紫外可见分光光度计原理及应用

紫外可见分光光度计原理及应用
紫外可见分光光度计原理及应用

紫外可见分光光度计原理及应用

1852年,比尔(Beer)参考了布给尔(Bouguer)1729年和朗伯(Lambert)在1760年所发表的文章,提出了分光光度的基本定律,即液层厚度相等时,颜色的强度与呈色溶液的浓度成比例,从而奠定了分光光度法的理论基础,这就是著名的比尔朗伯定律。1854年,杜包斯克(Duboscq)和奈斯勒(Nessler)等人将此理论应用于定量分析化学领域,并且设计了第一台比色计。到1918年,美国国家标准局制成了第一台紫外可见分光光度计。此后,紫外可见分光光度计经不断改进,又出现自动记录、自动打印、数字显示、微机控制等各种类型的仪器,使光度法的灵敏度和准确度也不断提高,其应用范围也不断扩大。

紫外可见分光光度计法从问世以来,在应用方面有了很大的发展,尤其是在相关学科发展的基础上,促使分光光度计仪器的不断创新,功能更加齐全,使得光度法的应用更拓宽了范围。

1.原理

物质的吸收光谱本质上就是物质中的分子和原子吸收了入射光中的某些特定波长的光能量,相应地发生了分子振动能级跃迁和电子能级跃迁的结果。由于各种物质具有各自不同的分子、原子和不同的分子空间结构,其吸收光能量的情况也就不会相同,因此,每种物质就有其特有的、固定的吸收光谱曲线,可根据吸收光谱上的某些特征波长处的吸光度的高低判别或测定该物质的含量,这就是分光光度定性和定量分析的基础。分光光度分析就是根据物质的吸收光谱研究物质的成分、结构和物质间相互作用的有效手段。

紫外可见分光光度法的定量分析基础是朗伯-比尔(Lambert-Beer)定律。即物质在一定浓度的吸光度与它的吸收介质的厚度呈正比

2 应用

2.1 检定物质

根据吸收光谱图上的一些特征吸收,特别是最大吸收波长虽ax和摩尔吸收系数是检定物质的常用物理参数。这在药物分析上就有着很广泛的应用。在国内外的药典中,已将众多的药物紫外吸收光谱的最大吸收波长和吸收系数载入其中,为药物分析提供了很好的手段。

2.2 与标准物及标准图谱对照

将分析样品和标准样品以相同浓度配制在同一溶剂中,在同一条件下分别测定紫外可见吸收光谱。若两者是同一物质,则两者的光谱图应完全一致。如果没有标样,也可以和现成的标准谱图对照进行比较。这种方法要求仪器准确,精密度高,且测定条件要相同。

2.3 比较最大吸收波长吸收系数的一致性

2.4 纯度检验

2.5 推测化合物的分子结构

2.6 氢键强度的测定

实验证明,不同的极性溶剂产生氢键的强度也不同,这可以利用紫外光谱来判断化合物在不同溶剂中氢键强度,以确定选择哪一种溶剂。

2.7 络合物组成及稳定常数的测定

2.8 反应动力学研究

2.9 在有机分析中的应用

有机分析是一门研究有机化合物的分离、鉴别及组成结构测定的科学,它是在有机化学和分析化学的基础上发展起来的综合性学科。

原子吸收分光光度计发展史

20世纪50年代末,英国Hilger&Watts公司和美国PE公司分别在Uvispek和P-E13型分光光度计基础上研发了火焰原子吸收分光光度计. Hilger&Watts的Uvispek被称为第一台问世的火焰原子吸收光谱商品仪器.

1970年美国PE公司推出了第一台石墨炉原子吸收光谱商品仪器(HGA-70型).

1969年Prugger和Torge申请了塞曼背景校正方法的专利.

1976年日本Hitachi公司的第一台恒定磁场塞曼原子吸收光谱仪器投放市场.

1983年有自吸背景校正方法的论文.同年有仪器参展

1990年第一个纵向磁场,横向加热石墨炉塞曼原子吸收光谱仪,PE的ZL4100.

1997年北京瑞利分析仪器公司推出了带富氧空气-乙炔高温火焰原子化器的原子吸收光谱仪器.

21世纪前夕,美国Thermo公司与PE公司先后将高分辨的分光系统---中阶梯光栅单色器引入原子吸收光谱仪

1802年,渥拉斯通(Wollastone)发现了太阳暗线

1860年柯希霍夫(Kirchhoff)和本生(Bunsen)解释了太阳暗线产生的原因:由于太阳周围较冷气体中存在的某些元素原子,吸收了太阳的连续光谱而行成的.

原子吸收光谱法诞生于1955年:澳大利亚人瓦尔士(Walsh),荷兰人艾柯蒙德(Alkemade)米拉兹(Milatz)分别独立发表了原子吸收光谱分析的论文. 瓦尔士(Walsh)被全世界公认为原子吸收光谱分析的奠基人.他提出将原子吸收光谱法作为常规的分析方法并建立了原子吸收光谱分析法.

李.沃屋(L’vov)是石墨炉原子吸收光谱分析法(GFAAS)的提出者和奠基人,又是石墨炉原理样机的发明者.

马斯美恩(Massmann)是商品石墨炉原子化器样机的发明者,1968年Massmann炉问世.1970年美国PE推出第一台石墨炉原子吸收分光光度计商品仪器ZL4100.

原子吸收发展四阶段:

1,1954-1959年实验室仪器装置的研发阶段

2,1960-1970年商品仪器初级阶段

3,1971-1990年商品仪器完善阶段

4,1991-现在商品仪器及技术发展进入了高水平的平台阶段.

1965年,吴廷照等组装成功了实验型原子吸收光谱仪。1970年,北京科学仪器厂生产了我国第一台单光束火焰原子吸收分光光度计。

分光光度计数据采集原理

1.1 双光束分光光度计原理

分光光度计利用的基本原理是郎伯特一比尔(Larnbert一Beer)定律,即溶液的吸光度Abs与溶液的吸收

系数a,浓度C,液层的厚度L成正比。

即:式中:T为透过率,Ia为人射光强,I}为透过光强。每种物质都有特定的吸收光谱曲线,通过测量不同波长处待测物质的吸光度或透过率值得到其吸收谱线,与已知谱线比较即可鉴别该物质或测定该物质的浓度。常用分光光度计基本结构如图1所示,由光源、单色仪、样品池、探测器、放大器、记录仪6部分组成。

图1 分光光度计基本结构框图双光束分光光度计光路结构如图2所示。由钨灯和氛灯分别提供可见光和紫外光的连续光源。单色仪将光束分为单色光后通过一个快速转动的扇形旋转镜将光一分为二分别打到样品池和参照池上,以此消除光源变化带来的误差(因此称为双光束式分光光度计),用同一个探测器(光电倍增管PMT)交替接收透过的光

