不同管型结构空调冷凝器传热性能研究

不同管型结构空调冷凝器传热性能研究
不同管型结构空调冷凝器传热性能研究

伸展体传热特性实验报告

具有对流换热条件的伸展体传热特性试验之实验报告 实验人:刘罗勤 学号:PB07013045 班级:0701301 一、实验题目:具有对流换热条件的伸展体传热特性试验 二、通过实验和对试验数据的分析,使我们更深入了解伸展体传热的特性并掌握求解具有对流换热条件的伸展体传热特性的方法。 三、基本原理 略 四、实验要求 1. 解方程 22 2 0d m dx θθ-= (1) 棒沿X 方向的过余温度 f t t θ=-分布式: () x θθ=; 221122********* 210;,cosh()sinh()cosh() ,cosh()sinh(),sinh() cosh()sinh ()sinh() cosh()sinh()sinh()sinh() d m T T T T A mx B mx dx mL A A mL B mL A B mL mL m L x mx mx mx mL mL θ θθθθθθθθθθθθθθθ∞∞-==-=-?=+-==+?==--+∴=+= (2)分析沿X 方向,棒的温度分布曲线的可能形状。分析各参数:L 、U 、f 、λ、 α、1W t 、2W t 、f t 对温度分布的影响(由第2题数据得出)。 60 708090100110120130 140150160170180190θ / o C X /mm 图1-1.不同的m值所对应的过余温度分布曲线 由图1-1可知,当其它参数保持不变,仅改变m 的值时,m 的值越大,棒的对应点(端点除外)的温度越小。又因为m 2=αU /λf ,所以α、U 越大,λ、f 越小,棒的对应点

(端点除图1-1.不同的m 值所对应的过余温度分布曲线外)的温度越小。 由图1-2知,当其它参数保持不变,仅改变t f 的值时,t f 的值越大,棒的对应点(端点除外)的过余温度越小。而由图1-3知,当仅改变t f 的值时,t f 的值越大,棒的对应点(端点除外)的温度也越大。 由图1-4知,当仅改变t w 的值时,t w 的值越大,棒的对应点的温度也越大。由图1-5知, θ/ o C X /mm 图1-2.不同的tf值所对应的过余温度分布曲线 θ / o C X /mm 图1-4.不同的tw1值所对应的过余温度分布曲线 图 50 607080 90100 110120130 140 150160170180 190θ /o C X /mm 图1-5.不同的L值所对应的过余温度分布曲线 t / o C X/mm 图1-3.不同的tf值所对应的温度分布曲线

冷凝器传热知识

两器传热的一些理论知识 一、冷凝器的换热 1. 顺流和逆流的影响在一般性的换热器流路设计中,在换热器两侧,冷热流体的相对流向一般有顺流和逆流两种。顺流时,入口处两冷热流体的温差最大,并沿传热表面逐渐减小,至出口处温差为最小;逆流时,沿传热表面两冷热流体的温差分布较均匀。在冷、热流体的进出口温度一定的条件下,当两种流体都无相变时,以逆流的平均温差最大,顺流的平均温差最小;当两种流体其中一相或两相相变时,逆流与顺流的平均温差一致。 2. 重力因素冷凝器流路布置中,重力的影响不可忽略。因此,在回路中液体(或两相流体)应尽可能地从高处进入低处流出,以减少流动阻力。 3.增大传热温差的方法与作用1 在冷凝器流路布置中,为了提高△t,增大换热效果,应该将热源点即铜管温度较高的部分布置在出风处,铜管温度较低的部分布置在进风处。冷凝器换热量Q 的提高,冷凝器的冷却效果增加,实际上是降低了冷凝器的内部高压,降低了制冷循环在压焓图中的位置,循环低压降低使蒸发温度的降低可增加蒸发器的冷量。由于毛细管的阻尼作用可以认为是不变的,使由高低压差驱动的冷媒循环量略有减少,低压略有降低,最终使制冷循环的高低压较接近,制冷循环的能效比增加较明显。流程布置会改变传热温差的分布, 从而对换热器性能有较大的影响。 4. 增大传热温差的方法与作用 2 在空调冷凝器的换热过程中,由于铜管内流动的冷媒从过热、两相冷却到过冷,因此冷媒沿程有较大的温度变化。在过热区和过冷区温度基本呈斜直线规律下降,两相区的温度基本保持不变,但实际上稍有下降,这是因为沿程有阻力损失,所以对应的饱和温度会稍有降低。通过上述传热单元的换热分析,我们可以人为地对冷媒三种状态的温度变化加以利用。冷媒的过热段温度较高,且有较大的温度降低,根据风的流向,将其置于两相段或过冷段之后作为逆流换热的高温端,让风先在冷却冷媒两相段或过冷段之后再冷却过热段,过热段的高温也能被风有效冷却。冷媒的两相段,基本属于等温段,将其置于过冷段之后作为逆流换热的高温端,风在冷却过冷段后再冷却两相段,提高两相段的换热量,并让冷媒尽快进入过冷状态,并提高冷媒的过冷度。冷媒的过冷段,温度只比环境温度高,将其放于过热段或两相段的前排作为逆流换热的低温端,让风最先与之换热,以充分接受环境温度的冷却,过冷度也得到提高。相对于风流动的方向,冷凝器流路的布置使翅片出风侧的温度尽量提高,翅片进风侧的温度尽量降低。这样,冷媒过热区即管路高温的部分布置在出风侧;冷媒过冷区管路即低温的部分布置在进风侧;冷媒两相区的管路部分,

