离散数学(A卷)

离散数学(A卷)
离散数学(A卷)

中国海洋大学2007-2008学年第2学期期末考试试卷

共 2 页 第2 页

3、用等价演算法求下面公式的主析取范式.(5分)

(((P ∨Q)∧?P)→Q)∧R

4、求下面公式的前束范式(5分)

?x (??x F(x )→?y G(x ,y ,z )) 5、设A={1,2,3},P(A)为A 的幂集,求偏序集的极大元、极小元,最大元和最小元。(9分)

四、证明题(4小题,共39分)

1、在命题逻辑中,构造下面推理的证明(5分) A →B ∧C,C →?B,?(?A ∧D)??D

2、在谓词逻辑中,构造下面推理的证明(8分)

每个大学生不是文科学生就是理工科学生,有的大学生是优等生,小张不是理工科学生,但是他是优等生,因而如果小张是大学生,他就是文科学生。 3、设{}1234S =,,,,并设A S S =?,在A 上定义关系R 为:

d c b a R d c,,b a,+=+?>>∈<><<

证明:(1)R 是等价关系;(2)计算等价类。(16分)

4、设A 、B 是任意集合,如果K[A]≤K[B],证明K[P(A)]≤K[P(B)]。(提示:K[A]≤K[B]意味着村在单射函数f :A →B ,构造函数g :P(A)→P(B),g(X)为X 在f 下的像,即g (X)=f (X))(10分)

(请把一、二题的答案写在下面) 一、填空题(按顺序填写)

1、 2、

3、 4、 二、判断题

1、 2、 3、 4、

《离散数学》题库及答案

《离散数学》题库与答案 一、选择或填空 (数理逻辑部分) 1、下列哪些公式为永真蕴含式?( A ) (1)?Q=>Q→P (2)?Q=>P→Q (3)P=>P→Q (4)?P∧(P∨Q)=>?P 答:在第三章里面有公式(1)是附加律,(4)可以由第二章的蕴含等值式求出(注意与吸收律区别) 2、下列公式中哪些是永真式?( ) (1)(┐P∧Q)→(Q→?R) (2)P→(Q→Q) (3)(P∧Q)→P (4)P→(P∨Q) 答:(2),(3),(4)可用蕴含等值式证明 3、设有下列公式,请问哪几个是永真蕴涵式?( ) (1)P=>P∧Q (2) P∧Q=>P (3) P∧Q=>P∨Q (4)P∧(P→Q)=>Q (5) ?(P→Q)=>P (6) ?P∧(P∨Q)=>?P 答:(2)是第三章的化简律,(3)类似附加律,(4)是假言推理,(3),(5),(6)都可以用蕴含等值式来证明出是永真蕴含式 4、公式x((A(x)B(y,x))z C(y,z))D(x)中,自由变元是( ),约束变元是( )。 答:x,y, x,z(考察定义在公式x A和x A中,称x为指导变元,A为量词的辖域。在x A和x A的辖域中,x的所有出现都称为约束出现,即称x为约束变元,A中不是约束出现的其他变项则称为自由变元。于是A(x)、B(y,x)和z C(y,z)中y为自由变元,x和z为约束变元,在D(x)中x为自由变元) 5、判断下列语句是不是命题。若是,给出命题的真值。( )

