. 体积功:工质因体积的变化与外界交换的功。 32. 焓:在热力设备中,工质总是不断的从一处流到另一处,随着工质的移动而转移的能量,即热力学能和推动功之和u+pv 。 33. 稳定流动过程:流动过程中,开口系统内部及其边界上各点工质的热力参数及运动参数都不随时间而变,则这种流动过程称为稳定流动过程。反之,则为不稳定流动过程或瞬变流动过程。 34. 节流:工质流过阀门等设备时,流动界面突然收缩,压力下降,这种现象称为节流。 35. 第三章 气体和蒸汽的性质 36. 标准大气压:在纬度45°的海平面上,当温度为0℃时,760毫米高水银柱产生的压强叫做标准大气压。 37. 理想气体:1.分子间是弹性的、不具有体积的质点;2.分子间相互没有作用力。 38. 摩尔气体常数:R=MRg=8.314 5 J/(mol ·K),与气体种类状态都无关。Rg 与气体种类有关,状态无关。Rg 物理意义是1 kg 某种理想气体定压升高1 K 对外作的功。 39. 定压比热容Cp :压力不变的条件下,1kg 物质在温度升高1K 所需的热量称为定压比热容。 40. 定容比热容Cv :体积不变的条件下,1kg 物质在温度升高1K 所需的热量称为定容比热容。Cp- Cv=Rg 气体常数。Cp/Cv=γ比热容比。 41. 湿饱和蒸汽:水蒸气和水的混合物称为湿饱和蒸汽。 42. 干饱和蒸汽:即饱和蒸汽,水全部变成蒸汽,这个时候的蒸汽称为干饱和蒸汽 43. 过热蒸汽:对饱和蒸汽继续定压加热,蒸汽温度升高,比体积增大,此时的蒸汽称为过热蒸汽。 44. 饱和状态:当汽化速度=液化速度时,系统处于动态平衡,宏观上气、液两相保持一定的相对数量。 45. 饱和温度:处于饱和状态的汽、液的温度相同称为饱和温度。 46. 饱和压力:处于饱和状态的蒸汽的压力称为饱和压力。 47. 过冷水:水温低于饱和温度时称为过冷水或未饱和水。 48. 过热度:温度超过饱和温度之值称为过热度 49. 汽化潜热:1kg 质量的某种液相物质在汽化过程中所吸收的热量。简称汽化潜热(液体蒸发吸收的热量)。 50. 第四章 气体与蒸汽的基本热力 51. 第五章 热力学第二定律 52. 热力学第二定律(克劳修斯说法):热不可能自发的、不付代价的从低温物体传至高温物体。 53. 热力学第二定律(开尔文说法):不可能制造出从单一热源吸热,使之全部转化为功而不留下其他任何变化的热力发动机。 54. 造成过程不可逆的两大因素:1、耗散效应。2、有限势差作用下的非准平衡变化。 55. 卡诺循环:工作于温度分别为1T 和2T 的两个热源之间的正向循环,由两个可逆定温过程和两个可逆绝热过程组成。 56. 概况性卡诺循环:双热源间的极限回热循环称为概括性卡诺循环。 57. 回热:用工质原本排出的热量加热工质本身的方法。 58. 熵产:由耗散热产生的熵增量叫做熵产。(闭口系内不可逆绝热过程中,存在不可逆因素引起耗散效应,使损失的机械能转化为热能被工质吸收,导致熵增大)。 59. 熵流:系统与外界换热量与热源温度的比值,称为熵流。 60. 孤立系统的熵增原理:孤立系统中的各种不可逆因素表现为系统的机械功损失,产生机械功不可逆地转化为热的效果,使孤立系统的熵增大。称为孤立系统的

