支架计算书.doc.pdf

支架计算书.doc.pdf
支架计算书.doc.pdf

0#钢箱梁支架计算书

目录

1、设计依据

1.1、《钢结构设计手册》(第三版);

1.2、《建筑结构荷载规范》(GB50009-2001);

1.3、《混凝土结构设计规范》(GB50010-2010);

1.4、《钢结构设计规范》(GB50017-2003);

1.5、《钢结构连接节点设计手册》(第二版);

1.6、《公路桥涵设计通用规范》(JTG D60-2004);

1.7、《港口工程混凝土结构设计规范》(JTJ 267-98)。

2、结构布置型式

0#钢箱梁支架采用Ф1000×10的钢管作立柱, 设Ф820×10的横向稳定联系柱,立柱间采用Ф426×6的钢管作平联(顶层平联为3工56a),上设2HN700×300的组合型钢作支撑轨道梁。支架通过附墙联杆Ф600×10与下横梁连接,下面的平联通过联系撑Ф426×6与下横梁支架立柱相连。具体结构布置如下图:

朝鲜

3、0#钢箱梁支架设计

3.1、荷载分析

设计荷载:

·系统自重荷载;

·风荷载:0#块支架搭设完成设计风速V=23.9m/s(10m处,10年重现期);

箱梁滑动时工作风速V=13.8m/s(10m处,5年重现期)。

·雪荷载:0.3 kN/m2(适用于工况四)

·施工荷载:2.5kN/m(沿轨道梁方向);

·箱梁自重:A块——261.9t;B块——191.3t;C块——149.1t。

·桥面吊机:160t。

3.2、0#块钢箱梁施工工艺

(1)浮吊在一侧顺桥向抛锚定位,将A梁段吊装设计位置。用同样的方法将B块梁段吊装到位。最后用浮吊将C梁段直接吊装到设计位置。

(2)浮吊移船至另一侧顺桥向抛锚定位,B、C梁段施工方法分别与前面的

B、C梁段的施工方法相同。

(3)全部5块梁段全部吊装到位后用三向千斤顶精确定位调整梁段。首先调整A梁段,满足规范要求后,与下横梁临时固结、安装侧向限位支座。然后按照B、C、B、C顺序调整梁段标高及轴线,满足设计要求后与基准梁段焊接。

(4)0#块焊接完成后,安装斜拉索,然后安装桥面吊机进行梁段正常悬拼施工。

3. 3计算工况

工况一:0#块支架搭设完成,风速横桥向作用;

工况二:A、B、C单侧梁段安装到位,风横桥向作用;

工况三:梁段全部安装搁置到位,风横桥向作用。

3.4荷载计算

(1)恒载:系统自重荷载;

钢箱梁重量标准值(按沿轴线方向均匀计算,考虑1.3不均匀系数,1.1冲击系数,各钢箱梁反力如下):

工况二计算简图:(图中分布荷载q ck、q bk、q ak为标准值)

工况三计算简图:(图中分布荷载q ik为标准值)

(2)活载

风荷载:取高度40m处风压进行计算。

设计基准风压:

a 、设计风速V=23.9m/s (10m 处,10年重现期): W d1=2

1.29kN m =

b 、工作风速V=17m/s (10m 处,5年重现期):W d22

0.43kN m =

具体风载值详见下表:

风载(kN/m)

工况一 工况二 工况三 工况四

钢立柱Ф1000×10 1.16 0.39 1.16 0.39 平联及附墙 0.70 0.23 0.7 0.23 顶层平联3I56 1.16 0.39 1.16 0.39 轨道梁2HN700×300

1.77 0.59 1.77 0.59 桥面钢箱梁

——

1.47

4.4

1.47

3.5、结构计算

(1)荷载组合:计算模型按(1.35恒载+1.4活载)进行附载

(2)约束条件:附墙与下横梁铰接(释放约束Ry );柱脚固结,柱顶与轨道梁铰接;轨道梁与下横梁铰接。

(3)计算结果

工况一:0#块支架搭设完成,风横桥向作用; 结构组合应力图:

碗扣式支架计算书

现浇板模板(碗扣式支撑)计算书 本标段内K58+288(2-6m小桥)、K60+739(1-8m)小桥、K61+800(1-8m)小桥及6座涵洞的桥面板和涵洞盖板均采用现场浇筑施工,模板支撑采用Ф48mm碗扣式支架搭设,搭设结构为:立杆步距h(上下水平杆轴线间的距离)取1.2及1.5m,立杆纵距l y取0.9m,横距l x取0.9m。为确保施工安全,现选择支架高度最高,荷载最大的K60+739(1-8m)小桥作为代表性结构物进行支架稳定性计算,以验证该类结构物碗扣式支架搭设方案是否安全可靠,计算依据《建筑施工碗扣式钢管脚手架安全技术规范》(JGJ166-2008)、《混凝土结构设计规范》GB50010-2002、《建筑结构荷载规范》(GB 50009-2001)、《钢结构设计规范》(GB 50017-2003)等规范编制。 一、综合说明 K60+739(1-8m)小桥现浇板模板支架高度在4.96m范围内,按高度5m进行支架稳定性验算。设计范围:K60+739小桥现浇板,长×宽=13.91m×6.38m,厚0.5m。 二、搭设方案 (一)基本搭设参数 模板支架高H为5m,立杆步距h(上下水平杆轴线间的距离)取1.2m,立杆纵距l y 取0.9m,横距l x取0.9m。整个支架的简图如下所示。

碗扣支架布置图 模板采用1.5cm厚竹胶板拼接,模板底部的采用双层10*10cm方木支撑,其中底模方木布设间距为0.3m;横向托梁方木布设间距0.9m。 (二)材料及荷载取值说明 本支撑架使用Φ48 ×3.5钢管,钢管壁厚不小于3.5-0.025mm,钢管上严禁打孔;采用的扣件,不得发生破坏。 上碗扣、可调底座及可调托撑螺母应采用铸钢制造,其材料性能应符合GB11352中ZG270-500的规定。 模板支架承受的荷载包括:模板及模板支撑自重、新浇混凝土自重、钢筋自重,以及施工人员及设备荷载、振捣混凝土时产生的荷载等。 三、板模板支架的强度、刚度及稳定性验算 荷载首先作用在板底模板上,按照"底模→底模方木/钢管→横向水平方木→可调顶托→立杆→可调底托→基础"的传力顺序,分别进行强度、刚度和稳定性验算。 (一)板底模板的强度和刚度验算 模板按三跨连续梁考虑,取模板长1m计算,如图所示:

现浇箱梁支架设计计算书.

