特厚煤层综放工作面初采初放期间瓦斯治理技术研究

特厚煤层综放工作面初采初放期间瓦斯治理技术研究
特厚煤层综放工作面初采初放期间瓦斯治理技术研究

特厚煤层综放工作面初采初放期间瓦斯治理技术研究

发表时间:2019-10-24T15:08:28.520Z 来源:《基层建设》2019年第22期作者:阮淼

[导读] 摘要:陕西陕煤彬长矿业集团胡家河矿井自投产以来已经回采6个特厚煤层综放工作面,结合工作面初采初放期间采取的瓦斯治理技术措施,对瓦斯治理技术进行总结,为类似条件综放工作面初采初放期间瓦斯治理工作提供了借鉴经验。

陕西彬长胡家河矿业有限公司陕西咸阳 713602

摘要:陕西陕煤彬长矿业集团胡家河矿井自投产以来已经回采6个特厚煤层综放工作面,结合工作面初采初放期间采取的瓦斯治理技术措施,对瓦斯治理技术进行总结,为类似条件综放工作面初采初放期间瓦斯治理工作提供了借鉴经验。

关键词:特厚煤层;综放工作面;初采初放;瓦斯治理

1矿井概况

胡家河矿井位于陕西省咸阳市彬长矿区中北部,行政区划隶属彬县、长武县管辖,矿井设计产能500万t/a,属高瓦斯矿井,现主采4#煤层。根据沈阳研究院对胡家河矿井煤体进行的瓦斯基础参数测定结果,胡家河煤矿4#煤层原始瓦斯含量为3.8m3/t,煤层压力为0.4MPa,煤层瓦斯含量系数为7.99m3/(m3.MPa0.5),煤层透气性系数为3.32~3.78m2/(MPa2.d),钻孔自然瓦斯流量衰减系数0.033~0.0348(d-1)。目前该矿已顺利回采3个特厚煤层综放工作面,均采用走向长壁后退式综合机械化放顶煤分层开采,回采上分层煤平均厚度

13.5m,下分层煤平均厚度10m,平均厚度 23.5m,全部垮落法管理顶板,工作面采用四巷式布置,即运输顺槽、回风顺槽、泄水巷及高位瓦斯抽放巷。

2初采初放期间瓦斯涌出情况

401103工作面为胡家河矿井正在回采的第4个回采工作面,该工作面为4号煤层,赋存稳定,厚度25.0~28m,平均厚度26m,上分层平均可采厚度16.9m。该工作面设计长度1643m,可采长度1493m(平距),倾向长190m。根据胡家河矿井瓦斯抽采实验室分析数据,401103工作面进风巷侧煤层原始瓦斯含量范围为3.24-3.92m3/t,回风巷侧煤层原始瓦斯含量为3.86-4.1m3/t。401103工作面于2018年1月12日0点班开始回采,1月19日0点班工作面绝对瓦斯涌出量达到最大值30.10m3/min,1月24日0点班,工作面发生初次来压,此后稳定在25m3/min上下浮动,工作面瓦斯涌出量变化如图1所示。

图1 401103工作面瓦斯涌出量变化曲线图

3初采初放期间采取的瓦斯治理措施

面对工作面初采期间顶板未充分垮落,高为瓦斯抽采巷不能有效发挥作用,胡家河矿果断采取了多种综合瓦斯治理措施,不断在摸索中找寻符合矿井实际条件的有效瓦斯治理措施。

(1)1月13日4点班将工作面风量调整为进风2000m3/min,回风1700m3/min,初采期间保持通风系统稳定,通风设施完好。

(2)401103工作面1000米以外抽采钻孔关闭支管路阀门,集中负压预抽切眼向外500米段瓦斯含量富集区域,每班安排专人对401103工作面抽采系统进行巡查,对容易积水的支管路增加放水次数,及时处理漏气、管路积水等问题,确保井下抽采系统正常稳定运行。进风巷、回风巷采前预抽钻孔拆除距工作面煤壁不得大于5m,确保连孔质量,严禁漏气,每天检测工作面向外30米范围内预抽钻孔抽采浓度、负压情况。

(3)高抽巷抽采采用两套永久瓦斯抽采系统进行抽采;每班安排人员对401103工作面各系统浓度、流量、负压进行测定。

(4)根据工作面瓦斯浓度适当调整采煤机割煤速度,工作面割煤、放煤工艺必须交替进行,不得平行作业。跟机瓦检员负责及时将瓦斯浓度告知采煤机司机,便于及时调整采煤机速度。

(5)工作面监测传感器及时标校,确保数据精确、断电灵敏可靠。在工作面瓦斯传感器位置增设采煤机专项甲烷传感器,断电浓度设置为≥0.7%,复电浓度设置为≤0.6%。工作面、上隅角、回风等地点瓦斯传感器断电浓度设置为≥0.8,复电浓度设置为≤0.6%。

(6)对401103工作面两顺槽提前施工的高位防灭火钻孔及定向钻孔(工作面向外500m范围内)连接进行抽放,每天测定钻孔抽采浓度。以401103工作面进风巷切眼向外70米第一组高位孔为例,抽采浓度最大为100%,浓度变化曲线如下所示:

瓦斯灾害治理新技术示范文本

瓦斯灾害治理新技术示范 文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

瓦斯灾害治理新技术示范文本 使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 [摘要] 在分析煤矿安全科技工作现状和趋势基础 上,介绍了近年来我国瓦斯灾害防治技术研究取得的进展 和新成果。通过“十五”科技攻关项目的研究,提出了瓦 斯煤尘爆炸危险性评价方法,研究出了基于瓦斯地质、地 质动力区划、电磁波探测方法的煤与瓦斯突出区域预测技 术和基于AE声发射、电磁辐射和瓦斯涌出等原理的煤与瓦 斯突出非接触连续预测技术,实验成功了高瓦斯煤层群开 采保护层瓦斯灾害综合防治及顺煤层强化抽放等技术,开 发了矿井通风系统监测、可靠性评价分析及决策控制技 术。另外还分析了我国煤矿安全所面临的挑战和急需开展 的科技研究工作。 [关键词] 危险性评价;煤与瓦斯突出;瓦斯抽放;灾