具有对流换热条件的伸展体传热特性试验

五.具有对流换热条件的伸展体传热特性实验 一、实验目的 通过本实验和对实验数据的分析,加深对传热学教学内容的理解,掌握和了解伸展体传热的特性和求解具有对流换热条件的方法。 二、实验方法与设备 1. 设备的组装 将位于箱体风道中部的伸展体试验的封头取下,将图4所示的伸展体试件按铜管表面的刻线贴好热电偶(用单独的热电偶组)后插入风道,并使热电偶在背风处,如图16所示。将单独一组10对的热电偶接入热电偶组(一)接口,将伸展体试件的加热导线接入位于面板最右端的接线柱。 图16 伸展体试件安装于风道内 2. 实验原理 本实验所用试件为一圆紫铜管,其外径0d =19mm ,内径1d =17mm ,长度L=260mm ,具有对流换热的等截面伸展体(常物性),如图17所示,取导热微分方程为: 图17 等截面伸展体对流换热示意图

0222=-θ?m dx d (1) 式中:m ——系数,c A hp m λ=, (m 1) θ——过余温度,f t t -=θ, (℃); t ——伸展体温度, (℃); f t ——伸展体周围介质温度, (℃); h ——空气对壁面的表面传热系数,(c m W ο?2); p ——横截面的周长,0d p π=,(m ); λ——空气的导热系数,(m.℃) c A ——伸展体横截面面积,4) (10d d A c -=π,(2 m ); 伸展体内的温度分布规律取决于边界条件和m 值得大小。本实验采用的试件两端为第一类边界条件,即: f w f w t t L x t t x -===-===2211,,0???? ; (2) 由此,试件内的温度分布规律为式(3),伸展体在壁面1和壁面2的热流量分别用式(4)和式(5)计算。伸展体表面和流体之间的对流换热量用式(6)计算。 )()] ([)(12mL sh x L m sh mx sh -+=??? (3) ) (])([)(2101mL sh mL ch m A dx d A c x c θ?λθλφ-=== (4) ) ()]([)(212mL sh mL ch m A dx d A c L x c θ?λθλφ-=== (5) )(]1)()[(2121mL sh mL ch m A c --=-=θ?λφφφ (6) 根据0=dx d θ,可寻求过余温度最低值处的位置m in x })(/]/)([{12min m mL sh mL ch arcth x θθ-= (7) 3. 实验过程、数据的测量和整理

汽车空调用平行流冷凝器标准

Q 江阴亚成制冷设备有限公司企业标准 Q/320281AKK02-2007 汽车空调用平行流冷凝器 2007-12-17发布2007-12-30实施江阴亚成制冷设备有限公司发布

前言 江阴亚成制冷设备有限公司生产的汽车空调用平行流冷凝器,目前尚无国家标准和行业标准,为保证产品质量,特制定企业标准Q/32028AKK02-2007《汽车空调用平行流冷凝器》作为企业组织生产、监督检查、交货验收的依据。 本标准的编写格式符合GB/T 1.1-2000和GB/T 1.2-2002的规定。 本标准的附录A、附录B、附录C为规范性附录。 本标准由江阴亚成制冷设备有限公司负责起草。 本标准由江阴亚成制冷设备有限公司负责批准。 本标准主要起草人:马恒南何军杰郭胜

汽车空调用平行流冷凝器 1 范围 本标准规定了汽车空调用铝制平行流冷凝器的产品分类要求、试验方法、检验规则、标志、包装、贮存等。 本标准适用于本公司生产的各种规格的汽车空调用铝制平行流冷凝器(以下简称冷凝器)。 2 规范性引用文件 下列文件所包含的条款,通过在本文件中引用而构成本文件的条款。凡是注日期的引用文件,其随后所 有的修改单(不包括勘误的内容)或修订版均不适用于本文件,然而,鼓励根据本文件达成协议的各方研 究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本文件。 QC/T 657-2000 汽车空调制冷装置试验方法 JIS D 1601-1995 汽车零部件振动试验方法 JIS Z 2371-2000 盐雾试验试验方法 3 术语 3.1冷凝器标准方位 扁管沿水平方向、产品迎风面垂直于水平的位置。冷凝器的名义换热量是在这一位置上确立和测量。 3.2 系列产品 冷凝器所用的扁管材料、结构、尺寸相同,且翅片的材料、结构、尺寸相同的产品。 4产品分类 4.1 产品的型式 产品的型式为铝制平行流式,由挤制铝扁管、集流管和翅片钎焊而成。 4.2型号 4.2.1型号表示法 改型序号,用大写字母、、 表示。 顺序号。用阿拉伯数字1、2、3、 等表示。 扁管厚度为2的可以不标。 翅片高度。 扁管宽度。 平行流冷凝器代号。 4.2.2标注示例 产品扁管宽度为18mm,翅片高度为8 mm,扁管厚度为2 mm,顺序号为1,原设计的冷凝器,可标注 为PL18×8-1。Q/320281AKK02-2007 产品扁管宽度为17mm,翅片高度为9.1 mm,扁管厚度为1.9mm,顺序号为1,第二次改进设计的冷 凝器,可标注为PL17×9.1×1.9-1B。Q/320281AKK02-2007