现浇箱梁支架设计计算书 第一章编制依据 1、编制依据 1.1施工合同文件及其他相关文件。 1.2工地现场考察所获取的资料。 1.3《公路桥涵施工技术规范》JTG/T F50-2011。 1.4《公路工程质量检验评定标准》JTG F80-2004。 1.5《公路工程施工安全技术规范》JTJ076-95。 1.6《公路工程水泥及水泥混凝土试验规程》JTG E30-2005。 1.7《建筑施工模板安全技术规范》JGJ 162-2008 1.8《建筑施工扣件式钢管脚手架安全技术规范》JGJ 130-2011 1.9《建筑施工高处作业安全技术规范》JGJ 80-91 1.10《建筑结构荷载规范》GB50009-2001(2006年版) 第二章工程概况 本工程为新建桥梁,起点桩号K3+799.97,终点桩号K3+866.03,桥长 66.06m 。桥跨布置为一联,具体分跨为:(16+27+16)m 。主桥箱梁采用C50混凝土。桥梁支架位于地势较低的水田之中,在进行支架搭设前应进行地基处理。 1 上部结构采用现浇预应力砼变截面连续箱梁,桥梁与道路成75°夹角,分为上下行两座独立的桥梁。桥梁平面位于R=1200mm的圆弧上,纵断面位于0.54%的上坡上。

2 桥梁左、右幅不等宽,左幅桥梁宽度为25.25m ,右幅桥梁宽度为22.5m ,两幅桥梁之间设置1.0m 的中央分隔带。左幅桥具体布置为:6m (人行道、非机动车 道)+1.5m(机非分隔带)+17.25m(机动车道)+0.50m(防撞栏)=25.25m;右幅桥具体布置为:6m (人行道、非机动车道)+1.5m(机非分隔带)+14.5m (机动车道)+0.50m(防撞栏)=22.5m。上部结构为(16+27+16)m 变截面预应力砼连续箱梁。桥墩处梁高1.7m ,桥台和中跨跨中梁高为1.1m ,采用二次抛物线过渡,过渡段的方程式为Y=0.004167X2+1.1。左幅桥箱梁顶板宽25.25m ,底板宽20.25m ,悬臂宽 2.5m ,为单箱五室结构;右幅桥箱梁顶板宽22.5m ,底板宽17.5m ,悬臂宽2.5m ,为单箱五室结构。标准段跨中顶板厚度25cm ,底板厚度22cm ,腹板厚50cm 。支座附近顶板厚度50cm ,底板厚度47cm ,腹板厚65cm 。支点处设横隔梁,中横隔梁宽2.0m ,端横隔梁宽1.2m 。 3 桥台采用座板式桥台,基础采用冲击钻钻孔灌注桩基础,桥台桩基直径为 1.5m ,按嵌岩桩设计,要求嵌入中风化石飞岩深度不小于1.0D (D 为桩基直径)。台背回填透水性较好的砂砾石,回填尺寸按施工规范要求确定,回填时要求分层压实,压实度不小于96%。桥墩采用柱式桥墩,墩柱间设系梁。桥面横坡:采用 2.0%双向横坡,坡向外侧,桥面横坡通过箱梁斜置形成,箱梁顶、底板始终保持平行。 4 桥面铺装:4cm 厚改性沥青砼(AC-13C )+ 5 cm厚中粒式沥青砼(AC- 20C )防水层,铺装总厚9cm 。桥面排水:桥面设置泄水管,直接将桥面雨水导入道路排水系统。 5 伸缩缝:为了保证梁能自由变形,在0#、3#桥台处设置GQF-Z60型伸缩缝。支座采用GPZ (2009)桥梁盆式橡胶支座。

沥青路面结构计算书

新建路面设计 1. 项目概况与交通荷载参数 该项目位于西南地区,属于二级公路,设计时速为40Km/h,12米双车道公路,设计使用年限为12.0年,根据交通量OD调查分析,断面大型客车和货车交通量为1849辆/日, 交通量年增长率为8.2%, 方向系数取55.0%, 车道系数取 70.0%。根据交通历史数据,按表A.2.6-1确定该设计公路为TTC4类,根据表 A.2.6-2得到车辆类型分布系数如表1所示。 表1. 车辆类型分布系数 根据路网相邻公路的车辆满载情况及历史数据的调查分析,得到各类车型非满载与满载比例,如表2所示。 表2. 非满载车与满载车所占比例(%) 根据表6.2.1,该设计路面对应的设计指标为沥青混合料层永久变形与无机结合料层疲劳开裂。根据附表A.3.1-3,可得到在不同设计指标下,各车型对应的非满载车和满载车当量设计轴载换算系数,如表3所示。 表3. 非满载车与满载车当量设计轴载换算系数

根据公式(A.4.2)计算得到对应于沥青混合料层永久变形的当量设计轴载累计作用次数为8,109,551, 对应于无机结合料层疲劳开裂的当量设计轴载累计作用次数为562,339,245。本公路设计使用年限内设计车道累计大型客车和货车交通量为4,989,710,交通等级属于中等交通。 2. 初拟路面结构方案 初拟路面结构如表4所示。 表4. 初拟路面结构 路基标准状态下回弹模量取50MPa,回弹模量湿度调整系数Ks取1.00,干湿与冻融循环作用折减系数Kη取1.00,则经过湿度调整和干湿与冻融循环作用折减的路基顶面回弹模量为50MPa。 3. 路面结构验算 3.1 沥青混合料层永久变形验算 根据表G.1.2,基准等效温度Tξ为20.1℃,由式(G.2.1)计算得到沥青混合料层永久变形等效温度为21.5℃。可靠度系数为1.04。 根据B.3.1条规定的分层方法,将沥青混合料层分为6个分层,各分层厚度(hi)如表5所示。利用弹性层状体系理论,分别计算设计荷载作用下各分层顶部的竖向压应力(Pi)。根据式(B.3.2-3)和式(B.3.2-4),计算得到d1=-8.23,d2=0.77。把d1和d2的计算结果带入式(B.3.2-2),可得到各分层的永久变形修正系数(kRi),并进而利用式(B.3.2-1)计算各分层永久变形量(Rai)。各计算结果汇总于表5中。 各层永久变形累加得到沥青混合料层总永久变形量Ra=19.2(mm),根据表3.0.6-1,沥青层容许永久变形为20.0(mm),拟定的路面结构满足要求。