害治理;新技术 1 概述 瓦斯是我国煤矿的主要灾害因素之一,瓦斯煤尘爆炸、煤与瓦斯突出等灾害严重威胁着我国煤矿的安全生产。由于灾害因素多、治理难度大,矿井瓦斯一直是我国煤矿安全工作的重点和难点。目前,我国所有煤矿均为瓦斯矿井,据统计,在100个国有重点煤炭生产企业的609处矿井中,高瓦斯矿井占26.8%,煤与瓦斯突出矿井占17.6%,低瓦斯矿井占55.6%。国有地方和乡镇煤矿中,高瓦斯矿井和煤与瓦斯突出矿井占15%左右。部分局矿的情况更为严重,如淮南矿业集团所属11对矿井均为突出矿井,平顶山煤业集团所属的13对矿井也全部为高瓦斯或突出矿井。 瓦斯灾害已成为制约煤矿安全生产和煤炭工业发展的

非常规油气资源开发的关键技术

非常规油气资源开发的关键技术 摘要:随着中国经济的快速发展,国内常规油气的开发生产已不能满足经济发展的需要,必须寻求新的出路。当前,世界各国都很重视非常规油气资源的开发和利用,煤层气、致密气和页岩气等已经在部分国家实现了有效开发。为此,详细分析了世界煤层气、致密气和页岩气等非常规油气资源的勘探开发现状;简述了中国在煤层气、致密气和页岩气等非常规能源方面所开展的工作以及相关的关键技术;提出了加快中国非常规油气勘探开发业务发展的建议。 1中国非常规油气资源与勘探开发关键技术 随着油气勘探开发的不断深入发展,致密气、页岩气、煤层气、致密油等非常规油气在现有经济技术条件下展示了巨大的潜力,全球油气资源将迎来二次扩展。页岩气、致密气的发展,使美国天然气探明储量从2002年的 4.96×1012m3增加到2008年的6.86×1012m3,增幅超过38%。中国的非常规油气资源也十分丰富,页岩气、致密气、致密油、油页岩、油砂、煤层气等开发利用潜力巨大;但中国非常规油气具有地质研究起步较晚,资源潜力认识不清,开发技术相对落后等特征。基于非常规油气的特点,对中国非常规油气资源潜力进行初步评价,并总结近年来中国非常规油气勘探开发技术进展。 1.1致密气勘探开发关键技术 鄂尔多斯盆地的苏里格气田和大牛地气田资源丰富,但储集层物性差,孔隙度为4%~10%,渗透率为0.1×10?3~3.5×10?3μm2,单井产量低,产量递减快。针对该盆地的低渗透致密砂岩储集层,油田现场开展了大量的勘探开发技术攻关:①全数字地震勘探技术实现了薄气层的有效预测。通过“常规地震勘探向全数字地震勘探、单分量地震勘探向多分量地震勘探、叠后储集层预测向叠前有效储集层预测”3大技术转变,采用折射波静校正、4次项速度分析、地表一致性振幅反褶积等技术处理地震资料,剖面的有效频带宽度达到5~105Hz,与常规地震剖面相比,低频拓宽5Hz,高频拓宽10Hz,实现了“岩性体刻画—有效储集层预测—流体检测”的技术进步,形成了全数字地震薄气层预测和多波地震流体检测2大主体技术,为叠前有效储集层的预测奠定了基础;②针对苏里格地区高阻、低阻气层并存及孔隙结构复杂的特点,研发了感应-侧向联测法、视弹性模量系数法等6种低渗低阻气层识别技术,提高了气层判识能力;③钻井方面大力推广应用不动管柱分层压裂合采技术,有效提高了储集层动用程度。 鄂尔多斯盆地致密气勘探开发的成功,依赖于地质认识的不断提高与勘探开发技术的不断进步。经过大力推进技术研发,2010年苏里格气田和大牛地气田

三盘区掘进工作面区域瓦斯治理方案报告

贵州公司安顺煤矿掘进工作面区域瓦斯治理方案可行性报告 二○一八年十月

一、矿井概况 (一)矿井基本情况 安顺煤矿于2008年9月开始托管,矿井设计能力90万t/a,核定生产能力为60万t/a,井田南北走向长14km,东西倾向宽3~5km,井田面积18.5km2。矿井设计采用斜井开拓方式,两个开采水平。一水平标高为+1340m,开采上组煤M0;二水平标高为+1145m,开采下组煤M8、M9。可采煤层为M0、M8、M9三层,平均煤厚分别为2.05m、1.21m、1.65m,倾角2°~6°。 1、煤层及煤质 井田可采煤层3层,即M0、M8、M9煤层。 M0煤层:俗称毛坡煤,产于P2L5地层中部,上距S1标志灰岩平均9.45ra,直接顶板为深灰色粉砂质粘土岩,底板为深灰色粘土岩。倾角一般在2~6o左右。煤层结构简单,一般含小于0.05m夹矸一层或不含夹矸。煤层厚度Om~4.81m,平均2.05m,厚度变化系数为46%,且规律性不明显,为不稳定煤层。井田内有八个大小不等的不可采薄化区,薄化面积占井田勘探面积的7%。 M0煤层属粉粒状暗亮煤,裂隙发育,结构较松软,机械强度低,易碎裂揉皱镜面极为发育,煤层的顶底部黄铁矿含量较高。 M8煤层:俗称高煤,产于P2L3地层中部,大部分地区煤层与S3标志层灰岩直接接触。井田西北部和东南部部分地段,煤层与S3标志层灰岩之间夹有0.19m~3.43m灰黑色炭质粘土岩或灰色粘土质粉砂岩,煤层底板为灰黑色炭质粘土岩或灰色粘土岩,倾角一般在2~6o左右。煤层结构一般较简单,含夹矸l~2层,夹矸厚度在0.1m~1.61m之间变化。在井田中部煤层具分岔现象而出现薄化区(O.7m~0.8m)。井田内煤层厚度0.03m~1.98m,平均1.2lm,厚度变化系数33%,属较稳定型煤层。 M8煤层属块状暗亮煤,微细裂隙发育,机械破碎多沿裂隙面裂开。煤层中见有细脉状、条纹状黄铁矿。 M9煤层:俗称二层煤,是本井田主要可采煤层。产于P2L3中部,上距S4标