弯月面在电场作用下的传热特性

毛细蒸发弯月面在电场作用下的传热特性摘要:基于电场增强蒸发薄液膜的传热性能,本文将电场力对液膜的作用形式转化为气液界面间的压差,并据此针对正辛烷在施加电场的硅质管道中的流动特性和传热特性建立电场强化薄液膜区换热的数学模型。该模型结合薄液膜所受毛细力、范德华力以及电场力,运用数值计算分析方法得出电场强化薄液膜区域换热的结论。结果表明,电场能延长蒸发薄液膜区域,极大增强蒸发薄液膜的传热能力。 关键词:强化换热、电场、薄液膜、蒸发、弯月面 Heat transfer characteristics of the evaporating capillary meniscus under the electric field Abstract :Based on the electric field enhance the thin liquid film evaporation heat transfer performance.This paper forms the function of the electric field force of liquid membrane into a pressure differential between the gas-liquid interface.According to the flow characteristics and heat transfer characteristics of the octane in the siliceous pipe which applies an electric field,building a mathematical model of the heat transfer in the thin liquid film zone applying an electric field.This model combined with the thin liquid film by capillary forces, van der Waals forces and electric field https://www.360docs.net/doc/a14959009.html,ing numerical analysis method of the electric field to strengthen the conclusion of thin liquid film zone heat.The results show that the electric field can extend the thin liquid film evaporation area and greatly enhance the thin liquid film evaporation heat transfer ability. Key words: heat transfer enhancement, electric field, thin liquid film, evaporation, meniscus 毛细通道内蒸发弯月面上的蒸发传热过程是热管、微槽热管和回路热管等毛细驱动两相热传输装置的关键传热环节。有效地利用这一区域的相变传热,对提高此类装置的热传输性能有重要意义。近年来国内外实验和理论分析工作证实电场能够强化薄液膜区域换热。电场强化换热是指在换热表面的流体中施加电场,利用电场、流场和温度场之间的相互作用达到强化传热的效果[1]。实验结果

蒸发器冷凝器的作用.

冷凝器和蒸发器 冷凝器和蒸发器是汽车空调器中双重要的组件,其作用是实现两种不同流体之间的热量交换。所以,蒸发器和冷凝器都是换热器。具体讲来,在冷凝器中是制冷剂把热量放给周围环境空气。制冷剂在管内流动,在放热历程中,制冷剂蒸气逐步凝结成制冷剂液体。而周围环境空气受到加热,在蒸发器中则是制冷剂吸收周围被冷却空气—-车室内空气的热量,制冷剂在管内流动,在吸热的历程中,制冷剂液体不断的沸腾气化成制冷剂蒸气。空气则得到冷却,温度降低。在一定的条件下空气中还会有一部分水蒸气凝结析出。 4.1换热器的基来源根基理 在汽车空调中所采用的冷凝器和蒸发器都是制冷剂和空气之间被壁面(如金属管)离隔,二者不直接接触来实现温差传热的换热器。从传热角度考虑,换热的历程老是两种流体之间存在温差,而且也老是温度高的流体将热量传递给温度低的流体。为分析方便为达到目的,把温度高的流体称为热流体,把温度低的流体称为冷流体。在冷凝器中制冷剂称为热流体,那么空气就是冷流体。在蒸发器中恰好相反,空气是热流体,制冷剂却成了冷流体。是以蒸发气和冷凝器是实现热流体和冷流体之间热量转换的设备。在汽车空调中冷凝器放出制冷剂储存的热量,而蒸发气是制冷剂吸收空气中的热量。 4.2冷凝器 冷凝器是将压缩机排出的高压过热制冷剂蒸气,通过它放出热量后,凝结成液体或过冷液体的换热设备。 在汽车空调中,冷凝器都是采用空气冷却方式,或叫做风冷方式。其特点是不需要用水和水源,使用和安装方便。 (1)冷凝器构造 在汽车空调中采用的冷凝器首要有以下几种: ①管片式冷凝器 ②管带式冷凝器 ③平流式冷凝器 (2)冷凝器的安插 汽车空调的冷凝器,大多数安插在车头部,侧面或车底,经常有地面上的尘土和泥浆水飞溅在冷凝器上。其既增加了热阻,降低了传热性能,冷凝器的管子又受到这种酸性物质的腐蚀,管子容易烂穿。是以,在使用时应经常对冷凝器外貌进行清理。

微通道换热器流动和传热特性的研究

微通道换热器流动和传热特性的研究 微通道换热器流动和传热特性的研究 杨海明朱魁章张继宇杨萍 (中国电子科技集团公司第十六研究所,合肥230043) 摘要:通过对微通道换热器流动和传热特性的研究,设计了实验方案并建立了相应的实验装置,结合流动、传热特性的相关准则,得出了雷诺数Re-摩擦系数f,雷诺数Re、普郎特数Pr-努谢尔特数Nu间关系的实验模型,并对该模型进行了分析。 关键词:微通道换热器;流动特性;传热特性;实验模型 1引言 通道式换热器是利用传热学原理将热量从热流体传给冷流体的,冷热流体分别在固体壁面的两侧流过,热流体的热量以对流和传导的方式传给冷流体。由于它结构紧凑、体积小、换热效果好,已广泛应用于红外探测、电子设备、生物医疗等工程领域的冷却中。然而随着现代科技水平的不断发展,被冷却的器件、设备其功能越来越强大,体积和重量越来越小,结构趋于复杂化,散热要求越来越苛刻,迫使采用通道式换热器的制冷器件向小型化、甚至微型化的方向发展,尤其是半导体激光器、T/R收发组件、微电子集成器件等电子仪器、设备对这方面的要求更高,于是微通道换热器(特别是微型节流制冷器MMR)的研制开发已迫切地提到了议事日程上来。 所谓微通道换热器即是采用拉丝或光刻等技术在金属、玻璃等基材上刻出几十至几百微米的细微槽道来构成换热器的壁面,再采用焊接或胶粘等方式形成封闭腔体来进行冷热流体的热交换,达到制冷的目的。国外对微通道换热特性的研究较多,但主要是进行直线微通道换热器特性的研究,早期关于其流动问题的研究是在微型Joule-Thomson制冷技术中完成的,由美国斯坦福大学利特尔(W.A. Little)教授发明,采用现代半导体光刻加工技术, 在微晶玻璃薄片上刻出几微米到几十微米的细微直线槽道,并采用胶粘技术构成气流的微型换热器、节流元件和蒸发器,从而获得了一种结构新颖的微型平面节流制冷技术以及一定的成果和专利。目前已经开发成微型制冷器,用于低温电子器件的冷却,产品照片如图3所示。 2流动、传热特性的相关准则