扣件钢管楼板模板支架计算书(正式)

扣件钢管楼板模板支架计算书 依据规范: 《建筑施工扣件式钢管脚手架安全技术规范》JGJ130-2011 《建筑施工模板安全技术规范》JGJ 162-2008 《建筑结构荷载规范》GB50009-2012 《钢结构设计规范》GB50017-2003 《混凝土结构设计规范》GB50010-2010 《建筑地基基础设计规范》GB50007-2011 《建筑施工木脚手架安全技术规范》JGJ 164-2008 计算参数: 钢管强度为205.0 N/mm2,钢管强度折减系数取1.00。 模板支架搭设高度为13.0m,(计算取的高度) 立杆的纵距 b=0.90m,立杆的横距 l=0.90m,立杆的步距 h=1.20m。 板底纵向钢管的间距距离300mm。 面板厚度15mm,剪切强度1.4N/mm2,抗弯强度15.0N/mm2,弹性模量6000.0N/mm2。、 (实际铺设脚手板50mm厚200mm宽) 模板自重0.35kN/m2,大型设备、结构构件荷载4.00kN/m2。(网架荷载小于此荷载) 倾倒混凝土荷载标准值0.00kN/m2,施工均布荷载标准值3.50kN/m2。 扣件计算折减系数取1.00。 楼板强度计算参数:钢筋级别三级钢筋。 楼板的混凝土强度等级C40。 每天标准层施工天数5天。 楼板截面支座配筋率(%)0.28 楼板短边比长边的比值(1.00) 计算楼板的厚度(m)0.10 计算楼板的长边长度(m)2.5 (据结构图纸,楼板下为井字梁,纵横向间距均2.5米)

图1 楼板支撑架立面简图 图2 楼板支撑架荷载计算单元 采用的钢管类型为φ48×3.0。 钢管惯性矩计算采用 I=π(D4-d4)/64,抵抗距计算采用 W=π(D4-d4)/32D。 一、模板面板计算 面板为受弯结构,需要验算其抗弯强度和刚度。模板面板的按照三跨连续梁计算。静荷载标准值 q1 = 0.350×0.900=0.315kN/m 活荷载标准值 q2 = (4.000+0.000+3.500)×0.900=6.750kN/m 面板的截面惯性矩I和截面抵抗矩W分别为: 本算例中,截面惯性矩I和截面抵抗矩W分别为: 截面抵抗矩 W = bh2/6 = 90.00×1.50×1.50/6 = 33.75cm3; 截面惯性矩 I = bh3/12 = 90.00×1.50×1.50×1.50/12 = 25.31cm4; 式中:b为板截面宽度,h为板截面高度。

塔楼模板支架施工方案计算书

青田县瓯江四桥(步行桥)工程 塔楼施工方案 检算书 计算: 复核: 审核: 中铁四局集团有限公司 青田县瓯江四桥(步行桥)工程项目经理部 二〇一六年九月十日 青田项目部塔楼施工模板支架计算书 1编制依据 (1)《青田县瓯江四桥(步行桥)工程相关设计图纸》; (2)《建筑扣件式钢管脚手架安全技术规范》(JGJ130-2011); (3)《建筑施工计算手册》(第二版); (4)《建筑施工承插型盘扣式钢管支架安全技术规程》JGJ231-2010 (5)《建筑施工模板安全技术规范》JGJ162-2008 (6)《建筑结构荷载规范》GB50009-2012

(7)《钢结构设计规范》GB50017-2003 (8)《混凝土结构设计规范》GB50010-2010 (9)《建筑地基基础设计规范》GB50007-2011 (10)《建筑施工扣件式钢管脚手架安全技术规范》JGJ130-2011 2方案简介 青田县瓯江四桥(步行桥)工程设计瓯南桥头塔楼一座、瓯南滨水塔楼一座、瓯北滨水塔楼一座、瓯北桥头塔楼一座,总建筑面积为2817.76m2。 其中瓯南桥头塔楼位于P1墩处,地上三层,建筑高度16.940m,为混凝土框架结构;瓯南滨水塔楼地上四层,建筑高度29.928m,结构形式为混凝土剪力墙结构; 瓯南、瓯北桥头塔楼及滨水塔楼外排脚手架及承重支架全部采用盘扣式钢管脚手架。 瓯北滨水塔楼地上七层,建筑高度36.368m,结构形式为混凝土剪力墙结构;瓯北桥头塔楼地上四层,建筑高度17.720m,为混凝土框架结构。瓯南、瓯北桥头塔楼为钻孔桩加承台基础,待承台及基础梁施工完成后搭设内外脚手架,然后再进行柱梁板钢筋模板混凝土施工,待下层施工完成后继续安装上层脚手架并进行下一步工序施工。 瓯南滨水塔楼采用P3和P4墩承台作为基础,瓯北滨水塔楼采用P8和P9墩承台作为基础,在承台施工时预留塔楼墙柱插筋,待墩身施工完成后,搭设塔楼内外脚手架进行塔楼墙柱梁板的施工,瓯南、瓯北桥头塔楼建筑施工完成后再进行相应的箱梁施工。瓯南、瓯北桥头塔楼计划于2017年1月16日进行装饰施工;瓯南、瓯北滨水塔楼装饰施工计划于2016年6月10日开始。 根据现场实际情况以及经济合理性,瓯南、瓯北塔楼施工起重吊装选择汽车吊进行物资的上下倒运作业。 按照主体结构施工顺序,在墙柱钢筋及模板施工完成后,开始进行梁的施工。首先进行满堂支撑架的架设,再进行顶板模板的施工,之后进行梁位置的定位放线,再施工梁模板和梁钢筋,最后进行梁的加固。 (1)梁模支设:模板采用15mm竹胶板,加固肋条采用100×100木方及φ48×3.0钢管做背肋,对于高度小于600mm的梁不采用对拉螺杆,当梁高600~800mm时设一道对拉拉杆,高度大于800mm的梁设两道对拉螺杆,螺杆水平向间距@600mm。 (2)搭设梁底模支架,在柱子上弹出轴线、梁位置及水平标高线,钉柱头模板。按设计标高调整顶托标高,然后放梁底模,并拉线找平,当梁底跨度大于或等于4m时,梁底模起拱按设计要 求做,当设计无具体要求时,起拱高度为1‰-3‰跨长。 (3)梁模支架设单排立杆加顶托、二道水平拉杆并设剪刀撑。根据所弹墨线安装梁侧模板,顶撑杆及斜撑等。立杆纵向间距控制在500-600㎜,梁底增设一根立杆,即横距500㎜,其他同楼板支撑系统,梁下钢管扣件必须设置双扣件,防止滑扣。

