实验一 多自由度系统各阶固有频率及其主振型的测定试验

实验一 多自由度系统各阶固有频率及其主振型的测定试验
实验一 多自由度系统各阶固有频率及其主振型的测定试验

实验一多自由度系统各阶固有频率及其主振型的测定试验

一、实验目的

实际工程中的许多振动都可以简化抽象为由两个及两个以上的独立坐标来描述的振动模型。这就是多自由度系统振动问题。本实验对两个和三个自由度系统振动问题进行测试分析,主要目的:

1、学会用共振法测定多自由度系统各阶固有频率的基本技术与方法。

2、了解和熟悉多自由度系统振动的各阶振型。

3、初步学会分析和处理理论解与实验结果之间误差的方法。

二、基本原理

实验模型是将两个或三个集中质量钢块固定在钢丝绳上,用不同的重量的质量块G来调整钢丝绳的张力(见图1-1(a)所示),固定在钢丝绳上的集中质量钢块在铅垂平面内沿垂直方向运动时,钢丝绳的张力相当于一个弹簧,忽略钢丝绳的质量,则整个系统就可以简化为多自由度系统振动的力学模型(如图1-1(b)所示)。

( b)

图1-1 多自由度系统振动及其简化力学模型

振动系统有多少个自由度,从理论上讲就应当有同样多的固有频率。如果振动系统受到简谐力的激励,系统发生振动,则振动响应是其主振型的叠加。当激振力的频率与系统的某一阶固有频率相同时,系统就发生共振响应,这时候系统的振动响应就是这阶固有频率的主振型,而其它振型的影响可忽略不计。因此,可以利用这种共振现象来判定多自由度系统的固有频率。在测定系统振动的固有频率时,从低频到高频连续调整激振频率,当系统出现某阶振型且振幅最大时,此时的激振频率即为该阶固有频率,这样依此可找到系统的各阶固有频率。

n个自由度系统振动微分方程为

(1-1)

+

+

F

K X

M =

X

C

X

式中:M为质量矩阵、C为阻尼矩阵、K为刚度矩阵、X为位移列向量、F为激振力列向量。

为了讨论n个自由度系统振动的固有频率和主振型,不考虑阻尼和外力,则其振动微分方程为

(1-2)

M =

+

X

K X

根据微分方程组和模态分析理论,假定系统的自由振动响应为

),,2,1()

sin(x i n i t i =+=θωφ (1-3)

将(1-3)式代入(1-2)式得

[]{}{}0 K M =+-φλ (1-4)

式中:λ=2ω。(1-4)式是关于列向量{}φ的齐次代数方程,由此可得系统频率方程

0K M =+-λ (1-5)

上式即为系统的特征方程,其根称为特征值,它是无阻尼自由振动固有园频率的平方,将特征值i λ代入(1-4)式得相应的特征向量{}i φ

[]{}{} 0 K M =+-i i φλ (1-6)

{}{}

)

,,2,1( M K n i i i i ==φλφ (1-7)

特征向量在振动分析中就是系统的固有振型或主振型。假定(1-5)式没有重根,存在n 个特征值,相应有n 个特征向量,这n 个特征向量可组成一个矩阵,该矩阵称为振型矩阵。即

Φ=[]n φφφφ,, ,21 (1-8)

若系统为图2-1所示的两自由度系统,则

???

?

??=21

m 00m M (1-9) ??

?

?

??=2221

1211

k k k k K (1-10) ?

??

???=21x x X (1-11)

根据(1-5)式,可得系统频率行列式

0 m k k k m k

2

2221

121

11=--λλ

展开上式即得频率方程

0)k k k k ()k m k m (m m 211222112211122

21=-++-λλ (1-12)

解之得系统的固有园频率

2121122

2221112

11

222112

1,22,1m m k

k m k m k 41m m 2m k m k +?

??

? ??-+=

=

ωλ (1-13) 由上式可知,λ即2

ω的两个根都是实数,而且都是正数。其中第一个根1ω较小,称

为第一固有频率;第二个根2ω较大,称为第二固有频率。

取m 1=m 2=m,钢丝绳的张力为T ,则系统的刚度矩阵

K =

6 3

36 L T ??

?

???-- (1-14) 从而可以求得系统的固有频率: 一阶固有园频率和频率

mL 3T 2

1=

ω mL

T 21.7321π

=

f (1-15)

二阶固有园频率和频率

mL

9T 2

2=

ω mL

T 232π

=

f (1-16)

系统的主振型i φ(i=1,2) ???

???=111φ ?

??

??

?-=112φ 各阶主振型见图1-2所示。 一阶主振型 二阶主振型 对于三自由度系统振动若取m 1= 图1-2 两自由度系统振动的主振型 m 2=m 3=m, A 、B 两点距离为L ,三个

质量钢块之间的距离为L / 4,则可得系统相应的质量矩阵、刚度矩阵和位移列向量

?????

?????=m 0

0m 0

00m

M (1-17) K =????

?

?????---- 8 4

48 4

0 48

L T (1-18)

??

?

???????=321x x x X (1-19)

将(1-17)和(1-18)式代入(1-5)式,得系统的频率方程,由此可求得三自由度系统振动的固有频率:

一阶固有园频率和频率

mL

T 343

.22

1=ω mL T 21.5311π=

f (1-20)

二阶固有园频率和频率

mL

T 8

2

2=ω mL

T 22.8282π

=

f (1-21)

三阶固有园频率和频率

mL

T 656

.132

3=ω mL

T 23.6953π

=

f (1-22)

系统的主振型i φ(i=1,2,3)

??????????=1211φ ??????????-=1012φ ??

?