采煤工作面动态瓦斯治理技术研究

采煤工作面动态瓦斯治理技术研究 发表时间:2019-09-21T22:16:05.187Z 来源:《基层建设》2019年第19期作者:康小红 [导读] 摘要:随着机械化采煤的高产增效和煤矿开采深度的增加,煤矿的灾害显现也特别明显,煤矿的“六大”灾害之中的瓦斯灾害是治理难度最大的灾害,尤其是工作面回采期间上隅角的瓦斯治理更是重中之重。 新疆呼图壁县煤炭多种经营有限责任公司小甘沟煤矿新疆维吾尔自治区昌吉州 831200 摘要:随着机械化采煤的高产增效和煤矿开采深度的增加,煤矿的灾害显现也特别明显,煤矿的“六大”灾害之中的瓦斯灾害是治理难度最大的灾害,尤其是工作面回采期间上隅角的瓦斯治理更是重中之重。瓦斯治理工作最基本的手段就是实时掌握煤层瓦斯基本参数和瓦斯涌出的规律,只有掌握这些基本数据和规律才可以对煤矿瓦斯进行动态治理,从而保障采煤工作面的安全、高效生产。 关键词:瓦斯治理;技术;安全生产 1、工作面动态瓦斯治理理念 瓦斯治理工作最基本的手段就是实时掌握煤层瓦斯基本参数和瓦斯涌出的规律,只有掌握这些基本数据和规律才可以对煤矿瓦斯进行动态治理,确保工作面的安全回采。根据现场测定的瓦斯含量参数,分析工作面沿回采方向的瓦斯赋存状态,结合通风量初步推算出回采过程中的瓦斯涌出规律,计算出工作面推进过程的瓦斯抽采量与风排瓦斯涌出量的关系,实现对工作面瓦斯动态治理。工作面瓦斯动态治理的技术主要有:顶板走向高位钻孔、顺层钻孔预抽、采空区埋管抽采、其它措施,而工作面动态瓦斯治理的思路就是将这些技术措施进行优化、组合形成多措并举,综合、动态治理的理念。小甘沟煤矿在11144综采工作面生产实际过程中采取以了“瓦斯抽采为主,以平衡风量和改变工作面伪斜角为辅”的综合瓦斯治理措施,其中瓦斯抽采优先选用了顶板走向高位钻孔抽采,辅助采空区埋管抽采措施,对瓦斯(特别是上隅角瓦斯)实施综合、动态治理,从而保障工作面的安全、高效生产。下面就以上措施加以浅析。 2、顶板走向高位钻孔抽采技术 顶板走向高位长钻孔抽采瓦斯是在工作面回风巷沿走向在煤层顶板往采空区上方施工钻孔,抽采采空区裂隙带或冒落空间内积存的高浓度瓦斯,这种抽采方法主要目的是通过切断上邻近层瓦斯涌向工作面的通道,同时对采空区下部的瓦斯起到引流作用,减少采空区瓦斯向工作面的涌入。邻近层、采空区浮煤和煤柱等都要向采空区涌出大量瓦斯,这些瓦斯向回采工作面扩散或被风流带出,往往造成采面、尤其是上隅角瓦斯超限。根据矿压理论和模拟试验发现,采空区随着顶板的冒落,中部逐渐被压实,而围绕中部的环形带透气性能较好,且为采空区瓦斯聚集区。如果将钻孔布置在该环形带内,瓦斯抽采量提高,且衰减速度较慢,这即所谓的“O 型圈”理论。工作面顶板走向钻孔抽采是工作面采空区抽采行之有效的方法。在进行顶板走向高位钻孔设计的过程主要参考相关标准计算顶板三带范围,首先分析工作面的冒落带和裂隙带高度,从而布置顶板走向钻孔,之后根据抽采效果进行参数的调整。(如图1) 图1 顶板走向高位抽采钻孔布置 2.1裂隙带分析 工作面裂隙带和冒落带高度,按照三下作业规程,冒落带及裂隙带高度经验为:(1)(2) 式中,h1为冒落带高度,m;h2为裂隙带高度,m;Σm为煤层累计开采厚度根据上述公式小甘沟煤矿11144工作面,煤层厚度平均为 9m,冒落带高度为12.28m~16.88m,裂隙带高度为44.40~55.60m。冒落高度取计算的均值为14.48m,裂隙带取计算均值为50.0m。 2.2压茬长度确定 由于冒落带的存在,高位钻孔抽采有一定的有效抽采范围,当岩石的垮落随采面的推进而推进到距这个钻场一定距离时,钻孔就会失去抽采作用。受钻孔角度和采空区顶板冒落形态的影响,钻场间存在抽采盲区。为了保证瓦斯抽采的连续性,在钻场与钻场之间就存在钻孔的压茬。虽然抽采钻孔的终孔位置处于顶板破断面以内,即终孔位置处于煤壁支撑影响区内,由于工作面支承压力的作用,支承压力的极限平衡区内岩层处于塑性状态,其微裂隙较为发育,钻孔能抽出高浓度的瓦斯,但此时不利于充分抽采采空区冒落岩层内积聚的瓦斯,不能有效解决工作面上隅角瓦斯问题。因此,瓦斯抽采钻场间钻孔的压茬设计应考虑顶板破断角和钻孔终孔位置至顶板破断面距离的影响。以往研究表明:钻场间钻孔的最小压茬长度确定方法如图2所示。图中a 表示本钻场的抽采盲区长度(按照经验取5m),b 表示钻孔的压茬长度,h 为表示钻孔终孔距离煤层顶板的高度,α为垮落角。要保证前一钻场报废时,下一钻场的钻孔进入顶板的裂隙区域内才能抽出瓦斯。 图2 钻孔最小压茬长度确定 2.3顶板钻孔在工作面倾向的控制范围 顶板钻孔在工作面倾向的控制范围根据采动裂隙的“O 型圈”理论,顶板钻孔在倾向上的有效控制范围与风巷的距离最大值一般为工作面长度的1/3,因此钻孔的终孔位置与风巷的平距需小于33m。而另一方面工作面的顶板在倾向方向上也存在垮落角β,近似取其与工作面走

不易自燃煤层综放工作面特殊时期防火综合治理技术(正式版)

文件编号:TP-AR-L5656 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 不易自燃煤层综放工作面特殊时期防火综合治理 技术(正式版)

不易自燃煤层综放工作面特殊时期防火综合治理技术(正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 1 工作面概况 3101综放工作面采用倾斜长壁综采放顶煤一次 采全高开采,工作面走向长度为910 m,倾斜长度为 150 m,平均煤厚7.8 m,煤层倾角10o~25o,地质储 量为136万t,可采储量为108.8万t。煤层标高为- 270~-418 m,埋藏深度496~615 m。20xx年7月鉴 定,该工作面煤层为不易自燃煤层,最短自然发火期 为70 d,煤尘爆炸指数为15.87%。 3101工作面为三水平首采工作面,采用U+L型 通风方式,上顺槽用U型棚支护,下顺槽和泄瓦斯巷

