创新设计高二数学人教B选修22规范训练:第二章 推理与证明 章末解读 含解析

创新设计高二数学人教B选修22规范训练:第二章 推理与证明 章末解读 含解析
创新设计高二数学人教B选修22规范训练:第二章 推理与证明 章末解读 含解析

命题趋势

1.从近年来的新课标高考看,新课标高考对本部分的考查直接涉及的多为小题,主要考查利用归纳推理、类比推理去寻求更为一般的、新的结论,而其他主要是渗透到数学问题的求解之中.因此,对本部分知识的复习,要注意做好以下两点:一要熟悉归纳推理、类比推理、演绎推理的一般原理、步骤、格式,搞清合情推理与演绎推理的联系与区别;二要把握归纳推理、类比推理、演绎推理的基本应用,在给定的条件下,能够运用归纳推理、类比推理获得新的一般结论,能够运用演绎推理对数学问题进行严格的证明.

2.直接证明与间接证明是解决数学证明问题的两种重要的思想与方法,是数学证明题的核心,也是数学学习的重要内容.从近三年的新课标高考看,高考对本部分考查的难度多为中档题,也有高档题,其相关知识常常涉及数学的各个方面,主要是不等式、数列、三角函数、向量、函数、解析几何、立体几何等.

在备考中,对本部分的内容,要抓住关键,即分析法、综合法、反证法,要搞清三种方法的特点,把握三种方法在解决问题中的一般步骤,熟悉三种方法适用于解决的问题的类型,同时也要加强训练,达到熟能生巧,有效运用它们的目的.

3.数学归纳法是解决与正整数有关的数学命题证明的一种方法,是高考常考的一个重要内容.

从近三年的新课标高考看,对本部分的考查常常在解答题中进行,且多为解答题中的某一个小问,但考查问题多涉及数列、不等式、整除问题以及几何问题等,范围广.因此,备考中,我们要做好以下几点:其一,要抓住数学归纳法证明数学命题的原理,明晰其内在的联系;其二,要把握数学归纳法证明命题的一般步骤,熟知每一步间的区别联系;其三,要熟悉数学归纳法在证明命题中的应用技巧,并在证明的过程中注意使用.

高考真题

1.(2011·陕西高考)观察下列等式

1=1

2+3+4=9

3+4+5+6+7=25

4+5+6+7+8+9+10=49

照此规律,第五个等式应为________.

解析由于1=12,2+3+4=9=32,3+4+5+6+7=25=52,4+5+6+7+8+9+10=49=72,所以第五个等式为5+6+7+8+9+10+11+12+13=92=

81.

答案5+6+7+8+9+10+11+12+13=81

2.(2010·陕西高考)观察下列等式:

13+23=32,13+23+33=62,13+23+33+43=102,…,

根据上述规律,第五个等式为______________________________________.解析由13+23=(1+2)2=32;

13+23+33=(1+2+3)2=62;

13+23+33+43=(1+2+3+4)2=102?13+23+33+43+53=(1+2+3+4+

5)2=152;

则第五个式子为13+23+33+43+53+63=(1+2+3+4+5+6)2=212.

答案13+23+33+43+53+63=212

3.(2010·浙江高考)设等差数列{a n}的前n项和为S n,则S4,S8-S4,S12-S8,S16-S12成等差数列.类比以上结论有:设等比数列{b n}的前n项积为T n,则

T4,________,________,T16

T12成等比数列.

解析由于等差数列与等比数列具有类比性,且等差数列与和差有关,等比数列与积商有关,因此当等差数列依次每4项之和仍成等差数列时,类比到等比数列为依次每4项的积的商成等比数列.下面证明该结论的正确性:设等比数列{b n}的公比为q,首项为b1,

由T4=b41q6,T8=b81q1+2+…+7=b81q28,

T 12=b 121q 1+2+…11=b 121q 66

∴T 8T 4=b 41q 22,T 12T 8

=b 41q 38, 即? ????T 8T 42=T 12T 8·T 4,故T 4,T 8T 4,T 12T 8成等比数列. 答案 T 8T 4 T 12T 8

4.(2011·山东高考)设函数f (x )=x

x +2

(x >0),观察: f 1(x )=f (x )=x

x +2,

f 2(x )=f (f 1(x ))=x

3x +4, f 3(x )=f (f 2(x ))=x

7x +8, f 4(x )=f (f 3(x ))=x

15x +16

……

根据以上事实,由归纳推理可得:

当n ∈N *且n ≥2时,f n (x )=f (f n -1(x ))=________.

解析 依题意,先求函数结果的分母中x 项系数所组成数列的通项公式,由1,3,7,15,…,可推知该数列的通项公式为a n =2n -1.又函数结果的分母中常数项依次为2,4,8,16,…,故其通项公式为b n =2n . 所以当n ≥2时,f n (x )=f (f n -1(x ))=

x

(2n -1)x +2n

.

答案

x

(2n -1)x +2n

5.(2011·天津高考)已知数列{a n }与{b n }满足b n +1a n +b n a n +1=(-2)n +1,b n =3+(-1)n -1

2,n ∈N *

,且a 1=2. (1)求a 2,a 3的值;

(2)设c n =a 2n +1-a 2n -1,n ∈N *,证明{c n }是等比数列;

(3)设S n 为{a n }的前n 项和,

证明S 1a 1+S 2a 2

+…+S 2n -1a 2n -1+S 2n a 2n ≤n -1

3(n ∈N *).

(1)解 由b n =3+(-1)n -1

2,n ∈N *

,可得b n =???

2,n 为奇数,1,n 为偶数.

又b n +1a n +b n a n +1=(-2)n +1, 当n =1时,a 1+2a 2=-1, 由a 1=2,可得a 2=-3

2;

当n =2时,2a 2+a 3=5,可得a 3=8. (2)证明 对任意n ∈N *, a 2n -1+2a 2n =-22n -1+1, ① 2a 2n +a 2n +1=22n +1.

②-①,得a 2n +1-a 2n -1=3×22n -1,即c n =3×22n -1, 于是c n +1

c n

=4.

所以{c n }是等比数列.

(3)证明 a 1=2,由(2)知,当k ∈N *且k ≥2时,

a 2k -1=a 1+(a 3-a 1)+(a 5-a 3)+(a 7-a 5)+…+(a 2k -1-a 2k -3)

=2+3(2+23+25+…+22k -3)=2+3×2(1-4

k -1)1-4

=22k -1,

故对任意k ∈N *,a 2k -1=22k -1. 由①得22k -1+2a 2k =-22k -1+1, 所以a 2k =1

2-22k -1,k ∈N *.