???????-=1213φ

各阶主振型见图1-3所示。

一阶主振型 二阶主振型 三阶主振型

图1-3 三自由度系统振动的主振型 多自由度系统在任意初始条件下的振动响应是其主振型的叠加,主振型与固有频率一样只取决于系统本身的物理性质,而与初始条件无关。

三、实验仪器和设备

(1)磁力表架一只;

(2)1kg 和2kg 的质量块各一个;

(3)SJF-3型激振信号源一台;

(4)JZF-1型磁电式非接触激振器一个;

(5)带有两个固定质量钢块的钢丝绳和带有三个固定质量钢块的钢丝绳各一条; (6)机械振动实验台架基础一个。

四、数据处理

(一)、根据系统的已知参数计算系统的固有频率和相应的振型。

钢丝绳上固定质量钢块的质量0.0045m m m m 321====kg ,钢丝绳弦长AB = L = 0.625m ,钢丝绳的张力T 1= 9.8N 或T 2= 2×9.8N ,由前述公式可以计算出两个或三个自由度系统的固有频率和相应的振型。

(二)将理论计算结果和多次测出的数据填入下列纪录表(见表1-1)。并且分析和比较系统理论值与实测值的误差。

(三)绘制出所观测到的两个或三个自由度系统的相应振型曲线图。

实验四 控制系统频率特性的测试(实验报告)

实验四 控制系统频率特性的测试 一. 实验目的 认识线性定常系统的频率特性,掌握用频率特性法测试被控过程模型的原理和方法,根据开环系统的对数频率特性,确定系统组成环节的参数。 二.实验装置 (1)微型计算机。 (2)自动控制实验教学系统软件。 三.实验原理及方法 (1)基本概念 一个稳定的线性定常系统,在正弦信号的作用下,输出稳态与输入信号关系如下: 幅频特性 相频特性 (2)实验方法 设有两个正弦信号: 若以)(t x ω为横轴,以)(y t ω为纵轴,而以t ω作为参变量,则随t ω的变化,)(t x ω和 )(y t ω所确定的点的轨迹,将在 x--y 平面上描绘出一条封闭的曲线(通常是一个椭圆)。这 就是所谓“李沙育图形”。 由李沙育图形可求出Xm ,Ym ,φ,

四.实验步骤 (1)根据前面的实验步骤点击实验七、控制系统频率特性测试菜单。 (2)首先确定被测对象模型的传递函数, 预先设置好参数T1、T2、ξ、K (3)设置好各项参数后,开始仿真分析,首先做幅频测试,按所得的频率范围由低到高,及ω由小到大慢慢改变,特别是在转折频率处更应该多取几个点 五.数据处理 (一)第一种处理方法: (1)得表格如下: (2)作图如下: (二)第二种方法: 由实验模型即,由实验设置模型根据理论计算结果绘制bode图,绘制Bode图。

(三)误差分析 两图形的大体趋势一直,从而验证了理论的正确性。在拐点处有一定的差距,在某些点处也存在较大的误差。 分析: (1)在读取数据上存在较大的误差,而使得理论结果和实验结果之间存在。 (2)在数值应选取上太合适,而使得所画出的bode图形之间存在较大的差距。 (3)在实验计算相角和幅值方面本来就存在着近似,从而使得误差存在,而使得两个图形之间有差异 六.思考讨论 (1)是否可以用“李沙育”图形同时测量幅频特性和想频特性 答:可以。在实验过程中一个频率可同时记录2Xm,2Ym,2y0。 (2)讨论用“李沙育图形”测量频率特性的精度,即误差分析(说明误差的主要来源)答:用“李沙育图形”测量频率特性的精度从上面的分析处理上也可以看出是比较高的,但是在实验结果和理论的结果之间还是存在一定的差距,这些误差主要来自于从“李沙育图形”上读取数据的时候存在的误差,也可能是计算机精度方面的误差。 (3)对用频率特性测试系统数学模型方法的评测 答:用这种方法进行此次实验能够让我们更好地了解其过程,原理及方法。但本次实验的数据量很大,需要读取较多坐标,教学软件可以更智能一些,增加一些自动读取坐标的功能。 七.实验总结 通过本次实验,我加深了对线性定常系统的频率特性的认识,掌握了用频率特性法测试被控过程模型的原理和方法。使我把书本知识与实际操作联系起来,加深了对课程内容的理解。在处理数据时,需要进行一定量的计算,这要求我们要细心、耐心,作图时要注意不能用普通坐标系,而是半对数坐标系进行作图。

线性系统的频率特性实验报告(精)

实验四 线性系统的频率特性 一、实验目的: 1. 测量线性系统的幅频特性 2. 复习巩固周期信号的频谱测量 二、实验原理: 我们讨论的确定性输入信号作用下的集总参数线性非时变系统,又简称线性系统。线性系统的基本特性是齐次性与叠加性、时不变性、微分性以及因果性。对线性系统的分析,系统的数学模型的求解,可分为时间域方法和变换域方法。这里主要讨论以频率特性为主要研究对象,通过傅里叶变换以频率为独立变量。 设输入信号)(t v in ,其频谱)(ωj V in ;系统的单位冲激响应)(t h ,系统的频率特性 )(ωj H ;输出信号)(t v out ,其频谱)(ωj V out ,则 时间域中输入与输出的关系 )()()(t h t v t v in out *= 频率域中输入与输出的关系 )()()(ωωωj H j V j V in out ?= 时间域方法和变换域方法并没有本质区别,两种方法都是将输入信号分解为某种基本单元,在这些基本单元的作用下求得系统的响应,然后再叠加。变换域方法可以将时域分析中的微分、积分运算转化为代数运算,将卷积积分变换为乘法;在信号处理时,将输入时间信号用一组变换系数(谱线)来表示,根据信号占有的频带与系统通带间的关系来分析信号传输,判别信号中带有特征性的分量,比时域法简便和直观。 三、实验方法: 1. 输入信号的选取 这里输入信号选取周期矩形信号,并且要求 τ T 不为整数。这是因为周期矩形信号具有丰富的谐波分量,通过观察系统的输入、输出波形的谐波的变化,分析系统滤波特性。周期矩形信号可以分解为直流分量和许多谐波分量;由于测量频率点的数目有限,因此需要排除谐波幅度为零的频率点,周期矩形信号谐波幅度为零的频率点是 Ω KT ,其中1=K 、2、3、… 。 图11.1 输入的周期矩形信号时域波形 t

系统频率特性的测试实验报告

东南大学自动化学院课程名称:自动控制原理实验 实验名称:系统频率特性的测试 姓名:学号: 专业:实验室: 实验时间:2013年11月22日同组人员: 评定成绩:审阅教师:

一、实验目的: (1)明确测量幅频和相频特性曲线的意义; (2)掌握幅频曲线和相频特性曲线的测量方法; (3)利用幅频曲线求出系统的传递函数; 二、实验原理: 在设计控制系统时,首先要建立系统的数学模型,而建立系统的数学模型是控制系统设计的重点和难点。如果系统的各个部分都可以拆开,每个物理参数能独立得到,并能用物理公式来表达,这属机理建模方式,通常教材中用的是机理建模方式。如果系统的各个部分无法拆开或不能测量具体的物理量,不能用准确完整的物理关系式表达,真实系统往往是这样。比如“黑盒”,那只能用二端口网络纯的实验方法来建立系统的数学模型,实验建模有多种方法。此次实验采用开环频率特性测试方法,确定系统传递函数。准确的系统建模是很困难的,要用反复多次,模型还不一定建准。另外,利用系统的频率特性可用来分析和设计控制系统,用Bode 图设计控制系统就是其中一种。 幅频特性就是输出幅度随频率的变化与输入幅度之比,即)()(ωωi o U U A =。测幅频特性时, 改变正弦信号源的频率,测出输入信号的幅值或峰峰值和输输出信号的幅值或峰峰值。 测相频有两种方法: (1)双踪信号比较法:将正弦信号接系统输入端,同时用双踪示波器的Y1和Y2测量系统的输入端和输出端两个正弦波,示波器触发正确的话,可看到两个不同相位的正弦波,测出波形的周期T 和相位差Δt ,则相位差0360??=ΦT t 。这种方法直观,容易理解。就模拟示波 器而言,这种方法用于高频信号测量比较合适。 (2)李沙育图形法:将系统输入端的正弦信号接示波器的X 轴输入,将系统输出端的正弦信号接示波器的Y 轴输入,两个正弦波将合成一个椭圆。通过椭圆的切、割比值,椭圆所在的象限,椭圆轨迹的旋转方向这三个要素来决定相位差。就模拟示波器而言,这种方法用于低频信号测量比较合适。若用数字示波器或虚拟示波器,建议用双踪信号比较法。 利用幅频和相频的实验数据可以作出系统的波Bode 图和Nyquist 图。 三、预习与回答: (1)实验时,如何确定正弦信号的幅值?幅度太大会出现什么问题,幅度过小又会出现什 么问题? 答:根据实验参数,计算正弦信号幅值大致的范围,然后进行调节,具体确定调节幅值时,首先要保证输入波形不失真,同时,要保证在频率较大时输出信号衰减后人能够测量出来。如果幅度过大,波形超出线性变化区域,产生失真;如果波形过小,后续测量值过小,无法精确的测量。

自动控制原理学生实验:二阶开环系统的频率特性曲线

实验三 二阶开环系统的频率特性曲线 一.实验要求 1.研究表征系统稳定程度的相位裕度γ和幅值穿越频率c ω对系统的影响。 2.了解和掌握欠阻尼二阶开环系统中的相位裕度γ和幅值穿越频率c ω的计算。 3.观察和分析欠阻尼二阶开环系统波德图中的相位裕度γ和幅值穿越频率ωc ,与计算值作比对。 二.实验内容及步骤 本实验用于观察和分析二阶开环系统的频率特性曲线。 由于Ⅰ型系统含有一个积分环节,它在开环时响应曲线是发散的,因此欲获得其开环频率特性时,还是需构建成闭环系统,测试其闭环频率特性,然后通过公式换算,获得其开环频率特性。 自然频率:T iT K = n ω 阻尼比:KT Ti 2 1= ξ (3-2-1) 谐振频率: 2 21ξωω-=n r 谐振峰值:2 121lg 20)(ξ ξω-=r L (3-2-2) 计算欠阻尼二阶闭环系统中的幅值穿越频率ωc 、相位裕度γ: 幅值穿越频率: 24241ξξωω-+? =n c (3-2-3) 相位裕度: 4 24122arctan )(180ξξξω?γ++-=+=c (3-2-4) γ值越小,Mp%越大,振荡越厉害;γ值越大,Mp%小,调节时间ts 越长,因此为使 二阶闭环系统不致于振荡太厉害及调节时间太长,一般希望: 30°≤γ≤70° (3-2-5) 本实验所构成的二阶系统符合式(3-2-5)要求。 被测系统模拟电路图的构成如图1所示。 图1 实验电路 本实验将数/模转换器(B2)单元作为信号发生器,自动产生的超低频正弦信号的频率从低到高变化(0.5Hz~16Hz ),OUT2输出施加于被测系统的输入端r (t),然后分别测量被测系统的输出信号的开环对数幅值和相位,数据经相关运算后在虚拟示波器中显示。 实验步骤: (1)将数/模转换器(B2)输出OUT2作为被测系统的输入。 (2)构造模拟电路:安置短路套及测孔联线表同笫3.2.2 节《二阶闭环系统的频率特性曲线测试》。 (3)运行、观察、记录: ① 将数/模转换器(B2)输出OUT2作为被测系统的输入,运行LABACT 程序,在界面 的自动控制菜单下的线性控制系统的频率响应分析-实验项目,选择二阶系统,就会弹出虚拟示波器的界面,点击开始,实验开始后,实验机将自动产生0.5Hz~16H 等多种频率信号,等待将近十分钟,测试结束后,观察闭环对数幅频、相频曲线和幅相曲线。 ② 待实验机把闭环频率特性测试结束后,再在示波器界面左上角的红色‘开环’或‘闭

第1章--单自由度系统的自由振动题解

习 题 1-1一单层房屋结构可简化为题1-1图所示的模型,房顶质量为m ,视为一刚性杆;柱子高h ,视为无质量的弹性杆,其抗弯刚度为EJ 。求该房屋作水平方向振动时的固有频率。 解:由于两根杆都是弹性的,可以看作是两根相同的弹簧的并联。 等效弹簧系数为k 则 mg k δ= 其中δ为两根杆的静形变量,由材料力学易知 δ=3 24mgh EJ = 则 k = 3 24EJ h 设静平衡位置水平向右为正方向,则有 " m x kx =- 所以固有频率3 n 24mh EJ p = 1-2 一均质等直杆,长为 l ,重量为W ,用两根长h 的相同的铅垂线悬挂成水平位置,如题1-2图所示。试写出此杆绕通过重心的铅垂轴作微摆动的振动微分方程,并求出振动固有周期。 解:给杆一个微转角θ 2 a θ=h α 2F cos α=mg 由动量矩定理: a h a mg a mg Fa M ml I M I 822cos sin 12 1 2 2-=-≈?-=== =αθ αθ&& 题1-1图 题1-2图 θ F sin α 2 θα h mg θ