保护层区域瓦斯治理设计

保护层区域瓦斯治理设计 生产技术管理与工艺改革 1、优化区域瓦斯治理方案,实现被保护层面安全高效回采 (1)保护层区域瓦斯治理设计。根据矿井保护层开采区域瓦斯治理设计方案,在保护层区域保护面积考察上,其根据矿山压力理论和地表沉陷理论,工作面走向保护面积为被保护层工作面的开切眼和停采线向里内错的距离为45米(见下图走向上保护范围示意图):开切眼向里内错378ctg6045m L =?=;停采线向里内错478ctg6045m L =?=。 由于受矿井煤层层间距较大,导致在保护走向上内错距离较大,为了在走向上保护层和被保护层工作面垂直等长布臵,需对卸压边界至保护层工作面开切眼(或是停采线)对应位臵范围内的煤体进行密集钻孔抽放(钻孔间距8m ),即通过施工边界上山,在边界上山内施工穿层密集钻孔对未保护区域进行预抽消突,实现被保护层面最大化开采。

(2)保护层面积考察。为有效掌握保护层考察边界,通过对矿井II3采区已采保护边界进行测定,通过对保护层理论走向、倾向边界外延20米、40米、60米等测压和取样测定煤层瓦斯含量,得出实际保护层开采走向保护层卸压边角外错距离为20米,(见下图:保护边界考察示意图);即位臵开切眼向外错20米;停采线向外错20米。 (3)采面设计优化。根据以上保护层走向卸压保护边界的考察测定参数,在区域瓦斯治理方式进行设计优化和调整,即延伸保护层面走向布臵设计的情况下,实现被保护层和保护层等宽布臵,并取消原设计的边界上山巷道工程和密集钻孔工程。 (4)节约或创造价值。通过调整采面设计、优化区域瓦斯治理方案,实现被保护层面安全高效回采,增加单面煤炭资源回收量2.7万吨,按照现煤炭价格580元/吨计算,单个回采面增收资源价值1500万元左右。 通过瓦斯治理工程设计优化,取消矿井后期二水平采区边界上山巷道工程和边界密集钻孔工程,实现瓦斯治理工程合理投入,其单面取消巷道工程130米,边界密集钻孔工程

安塞油田采出水回注现状及建议

安塞油田采出水回注现状及建议 摘要:向油层注水成为采油驱油的主要手段,目前安塞油田采出水达到100%回注,采出水处理成为地面集输系统的一个重要环节。采出水处理工艺流程是否合理,处理过后的水质是否达标成为水处理工艺的关键指标。本文结合安塞油田水质监测工作情况、采出水处理回注现状,找出处理过程中存在的问题,如污水系统指标超标,尤其含油、机杂含量和硫酸盐还原菌含量严重超标,并进行分析,提出相应的改进措施。对采出水回注工作的优化提出合理建议。 关键词:采出水处理水质监测回注 一、安塞油田采出水回注及其特点 目前我国油田以向油层注水保持油层压力为主要开发手段。安塞油田地处陕北干旱、缺水地区,平均空气渗透率1.29×10-3μm2, 属于低渗、低压、低产的“三低”油田,为了提高油田产量和原油采收率,80年代末安塞油田进入注水大开发阶段,目前,注入水有清水和污水两种。 1.采出水特点 注入污水为油田采出水。随着原油的采出,地层水和注入水又会随着原油一起被采出,在地面进行油水分离后产生大量采油污水。采油污水具有高含油、高机杂、高矿化度、高有机物含量和组成性质复杂、变化大、处理难度大等特点,作为油田注水,采出污水较一般清水有以下优点: 1.1采出污水含有表面活性物质而且温度较高,能提高洗油能力,驱油效率随水的矿化度增加而提高,含表面活性剂的采出水,特别是矿化度接近同层中的采出水,其驱油效果更好。 1.2高矿化度水注入油层后,不会引起黏土颗粒膨胀而降低油层渗透率。 1.3水质稳定,与油层不产生沉淀。采油污水产自地下油层,与储层岩石和流体具有很好的配伍性,不会产生油层伤害。安塞油田储层孔隙喉道半径在0.01~1μm之间,达标处理后的采油污水作为注入水源比其它水源在保护储层方面更具有优势。大量的油田采出水回注于油田驱油,大大缓解了油田供水水源的紧张局面,同时也避免或减少了因油田含油污水排放造成的环境污染。 二、采出水回注标准和监测方法 1.采出水回注标准 根据长庆油田油层的实际情况,局研究院制定并发布的特低渗透油田推荐采出水处理水质标准 2.水质检测项目 我们依据注水流程,在每个站点,依据来水的处理流程依次采样进行分析。水质监测水样取自现场,测定也在现场进行。 机杂——采用哈呐9370浊度计测试法测试; 含油——采用分光光度比色法测试; 二氧化碳含量——采用滴定法测试; 含氧、含硫、含铁——采用北京华兴试剂厂生产的测试管比色法; 细菌在室内35℃下培养。 三、采出水处理工艺介绍 1.采出水水质特点和处理工艺 较之清水,采油污水中含有较多的原油、各种盐类有机物、无机物及微生物