因此,S 2k =(a 1+a 2)+(a 3+a 4)+…+(a 2k -1+a 2k )=k

2. 于是S 2k -1=S 2k -a 2k =k -1

2+22k -1. 故S 2k -1a 2k -1+S 2k

a 2k =k -12+22k -1

22k -1+k 212-2

2k -1

=k -1+22k 22k -k 22k -1

=1-1

4k -

k

4k (4k -1)

.

所以,对任意n ∈N *, S 1a 1+S 2

a 2+…+S 2n -1a 2n -1+S 2n a 2n

=? ????S 1a 1+S 2a 2+? ????

S 3a 3+S 4a 4+…+?

????S 2n -1a 2n -1+S 2n a 2n =? ?

???1-14-112+????

??1-142-242(42-1)+…+1-14n -n 4n (4n -1) =n -? ????14+112-??????142+242(42-1)-…-14n +n 4n (4n -1)≤n -? ????14+112=n -13.

高中数学选修2-2推理与证明教(学)案及章节测试及答案

推理与证明 一、核心知识 1.合情推理 (1)归纳推理的定义:从个别事实中推演出一般性的结论,像这样的推理通常称为归纳推理。归纳推理是由部分到整体,由个别到一般的推理。 (2)类比推理的定义:根据两个(或两类)对象之间在某些方面的相似或相同,推演出它们在其他方面也相似或相同,这样的推理称为类比推理。类比推理是由特殊到特殊的推理。 2.演绎推理 (1)定义:演绎推理是根据已有的事实和正确的结论(包括定义、公理、定理等)按照严格的逻辑法则得到新结论的推理过程。演绎推理是由一般到特殊的推理。 (2)演绎推理的主要形式:三段论 “三段论”可以表示为:①大前题:M 是P②小前提:S 是M ③结论:S 是 P。其中①是大前提,它提供了一个一般性的原理;②是小前提,它指出了一个特殊对象;③是结论,它是根据一般性原理,对特殊情况做出的判断。 3.直接证明 直接证明是从命题的条件或结论出发,根据已知的定义、公理、定理,直接推证结论的真实性。直接证明包括综合法和分析法。 (1)综合法就是“由因导果” ,从已知条件出发,不断用必要条件代替前面的条件,直至推出要证的结论。 (2)分析法就是从所要证明的结论出发,不断地用充分条件替换前面的条件或者一定成立的式子,可称为“由果索因” 。要注意叙述的形式:要证 A,只要证 B,B 应是 A 成立的充分条件. 分析法和综合法常结合使用,不要将它们割裂开。 4反证法 (1)定义:是指从否定的结论出发,经过逻辑推理,导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的证明方法。 (2)一般步骤:(1)假设命题结论不成立,即假设结论的反面成立;②从假设出发,经过推理论证,得出矛盾;③从矛盾判定假设不正确,即所求证命题正

推理与证明(教案)

富县高级中学集体备课教案 年级:高二科目:数学授课人:授课时间:序号:第节课题第三章§1.1 归纳推理第 1 课时 教学目标1、掌握归纳推理的技巧,并能运用解决实际问题。 2、通过“自主、合作与探究”实现“一切以学生为中心”的理念。 3、感受数学的人文价值,提高学生的学习兴趣,使其体会到数学学习的美感。 重点归纳推理及方法的总结中心 发言 人王晓君 难点归纳推理的含义及其具体应用 教具课型新授课课时 安排 1课 时 教法讲练结合学法归纳总结个人主页 教学过程 教一、原理初探 ①引入:“阿基米德曾对国王说,给我一个支点,我将撬起整个地球!” ②提问:大家认为可能吗?他为何敢夸下如此海口?理由何在? ③探究:他是怎么发现“杠杆原理”的? 正是基于这两个发现,阿基米德大胆地猜想,然后小心求证,终于发现了伟大的“杠杆原理”。 ④思考:整个过程对你有什么启发? ⑤启发:在教师的引导下归纳出:“科学离不开生活,离不开观察,也离不开猜想和证明”。 二、新课学习 1、哥德巴赫猜想 哥德巴赫在教学中发现,每个不小于6的偶数都是两个素数(只能被和它本身整除的数)之和。如6=3+3,12=5+7等等。公元1742年6月7日哥德巴赫(Goldbach)写信给当时的大数学家欧拉(Euler),提出了以下的猜想: (a) 任何一个≥6之偶数,都可以表示成两个奇质数之和。 (b) 任何一个≥9之奇数,都可以表示成三个奇质数之和。这就是着名的哥德巴赫猜想200年过去了,没有人证明它。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。到了20世纪20年代,才有人开始向它靠近。1920年、挪威数学家布爵用一种古老的筛选法观察猜想证明 归纳推理的发展过程

小学数学中的合情推理

小学数学中的合情推理 (2009-07-29 16:35:15) 分类:教学 标签: 杂谈 合情推理,是美籍数学家波利亚在30年代提出的概念,它是指“观察、归纳、类比、实验、联想、猜测、矫正和调控等方法”。波利亚在致力改变美国数学落后状态的工作中,大力倡导合情推理的方法,并获得成功。 在数学学科教学中,我们重视和加强了双基教学,但学生在校所学到的学科知识,随着他们离开学校,多数会逐渐忘掉,甚至有的会忘得“一干二净”。如果说“教育是所有学会的东西都忘却以后,仍然留下来的那些东西”(M?劳厄),学生学习数学获得的不仅仅是知识,除此之外,更为重要的是思想与方法。而在研究探究性学习的今天,我们的教学一直在研究如何组织和组织的形式上,对在发展过程中使用的合情推理等方法没有予以足够的重视,而这些恰恰是人的优秀文化素质的重要组成部分。再联想到有关团体对中外学生调查结果显示的中国学生科学测验成绩较差的信息,不能不使我们感到加强对合情推理能力的培养已是刻不容缓。 一、合情推理在数学能力发展中的功能和作用 《数学课程标准(实验稿)》在课程的具体目标中明确提出了“培养和发展学生的合情推理能力”。合情推理,它“是在认知过程中,主体根据自己在日常生活中积累的知识、经验,经过非演绎(或非完全演绎)的思维而得到合乎情理、理想化结论的一种推理方式”。其主要表现在:“它可能是……”(猜测),“做出来看一看”(实验),“由上所述可得……”(归纳),“将人心比自心”(类比),“可以想象”(联想)等。 合理推理与通常所说的论证推理是不相同的。论证推理是可靠的;而合情推理是根据经验、知识、直观与感觉得到的一种可能性结论的推理,它推出的结论不一定都正确,却和论证推理一样在数学和生活中都有广泛的应用。在社会生活中,医生诊断疾病,法官审判案件,军事家指挥战争,人际交往等都应用合情推理。一些科学发现的思维,也主要是合情推理:量子力学方程是猜出来的;球体公式是阿基米德“称”出来的;而现代仿生学则是类比推理在科技中应用的杰出成果。事实证明,合情推理的这两种主要推理方式…归纳?和…类比?,不受逻辑规则的约束具有强烈的创造性质,它推动了数学的进步和发展。尽管由类比、归纳得出的结论不一定正确,必须加以论证才能确立,但它在数学教学中突出发展学生创造性思维的