强信号。

1.2 分光光度计信号特征

信号处理过程如图3所示。透过样品池光束I和参考池光束Io,通过旋转镜M交替打到光电倍增管上,其输出信号经运放IC,放大成to -F L,再经与旋转镜M同步的开关so,si 将信号分离为i。和i。参考信号io与标准电压E之差通过运放ICz放大后控制PMT(打拿极)电压,使得i。与E保持一致。在参考信号连续控制PMT的负电压下测量样品信号可以消除电压及光源的波动影响,提高测量精度。此时样品信号i 输出为与样品池的透过率成正比的电压信号,也可再经对数运算电路得到与吸光度值成正比的连续变化的模拟电压信号。此电压信号变化速率主要由波长扫描速度和记录仪走纸速度决定,为低频信号。数量级为0-100mv的模拟电压信号输出到记录仪经放大后驱动描记电路,使电信号转换为记录笔的机械动作从而画出吸收(或透射)光谱曲线。由上可知分光光度计输出信号是与所测参数成线性关系的电压模拟量信号,

易于利用数字电路处理。

图3 测量信号处理框图

UV-2600型紫外分光光度计操作指导书

UV-2600型紫外分光光度计操作指导书 1概况 仪器概况: UV-2600型紫外分光光度计是由日本岛津(Shimadzu)生产制造,与功能强大的操作软件UVProbe结合,操作简单方便,且符合SH/T0181方法的测量精度要求。 主要技术参数 波长范围185nm~900nm (使用积分球附件ISR- 2600Plus时220nm~1400nm) 分辨率 波长准确性± 谱带范围、、、1、2、5nm测光方式双光束方式 杂散光%以下检测器光电倍增管R-928 测光范围-5~5Abs比色池1cm 光源50W卤素灯、氘灯单色器切尼尔-特纳单色器 主电压AC100V~240V主频率50/60Hz 使用条件 操作温度:15~35℃ 操作湿度:30%~805% 2仪器结构 仪器由UV-2600型紫外分光光度计和计算机组成。 3操作步骤 开机 在使用前先确认仪器和计算机的工作电源,检查仪器样品室应无遮挡光路的物品。确认后先开启计算机,然后开启仪器电源。待分光光度计外侧的指示灯显示绿色时,启动电脑桌面上的UVPROBE程序。 首先从下拉式菜单的仪器项上追加需要的仪器,操作完毕如下图①所示,然后点击上图

的连接键②,这样仪器与计算机连接(当然,中间的通讯电缆的连接、通讯口的指定等都是必须的,此处不再赘述)并开始下示的初始化面。 初始化大约需要5分钟左右,进行一系列的检查和初置,如一切顺利通过就可以开始测定。 测定 首先选择测定的方式,在主菜单上能发现右图所示的各键,自左至右 分别为: ①报告生成器:用于制作各种格式的报告。 ① ② ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩ ⑾ ⑿ ⒀ ⒁

紫外分光光度计在食品分析中的应用

紫外可见分光光度计在食品分析中的应用 1引言:紫外可见分光光度计对于分析人员来说是最有用的分析工具之一,几乎每一个分析实验室都离不开紫外可见分光光度计。下面介绍了紫外分光光度计的原理、结构及其特点,并介绍了它在生物领域的应用及其他方面的应用。紫外可见分光光度计是一类很重要的分析仪器,无论在物理学、化学、生物学、医学、材料学、环境科学等科学研究领域,还是在化工、医药、环境检测、冶金等现代生产与管理行业,紫外可见分光光度计都获得了日益广泛的应用。 2原理:紫外可见分光光度法 紫外可见分光光度法【1】是根据物质分子对波长为200~760nm的电磁波的吸收特性所建立起来的一种定性、定量和结构分析方法。操作简单、准确度高、重现性好。波长长的光线能量小,波长短的光线能量大。分光光度测量是关于物质分子对不同波长和特定波长处的辐射吸收程度的测量。物质的吸收光谱本质上就是物质中的分子和原子吸收了人射光中的某些特定波长的光能量,相应地发生了分子振动能级跃迁和电子能级跃迁的结果。由于各种物质具有不同的分子、原子和不同的分子空间结构,其吸收光能量的情况也就不会相同,因此,每种物质就有其特有的、固定的吸收光谱曲线,可根据吸收光谱上的某些特征波长处的吸光度的高低判别或测定该物质的含量,这是分光光度定性和定量分析的基础。分光光度分析就是根据物质的吸收光谱研究物质的成分、结构和物质间相互作用的有效手段。 2.1有机化合物的紫外可见吸收光谱【2】 有机化合物的电子跃迁 与紫外可见吸收光谱有关的电子有三种[[4],即形成单键的σ电子、形成双键的π电子以及未参与成键的n电子。 跃迁类型有:σ→σ*、n→σ*,π→π*、n→π四种。 饱合有机化合物的电子跃迁类型为σ→σ*,n→σ*跃迁,吸收峰一般出现在真空紫外区,吸收峰低于200nm,实际应用价值不大。不饱合机化合物的电子跃迁类型为n→π*,π→π*跃迁,吸收峰一般大于200nm. 2.2有机化合物的吸收带 吸收带(absorption band):在紫外光谱中,吸收峰在光谱中的波带位置。根据电子及分子轨道的种类,可将吸收带分为四种类型。 (1)R吸收带 (2)K吸收带 (3)B吸收带 (4)E吸收带 2.3无机化合物的紫外可见吸收光谱 无机化合物的UV-Vis光谱吸收光谱主要有:电荷 迁移跃迁及配位场跃迁。 (1)电荷迁移光谱 某些分子既是电子给体,又是电子受体,当电子受辐射能激发从给体外层轨道向受体跃迁时,就会产生较强的吸收,这种光谱称为电荷迁移光谱。如苯酚基取代物在光作用下的异构反应。 (2)配位跃迁光谱 在配体存在下过渡金属元素5个能量相等的d轨道和斓系、婀系7个能量相等的f 轨道裂分,吸收辐射后,低能态的d电子或f电子可以跃迁到高能态的d或f轨道上去。

紫外可见分光光度计常见故障的排除

紫外可见分光光度计常见故障的排除 光源部分: (1)故障:钨灯不亮; 原因:钨灯灯丝烧断(此种原因几率最高); 检查:钨灯两端有工作电压,但灯不亮;取下钨灯用万用表电阻档检测。 处置:更换新钨灯; (2)故障:钨灯不亮; 原因:没有点灯电压; 检查:保险丝被熔断; 处置:更换保险丝,(如更换后再次烧断则要检查供电电路); (3)故障:氘灯不亮; 原因:氘灯寿命到期(此种原因几率最高); 检查:灯丝电压、阳极电压均有,灯丝也可能未断(可看到灯丝发红); 处置:更换氘灯; (4)故障:氘灯不亮; 原因:氘灯起辉电路故障; 检查:氘灯在起辉的过程中,一般是灯丝先要预热数秒钟,然后灯的阳极与阴极间才可起辉放电,如果灯在起辉的开始瞬间灯内闪动一下或连续闪动,并且更换新的氘灯后依然如此,有可能是起辉电路有故障,灯电流调整用的大功率晶体管损坏的几率最大。 处置:需要专业人士修理; 二.信号部分: (1)故障:没有任何检测信号输出; 原因:没有任何光束照射到样品室内;