特厚坚硬煤层综放工作面顶煤回收率提高综合措施

坚硬厚煤层综放工作面顶煤回收率提高综合措施 殷培东 彬县水帘洞煤炭有限责任公司,陕西彬县 713500 摘要:坚硬厚煤层条件下放项煤开采,顶煤在矿山压力作用下破碎不够充分,这给放煤工艺带来困难。本文主要从优化放煤工艺、合理选择顶煤弱化方式、加强回收率管理等措施综述提高放煤回收率方法。 关键词:坚硬煤层,放顶煤,回收率 综采放顶煤是在厚煤层中沿煤层布置一个长壁工作面,用常规方法进行回采,利用矿山压力的作用或辅以人工松动方法,使支架上方的顶煤破碎成散体后由支架后方(或上方)放出,并经由刮板输送机运出工作面。综采放顶煤开采安全、高效,在我国厚煤层开采中得到广泛应用并取得了巨大成功。顶煤能否顺利冒落并有效放出,是决定放顶煤开采能否成功的关键,也直接影响工作面的煤炭回收率。水帘洞煤炭有限责任公司(以下简称水煤公司)主采4#煤层f 为3.5~4.0,属坚硬煤层,顶煤在矿山压力作用下破碎不够充分,顶煤放出困难,选用超前预裂方式弱化顶煤。另外,合理确定放煤步距,选择合适的放煤方式,加强回收率管理等措施对提高放煤回收率也有着非常重要的作用,ZF3802工作面是水煤公司开采的第四个综放工作面,从以上几个方面入手,实现了对厚煤层的高产高效高采出率的安全开采。 1 煤层特征和工作面概况 煤层为侏罗系延安组下含煤段的4煤层。4煤为全区可采、赋存稳定的厚煤层,煤层厚度5.45~10.45m,平均厚度7.5m;煤层结构简单~较复杂,煤层上部含夹矸1层,岩性为泥岩,夹矸厚0.05m。煤层普氏系数3.0-3.9,属坚硬煤层,难以自行充分破碎,煤体破碎块度大,给放煤带来困难。 ZF3802工作面采用单一走向长壁综合机械化放顶煤采煤方法开采,工作面长度160m,走向长度2120m,采用单向截煤方式,循环进度为800mm,机采高度为3.5m,放煤厚度为3m,平均采放比1.17:1,工作面选用ZF11000/20/38型低位放顶煤液压支架,放煤方式“一刀一放”为一个循环,采用多轮顺序放煤,机头机尾各3架过渡支架不放煤。 2 顶煤弱化 2.1 弱化方式 采用深孔控制预裂爆破技术预裂顶煤。从切眼向外50米开始爆破,到撤切眼以西100米为预裂爆破段,爆破孔设计间距为3m,两顺槽设计为单层孔,两顺槽爆破孔错开布置。爆破孔设计长度为80米,爆破孔每孔装药100节,每节0.6米,共计长度为60米,封孔长度为20米。 2.2 爆破材料: 2.2.1 炸药品种的选择 选用“三级煤矿许用型乳化炸药”。 2.2.2装药工艺的研究及装药结构设计 由于乳化炸药形态多为膏状,黏度系数一般在3×105厘泊以上。因此,采用以往的压风散装药是行不通的,根据矿用乳化炸药的特点,研制了可连接式塑料被筒。被筒采用塑料作为材料,加入阻燃抗静电剂,被筒前后端有螺纹,两节之间可连接。通过设计金属模具,生产了多种规格的抗静电可连接式被筒,包括直径60mm、直径45 mm,长度0.7~1m的多种规格的被筒,采用较大直径较大被筒,装药量大,爆破力强,而直径较小的被筒装药量较小,可减小对顶板的破坏,根据煤层及钻孔直径及所需装药量等情况,选择不同规格的被筒。 在炸药厂直接将炸药灌装到塑料被筒里,将封盖拧紧,装药时将封盖拧开,用其自身的螺扣一节一节连接在一起,边向孔内装送,边连接,直至装完为止。试验证明,这种方法装药速度快,结构完整合理,有利于安全传爆;可以根据孔径改变被筒的的直径,将不耦合系数控制在合理的范围内,有利于提高爆破效果。因此装药方法采用可连接式塑料被筒。见图1。

不易自燃煤层综放工作面特殊时期防火综合治理技术

编订:__________________ 审核:__________________ 单位:__________________ 不易自燃煤层综放工作面特殊时期防火综合治理技 术 Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-9634-52 不易自燃煤层综放工作面特殊时期 防火综合治理技术 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 1 工作面概况 3101综放工作面采用倾斜长壁综采放顶煤一次采全高开采,工作面走向长度为910 m,倾斜长度为150 m,平均煤厚7.8 m,煤层倾角10o~25o,地质储量为136万t,可采储量为108.8万t。煤层标高为-270~-418 m,埋藏深度496~615 m。20xx年7月鉴定,该工作面煤层为不易自燃煤层,最短自然发火期为70 d,煤尘爆炸指数为15.87%。 3101工作面为三水平首采工作面,采用U+L型通风方式,上顺槽用U型棚支护,下顺槽和泄瓦斯巷采用工字钢T型棚支护,该工作面于20xx年12月开始回采。 2 工作面特殊时期自然发火隐患及原因分析

采掘工作面瓦斯分区治理规定

采掘工作面瓦斯分级治理规定(修订版)为进一步规范采掘工作面瓦斯治理,建立规范的瓦斯治理程序,确保采掘工作面安全生产有效进行,特修订采掘工作面瓦斯分级治理规定: 一、各业务科室职责 1、抽采科:负责瓦斯治理措施的制定及组织实施工作,负责相关方案、图纸的编制、审批、效果考察、钻孔工程质量的监管及验收、动力现象进行总结分析等。 2、重控科:负责煤层瓦斯参数的测定,负责全矿瓦斯治理措施效果检验的实施工作,负责瓦斯地质图的更新,负责向生产调度、及时反馈工作面瓦斯含量、钻屑解吸指标K1值信息。 3、地测科:负责提供准确的采掘工程平面图,提供准确的地质资料,负责超前探工作,及时预报地质构造变化情况。 4、生产科、南风井项目部:负责采掘队组做好超前探和瓦斯抽采钻孔施工组织、管理工作,保证预防瓦斯事故各项措施、工程的落实。 5、通风科:负责采掘工作面瓦斯涌出量及其他相关参数的测定计算工作,负责向安全调度、生产调度反馈工作面瓦斯涌出量信息。 6、调度室:负责打钻作业及其他抽采工程的协调、监督,对影响工程进度的进行事故追查落实;负责收到瓦斯含量、瓦斯涌出量信息后及时通知相关科室当日值班领导。 7、安监处:监督检查预防瓦斯事故各项措施的贯彻执行情况;监督检查瓦斯抽采各类隐患的整改情况。 二、掘进工作面瓦斯分级治理措施 1、瓦斯治理区域划分 瓦斯治理区域划分为相对低瓦斯区域、相对高瓦斯区域和高瓦斯区域。 相对低瓦斯区域指以下区域: (1)原煤钻屑解吸指标K1值<0.4、瓦斯含量W<8m3/t、掘进工作面瓦斯涌出量Q<3m3/min、且无瓦斯动力现象的区域; (2)实施过区域预抽措施后钻屑解吸指标K1值<0.4、瓦

利用QC方法 提高采出水水质

运用QC方法提高集输系统采出水水质 发布人:刘玉梅 提高采出水水质QC小组 第一采油厂集输大队 二00六年十一月

利用QC方法提高集输系统采出水水质 前言 集输大队六座集中处理站共有采出水处理系统七套,负责全厂70%采出水的处理任务。目前我厂采油方式为注水开采,加之安塞油田为特低渗透油田,对回注水质要求极高,根据长庆油田公司采出水处理及回注暂行标准(2001年颁布),我厂采出水回注指标为:含油≤10mg/l,悬浮物≤2mg/l。 今年是我厂精细注水年,我大队在厂领导和相关部门的大力支持下,通过不断完善工艺、检(维)修设施设备、不断建立健全管理制度,采出水达标率不断提高。 一、QC小组概况 二、选题理由 目前我大队日产采出水4400m3,达标率几乎为零,不合格的采出水回注地层将堵塞地层,降低单井产量,将加快老油田产量递减的速度,同时,采出水中含有少量原油,且矿化度高,具有较大危害性,若一经排放,将对环境造成极大的污染。为此,集输大队特成立QC