箱梁模板支架验算(两箱室)

箱梁模板(碗扣式)计算书计算依据: 1、《建筑施工模板安全技术规范》JGJ162-2008 2、《建筑施工碗扣式钢管脚手架安全技术规范》JGJ166-2008 3、《混凝土结构设计规范》GB50010-2010 4、《建筑结构荷载规范》GB 50009-2001 5、《钢结构设计规范》GB 50017-2003 一、工程属性 箱梁类型双室梁A(mm) 4550 B(mm) 900 C(mm) 3000 D(mm) 1200 E(mm) 400 F(mm) 200 G(mm) 3000 H(mm) 0 I(mm) 3365 J(mm) 1040 K(mm) 220 L(mm) 1330 M(mm) 520 箱梁断面图 二、构造参数 底板下支撑小梁布置方式垂直于箱梁断面横梁和腹板底的小梁间距l2(mm) 200 箱室底的小梁间距l3(mm) 200 翼缘板底的小梁间距l4(mm) 200 标高调节层小梁是否设置否可调顶托内主梁根数n 2 主梁受力不均匀系数ζ0.5 立杆纵向间距l a(mm) 900 横梁和腹板下立杆横向间距l b(mm) 600 箱室下的立杆横向间距l c(mm) 900 翼缘板下的立杆横向间距l d(mm) 900 模板支架搭设的高度H(m) 8

立杆计算步距h(mm) 1200 立杆伸出顶层水平杆长度a(mm) 200 斜杆或剪刀撑设置剪刀撑符合《规范》JGJ166-2008设置要求 支架立杆步数8 次序横杆依次间距hi(mm) 1 350 2 1200 3 1200 4 1200 5 1200 6 1200 7 600 8 600 箱梁模板支架剖面图 三、荷载参数 新浇筑混凝土、钢筋自重标准值G1k(kN/m3) 26 模板及支撑梁(楞)等自重标准值G2k(kN/m2) 1 支架杆系自重标准值G3k(kN/m) 0.15 其它可能产生的荷载标准值G4k(kN/m2) 0.4

沥青路面结构设计与计算书

沥青路面结构设计与计算书 1 工程简介 本路段属于安图至汪清段二级公路.K0+000~K3+500,全线设计时速为60km/h的二级公路,路面采用60km/h的二级公路标准。路基宽度为10m,行车道宽度为2×3. 5m,路肩宽度为2×0.75m硬路肩、2×0.75土路肩。路面设计为沥青混凝土路面,设计年限为12年。路面设计以双轮组单轴载100KN为标准轴载,以BZZ-100表示;根据沿线工程地质特征及结合当地筑路材料确定路面结构为:路面的面层采用4cm厚细粒式沥青混凝土和6cm厚中粒式沥青混凝土,基层采用20cm厚水泥稳定碎石,底基层采用石灰粉煤灰土。 2 土基回弹模量的确定 本设计路段自然区划位于Ⅱ3区,当地土质为粘质土,由《公路沥青路面设计规范(JTG D50-2004)》表F.2查得,土基回弹模量在干燥状态取39Mpa,在中湿状态取34.5Mpa. 3 设计资料 (1)交通量年增长率:5% 设计年限:12年

。 4 设计任务 4.1 沥青路面结构组合设计 4.2 沥青路面结构层厚度计算,并进行结构层层底拉应力验算 4.3 绘制沥青路面结构图 5 沥青路面结构组合设计 5.1 路面设计以双轮组单轴载100KN 为标准轴载,以BZZ -100表示。标准轴载计算参数如表10-1所示。 5.1.1.1 轴载换算 轴载换算采用如下的计算公式: 35 .41 21∑=? ?? ??=k i i i P P n C C N ,()11 1.211c m =+?-=,计算结果如下表所示。

注:轴载小于25KN 的轴载作用不计 5.1.1.2 累计当量轴次 根据设计规范,二级公路沥青路面设计年限取12年,车道系数η=0.7,γ=5.0% 累计当量轴次: ()[][] 329841405 .07 .005.8113651)05.01(3651112 =???-+=??-+= ηγ γN N t e 次 5.1.2 验算半刚性基层层底拉应力的累计当量轴次 5.1.2.1 轴载验算 验算半刚性基层层底拉应力的轴载换算公式为:

贝雷梁支架计算书91744

西山漾大桥贝雷梁支架计算书 1.设计依据 设计图纸及相关设计文件 《贝雷梁设计参数》 《钢结构设计规范》 《公路桥涵设计规范》 《装配式公路钢桥多用途使用手册》 《路桥施工计算手册》 《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2011) 2.支架布置图 在承台外侧设置钢管桩φ609×14mm,每侧承台2根,布置形式如下: 钢管桩与承台上方设置400*200*21*13的双拼H型钢连成整体。下横梁上方设置贝雷梁,贝雷梁采用33排单层321标准型贝雷片,贝雷片横向布置间距为450mm。贝雷梁上设置上横梁,采用20#槽钢@600mm。于上横梁上设置满堂支架。 支架采用钢管式支架,箱梁两端实心部分采用100×100方木支撑,立杆为450×450mm;并在立杆底部设二个倒拔塞便于拆模。箱梁腹板下立杆采用600(横向)×300mm (纵向)布置。横杆步距为1.2m,(其它空心部位立杆采用600(横向)×600mm(纵向)