检查:将波长设定为530nm,狭缝尽量开到最宽档位,在黑暗的环境下用一张白纸放在样品室光窗出口处,观察白纸上有无绿光斑影像; 处置:检查光源镜是否转到位?双光束仪器的切光电机是否转动了(耳朵可以听见电机转动的声音)? (2)故障:样品室内无任何物品的情况下,全波长范围内基线噪声大; 原因:光源镜位置不正确、石英窗表面被溅射上样品; 检查:观察光源是否照射到入射狭缝的中央?石英窗上有无污染物? 处置:重新调整光源镜的位置,用乙醇清洗石英窗; (3)故障:样品室内无任何物品的情况下,仅仅是紫外区的基线噪声大; 原因:氘灯老化、光学系统的反光镜表面劣化、滤光片出现结晶物; 检查:可见区的基线较为平坦,断电后打开仪器的单色器及上盖,肉眼可以观察到光栅、反光镜表面有一层白色雾状物覆盖在上面;如果光学系统正常,最大的可能是氘灯老化,可以通过能量检查或更换新灯方法加以判断; 处置:更换氘灯、用火棉胶粘取镜面上的污物或用研磨膏研磨滤光片(注意:此种技巧需要有一定维修经验者来实施); (4)故障:样品室放入空白后做基线记忆,噪声较大,紫外区尤甚; 原因:比色皿表面或内壁被污染、使用了玻璃比色皿或空白样品对紫外光谱的吸收太强烈,使放大器超出了校正范围; 检查:将波长设定为250nm,先在不放任何物品的状态下调零,然后将空比色皿插入样品道一侧,此时吸光值应小于0.07Abs;如果大于此值,有可能是比色皿不干净或使用了玻璃比色皿;同样方法也可判断空白溶液的吸光值大小; 处置:清洗比色皿,更换空白溶液; (5)故障:吸光值结果出现负值(最常见); 原因:没做空白记忆、样品的吸光值小于空白参比液; 检查:将参比液与样品液调换位置便知; 处置:做空白记忆、调换参比液或用参比液配置样品溶液; (6)故障:样品信号重现性不良;

分光光度计基本原理

分光光度计基本原理 分光光度计主要用于反射和透射测量。 分三种光源:S偏振光、P偏振光和自然光。 现有设备7台(2台日立U4100、1台JACSO-V650、1台JACSO-V570、2台KT1100、1台瞬间7700)主要由是由分光光度计和电脑组成,由电脑程序驱动。 1 基本部件 光源: 用于提供足够强度和稳定的连续光谱。分光光度计中常用的光源有热辐射光源和气体放电光源两类。 热辐射光源用于可见光区,如钨丝灯和卤钨灯;气体放电光源用于紫外光区,如氢灯和氘灯。钨灯和碘钨灯可使用的范围在340 -- 2500 nm。氢灯和氘灯。它们可在180 -- 375 nm范围内产生连续光源。 紫外—可见分光光度计通常都配有可见和紫外两种光源。 单色器:是从连续光谱中获得所需单色光的装置。 (1)入射狭缝 (2)准直镜(透镜或凹面反射镜),它使入射光束变为平行光束。 (3)色散元件,棱镜或光栅,它使不同波长的入射光色散开来。 (4)聚焦透镜或聚焦凹面反射镜聚焦,它使不同波长的光聚焦在焦面的不同位置。 (5)出射狭缝。 积分球:它主要用途是测定光源发出的总光通量。它的制造:首先在球内壁上涂一层腻子,作为底层;然后喷点白漆,作为中间层;最后喷一层白涂料(硫酸钡或氧化镁)作为表层。 检测器:检测器的作用是检测光信号。常用的检测器有光电管和光电倍增管。电脑,就是微处理机。一方面可对分光光度计进行操作控制,另一方面可进行数据处理。 2、先用3台光度计的特点 U4100的 V650能测位相

3、日常测量 改参数 1.光源要求(.自然光) 2、扫描速度 3、狭缝 基本的步骤 设备测量种类 U4100测量:合色棱镜(成品、PL、2P)等 V650:单层,小DVD,带位相的零件,AR的反射测量等 4.测量的原理,影响准确性的因素 单光路分光光度计V650 双光路分光光度计 U4100 它的优点:光电传感器就可以交替探测到经过样品的探测光束的强度与参考光束的光强度,然后将两束光强信号进行相除,就可以得到样品的透过率。它可以降低光源稳定性对光谱测试精度的影响。 测量的原则:入射光轴重合,出射光轴重合,难在后着。 商用的光谱仪都有很好的性能,但是如果操作测试不当,就会获得错误的光谱测试结果。主要影响准确性的因素: 透射因素: 1、测量样品口径的影响 在测量中应保证仪器的测量光束全部穿过样品。 1)、在样品室的测量光路和参考光路中同时添加小孔光阑。 2)、只在样品池添加小孔光阑。

752紫外可见分光光度计使用方法解析

752紫外可见分光光度计 一、仪器的工作原理 分光光度计的基本原理是溶液中的物质在光的照射激发下,产生了对光的吸收效应,物质对光的吸收是具有选择性的。各种不同的物质都具有其各自的吸收光谱,因此当某单色光通过溶液时,其能量就会被吸收而减弱,光能量减弱的程度和物质的浓度有一定的比例关系,也即符合于比色原理—一比耳定律。 τ=I/Io log I/Io=KCL A= KCL 从以上公式可以看出,当入射光、吸收系数和溶液的光径长度不变时.透过的光是根据溶液的浓度而变化的,752紫外可见分光光度计的基本原理是根据上述物理光学现象而设计的。 二、仪器的安装、使用、安装 1 仪器在安装使用前应对仪器的安全性进行检查,电源电压是否正常,接地线是否牢固可靠,在得到确认后方和接通电源使用。 2 仪器经过运输和搬运等原因,会影响波长准确度,应进行仪器调校后使用。 使用:仪器使用前需开机预热30min。 本仪器键盘共有4个键,分别为; 1 A /τ/C/F 1SD 2 ▽/0% 3?/100% 4 A /τ/C/F键:每按此键来切换A、τ 、C、F之间的值。 A——吸光度(Absorbance) T——透射比(Trans) C——浓度(conc) F——斜率(Factor) (2)F值通过按键输入(后面介绍如何设置) 5SD键:该键具有2个功能 a)用于RS232串行口和计算机传输数据(单向传输数据,仪器发向计算机)。 b)当处于F状态时,具有确认的功能,即确认当前的F值,并自动转到C,计算当前的C 值(C=F*A)。 6 ▽/0%键:该键具有2个功能 a)调零;只有在τ状态时有效,打开样品室盖,按键后应显示0.000。 b)下降键:只有在F状态时有效,按本键F值会自动减1,如果按住本键不放,目动减1会加快速度;如果F值为0后,再按键它会自动变为1999。而按键开始自动减1。 7 ?/100%键;该键具有2个功能 a)只有在A、τ状态时有效,关闭样品室盖,按键后应显示0.000、100.0。 b)上升键:只有在F状态时有效,按本键F值会自动加1,如果按住本键不放,自动加1会加快速度,如果F值为1999后,再按键它会自动变为0,再往键开始自动加l。 例如:设置斜率为1500。 方法一 T)按A/τ/C/F键切换到F状态。 b)如果当前F值为1000,则按?/100%键,直到F值为1500。 C)再按SD键,表示当前的F值为1500,然后自动回到C状态,假如所测的A值为0.234,则此时显示C值为0351。