小组,以“提高认识强化过程控制,精益求精确保回注达标”为主题,通过QC方法,分析原因制定措施,合理利用资源,加强管理,以确保采出水处理水质达标率80%以上。 三、现状调查及分析 集输大队共有采出水处理系统7套,各站工艺、设施设备均不同程度存在一些问题,为了确保采出水达标回注,我们先从王窑集中处理站开始展开工作,然后辐射到其余6套系统。王窑集中处理站采出水主要设施有溢流沉降罐1具、除油罐2具、调节水罐1具、过滤器4具、清水罐2具,具体情况见下表。 王窑站采出水处理设施统计表 该站采出水处理工艺为含水原油经沉降罐沉降分离后,采出水从水箱脱至除油罐,经斜板除油、沉降分离后进入调节水罐,经过滤系统过滤后进入清水罐,为了保证水质达标,在处理的同时加入了杀菌剂、缓蚀剂、絮凝剂、助凝剂等化学药剂进行进一步的处理。 王窑集中处理站5月1日至5月10日水质统计表

煤层气藏采出水对环境的影响及治理技术

3高哲荣,工程师;1985年毕业于西安石油学院地球物理仪器专业;现从事石油地质研究工作。地址:(102801)河北省廊坊市万庄44号信箱天然气研究所。电话:(010)62095017转3400。 煤层气藏采出水对环境的影响及治理技术 高哲荣3 (中国石油天然气总公司石油勘探开发科学研究院) 于晓丽 (中国石油天然气总公司环境监测中心) 高哲荣等.煤层气藏采出水对环境的影响及治理技术.天然气工业,1997;17(1):58~60 摘 要 我国是世界上煤层气资源最丰富的国家之一,初步预测煤层气远景资源量为35×1012~ 25×1012m 3。煤层气以资源潜力、优质能源和化工原料、埋藏浅、开发成本低、受益时间长等优越条件,日益被人们 所重视。但是,一般来说,煤层气的开发会带来矿化度高的采出水。文中从煤层采出水的来源、化学组成入手,论述了煤层气藏采出水对环境的影响,提出了煤层气藏采出水的处理工艺、处理方法以及煤层气的有效利用方式等治理对策。 主题词 煤层气 采出水 环境影响 处理 技术 研究 煤层气系指赋存于煤层中的天然气,包括煤层颗粒表面的吸附气、煤层裂缝和割理内的游离气、煤层水中的溶解气以及煤层夹层中的游离气四大部分。吸附气占总含气量的90%以上,故又称为吸附气。煤层气由90%~99%的CH 4和少量其它气体 (CO 2、N 2、C 2+ )组成。早在本世纪50年代,煤层气就已在国外一些地区被利用。到1994年底,全美已有6000多口煤层气井,年产量逾210×108m 3,约占美国天然气总产量的4.2%。世界一些煤炭资源丰富的国家也开始从事这方面的研究和探索,如澳大利亚、加拿大等。我国地矿、煤炭、石油部门已开始投入煤层气这一新领域的勘探,同时吸引了众多的国外公司寻求与中国合作。目前已完钻90多口煤层气试验井。由于我国煤层气工业起步晚,现在还没有进入商业性开发阶段,基本上处于选区评价阶段。 煤层气藏采出水对环境的影响 1.煤层气藏采出水及其化学组成 由于煤层气藏的形成需要有一个较稳定的水动 力条件,与煤层气共存的是大量的煤层水。为了使煤层气解吸并流向井底,首先要排水降压。水力压裂可以缩短这种排水降压时间。所谓水力压裂就是用水力产生的人工裂缝来沟通煤层中的天然裂缝,以加速煤层的排水降压,使煤层甲烷气投入开发。美国把水力压裂作为煤层气井增产的优选措施。我国80余 口煤层气的开发实验井,多数也采用水力压裂。因此,在煤层气井采气前及采气过程中,伴随着水的不断产出。如鲁西地区靠近历城的济古1井,太原组62018~687m ,日产气500m 3、产水200m 3;河东地区高家坪附近,由中原油田施工的SG —3井,日产气2×104m 3、产水40m 3。煤层气生产与常规天然气生产的最大差别之一就在于这种采出水。在煤层气生产之前,一般来说,要从井中抽水长达6个月或更久。当进行多煤层气生产时,产出水量会更多。 煤层气藏采出水的主要化学组分包括碳酸氢盐、硫酸盐、氯化物、钙、镁和钠等。其次还有少量的铁、硫化物等。表1列出了湖南冷试1井等井采出水的组分。 表1 湖南冷试1井等井采出水组分 Table 1.Co m pestion of produced water fro m well L engsh i 1i n Hunan and so m e other wells 井 名N a ++K +Ca 2+M g 2+HCO 3-CO 2-3SO 2-4 Cl -矿化度 湖南冷试1井3366 12102143未检出未检出1511718445376 大城胜热1井 1170-6100250-510016713165 大参1井1547241012128901930101401218084452 注:1)湖南冷试1井为水样采集后,通过长途运输送回实验室 后的测定结果,未能在煤层气井采出口直接采样测定,此结果仅作参考;2)单位均为m g L 。 ? 85?钻采工艺与装备1997年1月