冷凝器换热面积计算方法

冷凝器換熱面積計算方法 (製冷量+壓縮機功率)/200~250=冷凝器換熱面 例如:(3SS1-1500壓縮機)CT=40℃:CE=-25℃ 製冷量12527W+壓縮機功率11250W 23777/230=氣冷凝器換熱面積103m2 水冷凝器換熱面積與氣冷凝器比例=概算1比18;(103/18)= 6m2 蒸發器的面積根據製冷量(蒸發溫度℃×Δt進氣溫度) 製冷量=溫差×重量/時間×比熱×安全係數 例如:有一個速凍庫1庫溫-35℃,2冷凍量1ton/H、3時間2/H內,4冷凍物品(鮮魚);5環境溫度27℃; 6安全係數1.23 計算:62℃×1000/2/H×0.82×1.23=31266kcal/n 可以查壓縮機蒸發溫度CT=40;CE-40℃;製冷量=31266kcal/h NFB與MC選用 無熔絲開關之選用 考慮:框架容量AF(A)、額定跳脫電流AT(A)、額定電壓(V), 低電壓配線建議選用標準 (單一壓縮機) AF 取大於AT 一等級之值.(為接點耐電流的程度若開關會熱表示AF選太小了) AT(A ) = 電動機額定電流×1 .5 ~2 .5(如保險絲的IC值) (多台壓縮機) AT(A )=(最大電動機額定電流×1 .5 ~2 .5)+ 其餘電動機額定電流總和 IC啟斷容量,能容許故障時的最大短路電流,如果使用IC:5kA的斷路器,而遇到10kA的短路電流,就無法承受,IC值愈大則斷路器內部的消弧室愈大、體積愈大,愈能承受大一點的故障電流,擔保用電安全。要搭配電壓來表示220V 5KA 電壓380V時IC值是2.5KA。

電磁接觸器之選用 考慮使用電壓、控制電壓,連續電流I t h 之大小(亦即接點承受之電流大小),連續電流I th 的估算方式建議為I t h=馬達額定電流×1.25/√ 3。 直接啟動時,電磁接觸器之主接點應選用能啟閉其額定電流之10倍。 額定值通常以電流A、馬力HP或千瓦KW標示,一般皆以三相220V電壓之額定值為準。 電磁接觸器依啟閉電流為額定電流倍數分為: (1).AC1級:1.5倍以上,電熱器或電阻性負載用。 (2).AC2B級:4倍以上,繞線式感應電動機起動用。 (3).AC2級:4倍以上,繞線式感應電動機起動、逆相制動、寸動控制用。 (4).AC3級:閉合10倍以上,啟斷8倍以上,感應電動機起動用。 (5).AC4級:閉合12倍以上,啟斷10倍以上,感應電動機起動、逆相制動、寸動控制用。 如士林sp21規格 ◎額定容量CNS AC3級 3相 220~240V→kW/HP/A:5.5/7.5/24 380~440V→kW/HP/A:11/15/21 壓縮功率計算 一. 有關壓縮機之效率介紹: 1.體積效率(EFF V) :用以表示該壓縮機洩漏或閥門間隙所造成排出的氣體流量 減少與進入壓縮機冷媒因溫度升高造成比體積增加之比值 體積效率(EFF V)=壓縮機實際流量/壓縮機理論流量 體積效率細分可分為二部分 (1)間隙體積效率 ηvc=V′ / V V′:實際之進排氣量 V :理論之排氣量 間隙體積效率一般由廠商提供,當壓縮機之壓縮比(PH / PL)增大,即高壓愈高或低壓愈低,則膨脹行程會增長,ηvc減少。 (2)過熱體積效率 ηvs=v / v′

冷凝器换热面积计算方法

冷凝器换热面积计算方法 (制冷量+压缩机功率)/200~250=冷凝器换热面 例如:(3SS1-1500压缩机)CT=40℃:CE=-25℃ 制冷量12527W+压缩机功率11250W 23777/230=气冷凝器换热面积103m2 水冷凝器换热面积与气冷凝器比例=概算1比18;(103/18)= 6m2 蒸发器的面积根据制冷量(蒸发温度℃×Δt进气温度) 制冷量=温差×重量/时间×比热×安全系数 例如:有一个速冻库1库温-35℃,2冷冻量1ton/H、3时间2/H内,4冷冻物品(鲜鱼);5环境温度27℃; 6安全系数1.23 计算:62℃×1000/2/H×0.82×1.23=31266kcal/n 可以查压缩机蒸发温度CT=40;CE-40℃;制冷量=31266kcal/h NFB与MC选用 无熔丝开关之选用 考虑:框架容量AF(A)、额定跳脱电流AT(A)、额定电压(V), 低电压配线建议选用标准 (单一压缩机) AF 取大于AT 一等级之值.(为接点耐电流的程度若开关会热表示AF选太小了) AT(A ) = 电动机额定电流×1 .5 ~2 .5(如保险丝的IC值) (多台压缩机) AT(A )=(最大电动机额定电流×1 .5 ~2 .5)+ 其余电动机额定电流总和 IC启断容量,能容许故障时的最大短路电流,如果使用IC:5kA的断路器,而遇到10kA的短路电流,就无法承受,IC值愈大则断路器内部的消弧室愈大、体积愈大,愈能承受大一点的故障电流,担保用电安全。要搭配电压来表示220V 5KA 电压380V时IC值是2.5KA。