紫外可见分光光度计的校正

实训二紫外可见分光光度计的校正 一、实训目的 1、了解紫外-可见分光光度的基本构造。 2、熟悉紫外可见分光光度计的操作技术。 3、熟悉校正波长和测量吸收值精度的原理和方法。 二、仪器与试剂 1、仪器:紫外-可见分光光度计,石英吸收池(1cm),容量瓶(1000m1),烧杯。 2、试剂:0.0600g→1000ml的K2Cr2O7的硫酸标准溶液(0.005mol/L),NaI溶液(10g/L),NaNO2溶液(50g/L)。 三、实训原理 紫外-可见分光光度计是单光束手工操作仪器,备有钨灯及氢灯两种光源,可用于可见及紫外光区。它是具有色散能力较高的单色器,狭缝可调,可得到较纯的单色光,适用于定性鉴别和定量分析。 新仪器启用前或仪器修理后或长期使用后均需对仪器的性能进行检定。仪器的性能主要是波长准确度与重现性、单色器的分辨能力、吸光度的准确性和重现性及杂散光等。 四、实训操作 1、吸收池配对性试验 每次测定前,应先用蒸馏水做吸收池配对性试验。两个吸收池透光率T相差应<0.5%。 2、波长准确性与重现性 校验波长是否准确,可用谱线校正法。在吸收池中置一白纸挡住光路,转动波长至486nm附近,遮光观察白纸上蓝色斑。轻微移动波长,至使此蓝色光斑最亮时止。根据调整的波长范围观察所得到的相应颜色,并进行对比核对,判断波长的准确性。 3、吸收度的准确性与透光率重现性 在紫外-分光光度计中用作读取透光率的电位器的精度可达到0.2%,但是,由于其他原因,例如电压变化等,实际测得的透光率误差大于0.2%。一般要求透光率的精度、稳定性和重现性不超过0.5%。透光率的准确性可用已知吸光系数的物质核对,常用的是重铬酸钾。取在120℃干燥至恒重的基准K2Cr2O7约60mg,精密称定,用H2S04溶液(0.005mol/L)溶解并稀释至1000ml,摇匀。按下表规定的吸收峰与谷波长处测定。 将测得的吸光度,计算出其吸光系数,取平均值与表中规定值核对,如相对偏差在土1%以内,则透光率准确性好。K Cr O的H S0溶液(0.005mol/L)的E cm1% 透光率重现性可结合透光率准确性实验同时进行,即在固定波长、溶液浓度以及狭

原子吸收分光光度计工作原理

原子吸收分光光度计应用及维护 工作原理: 元素在热解石墨炉中被加热原子化,成为基态原子蒸汽,对空心阴极灯发射的特征辐射进行选择性吸收。在一定浓度范围内,其吸收强度与试液中被的含量成正比。其定量关系可用郎伯-比耳定律,A= -lg I/I o= -lgT = KCL ,式中I为透射光强度;I0为发射光强度;T为透射比;L为光通过原子化器光程(长度),每台仪器的L值是固定的;C是被测样品浓度;所以A=KC。 利用待测元素的共振辐射,通过其原子蒸汽,测定其吸光度的装置称为原子吸收分光光度计。它有单光束,双光束,双波道,多波道等结构形式。其基本结构包括光源,原子化器,光学系统和检测系统。它主要用于痕量元素杂质的分析,具有灵敏度高及选择性好两大主要优点。广泛应用于特种气体,金属有机化合物,金属醇盐中微量元素的分析。但是测定每种元素均需要相应的空心阴极灯,这对检测工作带来不便。 应用 一、实验部分 1.1、试剂 Cr标准溶液1000ug/ml Cr空心阴极灯 1.2、仪器工作条件 干燥120℃,斜坡10s,保持10s,180℃,斜坡5s,保持10s;灰化1300℃,斜坡10s,保持15s;原子化2600℃,4s,停气;清洗2800℃,5s 1.3、标准使用溶液的配置 铬标准使用溶液:吸取铬标准储备液(1mg/ml)10.0ml于100ml容量瓶中,加入2%硝酸至刻度、此溶液的浓度为100ug/ml。在逐级稀释,可分别得到标准系列溶液如下: 铬:0ug/L、5.0.0ug/L、10.0ug/L、15.0ug/L、20.0ug/L 2.试样的置备:

取空心胶囊0.50g,置氟乙烯消解罐内,加硝酸5-10ml,混匀,浸泡过夜,盖好内盖,旋紧外套,置适宜的微波消解炉内,进行消解(按仪器规定的消解程序操作)。消解完全后,取消解内罐置电热板上缓缓加热至红棕色蒸气挥尽并近干,用2%硝酸转入50ml量瓶中,并稀释至刻度,摇匀,即得。同法同时制备试剂空白溶液;。取供试品溶液与对照品溶液,以石墨炉为原子化器,照原子吸收分光光度法,在357.9nm 测定,含铬不得过百万分之二

紫外可见分光光度计及其应用

紫外可见分光光度计及其应用 科技论文写作期末作业 西北民族大学生命科学与工程学院 11级生物技术(1)班 符朝方 学号:P112114841 紫外可见分光光度计及其应用 李诗哲 西北民族大学生命科学与工程学院兰州 730100 摘要:紫外可见分光光度计对于分析人员来说是最有用的分析工具之一,几乎每一个分析实验室都离不开紫外可见分光光度计。下面介绍了紫外分光光度计的原理、结构及其特点,并介绍了它在生物领域的应用及其他方面的应用1引言:紫外可见分光光度计是一类很重要的分析仪器,无论在物理学、化学、生物学、医学、材料学、环境科学等科学研究领域,还是在化工、医药、环境检测、冶金等现代生产与管理行业,紫外可见分光光度计都获得了日益广泛的应用。 2原理:紫外可见分光光度法 【1】紫外可见分光光度法是根据物质分子对波长为200~760nm的电磁波的吸收特性所建立起来的一种定性、定量和结构分析方法。操作简单、准确度高、重现性好。波长长的光线能量小,波长短的光线能量大。分光光度测量是关于物质分子对不同波长和特定波长处的辐射吸收程度的测量。物质的吸收光谱本质上就是物质中的分子和原子吸收了人射光中的某些特定波长的光能量,相应地发生了分子振动能级跃迁和电子能级跃迁的结果。由于各种物质具有不同的分子、原子和不同的分