特厚煤层综放工作面初采初放期间瓦斯治理技术研究

特厚煤层综放工作面初采初放期间瓦斯治理技术研究 发表时间:2019-10-24T15:08:28.520Z 来源:《基层建设》2019年第22期作者:阮淼 [导读] 摘要:陕西陕煤彬长矿业集团胡家河矿井自投产以来已经回采6个特厚煤层综放工作面,结合工作面初采初放期间采取的瓦斯治理技术措施,对瓦斯治理技术进行总结,为类似条件综放工作面初采初放期间瓦斯治理工作提供了借鉴经验。 陕西彬长胡家河矿业有限公司陕西咸阳 713602 摘要:陕西陕煤彬长矿业集团胡家河矿井自投产以来已经回采6个特厚煤层综放工作面,结合工作面初采初放期间采取的瓦斯治理技术措施,对瓦斯治理技术进行总结,为类似条件综放工作面初采初放期间瓦斯治理工作提供了借鉴经验。 关键词:特厚煤层;综放工作面;初采初放;瓦斯治理 1矿井概况 胡家河矿井位于陕西省咸阳市彬长矿区中北部,行政区划隶属彬县、长武县管辖,矿井设计产能500万t/a,属高瓦斯矿井,现主采4#煤层。根据沈阳研究院对胡家河矿井煤体进行的瓦斯基础参数测定结果,胡家河煤矿4#煤层原始瓦斯含量为3.8m3/t,煤层压力为0.4MPa,煤层瓦斯含量系数为7.99m3/(m3.MPa0.5),煤层透气性系数为3.32~3.78m2/(MPa2.d),钻孔自然瓦斯流量衰减系数0.033~0.0348(d-1)。目前该矿已顺利回采3个特厚煤层综放工作面,均采用走向长壁后退式综合机械化放顶煤分层开采,回采上分层煤平均厚度 13.5m,下分层煤平均厚度10m,平均厚度 23.5m,全部垮落法管理顶板,工作面采用四巷式布置,即运输顺槽、回风顺槽、泄水巷及高位瓦斯抽放巷。 2初采初放期间瓦斯涌出情况 401103工作面为胡家河矿井正在回采的第4个回采工作面,该工作面为4号煤层,赋存稳定,厚度25.0~28m,平均厚度26m,上分层平均可采厚度16.9m。该工作面设计长度1643m,可采长度1493m(平距),倾向长190m。根据胡家河矿井瓦斯抽采实验室分析数据,401103工作面进风巷侧煤层原始瓦斯含量范围为3.24-3.92m3/t,回风巷侧煤层原始瓦斯含量为3.86-4.1m3/t。401103工作面于2018年1月12日0点班开始回采,1月19日0点班工作面绝对瓦斯涌出量达到最大值30.10m3/min,1月24日0点班,工作面发生初次来压,此后稳定在25m3/min上下浮动,工作面瓦斯涌出量变化如图1所示。 图1 401103工作面瓦斯涌出量变化曲线图 3初采初放期间采取的瓦斯治理措施 面对工作面初采期间顶板未充分垮落,高为瓦斯抽采巷不能有效发挥作用,胡家河矿果断采取了多种综合瓦斯治理措施,不断在摸索中找寻符合矿井实际条件的有效瓦斯治理措施。 (1)1月13日4点班将工作面风量调整为进风2000m3/min,回风1700m3/min,初采期间保持通风系统稳定,通风设施完好。 (2)401103工作面1000米以外抽采钻孔关闭支管路阀门,集中负压预抽切眼向外500米段瓦斯含量富集区域,每班安排专人对401103工作面抽采系统进行巡查,对容易积水的支管路增加放水次数,及时处理漏气、管路积水等问题,确保井下抽采系统正常稳定运行。进风巷、回风巷采前预抽钻孔拆除距工作面煤壁不得大于5m,确保连孔质量,严禁漏气,每天检测工作面向外30米范围内预抽钻孔抽采浓度、负压情况。 (3)高抽巷抽采采用两套永久瓦斯抽采系统进行抽采;每班安排人员对401103工作面各系统浓度、流量、负压进行测定。 (4)根据工作面瓦斯浓度适当调整采煤机割煤速度,工作面割煤、放煤工艺必须交替进行,不得平行作业。跟机瓦检员负责及时将瓦斯浓度告知采煤机司机,便于及时调整采煤机速度。 (5)工作面监测传感器及时标校,确保数据精确、断电灵敏可靠。在工作面瓦斯传感器位置增设采煤机专项甲烷传感器,断电浓度设置为≥0.7%,复电浓度设置为≤0.6%。工作面、上隅角、回风等地点瓦斯传感器断电浓度设置为≥0.8,复电浓度设置为≤0.6%。 (6)对401103工作面两顺槽提前施工的高位防灭火钻孔及定向钻孔(工作面向外500m范围内)连接进行抽放,每天测定钻孔抽采浓度。以401103工作面进风巷切眼向外70米第一组高位孔为例,抽采浓度最大为100%,浓度变化曲线如下所示:

高突煤层综放工作面瓦斯抽放技术

高突煤层综放工作面瓦 斯抽放技术 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

高突煤层综放工作面瓦斯抽放技术淮南矿业集团谢桥矿位于淮南潘谢矿区西翼,是一座设计年产400万t 的特大型现代化矿井,于1997年5月投产,为建设高产高效矿井,矿井正在进行按600万t/a以上能力进行改造。矿井可采煤层11层,平均煤厚24.61m,煤层倾角一般为8°~15°,井田构造简单,断层为高瓦斯突出煤层,采用综采放顶煤一次采且高回采工艺;高位顶板走向钻孔治理瓦斯,但随着开采强度加大,开采深度的延深,瓦斯含量和瓦斯涌出量明显增大,开采深度的延深,瓦斯含量和瓦斯涌出量明显增大,特别是目前推广使用锚网支护,单采用高位顶板走向钻孔抽放瓦斯效果不明显,瓦斯超限是制约综放效能发挥的首要问题,针对这一问题我们在1151(3)综放工作面采用顶板高抽巷(低层位顶板钻孔)抽放、合理配风、埋管抽放、顺层钻孔抽放等综合治理瓦斯超限问题。 1工作面概况 1151(3)工作面为东一C组采区东翼五阶段,且为东一C组采区下山开代的第一个工作面,上下顺槽均采用锚网支护,回风顺槽煤层底板标高-588m~-602.8m,运输顺槽煤层底板标高为-636.5m~662.0m;工作面西起东一C组采区下车场,东至1151(3)切眼联巷,工作面北边倾向长231.8m,计划日产量5000t左右,工作面配风2000m3/min。该面煤层稳

定,沿顺槽方向煤层走向变化较大,倾向180°~200°,平均倾角 12.8°,平均煤厚5.4m。 2瓦斯来源分析 2.1初放期间 工作面在回采推进7m后,瓦斯涌出量呈突然增大趋势,绝对量达 35m3/min,工作面及回风瓦斯经常超限,工作面瓦斯浓度最大达2.0%,回风瓦斯浓度晨大在1.7%,使工作面无法正常推进。究其主要原因如下: (1)13-1煤层瓦斯含量大。根据重庆煤科分院提供报告,1151(3)区段煤层瓦斯含量达7~9m3/t。工作面煤机割煤时,行进速度快,截深达800mm,落煤量大,造成落煤及工作面新暴露煤壁瓦斯涌出量大。 (2)自回采始至推进30m以内为初次放顶期间,采高为2.4m,不放顶煤,回采率只有45%左右,大量顶煤遗落采空区。受初采矿压影响,煤顶、直接顶离层带积聚大量瓦斯,煤顶、直接顶受压垮落致使大量积存瓦斯集中涌向工作面。 2.2初放之后