推理与证明教案

推理与证明合情推理(一) 教学要求:结合已学过的数学实例,了解归纳推理的含义,能利用归纳进行简单的推理,体会并认识归纳推理在数学发现中的作用. 教学重点:能利用归纳进行简单的推理. 教学难点:用归纳进行推理,作出猜想. 教学过程: 一、新课引入: 1. 哥德巴赫猜想:观察4=2+2, 6=3+3, 8=5+3, 10=5+5, 12=5+7, 12=7+7, 16=13+3, 18=11+7, 20=13+7, ……, 50=13+37, ……, 100=3+97,猜测:任一偶数(除去2,它本身是一素数)可以表示成两个素数之和. 1742年写信提出,欧拉及以后的数学家无人能解,成为数学史上举世闻名的猜想. 1973年,我国数学家陈景润,证明了充分大的偶数可表示为一个素数与至多两个素数乘积之和,数学上把它称为“1+2”. 二、讲授新课: 1. 教学概念: ①概念:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理. 简言之,归纳推理是由部分到整体、由个别到一般的推理. ②归纳推理的几个特点; 1.归纳是依据特殊现象推断一般现象,因而,由归纳所得的结论超越了前提所包容的范围. 2.归纳是依据若干已知的、没有穷尽的现象推断尚属未知的现象,因而结论具有猜测性. 3.归纳的前提是特殊的情况,因而归纳是立足于观察、经验和实验的基础之上 归纳推理的一般步骤: ⑴对有限的资料进行观察、分析、归纳整理; ⑵提出带有规律性的结论,即猜想; ⑶检验猜想。

归纳练习:(i )由铜、铁、铝、金、银能导电,能归纳出什么结论? (ii )由直角三角形、等腰三角形、等边三角形内角和180度,能归纳出什么结论? (iii )观察等式:2221342,13593,13579164 +==++==++++==,能得出怎样的结论? ③ 讨论:(i )统计学中,从总体中抽取样本,然后用样本估计总体,是否属归纳推理? (ii )归纳推理有何作用? (发现新事实,获得新结论,是做出科学发现的重要手段) (iii )归纳推理的结果是否正确?(不一定) 2. 教学例题: ① [例1] 观察图,可以发现:1=12,1+3=4=22,1+3+5=9=32, 1+3+5+7=16=42, 1+3+5+7+9=25=52, … 由上述具体事实能得出怎样的结论? ② 出示例题:已知数列{}n a 的第1项12a =,且1(1,2,)1n n n a a n a += =+ ,试归纳出通项公式. (分析思路:试值n =1,2,3,4 → 猜想n a →如何证明:将递推公式变形,再构 造新数列)

小学数学教学中的合情推理

小学数学教学中的合情推理 在当今和未来社会中,人们面对纷繁复杂的信息经常需要作出选择和判断,进而进行推理、作出决策。因而,义务教育《数学课程标准》指出:“数学课程的学习,强调学生的数学活动,发展学生的推理能力。”推理分论证推理和合情推理两种。数学对发展推理能力的作用,人们早已认同并深信不疑。但是,长期以来数学教学注重采用“形式化”的方式发展学生的论证推理能力,忽视了合情推理能力的培养。应当指出,数学需要论证推理,更需要合情推理。 一、合情推理的含义 合情推理是一种合乎情理、好像为真的推理,它是数学发现的方法之一。合情推理,不全都依据数学公理体系和数学定理进行推理,而是运用了一些特殊的推理方法,从所得命题的真假性来看,不像论证推理所得的命题那样严密和稳定。似真非真和似真确真这两种情况都有可能发生。因此,合情推理又被称为似真推理。数学中的合情推理是多种多样的,其中归纳推理和类比推理是两种用途最广的特殊合情推理。法国数学家拉普拉斯说:“甚至在数学里,发现真理的工具也是归纳和类比。” 二、发展学生合情推理的意义 首先,是实施新课标的需要。《数学课程标准》中明确:归纳和类比是合情推理的主要形式,并指出:第一学段“初步学

会选择有用的信息进行简单的归纳和类比”,第二学段“进行归纳、类比与猜测,发展初步的合情推理能力”,第三学段“体会证明的必要性,发展初步的演绎推理能力”。其目的是有序地培养学生的推理能力,但小学阶段以发展学生初步的合情推理能力为主要目标。 其次,是由小学生的认知特点决定的。鉴于小学生的年龄与认知特点,他们不可能通过具有严格标准的逻辑推理来发现和掌握数学原理和概念。因此,在小学数学教材中大量地采用了像数学猜想、枚举归纳、类比迁移等合情推理的方法。再次,是学生学习数学的过程要求。波利亚说过:“数学家的创造性工作成果是论证推理,即证明;但是这个证明是通过合情推理,通过猜想而发现的。只要数学的学习过程稍能反映出数学发明过程的话,那么应当让猜测、合情推理占有适当的位置。”费赖登塔尔认为,学生学习数学是一个有指导的再创造的过程。数学学习本质是学生的再创造。数学知识的学习并不是简单的接受,而必须以再创造的方式进行。因此,在数学学习的过程中,应给学生提供具有充分再创造的通道,以激励学生进行再创造的活动。把数学知识学习的过程展开、还原,让学生经历观察、比较、归纳、类比……即合情推理提出猜想,然后再通过演绎,推理证明猜想正确或错误。数学网 三、发展学生合情推理的策略

命题与证明教学设计与反思(供参考)