电磁接触器之选用 考虑使用电压、控制电压,連续电流I t h 之大小(亦即接点承受之电流大小),連续电流I th 的估算方式建议为I t h=马达额定电流×1.25/√ 3。 直接启动时,电磁接触器之主接点应选用能启闭其额定电流之10倍。 额定值通常以电流A、马力HP或千瓦KW标示,一般皆以三相220V电压之额定值为准。 电磁接触器依启闭电流为额定电流倍数分为: (1).AC1级:1.5倍以上,电热器或电阻性负载用。 (2).AC2B级:4倍以上,绕线式感应电动机起动用。 (3).AC2级:4倍以上,绕线式感应电动机起动、逆相制动、寸动控制用。 (4).AC3级:闭合10倍以上,启断8倍以上,感应电动机起动用。 (5).AC4级:闭合12倍以上,启断10倍以上,感应电动机起动、逆相制动、寸动控制用。 如士林sp21规格 ◎额定容量CNS AC3级 3相 220~240V→kW/HP/A:5.5/7.5/24 380~440V→kW/HP/A:11/15/21 压缩功率计算 一. 有关压缩机之效率介绍: 1.体积效率(EFF V) :用以表示该压缩机泄漏或阀门间隙所造成排出的气体流量 减少与进入压缩机冷媒因温度升高造成比体积增加之比值 体积效率(EFF V)=压缩机实际流量/压缩机理论流量 体积效率细分可分为二部分 (1)间隙体积效率 ηvc=V′ / V V′:实际之进排气量 V :理论之排气量 间隙体积效率一般由厂商提供,当压缩机之压缩比(PH / PL)增大,即高压愈高或低压愈低,则膨胀行程会增长,ηvc减少。 (2)过热体积效率 ηvs=v / v′

汽车冷凝器

汽车空调冷凝器

前言 本标准严格按GB/T1.1-2000及GB/T1.2-2000的要求编写而成。本标准由*************************负责起草。 本标准起草人:*** 本标准发布日期2012-02-01, 本标准实施日期2012-02-31。

汽车空调冷凝器 1范围 本标准规定了汽车空调制冷装置用冷凝器的分类与命名,要求,试验方法,检验规则,标志、标签、使用说明书,包装、运输、贮存。 本标准适用于汽车空调制冷装置用冷凝器。 2引用标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 GB2828-87逐批检查计数抽样程序及抽样表(适用于连续批的检查) GB9969.1-88工业产品使用说明书总则 ZB J73027-89制冷设备清洁度测定的一般规定 GB2516-81米制螺纹标准 QC/T656-2000汽车空调制冷装置性能要求 QC/T657-2000汽车空调制冷装置试验方法 ANSIB 1.1-87美制统一螺纹标准 3要求 顾客有要求的按顾客要求(标准、图纸、传真等),在顾客无要求的情况下,按以下要求:3.1焊接要求 3.1.1铝波浪带与铝口琴管焊接应牢固,焊缝均匀,焊接率不低于95%。每个脱焊处的长度应小 于20mm。铝波浪带焊后不允许变形,不允许烧坏。焊料不允许堆积、聚积。 3.1.2铝圆管与铝接头和铝口琴管焊后,焊缝应均匀,不允许焊料堆积。 3.2内腔清洁度 3.2.1冷凝器内腔内残存水量应不大于70mg/㎡。 3.2.2冷凝器内腔残存杂质质量应不得超过20mg/㎡,且最大长度或半径不得超过0.5㎜。 3.3密封性能 用氦质谱检漏仪检验冷凝器的密封性能,不允许泄漏、变形。 3.4耐压性能 应承受不低于3.6MPa的压力,无变形、泄漏现象。 3.5保压性能 成品冷凝器包装前测试保压性能,冷凝器内充入1MPa的干燥氮气,历时24小时,不允许泄漏。包装时泄压至0.2MPa。 3.6外观 3.6.1冷凝器喷漆应均匀、致密、光亮,不允许有凝聚点,不允许剥落,连接接头安装面不允许喷漆。 3.6.2冷凝器铝波浪带节距应均匀,铝波浪带,铝口琴管,铝圆管不允许变形。

冷凝器换热面积计算方法

冷凝器换热面积计算方法 (制冷量 +压缩机功率)/200~250=冷凝器换热面 例如:(3SS1-1500压缩机)CT=40℃:CE=-25℃ 制冷量12527W+压缩机功率11250W 23777/230=气冷凝器换热面积103m2 水冷凝器换热面积与气冷凝器比例=概算1 比18;(103/18)= 6m2 蒸发器的面积根据制冷量(蒸发温度℃× Δt 进气温度) 制冷量=温差×重量/时间×比热×安全系数例如:有一个速冻库1 库温-35℃,2冷冻量1ton/H、3时间2/H 内,4 冷冻物品(鲜鱼);5环境温度27℃;6 安全系数1.23 计算:62℃×1000/2/H×0.82×1.23=31266kcal/n 可以查压缩机蒸发温度CT=40;CE-40℃;制冷量=31266kcal/h NFB 与MC 选用 无熔丝开关之选用 考虑:框架容量AF(A)、额定跳脱电流AT(A)、额定电压(V),低电压配线建议选用标准 (单一压缩机) AF 取大于AT 一等级之值.(为接点耐电流的程度若开关会热表示AF选太小了) AT(A ) =电动机额定电流×1 .5 ~2 .5(如保险丝的IC 值) (多台压缩机) AT(A )=(最大电动机额定电流×1 .5 ~2 .5)+其余电动机额定电流总和 IC启断容量,能容许故障时的最大短路电流,如果使用IC:5kA的断路器,而遇到10kA的短路电流,就无法承受,IC值愈大则断路器内部