其中 12 cos sin ≈≈θ α α h l ga p h a mg ml n 2 2 2 2 2304121==?+θθ&& g h a l ga h l p T n 3π23π2π22 2=== 1-3求题1-3图中系统的固有频率,悬臂梁端点的刚度分别是k 1和k 3,悬臂梁的质量忽略不计。 解:悬臂梁可看成刚度分别为k 1和k 3的弹簧,因此,k 1与k 2串联,设总刚度为k 1ˊ。k 1ˊ与k 3并联,设总刚度为k 2ˊ。k 2ˊ与k 4串联,设总刚度为k 。即为 21211k k k k k += ',212132k k k k k k ++=',4 241213231421432421k k k k k k k k k k k k k k k k k k k k ++++++= ) (42412132314 214324212k k k k k k k k k k m k k k k k k k k k p ++++++= 1-4求题1-4图所示的阶梯轴一圆盘系统扭转振动的固有频率。其中J 1、J 2和J 3是三个轴段截面的极惯性矩,I 是圆盘的转动惯量,各个轴段的转动惯量不计,材料剪切弹性模量为G 。 解: 111/l GJ k = (1) 222/l GJ k = (2) 333/l GJ k = (3) )/(23323223l J l J J GJ k += (4) ) (/)()4)(3)(2(1/)(2332113221332122312l J l J Il l J J l J J l J J G P I k k P n n +++=+=知 )由( 题1-3图 题1-4图

控制系统频率特性实验

实验名称控制系统的频率特性 实验序号实验时间 学生姓名学号 专业班级年级 指导教师实验成绩 一、实验目的: 研究控制系统的频率特性,及频率的变化对被控系统的影响。 二、实验条件: 1、台式计算机 2、控制理论计算机控制技术实验箱系列 3、仿真软件 三、实验原理和内容: .被测系统的方块图及原理被测系统的方块图及原理: 图—被测系统方块图 系统(或环节)的频率特性(ω)是一个复变量,可以表示成以角频率ω为参数的幅值和相角。 本实验应用频率特性测试仪测量系统或环节的频率特性。 图—所示系统的开环频率特性为: 采用对数幅频特性和相频特性表示,则式(—)表示为: 将频率特性测试仪内信号发生器产生的超低频正弦信号的频率从低到高变化,并施

加于被测系统的输入端[()],然后分别测量相应的反馈信号[()]和误差信号[()]的对数 幅值和相位。频率特性测试仪测试数据经相关器件运算后在显示器中显示。 根据式(—)和式(—)分别计算出各个频率下的开环对数幅值和相位,在半对数坐标纸 上作出实验曲线:开环对数幅频曲线和相频曲线。 根据实验开环对数幅频曲线画出开环对数幅频曲线的渐近线,再根据渐近线的斜率和转角频确定频率特性(或传递函数)。所确定的频率特性(或传递函数)的正确性可以由测量的相频曲线来检验,对最小相位系统而言,实际测量所得的相频曲线必须与由确定的 频率特性(或传递函数)所画出的理论相频曲线在一定程度上相符。如果测量所得的相位 在高频(相对于转角频率)时不等于-°(-)[式中和分别表示传递函数分子和分母 的阶次],那么,频率特性(或传递函数)必定是一个非最小相位系统的频率特性。 .被测系统的模拟电路图被测系统的模拟电路图:见图- 注意:所测点()、()由于反相器的作用,输出均为负值,若要测其正的输出点, 可分别在()、()之后串接一组的比例环节,比例环节的输出即为()、()的 正输出。 四、实验步骤: 在此实验中,利用型系统中的转换单元将提供频率和幅值均可调的基准正弦信 号源,作为被测对象的输入信号,而型系统中测量单元的通道用来观测被测环节的输出(本实验中请使用频率特性分析示波器),选择不同角频率及幅值的正弦信号源作 为对象的输入,可测得相应的环节输出,并在机屏幕上显示,我们可以根据所测得的 数据正确描述对象的幅频和相频特性图。具体实验步骤如下: ()将转换单元的端接到对象的输入端。 ()将测量单元的(必须拨为乘档)接至对象的输出端。 ()将信号发生器单元的和端断开,用号实验导线将端接至单元中的。 (由于在每次测量前,应对对象进行一次回零操作,即为对象锁零控制端,在这里,我们用的口对进行程序控制) ()在机上输入相应的角频率,并输入合适的幅值,按键后,输入的角频率开始闪烁,直至测量完毕时停止,屏幕即显示所测对象的输出及信号源,移动游标,可得 到相应的幅值和相位。 ()如需重新测试,则按“”键,系统会清除当前的测试结果,并等待输入新的角频率,准备开始进行下次测试。 ()根据测量在不同频率和幅值的信号源作用下系统误差()及反馈()的幅值、相 对于信号源的相角差,用户可自行计算并画出闭环系统的开环幅频和相频曲线。 实验数据处理及被测系统的对数幅频曲线和相频曲线 表实验数据(ωπ)

实验三-模拟一阶系统频率特性测试实验

实验三-模拟一阶系统频率特性测试实验

实验三模拟一阶系统频率特性测试实验 一、实验目的 学习频率特性的测试方法,根据所测量的数据,绘制一阶惯性环节的开环伯德图,并求取系统的开环传递函数。 二、实验内容 利用频域法的理论,从一阶系统的开关频率特性分析闭环系统的特性。根据给定的一阶频域测试电路,使用所给的元器件搭建实验电路。利用信号发生器所产生的正弦波作为输入信号,用数字存储示波器观察并测量系统在不同频率输入信号的作用下,输出信号的幅值和相位变化情况。 1.频域分析法原理 频率特性的频域分析方法是一种图解分析方法,它根据系统的开环频率特性去判断闭环系统的性能,能够方便地分析系统中的参数对系统暂态响应的影响,从而找到改善系统性能的途径。 实验表明,对于稳定的线性定常系统,输入正弦信号所产生系统输出的稳态分量仍然是与输入信号同频率的信号,而幅值和相位的变化则是频率ω的函数。