教学设计与反思

想一想,议一议判断对错: 1、要证明假命题很简单,只要 举出一个反例就可以了。 2、证明真命题也很简单哪,只要 举一个正确的例子就可以了。 同学们,那句话是正确的?怎样 才能确定一个命题是真命题呢? 得出“证明”的定义: 一个命题的真假,常常需要进行 有理有据的推理才能作出正确 的判断,这个推理的过程叫做命 题的证明。 思考这两个问题的对 错,讨论各自的想法 并初步总结:如何判 断一个命题是真命题 呢? 由此引出“证明” 使学生通过思考 问题、互相讨论总结 出“证明”的定义, 加强前后知识的衔 接,使学生更清晰的 认识“证明”。 做一做归纳总结出示幻灯片: 例1 证明:平行于同一条直线 的两条直线平行。 证明一个命题的步骤是什么? (1)依据题意画图,将文字语 言转换为符号(图形)语言。 (2)根据图形写出已知、求证。 (3)根据基本事实、已有定理 等进行证明。 例2:求证:邻补角的平分线互 相垂直。 思考后互相讨论,总 结归纳出证明一个命 题的步骤,然后按照 步骤完成例2。 通过例题教学, 突出和落实“证明” 的两方面特征,并引 导学生充分认识并掌 握“证明过程”是如 何进行的。 练习1、已知:如图,∠1=∠2, 求证:AB∥CD 2、已知,如图,直线AB,CD 被EF、GH所截, ∠1=∠2 。 求证:∠3=∠4 要求学生自己动手, 实践“证明”,在练 习中使学生规范做题 步骤。 学生做题时可以 自行选择不同的证明 方法,使学生对证明 步骤熟悉的同时,培 养学生的灵活能力。 检测学生对证明步骤 的掌握情况。 课堂小结 以问题的形式引导学生自 主总结本节课所学内容:这节课 你们学到了什么?有何收获? 学生各自发表自己的 收获,总结本节课的 知识点 引导学生思考、 交流、梳理所学知识, “勤于思考,收获快 乐”,使学生的积极 情感体验得到升华。

高二新课程数学《2.1.1合情推理》导学案(新人教A版)选修2-2

§2.1.1 合情推理(1) 学习目标 1. 结合已学过的数学实例,了解归纳推理的含义; 2. 能利用归纳进行简单的推理,体会并认识归纳推理在数学发现中的作用. ~ P30,找出疑惑之处) 28 在日常生活中我们常常遇到这样的现象: (1)看到天空乌云密布,燕子低飞,蚂蚁搬家,推断天要下雨; (2)八月十五云遮月,来年正月十五雪打灯. 以上例子可以得出推理是 的思维过程. 二、新课导学 学习探究 探究任务:归纳推理 问题1:哥德巴赫猜想:观察6=3+3, 8=5+3, 10=5+5, 12=5+7, 12=7+7, 16=13+3, 18=11+7, 20=13+7, ……, 50=13+37, ……, 100=3+97,猜想: . 问题2:由铜、铁、铝、金等金属能导电,归纳出 . 新知:归纳推理就是由某些事物的,推出该类事物的 的推理,或者由 的推理.简言之,归纳推理是由 的推理. 典型例题 例1 观察下列等式:1+3=4=, 1+3+5=9=, 1+3+5+7=16=, 1+3+5+7+9=25=, …… 你能猜想到一个怎样的结论? 变式:观察下列等式:1=1 1+8=9, 1+8+27=36, 1+8+27+64=100,

…… 你能猜想到一个怎样的结论? 例2已知数列的第一项,且,试归纳出这个数列的通项公式. 变式:在数列{}中,(),试猜想这个数列的通项公式. 动手试试 练1. 应用归纳推理猜测的结果.

练2. 在数列{}中,,(),试猜想这个数列的通项公式. 三、总结提升 学习小结 1.归纳推理的定义. 2. 归纳推理的一般步骤:①通过观察个别情况发现某些相同的性质;②从已知的相同性质中推出一个明确表述的一般性命题(猜想). 知识拓展 1.费马猜想:法国业余数学家之王—费马(1601-1665)在1640年通过对,,,,的观察,发现其结果都是素数,提出猜想:对所有的自然数,任何形如的数都是素数. 后来瑞士数学家欧拉发现不是素数,推翻费马猜想. 2.四色猜想:1852年,毕业于英国伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色.”,四色猜想成了世界数学界关注的问题.1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用1200个小时,作了100亿逻辑判断,完成证明. 学习评价 当堂检测(时量:5分钟满分:10分)计分: 1.下列关于归纳推理的说法错误的是(). A.归纳推理是由一般到一般的一种推理过程 B.归纳推理是一种由特殊到一般的推理过程 C.归纳推理得出的结论具有或然性,不一定正确 D.归纳推理具有由具体到抽象的认识功能 2.若,下列说法中正确的是(). A.可以为偶数 B.一定为奇数 C.一定为质数 D.必为合数 3.已知,猜想的表达式为(). A. B. C. D. 4.,经计算得猜测当时,有__________________________. 5.从中得出的一般性结论是_____________ . 课后作业 1. 对于任意正整数n,猜想与的大小关系.

高中数学选修2-2推理与证明-直接证明与间接证明

2.2.1综合法和分析法 [学习目标] 1.了解直接证明的两种基本方法:分析法与综合法.2.了解分析法和综合法的思维过程和特点.3.会用分析法、综合法证明实际问题. 知识点一综合法 1.定义 一般地,利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法. 2.基本模式 综合法的证明过程如下: 已知条件?…?…?结论 即用P表示已知条件、已有的定义、公理、定理等,Q表示所要证明的结论,则综合法用框图可表示为: P?Q1→Q1?Q2→Q2?Q3→…→Q n?Q 3.综合法的证明格式 因为…,所以…,所以…,…,所以…成立. 思考综合法的推理过程是合情推理还是演绎推理? 答案演绎推理. 知识点二分析法 1.分析法 一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明方法叫做分析法. 2.基本模式