工程热力学的公式大全

5.梅耶公式: R c c v p =- R c c v p 0''ρ=- 0R MR Mc Mc v p ==- 6.比热比: v p v p v p Mc Mc c c c c = = = ''κ 1-= κκR c v 1 -=κnR c p 外储存能: 1. 宏观动能: 2 2 1mc E k = 2. 重力位能: mgz E p = 式中 g —重力加速度。 系统总储存能: 1.p k E E U E ++= 或mgz mc U E ++=2 21 2.gz c u e ++=22 1 3.U E = 或 u e =(没有宏观运动,并且高度为零) 热力学能变化: 1.dT c du v =,?=?2 1dT c u v 适用于理想气体一切过程或者实际气体定容过程 2.)(12T T c u v -=? 适用于理想气体一切过程或者实际气体定容过程(用定值比热计算) 3.10 20 121 2 2 1 t c t c dt c dt c dt c u t vm t vm t v t v t t v ?-?=-==???? 适用于理想气体一切过程或者实际气体定容过程(用平均比热计算)

4.把 ()T f c v =的经验公式代入?=?2 1 dT c u v 积分。 适用于理想气体一切过程或者实际气体定容过程(用真实比热公式计算) 5.∑∑====+++=n i i i n i i n u m U U U U U 1 1 21 由理想气体组成的混合气体的热力学能等于各组成气体热力学能之和,各组成气体热力学能又可表示为单位质量热力学能与其质量的乘积。 6.?-=?2 1pdv q u 适用于任何工质,可逆过程。 7.q u =? 适用于任何工质,可逆定容过程 8.?=?21 pdv u 适用于任何工质,可逆绝热过程。 9.0=?U 适用于闭口系统任何工质绝热、对外不作功的热力过程等热力学能或理想气体定温过程。 10.W Q U -=? 适用于mkg 质量工质,开口、闭口,任何工质,可逆、不可逆过程。 11.w q u -=? 适用于1kg 质量工质,开口、闭口,任何工质,可逆、不可逆过程 12.pdv q du -=δ 适用于微元,任何工质可逆过程 13.pv h u ?-?=? 热力学能的变化等于焓的变化与流动功的差值。 焓的变化: 1.pV U H += 适用于m 千克工质 2.pv u h += 适用于1千克工质 3.()T f RT u h =+= 适用于理想气体 4.dT c dh p =,dT c h p ?=?2 1 适用于理想气体的一切热力过程或者实际气体的定压过程

工程热力学总结

第一部分 (第一章~第五章) 一、概念 (一)基本概念、基本术语 1、工程热力学:工程热力学是从工程的观点出发,研究物质的热力性质、能量转换以及热能的直接利用 等问题。 2、热力系统:通常根据所研究问题的需要,人为地划定一个或多个任意几何面所围成的空间作为热力学 研究对象。这种空间内的物质的总和称为热力系统,简称系统。 3、闭口系统:没有物质穿过边界的系统称为闭口系统。系统内包含的物质质量为一不变的常量,所以有 时又称为控制质量系统。 4、开口系统:有物质流穿过边界的系统称为开口系统。开口系统总是一种相对固定的空间,故又称开口 系统为控制体积系统,简称控制体。 5、绝热系统:系统与外界之间没有热量传递的系统,称为绝热系统。 6、孤立系统:系统与外界之间不发生任何能量传递和物质交换的系统,称为孤立系统。 7、热力状态:我们把系统中某瞬间表现的工质热力性质的总状况,称为工质的热力状态,简称为状态。 8、状态参数:我们把描述工质状态特性的各种物理量称为工质的状态参数。 9、强度性状态参数:在给定的状态下,凡系统中单元体的参数值与整个系统的参数值相同,与质量多少 无关,没有可加性的状态参数称为强度性参数。 10、广延性状态参数:在给定的状态下,凡与系统内所含物质的数量有关的状态参数称为广延性参数。 11、平衡状态:在不受外界影响(重力场除外)的条件下,如果系统的状态参数不随时间变化,则该系统 所处的状态称为平衡状态。 12、热力过程:把工质从某一状态过渡到另一状态所经历的全部状态变化称为热力过程。 13、准静态过程:理论研究可以设想一种过程,这种过程进行得非常缓慢,使过程中系统内部被破坏了的 平衡有足够的时间恢复到新的平衡态,从而使过程的每一瞬间系统内部的状态都非常接近平衡状态,于是整个过程就可看作是由一系列非常接近平衡态的状态所组成,并称之为准静态过程。14、可逆过程:当系统进行正、反两个过程后,系统与外界均能完全回复到初始状态,而不留下任何痕迹, 这样的过程称为可逆过程。 15、热力循环:把工质从某一初态开始,经历一系列状态变化,最后又回复到初始状态的全部过程称为热 力循环,简称循环。 16、循环热效率:正循环中热转换功的经济性指标用循环热效率表示,循环热效率等于循环中转换为功的 热量除以工质从热源吸收的总热量。 17、卡诺循环:由两个可逆定温过程与两个可逆绝热过程组成的,我们称之为卡诺循环。 18、卡诺定理:卡诺定理可表达为:①所有工作于同温热源与同温冷源之间的一切热机,以可逆热机的热 效率为最高。②在同温热源与同温冷源之间的一切可逆热机,其热效率均相等。 19、孤立系统熵增原理:孤立系统的熵只能增大(不可逆过程)或不变(可逆过程),决不可能减小,此 为孤立系统熵增原理,简称熵增原理。 (二)与工质性质有关的概念