因此,定义正弦信号输入下,系统的稳态输出与系统的输入之比为系统的频率特性,并记为 ) ()()(ωωωj U j Y j G = 式中,)(ωj G —系统的频率特性;)(ωj Y —系统的稳态输出;)(ωj U —系统的正弦输入 对一个线性系统来说,在正弦信号的作用下,系统的稳态输出仍然是一个正弦函数,其频率与输入信号的频率相同,一般情况下,输出的幅值小于输入幅值,输出的相位滞后于输入相位。当输入信号的幅值不改变而频率发生变化时,输出信号的幅值一般会随输入正弦信号频率增加而减小;相位滞后角度一般都会随输入正弦信号频率的增加而增加。 一阶模拟环节电路图如下图所示 R610k R710k R3 10k 10k R815k R110k R2 10k C1 1uF U c(t) U r(t) 其中F 1为惯性环节;F 2为放大环节(放大倍数K=5.1)。 这个系统的传递函数为:

模拟滤波器频率特性测试

实验二 模拟滤波器频率特性测试 一、实验目的 1、掌握低通无源滤波器的设计; 2、学会将无源低通滤波器向带通、高通滤波器的转换; 3、了解常用有源低通滤波器、高通滤器、带通滤波器、带阻滤波器的结构与特性; 二、预备知识 1、 学习“模拟滤波器的逼近”; 2、 系统函数的展开方法; 3、低通滤波器的结构与转换方法; 三、实验原理 模拟滤波器根据其通带的特征可分为: (1)低通滤波器:允许低频信号通过,将高频信号衰减; (2)高通滤波器:允许高频信号通过,将低频信号衰减; (3)带通滤波器:允许一定频带范围内的信号通过,将此频带外的信号衰减; (4)带阻滤波器:阻止某一频带范围内的信号通过,而允许此频带以外的信号衰减; 各种滤波器的频响特性图: 图2一1低通滤波器 图2一2高通滤波器 图2一3带通滤波器 图2一4带阻滤波器 在这四类滤波器中,又以低通滤波器最为典型,其它几种类型的滤波器均可从它转化而来。 1、系统的频率响应特性是指系统在正弦信号激励下系统的稳态响应随激励信号频率变化的情况。用矢量形式表示: ()()()j H j H j e φωωω= 其中:|H(j ω)|为幅频特性,表示输出信号与输入信号的幅度比随输入信号频率的变化关系;φ(ω)为相频特性,表示输出信号与输入信号的相位差随输入信号频率的变化关系。

2、H(j ω)可根据系统函数H(s)求得:H(j ω)= H(s)︱s=j ω因此,对于给定的电路可根椐S 域模型先求出系统函数H(s),再求H(j ω),然后讨论系统的频响特性。 3、频响特性的测量可分别测量幅频特性和相频特性,幅频特性的测试采用改变激励信号的频率逐点测出响应的幅度,然后用描图法描出幅频特性曲线;相频特性的测量方法亦可改变激励信号的频率用双踪示波器逐点测出输出信号与输入信号的延时τ,根椐下面的公式推算出相位差 ()2T τφωπ = 当响应超前激励时为 ()φω正,当响应落后激励时()φω为负。 四、实验原理图 图2一5实验电路 图中:R=38k Ω,C=3900pF ,红色框内为实验板上的电路。 五、实验内容及步骤: 将信号源CH1的信号波形调为正弦波,信号的幅度调为Vpp=10V 。 1、RC 高通滤波器的频响特性的测量: 将信号源的输出端(A)接实验板的IN1端,滤波后的信号OUT1接示波器的输入(B) 。根据被测电路的参数及系统的频特性,将输入信号的频率从低到高逐次改变十 次以上(幅度保持Vipp=10v) , 逐个测量输出信号的峰峰值大小(Vopp)及输出信号与输入信号的相位差 ,并将测量数据填入表一: 表一 2.RC 低通滤波器的频响特性的测量: 将信号源的输出(A)接实验板的IN2,滤波后的输出信号OUT2接示波器的输入(B) 。根据被测电路的参数及系统的幅频特性,将输入信号的频率从低到高逐次改变十 次以上(幅度保持Vipp=10v) , 逐个测量输出信号的峰峰值大小(Vopp) 及Φ(ω),并将测量数据填入表二: 表二 Vi(V) 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 f(Hz) 150 200 300 350 400 450 500 550 1000 1500 2000 2500 3000 3500 4000 Vo(v) 1.44 1.2 1.26 2.96 3.28 3.60 4 4.24 6.60 7.44 8.00 8.40 8.72 8.76 8.88 φ(ω)(10 -2 ) 5.024 3.768 1.884 1.6328 1.5072 1.256 1.1304 1.0048 0.3768 0.1884 0.11304 0.08792 0.05024 0.04396 0.03768 Vi(V) 10 10 10 10 10 10 10 10 10 10 10

典型环节和系统频率特性地测量

课程名称:_________控制理论(甲)实验_______指导老师:_____ ____成绩:__________________ 实验名称:___典型环节和系统频率特性的测量___实验类型:________________同组学生:__________ 一、实验目的 二、实验原理 三、实验接线图 四、实验设备 五、实验步骤 六、实验数据记录 七、实验数据分析 八、实验结果或结论 一、实验目的 1.了解典型环节和系统的频率特性曲线的测试方法; 2.根据实验求得的频率特性曲线求取传递函数。 二、实验原理 1.系统(环节)的频率特性 设G(S)为一最小相位系统(环节)的传递函数。如在它的输入端施加一幅值为X m 、频率为ω的正弦信号,则系统的稳态输出为 )sin()()sin(?ωω?ω+=+=t j G Xm t Y y m 由式①得出系统输出,输入信号的幅值比相位差 )() (ωωj G Xm j G Xm Xm Ym == (幅频特性) )()(ωωφj G ∠= (相频特性) 式中)(ωj G 和)(ωφ都是输入信号ω的函数。 2.频率特性的测试方法 2.1 沙育图形法测试 2.1.1幅频特性的测试 由于 m m m m X Y X Y j G 22)(= = ω 改变输入信号的频率,即可测出相应的幅值比,并计算 m m X Y A L 22log 20)(log 20)(==ωω (d B ) 其测试框图如下所示:

图5-1 幅频特性的测试图(沙育图形法) 注:示波器同一时刻只输入一个通道,即系统(环节)的输入或输出。 2.1.2相频特性的测试 图5-2 相频特性的测试图(沙育图形法) 令系统(环节)的输入信号为:t X t X m ωsin )(= (5-1) 则其输出为 )sin()(φω+=t Y t Y m (5-2) 对应的沙育图形如图5-2所示。若以t 为参变量,则)(t X 与)(t Y 所确定点的轨迹将在示波器的屏幕上形成一条封闭的曲线(通常为椭圆),当t=0时,0)0(=X 由式(5-2)得 )sin()0(φm Y Y = 于是有 m m Y Y Y Y 2) 0(2sin )0(sin )(1 1--==ωφ (5-3) 同理可得 m X X 2) 0(2sin )(1 -=ωφ (5-4) 其中: )0(2Y 为椭圆与Y 轴相交点间的长度; )0(2X 为椭圆与X 轴相交点间的长度。 式(5-3)、(5-4)适用于椭圆的长轴在一、三象限;当椭圆的长轴在二、四时相位φ的计算公式变为 m Y Y 2) 0(2sin 180)(1 0--=ωφ 或 m X X 2)0(2sin 180)(10--=ωφ

0727第三章 两自由度系统振动(讲)

第三章两自由度系统振动 §3-1 概述 单自由度系统的振动理论是振动理论的基础。在实际工程问题中,还经常会遇到一些不能简化为单自由度系统的振动问题,因此有必要进一步研究多自由度系统的振动理论。 两自由度系统是最简单的多自由度系统。从单自由度系统到两自由度系统,振动的性质和研究的方法有质的不同。研究两自由度系统是分析和掌握多自由度系统振动特性的基础。 所谓两自由度系统是指要用两个独立坐标才能确定系统在振动过程中任何瞬时的几何位置的振动系统。很多生产实际中的问题都可以简化为两自由度的振动系统。例如,车床刀架系统(a)、车床两顶尖间的工件系统(b)、磨床主轴及砂轮架系统(c)。只要将这些系统中的主要结合面(或芯轴)视为弹簧(即只计弹性,忽略质量),将系统中的小刀架、工件、砂轮及砂轮架等视为集中质量,再忽略存在于系统中的阻尼,就可以把这些系统近似简化成图(d)所示的两自由度振动系统的动力学模型。 以图3.1(c)所示的磨床磨头系统为例分析,因为砂轮主轴安装在砂轮架内轴承上,可以近似地认为是刚性很好的,具有集中质量的砂轮主轴系统支承在弹性很好的轴承上,因此可以把它看成是支承在砂轮架内的一个弹簧——质量系统。此外,砂轮架安装在砂轮进刀

拖板上,如果把进刀拖板看成是静止不动的,而把砂轮架与进刀拖板的结合面看成是弹簧,把砂轮架看成是集中的质量,则砂轮架系统又近似地可以看成是支承在进刀拖板上的另一个弹簧——质量系统。这样,磨头系统就可以近似地简化为图示的支承在进刀拖板上的两自由度系统。 在这一系统的动力学模型中,m1是砂轮架的质量,k1是砂轮架支承在进刀拖板上的静刚度,m2是砂轮及其主轴系统的质量,k2是砂轮主轴支承在砂轮架轴承上的静刚度。取每个质量的静平衡位置作为坐标原点,取其铅垂位移x1及x2分别作为各质量的独立坐标。这样x1和x2就是用以确定磨头系统运动的广义坐标。(工程实际中两自由

第2章 单自由度系统的受迫振动题解

习 题 2-1已知系统的弹簧刚度k =800 N/m ,作自由振动时的阻尼振动周期为1.8s ,相邻两振幅的比值 1 2 .41=+i i A A ,若质量块受激振力t t F 3cos 360)(=N 的作用,求系统的稳态响应。 解:由题意,可求出系统的运动微分方程为 t m x n x p x n 3cos 360 22 =++ 得到稳态解 )3cos(α-=t B x 其中 m k B B B 45.0360 4)1(02 2220 == +-= λζλ 222 122tg λζλ ωωα-=-= n p n 由 d nT i i A A e 2.41 === +η 489 .3π 2797 .0ln 8 .1ln ======d d d d d T p T n T nT η η 又 22n p p n d -= 有 579.32 22=+=n d n p n p p 45.51255.1298.0374 .0838 .01838.0223.02tg 103.1408 .045 .0838.0223.04)838.01(45 .0223.0579 .3797.0838.0579 .33 2 222===-??= == ??+-= === == =ααζω λB p n p n n 所以 x =1.103 cos(3t -51?27') 2-2一个无阻尼弹簧质量系统受简谐激振力作用,当激振频率ω1 =6rad/s 时,系统发生共振;给

质量块增加1 kg 的质量后重新试验,测得共振频率ω2 =5.86rad/s ,试求系统原来的质量及弹簧刚度。 解:设原系统的质量为m ,弹簧常数为k 由 m k p n = ,共振时m k p n ==1ω 所以 m k =6 ① 又由 当 86.51 2=+= =m k p n ω ② ①与②联立解出 m =20.69 kg ,k =744.84 N/m 2-3总质量为W 的电机装在弹性梁上,使梁产生静挠度st δ,转子重Q ,重心偏离轴线e ,梁重及阻尼可以不计,求转速为ω时电机在垂直方向上稳态强迫振动的振幅。 解:列出平衡方程可得: 222()sin sin()sin()st Q W W k x w e wt x g g W Q x kx w e wt g g kg Q x x w e wt W W ππ-σ+- =+=++=+ 所以:2n kg P W Q h w e W ==, 又因为st st W W k k =σ=σ即 22() st st B w e B W g w =σ-σ将结果代入Q = 即为所求的振幅 2-4如题2-4图所示,作用在质量块上的激振力t F t F ωsin )(0=,弹簧支承端有运动 t a x s ωco s =,写出系统的运动微分方程,并求稳态振动。 题2-4图

第三章两自由度系统振动

1α,小车与斜面之间摩擦力 gk P T π 2=, ?? ? ??+= α2sin 2k P h k P A 2 m 。 ()2 2 34mr a r k n +=ω 3.确定图2-3系统的固有频率。

() r R g n -= 32ω 图2-3 第三章 两自由度系统振动 §3-1 概述 单自由度系统的振动理论是振动理论的基础。在实际工程问题中,还经常会遇到一些不能简化为单自由度系统的振动问题,因此有必要进一步研究多自由度系统的振动理论。 两自由度系统是最简单的多自由度系统。从单自由度系统到两自由度系统,振动的性质和研究的方法有质的不同。研究两自由度系统是分析和掌握多自由度系统振动特性的基础。 所谓两自由度系统是指要用两个独立坐标才能确定系统在振动过程中任何瞬时的几何位置的振动系统。很多生产实际中的问题都可以简化为两自由度的振动系统。例如,车床刀架系统(a )、车床两顶尖间的工件系统(b )、磨床主轴及砂轮架系统(c )。只要将这些系统中的主要结合面(或芯轴)视为弹簧(即只计弹性,忽略质量),将系统中的小刀架、工件、砂轮及砂轮架等视为集中质量,再忽略存在