布置)。内模板支架立杆为750(横向)×750mm (纵向)布置。横杆步距为≤1.5m 。箱梁的模板采用方木与夹板组合; 两端实心及腹板部位下设100*100mm 方木间距为250mm 。翼板及其它空心部位设50*100mm 方木间距为250mm 。内模板采用50*100mm 方木间距为250mm 。夹板均采用1220*2440*15mm 的竹夹板。 具体布置见下图: 3. 材料设计参数 3.1. 竹胶板:规格1220×2440×15mm 根据《竹编胶合板国家标准》(GB/T13123-2003),现场采用15mm 厚光面竹胶板为Ⅱ类一等品,静弯曲强度≥50MPa ,弹性模量E ≥5×103MPa ;密度取3/10m KN =ρ。 3.2. 木 材 100×100mm 的方木为针叶材,A-2类,方木的力学性能指标按"公路桥涵钢结构及木结构设计规范"中的A-2类木材并按湿材乘0.9的折减系数取值,则: [σw]=13*0.9=11.7 MPa

F匝道现浇箱梁盘扣支架计算书

F匝道现浇箱梁盘扣支架计算书 本工程现浇梁板支架根据《建筑施工承插型盘扣式钢管支架安全技术规程》(JGJ231-2010)中模板支架进行计算。 箱梁梁高,顶板厚,底板厚,翼缘板根部厚,边缘厚,则恒载在腹板及端横梁位置为m2,底板为m2,翼缘板根部恒载为m2,边缘为m2;模板、机具、施工人员、倾倒、振捣混凝土的活载按5KN/m2考虑。 满堂支架底板横距120cm;腹板下横距90cm;腹板侧用60cm间距调整;翼板下横距150cm。在标准箱室段立杆纵向间距为150cm;横梁实心段纵距90cm,腹板加宽段纵距120cm。详见方案图。 主龙骨采用14#工字钢,横桥向铺设。底板次龙骨采用10#工字钢,顺向铺设,间距30cm。翼缘板主龙骨采用10#工字钢,次龙骨采用10*10cm方木,间距为20cm。 盘扣支架立杆材质为Q345B钢材,规格型号采用φ60×型钢管,截面积A=,惯性矩I= cm4、回转半径i=,容许应力[σ]=300Mpa;14#工字钢截面积A=,惯性矩I=712cm4;抵抗矩W=,容许应力[σ]=205Mpa;10#工字钢截面积A=,惯性矩I=245cm4;抵抗矩W=49cm3,容许应力[σ]=205Mpa;10*10cm方木(柏树)截面积A=100cm2,惯性矩I=8333333mm4;抵抗矩W=166667mm3,容许应力[σ W ]=17M pa,[σ j ]=;5*10cm方木截面积A=50cm2,惯性矩I=;抵抗矩W=,容许应力[σ W ] =17Mpa,[σ j ]=,弹性模量E=10*103MPa。 相关材料参数见下表:

一)模板计算 模板采用15mm厚木胶合板,抗弯强度[σw]=,抗剪强度[σj]=,弹性模量E =*103。 1、腹板、横梁位置 模板取宽度1m作为计算单元,跨径取,则模板的惯性矩I=ab3/12=1000*15* 15*15/12=281250mm4,抵抗距W=ab2/6=1000*15*15/6=37500mm3。该处荷载q=*+* 5=m 模板按3跨连续梁计算,则根据路桥计算手册可知: M=* qmax L2=***=则σ w =M/W=*106/37500=<【σ w 】= MPa σ j =A=**200/(1000*15)=<【σ j 】= 最大扰度f=*qL4/(100EI)=**2004/(100**103*281250)=<L/250=,扰度满足要求。 2、底板位置 模板取宽度1m作为计算单元,跨径取,则模板的惯性矩I=ab3/12=1000*15* 15*15/12=281250mm4,抵抗距W=ab2/6=1000*15*15/6=37500mm3。该处荷载q=*+* 5=m 模板按3跨连续梁计算,则根据路桥计算手册可知: M=* qmax L2=***=则σ w =M/W=*106/37500=<【σ w 】= MPa σ j =A=**300/(1000*15)=<【σ j 】= 最大扰度f=*qL4/(100EI)=**3004/(100**103*281250)=<L/250=,扰度满足要求。 3、翼缘板位置 模板取宽度1m作为计算单元,跨径为,则模板的惯性矩I=ab3/12=1000*15* 15*15/12=281250mm4,抵抗距W=ab2/6=1000*15*15/6=37500mm3。该处荷载q=*+* 5=模板按3跨连续梁计算,则根据路桥计算手册可知: M=* qmax L2=***=【σ w 】= MPa σ j =*A=***200/(1000*15)=<【σ j 】= 最大扰度f=*qL4/(100EI)=**2004/(100**103*281250)=<L/250=,扰度满

现浇箱梁支架计算书

怀集至阳江港高速公路怀集至郁南段一期工程X2合同段 A匝道第三联现浇支架 计算书 编制: 审核: 审批: 中铁二十局集团有限公司 怀阳高速公路X2标项目经理部 二〇一八年二月

目录 一、工程概况 (1) 二、箱梁设计情况 (1) 三、支架布设方案 (3) 四、计算依据 (4) 五、荷载计算取值 (5) 1、恒载 (5) 2、活载 (5) 六、各构件受力计算 (5) 1、荷载分块 (5) 2、荷载计算 (6) 3、支架验算 (8) (1)竹胶板验算 (8) (2)方木验算 (9) (3) I14工字钢验算 (10) (4)贝雷梁验算: (10) (5) I36工字钢验算: (13) (6)Φ529mm钢管桩计算 (15) (7) C30混凝土独立基础计算 (15)

A匝道桥第三联支架计算 一、工程概况 本桥为跨越道路而设,路线纵断较高,最大桥高约38米。桥跨设计为(25+30+30)+5×25+(25+37+25),上部结构采用预应力混凝土预制小箱梁和预应力混凝土现浇箱梁。桥墩采用柱式墩、墙式墩,桥台采用柱式台;桥墩、桥台基础均采用桩基础。桥跨起点桩号为AK0+602.418,终点桩号AK0+905.018,中心桩号AK0+753.718,桥跨全长为302.6m(包括耳墙)。本桥平面位于圆曲线、缓和曲线、缓和曲线和圆曲线上,纵断面纵坡为3.95%和0.5%。 二、箱梁设计情况 本桥第三联(25+37+25m)于AK0+862.28上跨B2匝道桥,交叉角度149°,8号墩至11号台,桥位布置见图1。全桥箱梁高度均为200cm,跨中顶板厚度25cm,底板厚度22cm,梁端顶板厚度45cm,底板厚度42cm;翼缘板宽度250cm,翼缘板板端厚度18cm,翼缘板根部厚度45cm。腹板高度113cm,厚度由梁端80cm向跨中45cm渐变。箱梁细部尺寸见表1,箱梁横断面见图2。混凝土强度为C50,工程量为569.75m3。