(1)北京是中华人民共和国的首都。(2) 陕西师大是一座工厂。 (3) 你喜欢唱歌吗?(4) 若7+8>18,则三角形有4条边。 (5) 前进!(6) 给我一杯水吧! 答:(1)是,T (2)是,F (3)不是(4)是,T (5)不是(6)不是(命题必须满足是陈述句,不能是疑问句或者祈使句。) 6、命题“存在一些人是大学生”的否定是( ),而命题“所有的人都是要死的”的否定是( )。 答:所有人都不是大学生,有些人不会死(命题的否定就是把命题前提中的量词“换成存在,换成”,然后将命题的结论否定,“且变或或变且”) 7、设P:我生病,Q:我去学校,则下列命题可符号化为( )。 (1) 只有在生病时,我才不去学校(2) 若我生病,则我不去学校 (3) 当且仅当我生病时,我才不去学校(4) 若我不生病,则我一定去学校答:(1)P ?(注意“只有……才……”和“除非……就……”两者都是一个 Q→ 形式的)(2)Q P→ ? P? ?(4)Q P? →(3)Q 8、设个体域为整数集,则下列公式的意义是( )。 (1) x y(x+y=0) (2) y x(x+y=0) 答:(1)对任一整数x存在整数y满足x+y=0 (2)存在整数y对任一整数x满足x+y=0 9、设全体域D是正整数集合,确定下列命题的真值: (1) x y (xy=y) ( ) (2) x y(x+y=y) ( ) (3) x y(x+y=x) ( ) (4) x y(y=2x) ( ) 答:(1)F (反证法:假若存在,则(x- 1)*y=0 对所有的x都成立,显然这个与前提条件相矛盾) (2)F (同理)(3)F (同理)(4)T(对任一整数x存在整数y满足条件y=2x 很明显是正确的)

离散数学期末试题

离散数学考试试题(A 卷及答案) 一、(10分)求(P ↓Q )→(P ∧?(Q ∨?R ))的主析取范式 解:(P ↓Q )→(P ∧?(Q ∨?R ))??(?( P ∨Q ))∨(P ∧?Q ∧R )) ?(P ∨Q )∨(P ∧?Q ∧R )) ?(P ∨Q ∨P )∧(P ∨Q ∨?Q )∧(P ∨Q ∨R ) ?(P ∨Q )∧(P ∨Q ∨R ) ?(P ∨Q ∨(R ∧?R ))∧(P ∨Q ∨R ) ?(P ∨Q ∨R )∧(P ∨Q ∨?R )∧(P ∨Q ∨R ) ?0M ∧1M ?2m ∨3m ∨4m ∨5m ∨6m ∨7m 二、(10分)在某次研讨会的休息时间,3名与会者根据王教授的口音分别作出下述判断: 甲说:王教授不是苏州人,是上海人。 乙说:王教授不是上海人,是苏州人。 丙说:王教授既不是上海人,也不是杭州人。 王教授听后说:你们3人中有一个全说对了,有一人全说错了,还有一个人对错各一半。试判断王教授是哪里人? 解 设设P :王教授是苏州人;Q :王教授是上海人;R :王教授是杭州人。则根据题意应有: 甲:?P ∧Q 乙:?Q ∧P 丙:?Q ∧?R 王教授只可能是其中一个城市的人或者3个城市都不是。所以,丙至少说对了一半。因此,可得甲或乙必有一人全错了。又因为,若甲全错了,则有?Q ∧P ,因此,乙全对。同理,乙全错则甲全对。所以丙必是一对一错。故王教授的话符号化为: ((?P ∧Q )∧((Q ∧?R )∨(?Q ∧R )))∨((?Q ∧P )∧(?Q ∧R )) ?(?P ∧Q ∧Q ∧?R )∨(?P ∧Q ∧?Q ∧R )∨(?Q ∧P ∧?Q ∧R ) ?(?P ∧Q ∧?R )∨(P ∧?Q ∧R ) ??P ∧Q ∧?R ?T 因此,王教授是上海人。 三、(10分)证明tsr (R )是包含R 的且具有自反性、对称性和传递性的最小关系。 证明 设R 是非空集合A 上的二元关系,则tsr (R )是包含R 的且具有自反性、对称性和传递性的关系。 若'R 是包含R 的且具有自反性、对称性和传递性的任意关系,则由闭包的定义知r (R )?' R 。则sr (R )?s ('R )='R ,进而有tsr (R )?t ('R )='R 。