的消弧室愈大、体积愈大,愈能承受大一点的故障电流,担保用电安全。要搭配电压来表示220V 5KA 电压380V时IC值是2.5KA。 电磁接触器之选用 考虑使用电压、控制电压,連续电流I t h 之大小( 亦即接点承受之电流大小),連续电流I th 的估算方式建议为I t h=马达额定电流×1.25/√ 3。直接启动时,电磁接触器之主接点应选用能启闭其额定电流之10 倍。额定值通常以电流A、马力HP或千瓦KW标示,一般皆以三相220V 电压之额定值为准。 电磁接触器依启闭电流为额 定电流倍数分为: (1).AC1级:1.5 倍以上,电热器或电阻性负载用。 (2).AC2B级:4 倍以上,绕线式感应电动机起动用。 (3).AC2级:4 倍以上,绕线式感应电动机起动、逆相制动、寸动控制用。 (4).AC3级:闭合10 倍以上,启断8 倍以上,感应电动机起动用。 (5).AC4级:闭合12 倍以上,启断10 倍以上,感应电动机起动、逆相制动、寸动控制用。 如士林sp21 规格 ◎额定容量CNS AC3级3 相 220~240V→kW/HP/A:5.5/7.5/24 380~440V→kW/HP/A:11/15/21 压缩功率计算 一. 有关压缩机之效率介绍: 1.体积效率(EFF V): 用以表示该压缩机泄漏或阀门间隙所造成排出的气体 流量减少与进入压缩机冷媒因温度升高造成比体积增加之比值 体积效率(EFF V)=压缩机实际流量/压缩机理论流量体积效率细分可分为二部分 (1)间隙体积效率 η vc=V′ / V V′:实际之进排气量V :理论之排气量间隙体积效率一般由厂商提供,当压

汽车空调系统的结构及原理

汽车空调系统的结构及原理 汽车安装空调系统的目的是为了调节车内空气的温度,湿度,改善车内空气的流动,并且提高空气的清洁度。汽车空调系统主要由以下几部分组成: (1)制冷装置(系统):对车内空气或由外部进入车内的新鲜空气进行冷却或除湿,使车内空气变得凉爽舒适。 (2)暖风装置:主要用于取暖,对车内空气或由外部进入车内的新鲜空气进行加热,达到取暖除湿的目的。 (3)通风装置:将外部新鲜空气吸入车内,起通风和换气作用。同时通风对防止风窗玻璃起雾也起着良好作用。 (4)加湿装置:在空气湿度较低的时候,对车内空气加湿,以提高车内空气的相对湿度。 (5)空气净化装置:除去车内空气的尘埃,臭味,烟气及有毒气体,使车内空气变得清洁。 (6)电控系统:将机械和电子部分结合,实现人对空调控制的智能化,简单化。 本文主要介绍制冷装置和暖风装置的结构及原理。 制冷装置(系统): 基本组成: 现代汽车空调普遍采用的是蒸汽压缩式制冷系统。如下图所示,通常由压缩机,冷凝器,节流装置,储液干燥器,蒸发器以及相应的连接管等组成。

制冷原理: 如上图所示。汽车空调压缩机由发动机驱动旋转。由压缩机排出的高温高压制冷剂蒸气,

通过高压软管进入空调的冷凝器。由于高温高压的制冷剂蒸气温度高于车外的空气温度,因此借助冷凝器风扇使冷凝器中制冷剂蒸气的热量被车外空气带走,使高温高压的制冷剂蒸气冷凝成为较高温度的高压液体,通过高压软管流入干燥储液器,经干燥和过滤后,流过膨胀阀。在膨胀阀的节流作用下,制冷剂变成低温低压的液体而进入汽车空调的蒸发器,在定压下汽化并吸收蒸发器管外空气中的热量,使流经蒸发器的车内循环空气的温度降低成为冷气,通过鼓风机送入车内,降低车内的空气温度。汽化后的制冷剂蒸气,由压缩机吸入进行压缩,又变成高温高压的制冷剂气体,通过高压软管压入汽车空调的冷凝器,完成了汽车空调的一个制冷循环。此循环周而复始地进行,就可以使车内的温度维持在舒适的状态。 制冷循环的四个过程: 蒸气压缩制冷循环如下图所示,制冷系统通过制冷剂的气液两相转换时所形成的吸热和放热过程实现制冷。围绕制冷剂的气液转换,制冷工作循环可归纳为压缩,放热,节流和吸热四个过程。 (1)压缩过程:压缩机将从蒸发器中吸入的低压中温制冷剂蒸气进行压缩,使之成为高温高压的蒸气并送入冷凝器。压缩过程使制冷剂蒸气达到了液化所需的压力和温度。 (2)放热过程:高温高压的气态制冷剂在冷凝器中冷凝并与车外空气进行热交换(放热),转变为高温高压液态制冷剂。这一过程使制冷剂中的热量得以释放并通过冷凝器传递给了车外的空气。 (3)节流过程:从冷凝器流出的高压液态制冷剂经储液干燥器除湿,过滤后流经膨胀阀,由膨胀阀节流降压后送入蒸发器。节流过程降低了制冷剂的压力和温度,并产生部分气态制冷剂,以确保制冷剂在蒸发器中能完全汽化。 (4)吸热过程:低温低压的液态制冷剂在蒸发器中汽化,并与车内空气进行热交换(吸热),变成低压中温气态制冷剂。在蒸发器中吸收了热量的制冷剂蒸气被压缩机吸走,使蒸发器中的制冷剂的汽化吸热过程得以持续进行。