子空间结构,其吸收光能量的情况也就不会相同,因此,每种物质就有其特有的、固定的吸收光谱曲线,可根据吸收光谱上的 某些特征波长处的吸光度的高低判别或测定该物质的含量,这是分光光度定性和定量分析的基础。分光光度分析就是根据物质的吸收光谱研究物质的成分、结构和物质间相互作用的有效手段。 【2】2.1有机化合物的紫外可见吸收光谱 有机化合物的电子跃迁 与紫外可见吸收光谱有关的电子有三种[[4],即形成单键的σ电子、形成双键的π电子以及未参与成键的n电子。 跃迁类型有:σ?σ*、n?σ*,π?π*、n?π四种。 饱合有机化合物的电子跃迁类型为σ?σ*,n?σ*跃迁,吸收峰一般出现在真空紫外区,吸收峰低于200nm,实际应用价值不大。不饱合机化合物的电子跃迁类型为n?π*,π?π*跃迁,吸收峰一般大于200nm. 2.2有机化合物的吸收带 吸收带(absorption band):在紫外光谱中,吸收峰在光谱中的波带位置。根据电子及分子轨道的种类,可将吸收带分为四种类型。 (1)R吸收带 (2)K吸收带 (3)B吸收带 (4)E吸收带 2.3无机化合物的紫外可见吸收光谱 无机化合物的UV-Vis光谱吸收光谱主要有:电荷 迁移跃迁及配位场跃迁。 (1)电荷迁移光谱

紫外 可见分光光度法标准操作程序

紫外-可见分光光度法标准操作程序 1 简述 紫外-分光光度法是通过被测物质在特定波长处或一定波长长范围内的吸光度或发光强度,对该物质进行定性和定量分析的方法。本法的在药品检验中主要用于药品的鉴别、检查和含量测定。 定量分析通常选择物质的最大吸收波长处测出吸光度,然后用对照品或百分吸收系数求算出被测物质的含量,多用于制剂的含量测定;对已知物质定性可用吸收峰波长或吸光度比值作为鉴别方法;若化合物本身在紫外光无吸收,而杂质在紫外光区有相当强度的吸收,或杂质的吸收峰化合物无吸收,则可用本法作检查。物质对紫外辐射的吸收是由于分子中原子的外层电子跃迁所产生的。因此,紫外吸收主要决定于分子的电子结构,故紫外光谱又称电子光谱。有机化合物分子结构中如含有共轭体系、芳香环或发色基团,均可在近紫外区(200-400nm)或可见光区(400-850nm)产生吸收。通常使用紫外分光光度计的工作波长范围为 190-900nm,因此又称紫外-可见分光光度计。 紫外吸收光谱为物质对紫外区辐射的能量吸收图。朗伯-比尔(Lambert-beer)定律为光的吸收定律,它是紫外分光光度法定量分析的依据,其数学表达式为:A=log1/T=ECL 式中A为吸光度; T为透光率; E为吸收系数; C溶液浓度; L为光路长度。 如溶液的浓度(C)为1%(g/ml),光路长度(L)为1cm,相应的吸收系数为百分吸收系数,以E表示。如溶液的浓度(C)为摩尔浓度(mol/L),液 层厚度为1cm时,则相应有吸收系数为摩尔吸收系数,以ε表示。 2 仪器 紫外-可见分光光度计:主要由光源、单色器,样品室、检测器、记录仪、显示系统和数据处理系统等部分组成。 可见光区全波长范围的测定,仪器备有二种光源,即氘灯-为了满足紫外 和碘钨灯,前者用于紫外区,后者用于可见光区。 单色器通常由进光狭缝、出光狭缝、平行光装置、色散元件、聚焦透镜或反射镜等组成。色散元件有棱镜和光栅二种,棱镜多用天然石英或熔融硅石制成,对200~400nm波长光的色散能力很强,对600nm以上波长的光色散能力较差,棱镜色散所得的光谱为非匀排光谱。光栅系将反射或透光经衍射而达到色散作用,故常称为衍射光栅,光栅光谱是按波长作线性排列,故为匀排光谱,双光束仪器多用光栅为色散元件。 检测器有光电管和光电倍增管二种。 紫外-可见分光光度计依据其结构和测量操作方式的不同可分为单光束和双光束 分光光度计二类。单光束分光光度计有些仍为手工操作,即固定在某一波长,分别测量比较空白、样品或参比的透光率或吸收度,操作比较费时,用于绘制吸收

紫外可见分光光度计 文档

紫外可见分光光度计 一.基本简介 紫外可见分光光度计简介1852年,比尔(Beer)参考了布给尔(Bouguer)1729年和朗伯(Lambert)在1760年所发表的文章,提出了分光光度的基本定律,即液层厚度相等时,颜色的强度与呈色溶液的浓度成比例,从而奠定了分光光度法的理论基础,这就是著名的比尔朗伯定律。1854年,杜包斯克(Duboscq)和奈斯勒(Nessler)等人将此理论应用于定量分析化学领域,并且设计了第一台比色计。到1918年,美国国家标准局制成了第一台紫外可见分光光度计。此后,紫外可见分光光度计经不断改进,又出现自动记录、自动打印、数字显示、微机控制等各种类型的仪器,使光度法的灵敏度和准确度也不断提高,其应用范围也不断扩大。 [1]从仪器理论上讲,各种紫外可见分光光度计,都是根据比耳定律设计的;而比耳定律研究的是在平行光、单色光的条件下,物质对光的吸收。但是,紫外可见分光光度计的单色器不可能得到真正的单色光。并且,单色器系统不同,它产生的单色光的纯度(光谱带宽)也不同,并且光通过物质时,也不可能是真正的平行光。因此,严格地说,实际工作中,任何紫外可见分光光度计,都不可能真正满足比耳定律。所以,紫外可见分光光度计都是针对近似平行光、近似单色光的条件设计的。所以,就看谁设计、制造仪器最能满足或接近比耳定律(或产生的比耳定律的偏离最小),谁的仪器到了使用者手里,由于非平行光或非单色光产生的分析误差最小,谁的仪器就最好(当然还有杂散光、噪声、稳定性等要求)。这就是从仪器学理论,去看紫外可见分光光度计的设计、制造误差的最根本、最本质的问题;也是使用者从仪器学理论去看紫外可见分光光度计的分析误差的最根本、最本质的问题。 二.工作原理 吸收光谱 物质的吸收光谱本质上就是物质中的分子和原子吸收了入射光中的某些特定波长的光能量,相应地发生了分子振动能级跃迁和电子能级跃迁的结果。由于各种物质具有各自不同的分子、原子和不同的分子空间结构,其吸收光能量的情况也就不会相同,因此,每种物质就有其特有的、固定的吸收光谱曲线,可根据吸收光谱上的某些特征波长处的吸光度的高低判别或测定该物质的含量,这就是分光光度定性和定量分析的基础。分光光度分析就是根据物质的吸收光谱研究物质的成分、结构和物质间相互作用的有效手段。