用Q 表示要证明的结论,P 表示条件,则分析法可用框图表示为: Q ?P 1→P 1?P 2→P 2?P 3→…→得到一个明显成立的条件 3.分析法的证明格式 要证…,只需证…,只需证…,…,因为…成立,所以…成立. 思考 分析法与综合法有哪些异同点? 答案 相同点:两者都是直接利用原命题的条件(或结论),逐步推得命题成立的证明方法——直接证明法.不同点:证法1,由因导果,使用综合法;证法2,执果索因,使用分析法. 题型一 综合法的应用 例1 已知a ,b 是正数,且a +b =1,求证:1a +1 b ≥4. 证明 方法一 ∵a ,b 是正数,且a +b =1, ∴a +b ≥2ab ,∴ab ≤12,∴1a +1b =a +b ab =1 ab ≥4. 方法二 ∵a ,b 是正数,∴a +b ≥2ab >0, 1a +1 b ≥2 1 ab >0, ∴(a +b )???? 1a +1b ≥4. 又a +b =1,∴1a +1b ≥4. 方法三 1a +1b =a +b a +a +b b =1+b a +a b +1≥2+2 b a ·a b =4.当且仅当a =b 时,取“=”号. 反思与感悟 利用综合法证明问题的步骤: (1)分析条件选择方向:仔细分析题目的已知条件(包括隐含条件),分析已知与结论之间的联系与区别,选择相关的公理、定理、公式、结论,确定恰当的解题方法. (2)转化条件组织过程:把题目的已知条件,转化成解题所需要的语言,主要是文字、符号、图形三种语言之间的转化,组织过程时要有严密的逻辑,简洁的语言,清晰的思路. (3)适当调整回顾反思:解题后回顾解题过程,可对部分步骤进行调整,并对一些语言进行适当的修饰,反思总结优化解法. 跟踪训练1 已知a ,b ,c ∈R ,且它们互不相等,求证a 4+b 4+c 4>a 2b 2+b 2c 2+c 2a 2. 证明 ∵a 4+b 4≥2a 2b 2,b 4+c 4≥2b 2c 2,a 4+c 4≥2a 2c 2,∴2(a 4+b 4+c 4)≥2(a 2b 2+b 2c 2+c 2a 2), 即a 4+b 4+c 4≥a 2b 2+b 2c 2+c 2a 2. 又∵a ,b ,c 互不相等. ∴a 4+b 4+c 4>a 2b 2+b 2c 2+c 2a 2.

2018届一轮复习北师大版第六章不等式推理与证明第五节合情推理与演绎推理教案

第五节合情推理与演绎推理 ☆☆☆2017考纲考题考情☆☆☆ 自|主|排|查 1.合情推理 (1)归纳推理 ①定义:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理。

②特点:是由部分到整体、由个别到一般的推理。 (2)类比推理 ①定义:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理。 ②特点:是由特殊到特殊的推理。 2.演绎推理 (1)演绎推理 从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理。简言之,演绎推理是由一般到特殊的推理。 (2)“三段论”是演绎推理的一般模式 ①大前提——已知的一般原理。 ②小前提——所研究的特殊情况。 ③结论——根据一般原理,对特殊情况做出的判断。 微点提醒 1.合情推理包括归纳推理和类比推理,其结论是猜想,不一定正确,若要确定其正确性,则需要证明。 2.在进行类比推理时,要从本质上去类比,只从一点表面现象去类比,就会犯机械类比的错误。

3.应用三段论解决问题时,要明确什么是大前提、小前提,如果前提与推理形式是正确的,结论必定是正确的。若大前提或小前提错误,尽管推理形式是正确的,但所得结论是错误的。 小|题|快|练 一、走进教材 1.(选修2-2P77练习T1改编)已知数列{an}中,a1=1,n≥2时,an=an -1+2n-1,依次计算a2,a3,a4后,猜想an的表达式是( ) A.an=3n-1 B.an=4n-3 C.an=n2 D.an=3n-1 【解析】a1=1,a2=4,a3=9,a4=16,猜想an=n2。故选C。 【答案】 C 2.(选修2-2P84A组T5改编)在等差数列{an}中,若a10=0,则有a1+a2+…+an=a1+a2+…+a19-n(n<19,且n∈N*)成立。类比上述性质,在等比数列{bn}中,若b9=1,则存在的等式为________。 【解析】根据类比推理的特点可知:等比数列和等差数列类比,在等差数列中是和,在等比数列中是积,故有b1b2…bn=b1b2…b17-n(n<17,且n∈N*)。 【答案】b1b2…bn=b1b2…b17-n(n<17,且n∈N*) 二、双基查验 1.数列2,5,11,20,x,47,…中的x等于( )

下册《命题定理证明》教学设计

人教版义务教育课程标准教科书七年级下册 532命题、定理、证明教学设计 责任学校小街中学________ 责任教师_______ 段永杰_________ 一、教材分析 1、地位作用:对于命题的相关知识,教材是分散安排的,本课时主要是命题的概念、命题的构成、真假命题的判断、什么是定理、初步感知证明过程,大部分 内容是要求学生有一个初步的了解,不必探究,主要培养学生不同几何语言的转化,是后续学习的基础.总之,在这一部分,学生对命题的概念、命题的构成、命题的真假、定理、证明有一个初步的了解,就达到了教学要求. 2、教学目标: 1、知识技能:①理解命题的概念及构成;②会判断所给命题的真假;③初步感知什么是证明. 2、数学思考:①通过对命题及其真假的判断,提高学生的理性判断能力;②通 过对证明的学习,培养学生严谨的数学思维. 3、解决问题:①初步体会命题在数学中的应用、用证明论证自己的判断;②为今后的学习打好基础,发展应用意识? 4、情感态度:通过对命题、定理、证明的学习,让学生学会从理性的角度判断一件事情的真假,激发学生的好奇心和求知欲,并在运用数学知识解决问题的活动中获取成功的体验,建立学习的自信心? 3、教学重、难点 教学重点:①命题的概念、区分命题的题设和结论;②判断命题的真假;③理解证明过程要步步有据? 教学难点:区分命题的题设和结论、理解证明过程

突破难点的方法:采用日常话语引导、多做练习突破 二、教学准备:多媒体课件、导学案、三角板 三、教学过程

(1)在同一平面内,如果一条直线垂直于两条平行线中的一条,那么也垂直于另一条; (2)如果两个角互补,那么它们是邻补角;思考感悟 仔细判断 仔细判断, 认识定理 独立思考 动手尝试 为今后性质的准 确应用奠定基 础. 动手操作, 加深理解 提炼方法

选修2-2推理与证明单元测试题(好经典)

《推理与证明》单元测试题 考试时间120分钟 总分150分 一.选择题(共50分) 1.下面几种推理过程是演绎推理的是 ( ) A .在数列{a n }中,a 1=1,a n =12(a n -1+1 an -1 )(n ≥2),由此归纳出{a n }的通项公式 B .某校高三(1)班有55人,高三(2)班有54人,高三(3)班有52人,由此得出高三所有班人数超过50人 C .由平面三角形的性质,推测空间四面体的性质 D .两条直线平行,同旁内角互补,由此若∠A ,∠B 是两条平行直线被第三条直线所截得的同旁内角,则∠A +∠B =180° 2.(2012·江西高考)观察下列事实:|x |+|y |=1的不同整数解(x ,y )的个数为4,|x |+|y | =2的不同整数解(x ,y )的个数为8,|x |+|y |=3的不同整数解(x ,y )的个数为12,…,则|x |+|y |=20的不同整数解(x ,y )的个数为( ) A .76 B .80 C .86 D .92 3. 观察下列各式:72=49,73=343,74=2401,…,则72012的末两位数字为( ) A .01 B .43 C .07 D .49 4. 以下不等式(其中..0a b >>)正确的个数是( ) 1> ② ③lg 2>A .0 B .1 C .2 D .3 5.如图,椭圆的中心在坐标原点, F 为左焦点,当AB FB ⊥时,有 ()()() 2 2 2 2 2 c b b a c a +++=+ ,从而得其离心率为 ,此类椭圆称为“黄金椭圆”,类比“黄金椭圆”,可推出“黄金双曲线”的离心率为( ) A . 12 B .12+ C 6.如图,在一次珠宝展览会上,某商家展出一套珠宝首饰,第一件首饰是1颗珠宝, 第二件首饰 是由6颗珠宝构成的正六边形, 第三件首饰是由15颗珠宝构成的正六边形, 第四件首饰是由28颗珠宝构成的正六边形,以后每件首饰都在前一件上,按照这种规律增加一定数量的珠宝,依此推断第8件首饰上应有( )颗珠宝。 第2件 第3件 第1件