工程热力学概念

绪论 工程热力学与传热学分两部分,热力学与传热学,这两部分都就是与热有关得学科。 我们先讲热力学,第二部分再讲传热学。 热力学中热指得就是热能,力在我们工程热力学中主要指得就是用它来做功,也就就是机械能,简单地理解工程热力学主要研究得就是热能与机械能之间得相互转化。也就就是说由热产生力,进而对物体做功得过程,所以热力学主要研究得就是热能与机械能之间得相互转化。 举个例子:比如汽车得发动机(内燃机),它就是利用燃料(汽油)在汽缸中燃烧,燃烧后得到高温高压得烟气,烟气此时温度高,压力高,具有热能,那么高压得燃气会推动气缸得活塞做水平往复运动,活塞又通过曲柄连杆机构把水平往复运动转化成圆周运动,进而带动汽车运动,这就就是一个热力学得例子。 工程热力学得研究重点就是热能与机械能之间得转化规律,那么下面我们来详细得瞧一下工程热力学得研究内容: ①研究热力学中得一些基本概念与基本定律。基本概念像热力学系统、热力学状态、平衡过程、可逆过程等。基本定律有热力学第一定律与热力学第二定律,第一定律与第二定律就是工程热力学得理论基础,其中热力学第一定律主要研究热能与机械能之间转化时得数量关系,热力学第二定律主要研究热能与机械能转换时得方向、条件、限度问题。 ②研究工质得性质。我们热能与机械能之间得转化需要依靠一定得工作物质才能实现,因此,我们要研究热能与机械能之间得相互转化,我们首先要研实现这一工作得工质得性质。 ③研究工质参与下,遵循热力学第一定律与第二定律在热力设备中进行得实际热力过程。 第一章基本概念 在我们研究工程热力学得过程中会用到许多术语,如工质、热力学系统、热力学状态、平衡状态、状态参数等。因此,要学好工程热力学我们首先要知道这些术语指得就是什么。 我们先来瞧第一个概念:工质