于系统中的阻尼,就可以把这些系统近似简化成图(d)所示的两自由度振动系统的动力学模型。 以图3.1(c)所示的磨床磨头系统为例分析,因为砂轮主轴安装在砂轮架内轴承上,可以近似地认为是刚性很好的,具有集中质量的砂轮主轴系统支承在弹性很好的轴承上,因此可以把它看成是支承在砂轮架内的一个弹簧——质量系统。此外,砂轮架安装在砂轮进刀拖板上,如果把进刀拖板看成是静止不动的,而把砂轮架与进刀拖板的结合面看成是弹簧,把砂轮架看成是集中的质量,则砂轮架系统又近似地可以看成是支承在进刀拖板上的另一个弹簧——质量系统。这样,磨头系统就可以近似地简化为图示的支承在进刀拖板上的两自由度系统。

实验报告三_频率特性测量

实验报告 课程名称: 自动控制理论实验 指导老师: 吴越 成绩: 实验名称: 频率特性测量 实验类型: 同组学生姓名: 鲍婷婷 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一、实验目的 1. 掌握用超低频信号发生器和示波器测定系统或环节频率特性的方法; 2. 了解用TD4010型频率响应分析测试仪测定系统或环节的频率特性方法。 二、主要仪器设备 1.超低频信号发生器 2.电子模拟实验装置 3.超低频慢扫描示波器 三、实验步骤 1.测量微分积分环节的频率特性; (1)相频特性 相频特性的测试线路如图4-3-1所示,其中R 1=10k Ω、C 1=1uF 、R 2=2k Ω、C 2=50uF 。测量时,示波器的扫描旋钮指向X-Y 档。把超低频信号发生器的正弦信号同时送入被测系统和X 轴,被测系统的输出信号送入示波器Y 轴,此时在示波器上可得到一李沙育图形。 然后将椭圆移至示波器屏幕中间,椭圆与X 轴两交点的间的距离即为2X 0,将 Y 输入接地,此时得到的延X 轴光线长度 即为2X m ,因此求得θ=sin -1 (2X 0/2X m ),变化输入信号频率ω(rad/s),即可得到一 组θ(ω)。测量时必须注意椭圆光点的转动方向,以判别相频特性是超前还是迟后。当系统或环节的相频特性是迟后时,光点为逆时针转动;反之超前时,光点为顺时针转动。测试时,ω取值应匀称,否则会影响曲线的准确度。 (2) 幅频特性:示波器选择停止扫描档,超低频信号发生的正弦信号同时送入X 轴和被测系统;被测环节的输出信号仍送入Y 轴;分别将X 通道和Y 通道接地,示波器上出现的两条光线对应的两条光线长度为2X m 、2Y m ,改变频率ω,则可得一组L(ω)。

控制系统频率特性实验

控制系统频率特性实验

实验名称控制系统的频率特性 实验序号 3 实验时间 学生姓名学号 专业班级年级 指导教师实验成绩 一、实验目的: 研究控制系统的频率特性,及频率的变化对被控系统的影响。 二、实验条件: 1、台式计算机 2、控制理论&计算机控制技术实验箱 THKKL-4系列 3、THKKL仿真软件 三、实验原理和内容: 1.被测系统的方块图及原理被测系统的方块图及原理:

图3—1 被测系统方块图 系统(或环节)的频率特性G(jω)是一个复变量,可以表示成以角频率ω为参数的幅值和相角。 本实验应用频率特性测试仪测量系统或环节的频率特性。 图4—1 所示系统的开环频率特性为: 采用对数幅频特性和相频特性表示,则式(3—2)表示为: 将频率特性测试仪内信号发生器产生的超低频正弦信号的频率从低到高变化,并施加于被测系统的输入端[r(t)],然后分别测量相应的反馈信号[b(t)]和误差信号[e(t)]的对数 幅值和相位。频率特性测试仪测试数据经相关器件运算后在显示器中显示。

根据式(3—3)和式(3—4)分别计算出各个频率下的开环对数幅值和相位,在半对数坐标纸上作出实验曲线:开环对数幅频曲线和相频曲线。 根据实验开环对数幅频曲线画出开环对数幅频曲线的渐近线,再根据渐近线的斜率和转角频确定频率特性(或传递函数)。所确定的频率特性(或传递函数)的正确性可以由测量的相频曲线来检验,对最小相位系统而言,实际测量所得的相频曲线必须与由确定的频率特性(或传递函数)所画出的理论相频曲线在一定程度上相符。如果测量所得的相位在高频(相对于转角频率)时不等于-90°(q-p)[式中p 和q 分别表示传递函数分子和分母的阶次],那么,频率特性(或传递函数)必定是一个非最小相位系统的频率特性。 2.被测系统的模拟电路图被测系统的模拟电路图:见图3-2

频率特性的测试

汕 头 大 学 实 验 报 告 频率特性的测试 一、 实验目的 用信号发生器和示波器测量被测系统的频率特性 二、 实验仪器 TKKL-1控制理论实验箱1台、TDS1001B 数字存储示波器1台、万用表1只 三、实验原理 对于稳定的定常系统或环节,当其输入端加入一正弦信号X(t)=XmSin ωt ,它的稳 态输出是一与输入信号同频率的正弦信号,但其幅值和相位将随着输入信号的频率ω的变化而变化。即输出信号为Y (t )=Ym Sin(ωt+?)= Xm|G(j ω)|Sin(ωt+?),其中|G(j ω)|= Xm Ym , ? (ω)=argG(j ω) 所以,只要改变输入信号x(t)的频率ω,就可测得输出信号与输入信号的幅值比 |G(j w)|和它们的相位?(ω)=argG(j ω)。不断改变x(t)的频率,就可测得被测环节的幅 频特性|G(j ω)|和相频特性?(ω)。 本实验通过使用示波器分别测量输入信号及输出信号的幅值及相位关系,实现对幅 频特性及相频特性进行测量。 四、实验内容及步骤 1、本实验准备测量二阶系统的闭环频率特性(二阶系统可K=200/51,T1=0.02,T2=0.051, 也可根据需要自己选择)。 2、画出要测量的二阶系统的方框图及模拟电路图。 3、计算所设计的二阶系统的频率特性的理论值,确定要测量的关键点的频率及要测 量的频率范围,设计好实验记录表格。 4、完成实验并记录相关实验数据,验证数据的合理性。 5、二阶系统的输入信号可采用实验箱上的正弦波信号发生器的输出信号,信号的幅值及频率可以通过电位器进行调节,信号的频率可以采用实验箱上的频率计进行测量。 五、实验图和数据