人教A版数学高二选修1-2单元测试第二章推理与证明2

阶段质量检测(二) (时间:120分钟满分:150分) 一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.有一段“三段论”,推理是这样的:对于可导函数f(x),如果f′(x0)=0,那么x=x0是函数f(x)的极值点.因为f(x)=x3在x=0处的导数值f′(0)=0,所以x=0是函数f(x)=x3的极值点.以上推理中() A.小前提错误B.大前提错误 C.推理形式错误D.结论正确 2.观察按下列顺序排列的等式:9×0+1=1,9×1+2=11,9×2+3=21,9×3+4=31,…,猜想第n(n∈N*)个等式应为() A.9(n+1)+n=10n+9 B.9(n-1)+n=10n-9 C.9n+(n-1)=10n-1 D.9(n-1)+(n-1)=10n-10 3.观察下面图形的规律,在其右下角的空格内画上合适的图形为() A.■B.△C.□D.○ 4.由“正三角形的内切圆切于三边的中点”,可类比猜想出正四面体的内切球切于四个侧面() A.各正三角形内任一点 B.各正三角形的某高线上的点 C.各正三角形的中心 D.各正三角形外的某点 5.观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10=() A.28 B.76 C.123 D.199 6.已知c>1,a=c+1-c,b=c-c-1,则正确的结论是() A.a>b B.a

7.用火柴棒摆“金鱼”,如图所示: 按照上面的规律,第n 个“金鱼”图形需要火柴棒的根数为( ) A .6n -2 B .8n -2 C .6n +2 D .8n +2 8.已知a n =????13n ,把数列{a n }的各项排成如下的三角形: 记A (s ,t )表示第s 行的第t 个数,则A (11,12)等于( ) A.????1367 B.????1368 C.????13111 D.??? ?13112 9.已知f (x +y )=f (x )+f (y ),且f (1)=2,则f (1)+f (2)+…+f (n )不能等于( ) A .f (1)+2f (1)+…+nf (1) B .f ?? ?? n (n +1)2 C.n (n +1)2 D.n (n +1)2 f (1) 10.对于奇数列1,3,5,7,9,…,现在进行如下分组:第一组有1个数{1},第二组有2个数{3,5},第三组有3个数{7,9,11},…,依此类推,则每组内奇数之和S n 与其组的编号数n 的关系是( ) A .S n =n 2 B .S n =n 3 C .S n =n 4 D .S n =n (n +1) 11.在等差数列{a n }中,若a n >0,公差d >0,则有a 4a 6>a 3a 7,类比上述性质,在等比数列{b n }中,若b n >0,公比q >1,则b 4,b 5,b 7,b 8的一个不等关系是( ) A .b 4+b 8>b 5+b 7 B .b 4+b 8<b 5+b 7 C .b 4+b 7>b 5+b 8 D .b 4+b 7<b 5+b 8 12.数列{a n }满足a 1=12,a n +1=1-1 a n ,则a 2 016等于( ) A.1 2 B .-1 C .2 D .3 二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上) 13.已知x ,y ∈R ,且x +y >2,则x ,y 中至少有一个大于1,在用反证法证明时,假

选修2-2 第二章 推理与证明(B)

实用文档 选修2-2 第二章 推理与证明(B) 一、选择题 1、某人在上楼梯时,一步上一个台阶或两个台阶,设他从平地上到第一级台阶时有f (1) 种走法,从平地上到第二级台阶时有f (2)种走法,……则他从平地上到第n (n ≥3)级台阶 时的走法f (n )等于( ) A .f (n -1)+1 B .f (n -2)+2 C .f (n -2)+1 D .f (n -1)+f (n -2) 2、已知扇形的弧长为l ,半径为r ,类比三角形的面积公式:S =底×高2 ,可推知扇形面 积公式S 扇等于( ) A.r 22 B.l 22 C.lr 2 D .不可类比 3、设凸n 边形的内角和为f (n ),则f (n +1)-f (n )等于( ) A .n π B.(n -2)π

C.π D.2π 4、“∵四边形ABCD是矩形,∴四边形ABCD的对角线相等.”以上推理的大前提是 ( ) A.正方形都是对角线相等的四边形 B.矩形都是对角线相等的四边形 C.等腰梯形都是对角线相等的四边形 D.矩形都是对边平行且相等的四边形 5、设f(x)是定义在正整数集上的函数,且f(x)满足:“当f(k)≥k2成立时,总可推出 f(k+1)≥(k+1)2成立”,那么,下列命题总成立的是( ) A.若f(3)≥9成立,则当k≥1时,均有f(k)≥k2成立 B.若f(5)≥25成立,则当k≤5时,均有f(k)≥k2成立 C.若f(7)<49成立,则当k≥8时,均有f(k)

实用文档 6、已知p =a +1 a -2 (a >2),q =2-a 2+4a -2 (a >2),则( ) A .p >q B .p 0,则1a +1b +1c 的值( ) A .一定是正数 B .一定是负数 C .可能是零 D .正、负不能确定 8、如果x >0,y >0,x +y +xy =2,则x +y 的最小值是( ) A.32 B .23-2 C .1+ 3 D .2-3 9、设f (n )=1n +1+1n +2+…+1 2n (n ∈N *),那么f (n +1)-f (n )等于( ) A.12n +1 B.1 2n +2