工程热力学基本概念

第一章 工质:实现热能和机械能之间转换的媒介物质。 系统:热设备中分离出来作为热力学研究对象的物体。 状态参数:描述系统宏观特性的物理量。 热力学平衡态:在无外界影响的条件下,如果系统的状态不随时间发生变化,则系统所处的状态称为热力学平衡态。 压力:系统表面单位面积上的垂直作用力。 温度:反映物体冷热程度的物理量。 温标:温度的数值表示法。 状态公理:对于一定组元的闭口系统,当其处于平衡状态时,可以用与该系统有关的准静态功 形式的数量n 加上一个象征传热方式的独立状态参数,即(n+1 )个独立状态参数来确定。 热力过程:系统从初始平衡态到终了平衡态所经历的全部状态。 准静态过程:如过程进行的足够缓慢,则封闭系统经历的每一中间状态足够接近平衡态,这样的过程称为准静态过程。 可逆过程:系统经历一个过程后如果系统和外界都能恢复到各自的初态,这样的过程称为可逆过程。无任何不可逆因素的准静态过程是可逆过程。 循环:工质从初态出发,经过一系列过程有回到初态,这种闭合的过程称为循环。 可逆循环:全由可逆过程粘组成的循环。 不可逆循环:含有不可逆过程的循环。 第二章 热力学能:物质分子运动具有的平均动能和分子间相互作用而具有的分子势能称为物质的热力学能体积功:工质体积改变所做的功热量:除功以外,通过系统边界和外界之间传递的能量。焓:引进或排出工质输入或

输出系统的总能量。 技术功:工程技术上将可以直接利用的动能差、位能差和轴功三项之和称为技术功。功:物质间通过宏观运动发生相互作用传递的能量。 轴功:外界通过旋转轴对流动工质所做的功。 流动功:外界对流入系统工质所做的功。 第三章 热力学第二定律: 克劳修斯说法:不可能使热量从低温物体传到高温物体而不引起其他变化。 开尔文说法:不可能从单一热源吸热使之完全转化为有用功而不引起其他变化。卡诺循环:两热源间的可逆循环,由定温吸热、绝热膨胀、定温放热、绝热压缩四个可逆过程组成。 卡诺定理:在温度为T1 的高温热源和温度为T2 的低温热源之间工作的一切可逆热机,其热效 率相等,与工质的性质无关;在温度为T1的高温热源和温度为T2的低温热源之间工作的热机 循环,以卡诺循环的热效率为最高。 熵:沿可逆过程的克劳修斯积分,与路径无关,由初、终状态决定。 熵流:沿任何过程(可逆或不可逆)的克劳修斯积分,称为“熵流” 。 熵产:系统熵的变化量与熵流之差。 熵增原理:在孤立系统和绝热系统中,如进行的过程是可逆过程,其系统总熵保持不变;如为不可逆过程,其熵增加;不论什么过程,其熵不可能减少。 第四章

工程热力学与传热学课程总结与体会(DOC)

工程热力学与传热学 题目:工程热力学与传热学课程总结与体会院系:水利建筑工程学院给排水科学与工程班级:给排水科学与工程一班 姓名:张琦文 指导老师:姚雪东 日期:2016年5月1日 认识看法地位作用存在问题解决措施未来 发展展望

传热学在高新技术领域中的应用 摘要: 热传递现象无时无处不在【2】它的影响几乎遍及现代所有的工业部门【1】也渗透到农业、林业等许多技术部门中。本文介绍了航空航天、核能、微电子、材料、生物医学工程、环境工程、新能源以及农业工程等诸多高新技术领域在不同程度上应用传热研究的最新成果。可以说除了极个别的情况以外,很难发现一个行业、部门或者工业过程和传热完全没有任何关系。不仅传统工业领域,像能源动力、冶金、化工、交通、建筑建材、机械以及食品、轻工、纺织、医药等要用到许多传热学的有关知识【1】而且诸如航空航天、核能、微电子、材料、生物医学工程、环境工程、新能源以及农业工程等很多高新技术领域也都在不同程度上有赖于 应用传热研究的最新成果,并涌现出像相变与多相流传热、(超)低温传热、微尺度传热、生物传热等许多交叉分支学科。在某些环节上,传热技术及相关材料设备的研制开发甚至成为整个系统成败的关键因素。 前言:通过对传热学这门课程的学习,了解了传热的基本知识和理论。发现传热学是一门基础学科应用非常广泛,它会解决许许多多的实际问题更是与机械制造这门学科息息相关。传热学是研究由温度差异引起的热量传递过程的科学。传热现