换热面积计算

换热面积计算 800KW蒸发器、冷凝器换热面积计算一、800KW蒸发器换热面积: A=Q/(K*?t), ?t=,t-t,/ln(t-t/ t-t) 21c1c2 2A:换热面积m(基于工作介质:水、R22); Q:压缩机制冷量KW,为800KW; K:传热系数,采用波纹状螺纹管取3.4 t为进水温度,为12?; 1 t为出水温度,为7? 2 t为蒸发温度= t-(2-4)?,取t=4? c2c 22经计算A=46.23 m,实际A=A*(1.1-1.15)=51.78 m(取1.12) 计计 二、800KW冷凝器换热面积: A=Q*1.2/(K*?t), ?t=(t-t)/ln(t-t/ t-t) 21c1c2 2A:换热面积m(基于工作介质:水、R22); Q:压缩机制冷量KW,为800KW; K:传热系数,采用波纹状螺纹管取3.14 t为进水温度,为30?; 1 t为出水温度,为35? 2 t为冷凝温度= t+5?,取t=40? c2c 22经计算A=42.46 m,实际A=A*(1.1-1.15)=47.5 m(取1.12) 计计 三、无锡约克公司蒸发器换热面积: 无锡约克公司提供给我司一款直径为650mm,制冷量为967KW, 蒸发温度为5.2?干式蒸发器(基于工作介质:水、R134a)的设计参 数为:采用直径为9.52 mm,壁厚0.8 mm波纹状螺纹管,铜管长度为2446mm,数量为1400根。 采用上述计算公式: 22换热面积A=55.88 m,实际A=A(1.1-1.15)=62.59 m(取1.12) 计计

根据GB151-1999管壳式换热器中3.7.1有关换热面积的解释及计算方法,1400根铜管的外表面积就为换热面积A。 2 A=3.14DL*1400=3.14*0.00952*(2.446-0.05*2)*1400=98.18 m 2(大于62.59 m,满足设计要求) 四、铜管数量的计算: 按江苏萃隆铜业有限公司推荐的行业用铜管材料,蒸发器用 ,12.7*0.85(名义壁厚)波纹状螺纹管;冷凝器用,15.88*0.64(名义壁厚)波纹状螺纹管。 经初步设计二容器均采用3米长铜管,根据GB151-1999管壳式换热器每根铜管的换热面积: 2A=3.14*(12.7/1000)*(3-0.5*2)=0.1156 m 蒸发器 2 A=3.14*(15.88/1000)*(3-0.5*2)=0.1446 m冷凝器 (其中0.5为铜管伸入管板内的长度)。 蒸发器所用铜管数量n=A/ A=51.78/0.1156=448根蒸发器 冷凝器所用铜管数量n=A/ A=47.5/0.1446=329根冷凝器 考虑到铜管在折流板中尚有部分换热面积的损失,同时根据GB151-1999管壳式换热器5.6.3中布管要求,方便布管取蒸发器所用铜管数量为454根,冷凝器所用铜管数量为338根。 ---------------------------------------------------------------精品范文 ------------------------------------------------------------- 精品范文 3 / 4 ---------------------------------------------------------------精品范文 ------------------------------------------------------------- 精品范文

具有对流换热条件的伸展体传热特性实验

传热实验指导书 具有对流换热条件的伸展体传热特性实验 上海交通大学 机械与动力工程学院 教学实验中心 二OO四年五月

具有对流换热条件的伸展体传热特性实验 1 具有对流换热条件的伸展体传热特性实验 工程中有许多热量沿着细长突出物传递的问题。它的基本特征是:某种细长形状的物体,从某温度的基面伸向与其温度不同的流动介质中,热量从基面沿着突出方向传递的同时,还通过表面与流体进行对流换热。因而沿突出物的伸展方向温度也相应地变化。 本实验是测量一等截面的伸展体,在与流体间进行对流换热的条件下,沿伸展体的温度变化。 一、实验目的及要求 通过实验和对实验数据的分析,深入了解伸展体传热的特性,并掌握求介质具有对流换热条件的伸展体传热特性的方法。 二、基本原理 具有对流换热的等截面伸展体,当长度与截面之比很大时(常物性)其微分方程式为: 222d 0d m x θθ?= (1.1) 式中:m ——系数,f u m λα=; θ ——过余温度,θ = t – t f ,℃; t ——伸展体温度,℃;t f ——伸展体周围介质的温度,℃; α——空气对壁面的换热系数,W/(m 2·℃); u ——伸展体周长。本实验中u =πd 0,m ; f ——伸展体横截面积,本试件为)(42120d d f ?=π m 2 伸展体内的温度分布规律,由边界条件和m 值定。 三、实验装置及测量系统 本实验装置由风道、风机、实验元件、主付加热器、测温热电偶等组成。详见装置系统图1-1。