(完整版)紫外分光光度计的使用方法

UV2600型紫外分光光度计操作规程 一、开机 1.打开仪器电源。 2.打开电脑,点击UV Analyst 进入光谱分析软件。 3.软件将自动搜索仪器端口,点击“联机”,软件与仪器联机成功。 二、选择测试模式 根据实验需求选择测试模式。仪器提供的测试模式有“波长扫描”“时间扫描”“定点测量”“定量测量”“核酸测量”和“蛋白质测量” 【波长扫描】主要用以检测样品对一定范围波长光的吸收情况,以便对样品进行定性测量。 1.点击左侧主功能栏中的“波长扫描”即可进入波长扫描界面。 2. 根据实验要求,在“设置”设定检测参数。 3. 在样品室内参比及检测光路同时放入装有空白溶液的比色皿。 4. 点击“基线测量”以扣除空白的背景吸收。 5. 将检测光路中的空白溶液换成待测样品。 6. 点击“扫描”。以完成样品波长扫描检测。 7. 点击“保存”并选择保存路径即可保存谱图。 注意:在“基线测量”中所选择的基线必须与参数设置中基线一致! 【时间扫描】是检测样品在特定波长范围内吸光度(或透过率)随时间的推移而发生变化情况。主要用以检测样品的稳定性或进行化学动力学研究。 1. 点击左侧主功能栏中的“定量测量”即可进入定量测量界面。 2. 根据实验要求,在“设置”设定检测参数。 3 在样品室内参比及检测光路同时放入装有空白溶液的比色皿。 4. 点击“基线测量”以后扣除样品空白的背景吸收。 5. 将检测光路中的空白溶液换成待测样品。 6. 点击“扫描”。以完成样品波长扫描检测。 7. 点击“保存”并选择保存路径即可保存谱图。 【定点测量】是检测样品在特定波长中的吸光度(或透过率)。 1. 点击左侧主功能栏中的“定量测量”即可进入定量测量界面。 2. 根据实验要求,在“设置”设定检测参数。 3. 在样品室内参比及检测光路同时放入装有空白溶液的比色皿。 4. 点击“自动校零”,以扣除该波长中空白溶液的背景吸收。 5. 将检测光路中的空白溶液换成待测样品。 6. 点击“测量”,以完成样品的吸光度(或透过率)的测量。 7. 点击“保存”并选择保存路径即可保存测量结果。 【定量测量】可通过检测标准样品或输入特定的系数建立标准曲线后测量样品的浓度值。

紫外可见分光光度计的测量应用

实验3 紫外-可见分光光度计的测量应用一、实验目的 1.了解紫外-可见分光光度计的结构、工作原理及应用。2.了解关于物质的吸收光谱的基本定律。 3.初步学会应用紫外-可见分光光度计测量物质(各种透明晶体和溶液)的吸收光谱或透过谱(如光子晶体的透过谱)。 4.了解应用紫外-可见分光光度计测量溶液浓度的方法。 二、光的吸收定律与物质的光谱 紫外光是波长范围在200一400nrn的电磁波,可见光是波长在400一750nrn范围电磁波。当光穿过媒介传播时,媒介中的物质分子和原子就会与光波产生相互作用,使光的能量发生损耗,这就是所谓的光的吸收现象。不同的物质可能与不同波长的光波发生较强的相互作用,这就出现所谓的选择性吸收现象。例如,红色玻璃对红光的吸收比较小,而对其它波长的光波的吸收较强,从而使得该玻璃看起来是红色的。 如果固定输入光的强度,从200nrn到750nrn连续改变入射光的频率,将每个波长的光穿过某一物质后的输出光强记录下来,则以入射光频率为横坐标、以出射光强度

为纵坐标而画出的曲线称为该物质的紫外-可见吸收光谱。 朗伯(Lambert)发现,光在媒质中的光强随其在媒质中的传播距离而发生指数衰减:即 I=I0 exp(-kx)(1) 其中I0为入射处的光强,I为出射处的光强,X为光在媒质中的传播距离,k为衰减系数。这就是媒质中的光的吸收的基本定律,通常称这个规律为朗伯定律。 当吸收物质为某种物质的溶液时,设溶剂是不吸收光的,则该溶液对光的吸收率应与光波通过的路程上单位长度内吸收光的分子数,也就是与浓度C成正比,即k=α'C (2) 引入透过率T= I/ I0,吸光度A= —log T ,令α=α'/2.303,则由式(1)有: A= α C x (3)通常称公式(3)叫比尔定律。由此可知,先配出标准浓度(C。)的所研究物质的溶液,测出其吸光度(A。),则任意浓度的所研究物质的溶液的浓度值可以通过测量其吸光度而求出。由式(3)有:A。=αC。x;A= αC x;从而有A。/A=C。/C,即有 C = C 。A/A。(4)

分光光度计的原理

(一)基本原理 分光光度法是利用物质对某种波长的光具有选择性吸收的特性建立起来的鉴别物质或测定其含量的一项技术。当一束单色光通过溶液时,一部分被吸收,一部分则透过溶液。设入射光强度为Io。,透射光强度为It,,则透光度T=It /Io,吸光度(A)或光密度(O.D)或称消光度(E)则可表示为A=-lgT。根据Lambert—Beer定律,吸光度与溶液的浓度成正比,与光束通过溶液的距离(即 光程)成正比,用数学表达式表示为: A=KLC 式中C代表该物质的浓度,L代表光程,一般以cm表示,K为摩尔消光系数,即当溶液浓度为lmol/l,光程为1cm时所测得的一定波长下的吸光度。 由于单色光透过溶液时,不仅被待测物质所吸收,而且还被比色容器与溶剂以及其它试剂吸收一部分,这部分需用空白管消除(空白液的做法即用与样本相 同的一切试剂,而不含被测定的物质) (二)波长的选择: 波长的选择一般是选择待测物质最大吸收峰的波长(λmax)。因在λmax测定吸光度,敏感度最高。在吸收峰波长处测吸光度,波长变化影响最小;而在其他波长处,波长变化对吸光度影响大,甚至测得浓度一吸光度曲线不呈直线。 选择测定某一溶液所需的波长,是可以用不同的波长作该溶液的吸收光谱曲线,从曲线上选择最适当的波长来进行这一溶液的测定工作,但是,在分析工作中,尚有个别情况,不能单凭此一原则,而应根据下列三个原则,进行实际试 测,然后全面考虑利弊,再行选定。 1.应使被测溶液有适当的光密度,一般而言,适当的光密度为0.1—0.7,而以0.2—0.6最理想。过低的光密度因仪器的读数误差而产生很大的相对误差,反之,过高的光密度则往往已超过直线范围而引入误差。 2.应使干扰影响降低至最低限度。在反应中,如遇不易去除的干扰色泽, 应选用对此干扰色泽最不灵敏的波长。 3.应使标准曲线在尽可能大的范围内接近直线。 (三)标准曲线的绘制 1.标准曲线的作用 (1)标准曲线又叫做校正曲线或工作曲线,它是比色分析法中不可缺少的步骤。从浓度——光密度直线的直线特性,可以判断所采用方法的呈色反应是 否符合Lamben—Beer氏定律。 (2)作多次平行测定绘制标准曲线,可判断在整个测定过程中操作,仪 器等误差的大小,从而确定该测定方法的可靠性。 (3)从绘制标准曲线的斜率可以比较各种方法的灵敏度。 (4)当进行大批样品分析时,可省略多次计算,从光密度值直接查阅标 准曲线而求得被测物质的浓度。