象在我们的日常生活中司空见惯。早在人类文明之初人们就学会了烧火取暖。随着工业革命的到来,蒸汽机、内燃机等热动力机械相继出现,传热研究更是得到了飞速的发展,被广泛地应用于工农业生产与人们的日常生活之中。当今世界国与国之间的竞争是经济竞争,而伴随着经济的高速发展也带来了资源、人口与环境等重大国际问题。传热学在促进经薪发展和加强环境保护方面起着举足轻重的作用。20世纪以前传热学是作为物理热学的一部分而逐步发展起来的。20世纪以后,传热学作为一门独立的技术学科获得迅速发展,越来越多地与热力学、流体力学、燃烧学、电磁学和机械工程学等一些学科相互渗透,形成多相传热、非牛顿流体传热、燃烧传热、等离子体传热和数值计算传热等许多重要分支。现在,机械工程仍不断地向传热学提出大量新的课题。如浇铸和冷冻技术中的相变导热,切削加工中的接触热阻和喷射冷却,等离子工艺中带电粒子的传热特性。核工程中有限空间的自然对流,动力和化工机械中超临界区换热,小温差换热,两相流换热,复杂几何形状物体的换热湍流换热等。随着激光等新的实验技术的引入和计算机的应用,为传热学的发展提供了广阔前景。 传热学是研究热量传递规律的一门学科,生产部门存在的多种多样的热量传递问题都可以用传热学来解决,这些部门包括能源、化工、冶金、建筑、机械制造、电子、制冷、

工程热力学知识点

工程热力学复习知识点 一、知识点 基本概念的理解和应用(约占40%),基本原理的应用和热力学分析能力的考核(约占60%)。 1. 基本概念 掌握和理解:热力学系统(包括热力系,边界,工质的概念。热力系的分类:开口系,闭口系,孤立系统)。 掌握和理解:状态及平衡状态,实现平衡状态的充要条件。状态参数及其特性。制冷循环和热泵循环的概念区别。 理解并会简单计算:系统的能量,热量和功(与热力学两个定律结合)。 2. 热力学第一定律 掌握和理解:热力学第一定律的实质。 理解并会应用基本公式计算:热力学第一定律的基本表达式。闭口系能量方程。热力学第一定律应用于开口热力系的一般表达式。稳态稳流的能量方程。 理解并掌握:焓、技术功及几种功的关系(包括体积变化功、流动功、轴功、技术功)。 3. 热力学第二定律 掌握和理解:可逆过程与不可逆过程(包括可逆过程的热量和功的计算)。 掌握和理解:热力学第二定律及其表述(克劳修斯表述,开尔文

表述等)。卡诺循环和卡诺定理。 掌握和理解:熵(熵参数的引入,克劳修斯不等式,熵的状态参数特性)。 理解并会分析:熵产原理与孤立系熵增原理,以及它们的数学表达式。热力系的熵方程(闭口系熵方程,开口系熵方程)。温-熵图的分析及应用。 理解并会计算:学会应用热力学第二定律各类数学表达式来判定热力过程的不可逆性。 4. 理想气体的热力性质 熟悉和了解:理想气体模型。 理解并掌握:理想气体状态方程及通用气体常数。理想气体的比热。 理解并会计算:理想气体的内能、焓、熵及其计算。理想气体可逆过程中,定容过程,定压过程,定温过程和定熵过程的过程特点,过程功,技术功和热量计算。 5. 实际气体及蒸气的热力性质及流动问题 理解并掌握:蒸汽的热力性质(包括有关蒸汽的各种术语及其意义。例如:汽化、凝结、饱和状态、饱和蒸汽、饱和温度、饱和压力、三相点、临界点、汽化潜热等)。蒸汽的定压发生过程(包括其在p-v和T-s图上的一点、二线、三区和五态)。 理解并掌握:绝热节流的现象及特点 6. 蒸汽动力循环

相关文档
最新文档