高二数学选择进修2-2第二章推理与证明

高二数学选修2-2第二章推理与证明 1、 下列表述正确的是( ). ①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③演绎推理是由一般到特殊的推理;④类比推理是由特殊到一般的推理;⑤类比推理是由特殊到特殊的推理. A .①②③; B .②③④; C .②④⑤; D .①③⑤. 2、下面使用类比推理正确的是 ( ). A.“若33a b ?=?,则a b =”类推出“若00a b ?=?,则a b =” B.“若()a b c ac bc +=+”类推出“()a b c ac bc ?=?” C.“若()a b c ac bc +=+” 类推出“ a b a b c c c +=+ (c ≠0) ” D.“n n a a b =n (b )” 类推出“n n a a b +=+n (b )” 3、 有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线 b ?/平面α,直线a ≠ ?平面α,直线b ∥平面α,则直线b ∥直线a ”的结论显然是错误的, 这是因为 ( ) A.大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误 4、用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,反设正确的是( )。 (A)假设三内角都不大于60度; (B) 假设三内角都大于60度; (C) 假设三内角至多有一个大于60度; (D) 假设三内角至多有两个大于60度。 5、在十进制中01232004410010010210=?+?+?+?,那么在5进制中数码2004折合成十进制为 ( ) A.29 B. 254 C. 602 D. 2004 6、利用数学归纳法证明“1+a +a 2+…+a n +1=a a n --+112 , (a ≠1,n ∈N)”时,在验证n=1 成立时,左边应该是 ( ) (A)1 (B)1+a (C)1+a +a 2 (D)1+a +a 2+a 3 7、某个命题与正整数n 有关,如果当)(+∈=N k k n 时命题成立,那么可推得当1+=k n 时

高中数学北师大版选修1-2《推理与证明复习一》试卷讲评课教案

试卷讲评课教案

精美句子 1、善思则能“从无字句处读书”。读沙漠,读出了它坦荡豪放的胸怀;读太阳,读出了它普照万物的无私;读春雨,读出了它润物无声的柔情。读大海,读出了它气势磅礴的豪情。读石灰,读出了它粉身碎骨不变色的清白。 2、幸福幸福是“临行密密缝,意恐迟迟归”的牵挂;幸福是“春种一粒粟,秋收千颗子”的收获. 幸福是“采菊东篱下,悠然见南山”的闲适;幸福是“奇闻共欣赏,疑义相与析”的愉悦。幸福是“随风潜入夜,润物细无声”的奉献;幸福是“夜来风雨声,花落知多少”的恬淡。幸福是“零落成泥碾作尘,只有香如故”的圣洁。幸福是“壮志饥餐胡虏肉,笑谈渴饮匈奴血”的豪壮。幸福是“先天下之忧而忧,后天下之乐而乐”的胸怀。幸福是“人生自古谁无死,留取丹心照汗青”的气节。 3、大自然的语言丰富多彩:从秋叶的飘零中,我们读出了季节的变换;从归雁的行列中,我读出了集体的力量;从冰雪的消融中,我们读出了春天的脚步;从穿石的滴水中,我们读出了坚持的可贵;从蜂蜜的浓香中,我们读出了勤劳的甜美。 4、成功与失败种子,如果害怕埋没,那它永远不能发芽。鲜花,如果害怕凋谢,那它永远不能开放。矿石,如果害怕焚烧(熔炉),那它永远不能成钢(炼成金子)。蜡烛,如果害怕熄灭(燃烧),那它永远不能发光。航船,如果害怕风浪,那它永远不能到达彼岸。 5、墙角的花,当你孤芳自赏时,天地便小了。井底的蛙,当你自我欢唱时,视野便窄了。笼中的鸟,当你安于供养时,自由便没了。山中的石!当你背靠群峰时,意志就坚了。水中的萍!当你随波逐流后,根基就没了。空中的鸟!当你展翅蓝天中,宇宙就大了。空中的雁!当你离开队伍时,危险就大了。地下的煤!你燃烧自己后,贡献就大了 6、朋友是什么?

合情推理与逻辑推理

合情推理 合情推理是波利亚的"启发法"(heuristic, 即"有助于发现的")中的一个推理模式.通过对问题解决过程特别是对已有的成功实践的深入研究,波利亚发现,可以机械地用来解决一切问题的"万能方法"是不存在的;在问题解决过程中,人们总是针对具体情况,不断地向自己提出有启发性的问句,提示,以启动与推进思维的小船。合情推理的模式(归纳和类比)还须予以解释,它是指观察,归纳,类比,实验,联想,猜测,矫正与调控等方法. 目录 主要特征 方法模式 举例 意义 乔治·波利亚 著作 简介 合情推理是波利亚的"启发法"(heuristic, 即"有助于发现的")中的一个推理模式.波利亚多年深入研究数学问题解决过程(problem solving一般被误译为"解题",这里把它译为"问题解决")得出的理论成果.波利亚对启发法解释道:"现代启发法力求了解问题解决过程,特别是问题解决过程中典型有用的智力活动.……在这种研究中,我们不应忽视任何一类问题,并且应当找出处理各类问题所共有的特征来;我们的目的应当是找出一般特征而与主题无关."可见波利亚的启发法讲的是问题解决在数学方法论上的共同点.启发法源于他对问题解决的研究,问题解决就是"在没有现成的解题方法时寻找一条解题途径,就是从困难中找到出路,就是寻求一条绕过障碍的道路,由适当的方法达到所要去的而不能立即达到的目的".这说明波利亚早在50年前就已经把问题和问题解决的主要特征搞清楚了. 主要特征 通过对问题解决过程特别是对已有的成功实践的深入研究,波利亚发现,可以机械地用来解决一切问题的"万能方法"是不存在的;在问题解决过程中,人们总是针对具体情况,不断地向自己提出有启发性的问句,提示,以启动与推进思维的小船.因此,他试图总结出一般的方法或模式,这些方法和模式在以后的问题解决活动中可起到启发和指导的作用.波利亚曾著书