路面结构设计计算书

公路路面结构设计计算示例 、刚性路面设计 交通组成表 1 )轴载分析 路面设计双轮组单轴载 100KN ⑴ 以设计弯沉值为指标及验算面层层底拉力中的累计当量轴次。 ①轴载换算: 双轴一双轮组时,按式 i 1.07 10 5 p °型;三轴一双轮组时,按式 N s i N i P i 16 100 式中:N s ——100KN 的单轴一双轮组标准轴载的作用次数; R —单轴一单轮、单轴一双轮组、双轴一双轮组或三轴一双轮组轴型 i 级轴载的总重KN ; N i —各类轴型i 级轴载的作用次数; n —轴型和轴载级位数; i —轴一轮型系数,单轴一双轮组时, i =1 ;单轴一单轮时,按式 3 2.22 10 P 0.43 计算; 8 0.22 2.24 10 R 计算

N i1 NA 注:轴载小于40KN 的轴载作用不计。 ②计算累计当量轴次 根据表设计规范,一级公路的设计基准期为 30年,安全等级为二级,轮迹横向分布系数 g r 0.08,则 , :t 30 N N s (1 g r ) 1 365 834.389 (1 0.08) g r 4 4 量在100 10 ~ 2000 10中,故属重型交通。 2) 初拟路面结构横断面 由表3.0.1,相应于安全等级二级的变异水平为低 ~中。根据一级公路、重交通等级和低级变异水平等 级,查表 初拟普通混凝土面层厚度为 24cm ,基层采用水泥碎石,厚 20cm ;底基层采用石灰土,厚 20cm 。 普通混凝土板的平面尺寸为宽 3.75m ,长5.0m 。横缝为设传力杆的假缝。 式中:E t ――基层顶面的当量回弹模量,; E 0——路床顶面的回弹模量, E x ――基层和底基层或垫层的当量回弹模量, E 1,E 2 ――基层和底基层或垫层的回弹模量, h x ――基层和底基层或垫层的当量厚度, 1 365 0.2 6900125362 其交通 0.08 查表的土基回弹模量 设计弯拉强度:f cm 结构层如下: E 。 35.0MP a ,水泥碎石 E 1 1500MP a ,石灰土 E ? 550 MP a 5.0MP a E c 3.1 104 MP a 水泥混凝土 24cm E = . x .g'-iF 水泥碎石20cm E :=150OMP Q 石灰土 20cm E =53C MPa E x h 2 D x h ; E z h ; h x 12 3 1500 0.2 12 4.700(MN ( 12D ( W E t 12 6.22 0.202 1500 0.202 550 2 2 1025MP a 0.202 0.202 m 0)2 ( 1 4 3 550 0.2 (0.2 12 m) ( 1025 0.380m 1 )1 E 2h 2 0.2) 4 2 ( 1500 0.2 550 0.2 1 )1 1.51(牙) E 。 0.45 6.22 1 1.51 (^) 0.45 35 4.165 E x 、0.55 1 1.44( ) 1 E E 1 ah E ( -) 4.165 0.38635 1.44 (些)0.55 35 0.786 1025 丄 ( )3 212276MP a 35 按式() s tc 计算基层顶面当量回弹模量如下: h 12 E 1 h ;E 2 2 3) 确定基层 E , E

箱涵模板支架计算书

箱涵模板支架计算书 一、方案选择 1、通道涵施工顺序 通道涵分三次浇筑,第一次浇至底板内壁以上500mm,第二次浇至顶板以下500mm,第三次浇筑剩余部分。 2、支模架选择 经过分析,本通道涵施工决定采用满堂式模板支架,采用扣件式钢筋脚手架搭设。 顶板底模选用18㎜厚九层胶合板,次楞木为50×100,间距为300㎜,搁置在水平钢管?48×3.5上,水平钢管通过直角扣件把力传给立柱?48×3.5,立柱纵、横向间距均为500×500㎜,步距 1.8m。侧壁底模为18㎜九层胶合板,次楞木50×100,间距为200㎜,主楞采用?48×3.5钢管,间距为400mm。螺栓采用?12,间距400mm。满堂支架图如下:

具体计算如下。 二、顶板底模计算 顶板底模采用18mm厚胶合板,木楞采用50×100mm,间距为300mm。 按三跨连续梁计算 1.荷载 钢筋砼板自重:0.6×25×1.2=18KN/㎡(标准值17.85KN/㎡) 模板重:0.3×1.2=0.36KN/㎡(标准值0.30 KN/㎡) 人与设备荷载:2.5×1.4=3.50KN/㎡ 合计:q=21.9KN/㎡ 2.强度计算 弯矩:M==0.1×21.9×0.32=0.197KN·m q: 均布荷载 l:次楞木间距 弯曲应力:f ==(0.197×106)/(×1000×182)=3.64 N/mm2 M: 弯矩 W: 模板的净截面抵抗矩,对矩截面为bh2 b: 模板截面宽度,取1m h: 模板截面高度,为18mm 因此f<13.0 N/mm2 ,符合要求。 3.挠度计算

W==(0.677×(17.85+0.3)×3004)/(100×9.5×103×1000×183/12) < =0.216㎜<300/400=0.75㎜,符合要求. q:均布荷载标准值 E: 模板弹性模量,取9.5×103 I:模板的截面惯性矩,取 三、顶板下楞计算 楞木采用50×100mm,间距为300,支承楞木、立柱采用?48×3.5钢管,立柱间距为500mm。 楞木线荷载:q=21.9×0.3=6.57KN/㎡(标准值18.15×0.3=5.45N/mm2) (1)、强度计算 弯矩:M==0.1×6.57×0.52=0.164KN·m : 楞木截面宽度 弯曲应力:f ==(0.164×106)/(×50×1002)=1.968N/mm2 因此f<13.0 N/mm2,符合要求。 (2)、挠度计算 W==(0.677×(17.85+0.3)×5004)/(100×9.5×103×1000×183/12) < =0.194㎜<500/400=1.25㎜,符合要求. 四、支承顶板楞木水平钢管计算 顶板支承钢管线荷载:q=25.28×0.5=12.64KN/㎡(标准值