紫外可见分光光度计操作规程

紫外可见分光光度计操作规程 1、目的 规范设备管理,正确使用、维护设备,防止设备事故发生,确保检测工作顺利开展。 2、适用范围 适用于TU-1810S紫外可见分光光度计的操作。 3、基本要求 3.1准备工作 3.1.1确认环境温度、相对湿度是否满足要求(要求温度为15℃~35℃、相对湿度不大于80%); 3.1.2开机前打开仪器样品室盖,观察确认样品室无挡光物后再打开电源。 3.2启动 3.2.1打开电源,仪器显示初始化工作界面,仪器将进行自检并初始化,若初始化正常结束,系统将进入仪器操作主界面; 3.2.2仪器需进行预热使光源达到稳定后开始测量,预热时间一般为15~30分钟。 3.3运行 3.3.1选择数字键“3”→按“F1”→按“1”键选择工作模式为“标样法”→按“2”键用数字键将波长值输入,输入完成按“ENTER”键→按“3”键选择需要的浓度单位。 3.3.2继续按“F1”键进入标样法工作曲线参数设置界面→按“1”键输入标样数,输入完成按“ENTER”键→按“2”键,按照系统提示用数字键输入标样浓度,输入完成按“ENTER”键→再按“2”键,在一号池位置放置空白溶液,按“A/Z”键进行自动校零,校零结束将要测量的标样放入对应的比色池位置,按“START/STOP”键对当前测试的标样进行测量→测量结束系统提示输入下一号标样的浓度值,重复以上操作,直至标准曲线测试完成。

3.3.3按“3”键可看到标准曲线、曲线方程及相关系数,将线性方程及相关系数记录在原始记录本上,按“RETURN”键返回定量测量参数设置界面。 3.3.4按“F3”键进入试样池设置→再按“1”键选择试样池为5联池→按“2”键可利用数字键对样品池数进行设置,输入完成后按“ENTER”键→继续按“3”键选择一号池空白校正为“否”→按“4”键对移动试样池数进行设置,按“RETURN”键返回到定量测量画面→在一号池位置放入空白溶液,按“A/Z”键对当前工作波长进行零吸光度校正,将测量的样品依次放入设定的使用样品池中,按“START/STOP”键测量样品的浓度值。 3.4结束 测量结束将比色皿用去离子水冲洗干净倒置晾干,清理台面,关闭电源开关,并及时填写相关记录。 4、维护方法 4.1每次使用后应检查样品室是否积存有溢出溶液,经常擦拭样品室,以防废液对部件或光路系统腐蚀。 4.2仪器使用完毕应盖好防尘罩,可在样品室及光源室内放置硅胶袋防潮,但开机时必须取出。 4.3仪器液晶显示器及键盘日常使用时应注意防止划伤,并注意防水、防尘、防腐蚀等。 4.4定期进行性能指标检测,发现问题及时上报。 4.5长期不使用仪器时,应定期更换硅胶,每隔两星期开机运行一小时,确保仪器的正常使用。 5、安全操作注意事项 5.1操作设备时应确保环境的温度及相对湿度满足要求(温度为15℃~35℃、相对湿度不大于80%)。 5.2操作时不允许碰伤光学镜面,且不可以擦拭其镜面。 5.3仪器周围无有害气体及强腐蚀性气体,且不应该有强震动源。 5.4设备使用电源为220±10%,开机前应确认电源是否符合设备要求。 6、紧急应对措施

荧光分光光度计-原理

分子荧光分析法 发光光谱:物质分子或原子吸收辐射被激发后,电子以无辐射跃迁至第一电子激发态的最低振动能级,再以辐射的方式释放这一部分能量而产生的光谱称为荧光、磷光。 根据物质接受的辐射能量的大小及与辐射作用的质点不同,荧光分析法可分为以下几种: 1. X射线荧光分析法 用X射线作光源,待测物质的原子受激发后在很短时间内(10-8s)发射波长在X 射线范围内的荧光。 2. 原子荧光分析法: 待测元素的原子蒸气吸收辐射激发后,在很短的时间内(10-8s),部分将发生辐射跃迁至基态,这种二次辐射即为荧光,根据其波长可进行定性,根据谱线强度进行定量。 荧光的波长如与激发光相同,称为共振荧光。 荧光的波长比激发光波长长,称为stokes荧光;若短,称为反stokes荧光。 3. 分子荧光分析法: 有些物质的多原子分子,在用紫外、可见光(或红外光)照射时,也能发射波长在紫外、可见(红外)区荧光,根据其波长及强度可进行定性和定量分析,这就是通常的(分子)荧光分析法。

基本原理 一. 分子荧光的发生过程 (一)分子的激发态——单线激发态和三线激发态 大多数分子含有偶数电子,在基态时,这些电子成对地存在于各个原子或分子轨道中,成对自旋,方向相反,电子净自旋等于零:S=?+(-?)=0,其多重性 M =2S +1=1 (M 为 磁量子数),因此,分子是抗(反)磁性的,其能级不受外界磁场影响而分裂, 称“单线态”; 图1 单线基态(A )、单线激发态(B )和三线激发态(C ) 当基态分子的一个成对电子吸收光辐射后,被激发跃迁到能量较高的轨道上,通常它的自旋方向不改变,即?S=0,则激发态仍是单线态,即“单线(重)激发态”; 如果电子在跃迁过程中,还伴随着自旋方向的改变,这时便具有两个自旋不配对的电子,电子净自旋不等于零,而等于1: S=1/2+1/2=1 其多重性: M=2S+1=3 即分子在磁场中受到影响而产生能级分裂,这种受激态称为“三线(重)激发态”; “三线激发态” 比 “单线激发态” 能量稍低。但由于电子自旋方向的改变在光谱学上一般是禁阻的,即跃迁几率非常小,只相当于单线态 → 单线态过程的 10-6~10-7。 (二)分子去活化过程及荧光的发生: (一个分子的外层电子能级包括 S 0(基态)和各激发态S 1,S 2,…..,T 1…..,每个电子能级又包括一系列能量非常接近的振动能级) 处于激发态的分子不稳定,在较短的时间内可通过不同途径释放多余的能量(辐射或非辐射跃迁)回到激态,这个过程称为“去活化过程”,这些途径为: 1. 振动弛豫:在溶液中,处于激发态的溶质分子与溶剂分子间发生碰撞,把一部分能量以热的形式迅速传递给溶剂分子(环境),在10-11~10-13 秒时间回到同一电子激发态的

(完整版)紫外可见分光光度计--原理及使用

应用 分光光度计已经成为现代分子生物实验室常规仪器。常用于核酸、蛋白定量以及细菌生长浓度的定量。我们实验室主要是用来测物质的光度以求得物质的浓度或者酶活。 基本原理 分子的紫外可见吸收光谱是由于分子中的某些基团吸收了紫外可见辐射光后,发生了电子能级跃迁而产生的吸收光谱。它是带状光谱,反映了分子中某些基团的信息,可以用标准光谱图再结合其它手段进行定性分析。 朗伯-比尔定律:当一束平行单色光通过含有吸光物质的稀溶液时,溶液的吸光度与吸光物质浓度、液层厚度乘积成正比,即 A= kcl 式中比例常数k与吸光物质的本性,入射光波长及温度等因素有关。c为吸光物质浓度,l为透光液层厚度。 组成 各种型号的紫外-可见分光光度计,就其基本结构来说,都是由五个基本部分组成,即光源、单色器、吸收池、检测器及信号指示系统。 1.光源 在紫外可见分光光度计中,常用的光源有两类:热辐射光源和气体放电光源。热辐射光源用于可见光区,如钨灯和卤钨灯;气体放电光源用于紫外光区,如氢灯和氘灯。 2.单色器 单色器的主要组成:入射狭缝、出射狭缝、色散元件和准直镜等部分。 单色器质量的优劣,主要决定于色散元件的质量。色散元件常用棱镜和光栅。 3.吸收池 吸收池又称比色皿或比色杯,按材料可分为玻璃吸收池和石英吸收池,前者不能用于紫外区。吸收池的种类很多,其光径可在0.1~10cm之间,其中以1cm光径吸收池最为常用。 4、检测器 检测器的作用是检测光信号,并将光信号转变为电信号。现今使用的分光光度计大多采用光电管或光电倍增管作为检测器。 5、信号显示系统 常用的信号显示装置有直读检流计,电位调节指零装置,以及自动记录和数字显示装置等。