高二数学推理与证明

高二数学推理与证明 班级: 学号: 姓名: 时间:40分钟 总分:100分 一、选择题(6*7=42分) 1.若三角形能剖分为两个与自身相似的三角形,那么这个三角形的形状为( ) A .锐角三角形 B.直角三角形 C.钝角三角形 D.不能确定 2.有这样一段演绎推理是这样的“有些有理数是真分数,整数是有理数,则整数是真分数”结论显然是错误的,是因为 ( ) A.大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误 3.在下列表格中,每格填上一个数字后,使每一行 成等差数列,每一列成等比数列,则a+b+c 的值是( ) A. 1 B. 2 C. 3 D. 4 4.在十进制中 ,那么在5进制中2004折合成十进制为 ( ) A.29 B. 254 C. 602 D. 2004 5.设a c c b b a c b a 1 ,1 ,1 ),0,(,,+++-∞∈则 A 都不大于-2 B 都不小于-2 C 至少有一个不大于-2 D 至少有一个不小于-2 6. 一同学在电脑中打出如下若干个圈: ○●○○●○○○●○○○○●○○○○○●… 若将此若干个圈依此规律继续下去,得到一系列的圈,那么在前120个圈中的●有( )个 (A)12 (B) 13 (C)14 (D)15 二.填空题(4*7=28) 7. 在日常活动和科学推理中,常用的两种推理是 和 在直接证明法中,解决数学问题常用的思维方式是 和 8.观察下列数:1,3,2,6,5,15,14,x,y,z,122,…中x,y,z 的值依次是 9. 由①正方形的对角线相等;②平行四边形的对角线相等;③正方形是平行四边形,根据 “三段论”推理出一个结论,则这个结论是 10已知:23150 sin 90sin 30sin 222=++ 23 125sin 65sin 5sin 222=++ 通过观察上述两等式的规律,请你写出一般性的命题: _____________________________________________________= 23 三.解答题(3*10=30分) 11.设 1110,018a b a b a b ab ??+=++≥,且,求证:则 01232004410010010210 =?+?+?+?

推理与证明教学设计范本(高中数学)

教学设计说明 一、本节课数学内容的本质、地位和作用的分析 推理是根据一个或几个已知的事实(或假设)来确定一个新的判断的思维方式. 数学、哲学和心理学等学科对其都有研究,它更是人类思维的基本形式. 人们在日常活动和科学研究中经常使用的推理有合情推理和演绎推理. 合情推理是人 类发现新知的一个重要途径. 它既有猜测和发现结论的作用,又有探索和启发思路的作用. 本节课所学习的归纳推理是合情推理的一种. 归纳推理是由部分到整体、由特殊到一般的思维过程,通过归纳推理可以发现新知识,获得新结论. 推理与证明的内容属于数学思维方法的范畴,贯穿数学教学的始终,遍布数学知识的每个领域. 旧教材将其渗透在具体的数学内容中分散处理,如:综合法和分析法放在“不等式”一章,“反证法”作为“简易逻辑”的一部分,“合情推理”更是很少涉及. 新课程将其统一纳入教材,集中讲授,我认为这对学生系统掌握其方法是很有必要的. 尤其是“合情推理”这一新加入内容,有助于学生从单纯的解答现成的问题,扩展到能够独立的提出一些问题. 很多大数学家(比如拉格朗日,波利亚)都强调合情推理是他们发现新问题的重要手段,波利亚更是在其名著《数学与猜想》中拿出很多章节对合情推理的模式进行一一总结. 如果学生掌握了这些方法,并能够在今后有意识的使用它们,不仅能培养其言之有据,论证有理的思维习惯,而且对开发学生创新性思维,为社会培养创新型人才都有很强的现实意义. 二、教学目标分析 新课程中,合情推理分为归纳推理和类比推理两讲,本节课是第一部分,对它是初步了解. 所以我把教学重点放在对归纳推理的概念理解和应用上.而提高学生从特 殊到一般的归纳能力则是本节课的教学难点,教学的关键是引导学生自己探索、观察、发现、归纳. 归纳推理作为发现新知的一种途径,有时探索的过程是漫长而曲折的,课堂上设置了有一定难度的“汉诺塔问题”,正是希望学生通过一番“辛苦”的努力才能得到结论. 这样的安排有利于提高学生的数学素养和锻炼学生的意志品质. 根据以上想法,结合我校学生的实际情况,我制定了如下教学目标: (1)了解合情推理的含义;理解归纳推理的概念,能利用归纳的方法进行一些简单

《合情推理与演绎推理》教案完美版

《合情推理与演绎推理》教案 合情推理 教学要求:结合已学过的数学实例,了解归纳推理的含义,能利用归纳进行简单的推理,体 会并认识归纳推理在数学发现中的作用? 教学重点:能利用归纳进行简单的推理? 教学难点:用归纳进行推理,作出猜想. 教学过程: 一、新课引入: 1. 哥德巴赫猜想:观察4=2+2, 6=3+3, 8=5+3, 10=5+5, 12=5+7, 12=7+7, 16=13+3, 18=11+7, 20=13+7,……,50=13+37,……,100=3+97,猜测:任一偶数(除去2,它本身是一素数) 可以表示成两个素数之和.1742年写信提出,欧拉及以后的数学家无人能解,成为数学史上 举世闻名的猜想.1973 年,我国数学家陈景润,证明了充分大的偶数可表示为一个素数与至多两个素数乘积之和,数学上把它称为“1+2” . 2. 费马猜想:法国业余数学家之王一费马(1601-1665 )在1640年通过对F。22 1 3 , 1 2 3 4 F! 22 1 5 , F2 22 1 17 , F3 22 1 257 , F4 22 1 65 537 的观察,发现其结果 n 都是素数,于是提出猜想:对所有的自然数n,任何形如F n 221的数都是素数.后来瑞士 5 数学家欧拉,发现F5 221 4 294 967 297 641 6 700 4 1 7不是素数,推翻费马猜想. 3. 四色猜想:1852年,毕业于英国伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着 色工作时,发现了一种有趣的现象:“每幅地图都可以用四种颜色着色,使得有共同边界的 国家着上不同的颜色.”,四色猜想成了世界数学界关注的问题.1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用1200个小时,作了100亿逻辑判 断,完成证明. 二、讲授新课: 1. 教学概念: ①概念:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的 推理,或者由个别事实概括出一般结论的推理,称为归纳推理.简言之,归纳推理是由部分 到整体、由个别到一般的推理. ②归纳练习:(i)由铜、铁、铝、金、银能导电,能归纳出什么结论? (ii )由直角三角形、等腰三角形、等边三角形内角和180度,能归纳出什么结论? (iii )观察等式:1 3 4 22, 1 3 5 9 32, 1 3 5 7 9 16 42,能得出怎样的结 论? ③讨论:(i)统计学中,从总体中抽取样本,然后用样本估计总体,是否属归纳推理? (ii )归纳推理有何作用?(发现新事实,获得新结论,是做出科学发现的重要手段) (iii )归纳推理的结果是否正确?(不一定) 2. 教学例题: a ①出示例题:已知数列a n的第1项31 2,且a n 1 — (n 1,2,L ),试归纳出通项公式. 1 a n (分析思路:试值n=1, 2, 3, 4 T猜想a n宀如何证明:将递推公式变形,再构造新数列) ②思考:证得某命题在n= n 0时成立;又假设在n= k时命题成立,再证明n= k + 1时命题 也成立.由这两步,可以归纳出什么结论?(目的:渗透数学归纳法原理,即基础、递推关

相关文档
最新文档