油田污水处理

油田污水处理现状及发展趋势 摘要:油田污水处理的目的是去除水中的油、悬浮物、添加剂以及其它有碍注水、易造成注水系统腐蚀、结垢的不利成分。所采用的技术包括重力分离、粗粒化、浮选法、过滤、膜分离以及生物法等十几种方法。各油田或区块的水质成分复杂、差异较大,处理后回注水的水质要求也不一样,因此处理工艺应有所选择。研制新型设备和药剂,开发新工艺,应用新技术成为油田污水处理发展的新趋势。 关键词:油田污水污水处理技术分类膜分离技术MBR 1.概述 油田污水主要包括原油脱出水(又名油田采出水)、钻井污水及站内其它类型的含油污水。油田污水的处理依据油田生产、环境等因素可以有多种方式。当油田需要注水时,油田污水经处理后回注地层,此时要对水中的悬浮物、油等多项指标进行严格控制,防止其对地层产生伤害。如果是作为蒸汽发生器或锅炉的给水,则要严格控制水中的钙、镁等易结垢的离子含量、总矿化度以及水中的油含量等。如果处理后排放,则根据当地环境要求,将污水处理到排放标准。我国一些干旱地区,水资源严重缺乏,如何将采油过程中产生的污水变废为宝,处理后用于饮用或灌溉,具有十分重要的现实意义。 采用注水开采的油田,从注水井注人油层的水,其中大部分通过采油井随原油一起回到地面,这部分水在原油外运和外输前必须加以脱除,脱出的污水中含有原油,因此被称为油田采出水。随着油田开采年代的增长,采水液的含水率不断上升,有的区块已达到90%以上,这些含油污水已成为油田的主要注水水源。随着油田外围低渗透油田和表外储层的连续开发,对油田注水水质的要求更加严格。 钻井污水成分也十分复杂,主要包括钻井液、洗井液等。钻井污水的污染物主要包括钻屑、石油、粘度控制剂(如粘土)、加重剂、粘土稳定剂、腐蚀剂、防腐剂、杀菌剂、润滑剂、地层亲和剂、消泡剂等,钻井污水中还含有重金属。 其它类型污水主要包括油污泥堆放场所的渗滤水、洗涤设备的污水、油田地表径流雨水、生活污水以及事故性泄露和排放引起的污染水体等。 由于油田污水种类多,地层差异及钻井工艺不同等原因,各油田污水处理站不仅水质差异大,而且油田污水的水质变化大,这为油田污水的处理带来困难。 2.国内外油田污水处理技术现状 2.1 技术分类 2.1.1 物理法 物理处理法的重点是去除废水中的矿物质和大部分固体悬浮物、油类等。物理法主要包括重力分离、离心分离、过滤、粗粒化、膜分离和蒸发等方法。 重力分离技术,依靠油水比重差进行重力分离是油田废水治理的关键。从油水分离的试验结果看,沉淀时间越长,从水中分离浮油的效果越好。自然沉降除油罐、重力沉降罐、隔油池作为含油废水治理的基本手段,已被各油田广泛使用。 离心分离是使装有废水的容器高速旋转,形成离心力场,因颗粒和污水的质量不同,受到的离心力也不同。质量大的受到较大离心力作用被甩向外侧,质量小的则停留在内侧,各自通过不同的出口排出,达到分离污染物的目的。含油废水经离心分离后,油集中在中心部位,而废水则集中在靠外侧的器壁上。按照离心力产生的方式,离心分离可分为水力旋流分离器和离心机。其中水力旋流器,由于具有体积小、重量轻、分离性能好、运行安全可靠等优点,而备受重视。目前在世界各油田,如中东、非洲、西欧、美洲等地区的海上和陆地油田都有

瓦斯灾害治理新技术(通用版)

( 安全论文 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 瓦斯灾害治理新技术(通用版) Safety is inseparable from production and efficiency. Only when safety is good can we ensure better production. Pay attention to safety at all times.

瓦斯灾害治理新技术(通用版) [摘要]在分析煤矿安全科技工作现状和趋势基础上,介绍了近年来我国瓦斯灾害防治技术研究取得的进展和新成果。通过“十五”科技攻关项目的研究,提出了瓦斯煤尘爆炸危险性评价方法,研究出了基于瓦斯地质、地质动力区划、电磁波探测方法的煤与瓦斯突出区域预测技术和基于AE声发射、电磁辐射和瓦斯涌出等原理的煤与瓦斯突出非接触连续预测技术,实验成功了高瓦斯煤层群开采保护层瓦斯灾害综合防治及顺煤层强化抽放等技术,开发了矿井通风系统监测、可靠性评价分析及决策控制技术。另外还分析了我国煤矿安全所面临的挑战和急需开展的科技研究工作。 [关键词]危险性评价;煤与瓦斯突出;瓦斯抽放;灾害治理;新技术 1概述

瓦斯是我国煤矿的主要灾害因素之一,瓦斯煤尘爆炸、煤与瓦斯突出等灾害严重威胁着我国煤矿的安全生产。由于灾害因素多、治理难度大,矿井瓦斯一直是我国煤矿安全工作的重点和难点。目前,我国所有煤矿均为瓦斯矿井,据统计,在100个国有重点煤炭生产企业的609处矿井中,高瓦斯矿井占26.8%,煤与瓦斯突出矿井占17.6%,低瓦斯矿井占55.6%。国有地方和乡镇煤矿中,高瓦斯矿井和煤与瓦斯突出矿井占15%左右。部分局矿的情况更为严重,如淮南矿业集团所属11对矿井均为突出矿井,平顶山煤业集团所属的13对矿井也全部为高瓦斯或突出矿井。 瓦斯灾害已成为制约煤矿安全生产和煤炭工业发展的重要因素,为此,国家煤矿安全监察局实施了“科技兴安”战略,并提出了“先抽后采、监测监控、以风定产”的瓦斯治理“十二字方针”,与此同时,我国的各类科技计划也逐步加强了瓦斯灾害治理技术研究开发的支持力度。“十五”以来,科研院所、高等院校及企业以产学研结合方式开展了攻关研究,在瓦斯煤尘爆炸、煤与瓦斯突出预测、保护层开采、顺煤层瓦斯抽放及矿井通风系统监测、评价与决

相关文档
最新文档