分光光度计的原理与使用

分光光度计的原理与使用 一、目的要求: 1、学会紫外-可见分光光度计的原理和使用方法 2、学会测量溶液的浓度。 二、实验原理: 1、分光光度计原理:分光光度计是目前化验室中使用比较广泛的一种分析仪器,其测定原理是利用物质对光的选择性吸收特性,以较纯的单色光作为入射光,测定物质对光的吸收,从而确定溶液中物质的含量。其特点是灵敏度高;准确度高;测量范围广;在一定条件下,可同时测定水样中两种或两种以上的物质组分含量等。 分光光度计按其波长范围可分为可见分光光度计(工作范围360~800nm)、紫外-可见分光光度计(工作范围200~1000nm)和红外分光光度计(工作范围760~400000nm)等。 2、在日常使用及维护当中应注意以下几点: 第一,在使用仪器前,必须仔细阅读其使用说明书。 第二,若大幅度改变测试波长,需稍等片刻,等灯热平衡后,重新调零及满度后,再测量。 第三,指针式仪器在未接通电源时,电表的指针必须位于零刻度上。若不是这种情况,需进行机械调零。 第四,操作人员不应轻易触动灯泡及反光镜灯,以免影响光效率。 第五,放大器灵敏度换挡后,必须重新调零。 第六,比色皿使用时要注意其方向性,并应配套使用,以延长其使用寿命。新的比色皿使用前必须进行配对选择,测定其相对厚度,互相偏差不得超过2%透光度,否则影响测定结果。使用完毕后,请立即用蒸馏水冲洗干净(测定有色溶液后,应先用相应的溶剂或(1+3)的硝酸进行浸泡,浸泡时间不宜过长,再用蒸馏水冲洗干净),并用干净柔软的纱布将水迹擦去,以防止表面光洁度被破坏,影响比色皿的透光率。

第七,比色皿架及比色皿在使用中的正确到位问题。首先,应保证比色皿不倾斜。因为稍许倾斜,就会使参比样品与待测样品的吸收光径长度不一致,还有可能使入射光不能全部通过样品池,导致测试准确度不符合要求。其次,应保证每次测试时,比色皿架推拉到位。若不到位,将影响到测试值的重复性或准确度。 第八,干燥剂的使用问题。干燥剂失效将会导致以下问题:①数显不稳,无法调零或满度。②反射镜发霉或沾污,影响光效率,杂散光增加。因此分光光度计应放置在远离水池等湿度大的地方,并且干燥剂应定期更换或烘烤。 第九,分光光度计的放置位置应符合以下条件:避免阳光直射;避免强电场;避免与较大功率的电器设备共电;避开腐蚀性气体等。 3、吸光光度法测定溶液浓度原理 基于物质对不同波长的光波具有选择性吸收的能力而建立起来的分析方法。(1)光线: 光线的波长: 200nm-400nm 紫外线,400-750nm可见光, >750nm 红外线 光具有波粒二相性,波长不同,其能量不同。 (2)物质的吸收光谱及颜色: A.物质的原子吸收光谱和原子发射光谱:原子的最外层电子可以选择性吸收特征波长的电磁波成为激发态而产生的光谱称为原子吸收光谱。激发态原子恢复到基态,则释放出特征波长的光子,形成原子发射光谱。不同的溶液其光谱不同,即不同溶液对不同波长的光其吸收能力不同,对某一特定波长的光存在吸收峰。B.可见光由赤橙黄绿青兰紫等能量不同的光线组成,当可见光穿过某一溶液时,由于特定波长的光被吸收而使溶液呈现相应的颜色。(如CuSO4由于吸收了可见光中的黄光(600nm)而成蓝色)不同颜色的溶液对不同波长的光其吸收能力不同。(3)光吸收的基本定律(Lambert-Beer 定律): 一束平行单色光(Io)通过有色的透明溶液时,一部分的光可以透过溶液(It),另一部分被溶液吸收(Ia),还有一部分被器皿表面反射(Ir),则: Io=It+Ia+Ir 。那么,该溶液透光率为: T = It / Io 。 1. Lambert 定律:设有一束平行单色光,通过液层厚度为b 的均匀透明溶液,则溶液对光的吸收能力: A=Ig(Io/It)=Ig(1/T)=k2b

紫外分光光度计实验报告

UV-2550紫外分光光度计的使用和分光光度法测定对苯二酚姓名:XXX 专业:有机化学学号:312070303004 时间:2012.10.21 1.目的 (1)了解UV-2550紫外光谱仪的基本使用方法。 (2)了解测定对苯二酚的紫外光谱实验方法。 2. 试剂和仪器 2.1试剂: 标准溶液0.10m g/mL,准确称取0.25g对苯二酚溶于250ml容量瓶中,用水稀释至刻度,从中取出10ml于100ml容量瓶中,用水稀释至刻度,摇匀;pH=4.1的乙酸-乙酸钠缓冲溶液。 2.2 仪器: UV-2550型分光光度计。 3. 实验步骤 3.1 测量波长的选择 用吸量管吸取5.0ml对苯二酚标准溶液于25ml容量瓶中,加入0.5ml pH=4.1的乙酸-乙酸钠缓冲溶液,用二次蒸馏水定容,振荡混匀。15分钟后用1cm比色皿,275-330nm波长范围, 进行扫描。从吸收曲线上读出对苯二酚的最大吸收波长λmax。 3.2 对苯二酚含量的测定 (1)标准曲线的制作 在6个25ml容量瓶中,用吸量管分别加入0,1.0, 2.0, 3.0,4.0,5.0ml 对苯二酚标准溶液,加入0.5ml pH=4.1的乙酸-乙酸钠缓冲溶液,用二次蒸馏水定容,振荡混匀。用1cm比色皿,以试剂空白为参比溶液,在最大吸收波长处,用光度模块作标准曲线。 (2)试样中对苯二酚含量的测定 准确吸取一定体积的样品于40ml容量瓶中,加入0.5ml pH=4.1乙酸-乙酸钠,用水稀释至刻度,摇匀。在光度模块中直接读出试样中对苯二酚含量。 4. 实验结果 4.1 测量波长的选择 从吸收曲线上读出对苯二酚的最大吸收波长λmax=288.80。 见图1 吸收曲线 4.2 对苯二酚含量的测定 (1)标准曲线的制作 见图2 标准曲线 (2)试样中对苯二酚含量的测定 对苯二酚含量0.354 相对误差为11.5%

相关文档
最新文档