频率特性的测量实验报告

课程名称: 控制理论乙 指导老师: 成绩: 实验名称: 频率特性的测量 实验类型: 同组学生姓名: 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1.掌握用李沙育图形法,测量各典型环节的频率特性; 2.根据所测得的频率特性,作出伯德图,据此求得环节的传递函数。 二、实验内容和原理 1.实验内容 (1)R-C 网络的频率特性。图5-2为滞后--超前校正网络的接线图,分别测试其幅频特性和相频特性。 (2)闭环频率特性的测试 被测的二阶系统如图5-3所示,图5-4为它的模拟电路图。 取参考值051R K =,1R 接470K 的电位器,2510R K =,3200R K = 2.实验原理 对于稳定的线性定常系统或环节,当其输入端加入一正弦信号()s in m X t X t ω=,它的稳态输出是一

与输入信号同频率的正弦信号,但其幅值和相位随着输入信号频率ω的改变而改变。输出信号为 ()sin ()()sin ()m Y t Y t G j t ω?ωω?=+=+ 其中()m m Y G j X ω=,()a rg ()G j ?ωω= 只要改变输入信号的频率,就可以测得输出信号与输入信号的幅值比()G j ω和它们的相位差 ()?ω。不断改变()x t 的频率,就可测得被测环节(系统)的幅频特性和相频特性。 本实验采用李沙育图形法,图5-1为测试的方框图 在表(1)中列出了超前于滞后时相位的计算公式和光点的转向。 表中 02Y 为椭圆与Y 轴交点之间的长度,02X 为椭圆与X 轴交点之间的距离,m X 和m Y 分别为()X t 和

[整理]matlab二自由度系统振动.

利用Adams 和Matlab 对二自由度系统振动进行仿真与分析 一、实验思想 Adams 是一种可以对一些典型运动进行高效仿真的软件,本实验是利用Adams 对二自由度系统振动进行仿真及分析,再和理论公式对比,并用另外一种常见的仿真软件Matlab 的仿真结果进行对比,观察两者的差异,分析软件仿真产生差异的原因,加深对二自由度系统振动的理解。 二、二自由度系统振动分析 固有频率取决于系统本身物理性质,而与初始条件无关。对于二 自由度的振动系统是有两种频率的简谐波组成的复合运动,这两个频率都是系统的固有频率。 主振型是当系统按固有频率作自由振动时,称为主振动。系统作 主振动时,任何瞬时各个运动坐标之间具有一定的相对比值,即整个系统具有确定的振动形态,称为主振型。 强迫振动是振动系统在周期性的外力作用下,其所发生的振动称 为强迫振动,这个周期性的外力称为驱动力。 三、二自由度系统自由振动 1.建立二自由度系统振动模型 1)创建底座:先生成一个尺寸合适的长方体基体,再使用add to part 指令创建底座的侧壁。 2)使用new part 指令分别创建两个滑块,创建滑块时应注意滑

块与滑块、滑块与侧壁之间的尺寸适当。 3)弹簧连接:分别用弹簧链接滑块、侧壁的中心点。弹簧生成后,依次选中弹簧,在modify 选项中的stiffness and damping 下拉菜单中将damping coefficient 设置成no damping,即弹簧无阻尼。 添加约束:底座和地面固定,滑块和底座用滑动副连接。 弹簧刚度分别改为1、1、2(newton/mm) 滑块质量分别为1.0 2.0 滑块与机体滑动副的阻尼改为1.0E-007 2.模型展示 3.运动仿真结果 设置x10=12 经过Adams 运算后,滑块1、2 运动状态如图所示:

滤波器的频响特性测定实验

广州大学 《信号与系统实验》 综合设计性实验 报告册 实验项目模拟滤波器的特性测定 一实验目的: 1.了解RC无源和有源滤波器的种类、基本结构及其特性。 2.对比研究无源和有源滤波器的滤波特性。 3.学会列写无源和有源滤波器的方法。 4.推导RC无源和有源滤波器的系统函数。 5.用扫频法测试各个滤波器的幅频特性。 6.绘制滤波器的幅频特性曲线。 二实验原理 1.滤波器是对输入信号的频率具有选择性的一个双口网络,它允许某些基本频率(通常是某个频带范围)的信号通过,而其他频率的信号受到衰

减或是抑制,这些网络可以是由RLC 元件或RC 元件构成的无源滤波器,也可以是由RC 元件和有源器件构成的有源滤波器。 2. 根据幅频特性所表示的通过或阻止信号频率范围的不同,滤波器可分 为低 通滤波器(LPF )、高通滤波器(HPF )、带通滤波器(BPF )和带阻滤波器(BEF )四种。把能够通过的信号频率范围定义为通带,把阻止通过或衰减的信号频率范围定义为阻带。而通带和阻带的分界点的频率fc 成为截止频率或转折频率。图2-6-1中的Aup 为通带的电压放大倍数,fc 为截止频率,fo 为中心频率,fl 和fh 分别为低端和高端截止频率。其中, 低通滤波器的通频带为: ()(0)20C c BW f ωπ==::。 高通滤波器的通频带为:()()2C c BW f ωπ=∞=∞::。 带通滤波器的通频带为:2()H L H L BW f f ωωπ=-=-。 带阻滤波器的通频带为:2(0)2()L H BW f f ππ=∞:U :。 3. 滤波器的频响特性定义

滤波器的频响特性()H j ω,又称为传递函数或系统函数,它全面反映了滤波器的幅频和相频特性: ()()222111 ()U U H j A U U ?ωω?ω?∠= = =∠∠ g ,式中()2211 m m U U A U U ω==g g 为滤波器的幅频特性;()() ()21?ω??=-为滤波器的相频特性。 4. 本实验中四种滤波器的实验线路 无源低通 有源低通 无源高通 有源高通 无源带通 无源带阻

相关文档
最新文档