支架计算书

2m高标准联箱梁: 方案一:箱梁横梁下60cm(纵向)×90cm(横向)排距进行搭设,腹板及翼缘转角下120cm(纵向)×90cm(横向)排距进行搭设,过渡段空箱下(距桥墩中线6m范围)按120cm(纵向)×90cm(横向) 排距进行搭设,其余空箱下按120cm (纵向)×180cm(横向)排距进行搭设,步距采用150cm。 方案二:箱梁横梁下60cm(纵向)×120cm(横向)排距进行搭设,过渡段腹板空箱下(距桥墩中线6m范围)按90cm(纵向)×120cm(横向) 排距进行搭设,其余腹板下按120cm(纵向)×60cm(横向)排距进行搭设,空箱下按120cm(纵向)×120cm(横向)排距进行搭设,步距采用150cm。 ⑴主线桥2m高3跨标准联支架搭设示意图 宽2m高箱梁支架横断面搭设示意图(方案一)(单位mm) 宽2m高箱梁支架纵断面搭设示意图(方案一)(单位mm)

宽2m高箱梁支架搭设平面示意图(方案一)(单位mm) 宽2m高箱梁支架横断面搭设示意图(方案二)(单位mm) 宽2m高箱梁支架纵断面搭设示意图(方案二)(单位mm)

宽2m高箱梁支架搭设平面示意图(方案二)(单位mm) 支架体系计算书 1.编制依据 ⑴郑州市陇海路快速通道工程桥梁设计图纸 ⑵《建筑施工碗扣式钢管脚手架安全技术规范》(JGJ166-2008) ⑶《建筑施工模板安全技术规范》(JGJ162-2008) ⑷《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2011)。 ⑸《混凝土结构工程施工规范》(GB50666-2011) ⑹《建筑结构荷载规范》(GB50009-2012) ⑺《建筑施工手册》第四版(缩印本) ⑻《建筑施工现场管理标准》(DBJ) ⑼《混凝土模板用胶合板》(GB/T17656-2008) ⑽《冷弯薄壁型钢结构技术规范》(GB 50018-2002) ⑾《钢管满堂支架预压技术规程》(JGJ/T194—2009) 2.工程参数 根据箱梁设计、以及箱梁支架布置特点,我们选取具有代表性的箱梁,拟截取箱梁以下部位为计算复核单元,对其模板支架体系进行验算,底模厚度15mm、次龙骨100×100mm方木间距以计算为依据,主龙骨为U型钢,其下立杆间距: ⑴(主线3跨标准联,跨径3*30m),宽高,箱梁断面底板厚22cm、顶板厚 25cm,跨中腹板厚,翼板厚度为20cm。 根据不同位置采用不同的支架间距。 方案一:箱梁横梁下60cm(纵向)×90cm(横向)排距进行搭设,腹板及翼缘转角下120cm(纵向)×90cm(横向)排距进行搭设,过渡段空箱下(距桥墩中线6m范围)按120cm(纵向)×90cm(横向) 排距进行搭设,其余空箱下按120cm (纵向)×180cm(横向)排距进行搭设,步距采用150cm。 方案二:箱梁横梁下60cm(纵向)×120cm(横向)排距进行搭设,过渡段腹

现浇箱梁支架计算-完整版

金口项目各项计算参数 一、现浇箱梁支架计算 1.1箱梁简介 神山湖大桥起点桩号为K1+759.300,止点桩号为K2+810.700,全长1051.40m。主线桥采用双幅布置,左右幅分离式,桥型结构为C50现浇预应力混凝土连续梁。 表1.1 预应力箱梁结构表 箱梁结构断面 桥面标准 宽度(m) 梁高 (m) 翼缘板 悬臂长 (m) 顶板 厚(m) 底板厚 (m) 腹板厚 (m) 端横梁 宽(m) 标准段单箱两室13.49 1.9 2.5 0.25 0.22 0.5 1.5 1.2结构设计 主线桥均采用分幅布置,单幅桥标准段采用13.49m的等高斜腹板预应力混凝土连续箱梁,梁体均采用C50砼,桥梁横坡均为双向2%。 主线桥第一~三联桥跨布置为(4×30m+4×30m+3×30m),单幅桥宽由18.99m变化为27.99m;主线第四~六联、第八、九联桥跨布置为(3×30m+4×30m+3×30m)、4×30m、4×30m,单幅桥宽为13.49m。主梁上部结构采用等高度预应力钢筋混凝土箱梁,单箱双室和多室截面。30m跨径箱梁梁高1.9m,箱梁跨中部分顶板厚0.25m,腹板厚0.5m,底板厚0.22m,两侧悬臂均为2.5m,悬臂根部厚0.5m;支点处顶板厚0.5m,腹板厚0.8m,底板厚0.47m,悬臂根部折角处设置R

=0.5m的圆角,底板底面折角处设置R=0.4m的圆角。 图1.1 桥梁上部结构图 1.3地基处理 因部分桥梁斜跨神山湖,湖底地层属第四系湖塘相沉积()层,全部为流塑状淤泥含有大量的根茎类有机质、腐殖质,承载力标准值Fak=35kPa,在落地式满堂支架搭设前,先将桥梁两端进行围堰,用

路面结构设计计算书有计算过程的样本

公路路面结构设计计算示例 一、 刚性路面设计 交通组成表 1) 轴载分析 路面设计双轮组单轴载100KN ⑴ 以设计弯沉值为指标及验算面层层底拉力中的累计当量轴次。 ① 轴载换算: 16 1100∑=? ?? ??=n i i i i s P N N δ 式中 : s N ——100KN 的单轴—双轮组标准轴载的作用次数; i P —单轴—单轮、 单轴—双轮组、 双轴—双轮组或三轴—双轮组轴型i 级轴载的总重KN; i N —各类轴型i 级轴载的作用次数; n —轴型和轴载级位数; i δ—轴—轮型系数, 单轴—双轮组时, i δ=1; 单轴—单轮时, 按 式43.031022.2-?=i i P δ计算; 双轴—双轮组时, 按式22.05 1007.1--?=i i P δ; 三轴—双轮组时, 按式22.08 1024.2--?=i i P δ计算。