上海交通大学机械与动力工程学院教学实验中心 2 试件是一紫铜管,放置在一风道中,由风机和风道造成空气均匀地横向流过管子表面的对流换热条件。管子表面各处的换热系数基本上是相同的。管子两端装有加热器,以维持两端处于所要求的温度状况。这样就构成了一个两端处于某温度的、中间具有对流换热条件的等截面伸展体。 管子两端的加热器,通过调压变压器来控制其功率,以达到控制两端温度的目的。 为了改变空气对管壁的换热系数,风机的工作电压亦相应地可作调整,以改变空气流过管子表面时的速度。 为了测量铜管沿管长的温度分布,在管内安装有可移动的热电偶测温头,其冷端就放置在空气流中,采用的是铜-康铜热电偶。这样通过UJ ?36电位差计测出的热电势,就反映了管子各截面的过余温度。其相应的位置由带动热电偶测温头的滑动块在标尺上读出。 试件的基本参数: 管子外径d 0= 管子内径d 1= 管子长度L = 管子导热系数λ= 四、完成本实验的具体做法 1. 解方程0d d 222=?θθm x 截面积为f ,周长为U 的等截面体,其导热系数为λ,W/(m·℃),两端分别与相距L 的两大平壁相连接,平壁保持定温t w1和t w2,园棒与空气接触,空气温度为t f (设t w1>t f <t w2=,棒与 空气的对流换热系数为α ,W/(m 2·℃),见图1-2,求: (1) 棒沿x 方向的过余温度θ = t – t f 分布是:θ =θ (x ); (2) 分析沿x 方向,棒的温度分布曲线的可能形状。分析各参数:L 、U 、f 、λ、α、t w1、t w2、t f 对温度分布的影响; (3) 棒的最低温度截面的位置表达式(当0<x <L 存在最低温度值时=; (4) 棒两端由壁导入的热量Q 1及Q 2。 2. 练习 直径为25mm ,长为300mm 的钢棒[λ=50W/(m·℃)],两端分别与大平壁相连接。平壁保持定温t w1=200℃,t w2=150℃,钢棒向四周空气散热,空气温度为t f =20℃,对流换热系数为1. 风机;2. 风道;3. 等截面伸展体;4. 主加热器;5. 测温热电偶;6.付加热器; 7. 热电偶拉杆及标尺; 8. 热电偶冷端;9. 电位差计; 10. 电压表;11. 风机变速开关;12. 调压变压器 图1-1 伸展体传热特性实验装置及测量系统图 图1-2

空调冷凝器中的流动与传热分析

空调冷凝器中的流动与传热分析 张智1,2金培耕1刘志刚2江从发1韩蔚1 1广东美的集团国家级企业技术中心,顺德,广东,528311 2西安交通大学能源与动力工程学院,西安,陕西,710049 摘要利用Fluent软件分析了发生在空调冷凝器中的空气流动和传热过程,对于物理模型进行了合理的简化处理,充分利用了对称性边界条件和周期性边界条件。对于冷凝器的基本换热单元进行了分析计算,获得了入口风速、风压、翅片间距、翅片厚度等因素对于换热量、传热系数、气流温度、流动阻力等的影响,以曲线的形式给出了详细的计算结果,并给出了有代表性的翅片表面温度分布和换热系数的云图,从中总结并找到强化传热的关键和突破口,为试验研究提供了基础数据和理论指导。 前言 利用CFD软件分析工程实际中的问题已经成为成为研究和开发中必不可少的环节,使用计算机进行模拟分析和优化设计具有时间短、成本低、灵活性好、可操作性强等优点。广东美的集团国家级企业技术中心2001年初引进了Fluent软件,利用它进行了空调中的的流动及传热模拟分析和优化设计等工作,已经取得了明显得经济效益。利用该软件,对于空调用换热器中的空气流动与传热进行了详细的研究,分析了入口风速、风压、翅片间距、翅片厚度等因素对于换热量、传热系数、气流温度、流动阻力等的影响,找到了强化传热的关键点和突破口,并从理论上找到了具有最佳传热效果的换热器形式,为开发低成本高效率换热器提供了坚实的基础和翔实的设计数据。本文由于篇幅限制,仅介绍对于现有的冷凝器冷凝过程的计算模拟分析的结果,和大家分享。 1空调用冷凝器简介 1.1 基本形式 空调中使用的冷凝器为铜管翅片式换热器,制冷剂在铜管中流动,铜管外面通过机械胀管的方法套平行的连续翅片以增加换热面积,根据不同的结构尺寸或换热量的要求,换热器可以是一排或多排,翅片也有平片、波纹片和各种冲缝片等不同的形式。本文中计算的对象为双排弧形百叶窗型冲缝翅片,该种翅片的优点是换热效率高[1,2,3]。翅片如图1-3所示,突中,δ为翅片厚度,fin pitch 为翅片间距,T W为铜管外表面温度,T f为外界流体温度,width为单翅片宽度,tube space为管间距,r0为管外径(翅片翻边厚度计算在内)。 1.1发生在冷凝器中传热过程 制冷工况时,冷凝器向外界气体散热。制冷剂以过热气体状态进入冷凝器,在冷凝器中逐渐降温变为饱和蒸气,然后在流动的过程中,不断向外散热,蒸气逐渐冷凝,含气量降低,含液量上升,最终冷凝为饱和液体,在从饱和蒸气冷凝为饱和液体的过程中,管内制冷剂的温度不变,然后饱和液体逐渐降温,变为过冷液体然后流出冷凝器。传热过程是制冷剂将热量以对流换热的方式传递给铜管内壁,通过铜管的导热,将热量传递到铜管外壁,铜管外壁的热量以导热的方式传递到翅片上,翅片表面和流过的空气进行强制对流换热。通过此过程热量就从制冷剂传递到了外界的空气,实现了散热。 制冷工况时,情况正好相反,冷凝器从外界气体吸热。翅片表面和流过的空气进行强制对流换热,外界气流的热量传递给翅片,翅片通过导热将热量传递到铜管外壁,再通过导热将热量传递到翅片内壁,然后以对流换热的方式将热量传递给制冷剂。制冷剂以气液两相状态进入冷凝器,在冷凝器中逐渐吸热蒸发,含气量上升,含液量下降,最终变为饱和蒸气,在从两相状态蒸发为饱和蒸气的过程中,管内制冷剂的温度不变,然后饱和蒸气逐渐升温,变成过冷蒸气然后流出冷凝器。通过此过程热量就从外界空气传递到了制冷剂,实现了吸热。 2计算区域的划分和参数的设定 由于流动的对称性和周期性,所以在确定周期性边界条件和对称性边界条件后,按照图1、图4中所示的区域进行计算,其中在X-Y平面上a-a和b-b边界为对称性边界条件,Y-Z平面上c-c和d-d

相关文档
最新文档