轴载换算结果如表所示 车型 i P i δ i N 16)(P P N i i i δ 解放CA10B 后轴 60.85 1 300 0.106 黄河JN150 前轴 49.00 43.03491022.2-?? 540 2.484 后轴 101.6 1 540 696.134 交通SH361 前轴 60.00 43.03601022.2-?? 120 12.923 后轴 2?110.00 22.052201007.1--?? 120 118.031 太脱拉138 前轴 51.40 43.0340.511022.2-?? 150 1.453 后轴 2?80.00 22.051601007.1--?? 150 0.969 吉尔130 后轴 59.50 1 240 0.059 尼桑CK10G 后轴 76.00 1 1800 2.230 16 1 )( P P N N i i i n i δ∑== 834.389 注: 轴载小于40KN 的轴载作用不计。 ② 计算累计当量轴次 根据表设计规范, 一级公路的设计基准期为30年, 安全等级为二级, 轮迹横向分布系数η是0.17~0.22取0.2, 08.0=r g , 则 [][] 362 .69001252.036508 .01 )08.01(389.8343651)1(30=??-+?=?-+=ηr t r s e g g N N 其 交通量在4 4102000~10100??中, 故属重型交通。 2) 初拟路面结构横断面 由表3.0.1, 相应于安全等级二级的变异水平为低~中。根据一级公路、 重交通等级和低级变异水平等级, 查表 4.4.6 初拟普通混凝土面层厚度为24cm, 基层采用水泥碎石, 厚20cm; 底基层采用石灰土, 厚20cm 。普通混凝土板的平面尺寸为宽3.75m, 长5.0m 。横缝为设传力杆的假缝。 3) 确定基层顶面当量回弹模量tc s E E , 查表的土基回弹模量a MP E 0.350=, 水泥碎石a MP E 15001=, 石灰土

叠合楼板支撑计算书

叠合板底(轮扣式)支撑计算书 计算依据: 1、《装配式混凝土结构技术规程》JGJ1-2014 2、《建筑施工模板安全技术规范》JGJ162-2008 3、《建筑施工承插式钢管支架安全技术规范》JGJ 231-2010 4、《混凝土结构设计规范》GB50010-2010 5、《建筑结构荷载规范》GB 50009-2012 6、《钢结构设计规范》GB 50017-2003

平面图 纵向剖面图 四、叠合楼板验算

按简支梁,取1.2m单位宽度计算。计算简图如下: W=bt2/6=1200×602/6=720000mm4 I=bt3/12=1200×603/12=21600000mm3 承载能力极限状态 q 1=γ G b (G 2k +G 3k ) (h 现浇 + h 预制 )+γ Q bQ 1k =1.2×1.2×(24+1.1) × (0.06+0.07) +1.4×1.2×3=9.739kN/m q 1静=γ G b (G 2k +G 3k ) (h 现浇 + h 预制 )=1.2×1.2×(24+1.1) × (0.06+0.07) =4.7kN/m 正常使用极限状态 q=γ G b (G 2k +G 3k ) (h 现浇 + h 预制 )+γ Q bQ 1k =1×1.2×(24+1.1) × (0.06+0.07) +1×1.2×3=7.52kN/m 1、强度验算 M max =0.125q 1 l2=0.125×9.739×1.22=1.753kN·m σ=M max /W=1.753×106/(7.2×105)=2.435N/mm2≤[f]=14.3N/mm2 满足要求! 2、挠度验算 ν max =5ql4/(384EI)=5×7.52×12004/(384×30000×216×105)=0.313mm ν max =0.313 mm≤min{1200/150,10}=8mm 满足要求! 五、主梁验算 q 1=γ G l(G 1k +(G 2k +G 3k )h )+γ Q lQ 1k =1.2×1.2×(0.05+(24+1.1) ×0.13)+1.4×1.2×3=9.811kN/m 正常使用极限状态 q=γ G l(G 1k +(G 2k +G 3k )h )+γ Q lQ 1k =1×1.2×(0.05+(24+1.1) ×0.13)+1×1.2×3=7.576kN/m

箱梁支架计算书(初稿)

箱梁支架计算书 本计算书分别以箱梁标准断面的横隔梁处及跨中截面、40m+60m+40m 跨箱梁最不利位置为例,对荷载进行计算及对其支架体系进行检算。 5.1荷载计算 5.1.1荷载分析 根据本工程现浇箱梁的结构特点,在施工过程中将涉及到以下荷载形式: ⑴ q 1—— 箱梁自重荷载,新浇混凝土密度取2600kg/m 3。 ⑵ q 2—— 箱梁内模、底模、内模支撑及外模支撑荷载,按均布荷载计算, 经计算取q 2=1.0kPa 。 ⑶ q 3—— 施工人员、施工材料和机具荷载,按均布荷载计算,当计算模板 及其下肋条时取2.5kPa ;当计算肋条下的梁时取1.5kPa ;当计算支架立柱及替他承载构件时取1.0kPa 。 ⑷ q 4—— 振捣混凝土产生的荷载,对底板取2.0kPa ,对侧板取4.0kPa 。 ⑸ q 5—— 新浇混凝土对侧模的压力。 因现浇箱梁采取水平分层以每层30cm 高度浇筑,查简明手册V 取2.5m/h 浇筑速度控制,砼入模温度T=25℃控制,因此新浇混凝土对侧模的最大压力 2 1 21022.05q V t c ββγ= =0.22×2.4×9.8×200/(25+15)×1.2×1.0×2.51/2 =49.1KN/m2=49.1KPa 式中: q5──新浇筑混凝土对模板的最大侧压力(kN/m2); c γ──混凝土的重力密度(kN/m3),取2400kg/ m3; V ──混凝土的浇筑速度(m/h ); 0t ──新浇混凝土的初凝时间(h ),可按试验确定。当缺乏试验资料时,可采用)15/(2000+=T t (T 为混凝土的温度oC ); 1β──外加剂影响修正系数。不掺外加剂时取1.0,掺具有缓凝作用的外

相关文档
最新文档