离散数学期末试卷A卷及答案

《离散数学》试卷(A 卷) 一、 选择题(共5 小题,每题 3 分,共15 分) 1、设A={1,2,3},B={2,3,4,5},C={2,3},则C B A ⊕?)(为(C )。 A 、{1,2} B 、{2,3} C 、{1,4,5} D 、{1,2,3} 2、下列语句中哪个是真命题 ( A ) A 、如果1+2=3,则4+5=9; B 、1+2=3当且仅当4+5≠9。 C 、如果1+2=3,则4+5≠9; D 、1+2=3仅当4+5≠9。 3、个体域为整数集合时,下列公式( C )不是命题。 A 、)*(y y x y x =?? B 、)4*(=??y x y x C 、)*(x y x x =? D 、)2*(=??y x y x 4、全域关系A E 不具有下列哪个性质( B )。 A 、自反性 B 、反自反性 C 、对称性 D 、传递性 5、函数612)(,:+-=→x x f R R f 是( D )。 A 、单射函数 B 、满射函数 C 、既不单射也不满射 D 、双射函数 二、填充题(共 5 小题,每题 3 分,共15 分) 1、设|A|=4,|P(B)|=32,|P(A ?B)|=128,则|A ?B|=??2???.

2、公式)(Q P Q ?∨∧的主合取范式为 。 3、对于公式))()((x Q x P x ∨?,其中)(x P :x=1, )(x Q :x=2,当论域为{0,1,2}时,其真值为???1???。 4、设A ={1,2,3,4},则A 上共有???15????个等价关系。 5、设A ={a ,b ,c },B={1,2},则|B A |= 8 。 三、判断题(对的填T ,错的填F ,共 10 小题,每题 1 分,共计10 分) 1、“这个语句是真的”是真命题。 ( F ) 2、“张刚和小强是同桌。”是复合命题。 ( F ) 3、))(()(r q q p p ∧?∧→?∨是矛盾式。 ( T ) 4、)(T S R T R S R ??????。 ( F ) 5、恒等关系具有自反性,对称性,反对称性,传递性。 ( T ) 6、若f 、g 分别是单射,则g f ?是单射。 ( T ) 7、若g f ?是满射,则g 是满射。 ( F ) 8、若A B ?,则)()(A P B P ?。 ( T ) 9、若R 具有自反性,则1-R 也具有自反性。 ( T ) 10、B A ∈并且B A ?不可以同时成立。 (F ) 四、计算题(共 3 小题,每题 10 分,共30 分) 1、调查260个大学生,获得如下数据:64人选修数学课程,94人选修计算机课程,58人选修商贸课程,28人同时选修数学课程和商贸课程,26人同时选修数学课程和计算机课程,22人同时选修计算机课程和商贸课程,14人同时选修三门课程。问 (1)三门课程都不选的学生有多少? (2)只选修计算机课程的学生有多少?

最新离散数学期末考试试卷(A卷)

最新离散数学期末考试试卷(A卷) 一、判断题:(每题2分,共10分) (1) (1) (2)对任意的命题公式,若,则 (0) (3)设是集合上的等价关系,是由诱导的上的等价关系,则. (1) (4)任意一个命题公式都与某一个只含合取和析取两种联结词的命题公式等价. (0) (5)设是上的关系,分别表示的对称和传递闭包,则 (0) 二、填空题:(每题2分,共10分) (1) 空集的幂集的幂集为(). (2) 写出的对偶式(). (3)设是我校本科生全体构成的集合,两位同学等价当且仅当他们在 同一个班,则等价类的个数为(),同学小王所在 的等价类为(). (4)设是上的关系,则满足下列性质的哪几条:自反的,对称的,传递的,反自反的,反对称的. () (5)写出命题公式的两种等价公式( ). 三、用命题公式符号化下列命题(1)(2)(3),用谓词公式符号化下列命题(4)(5)(6).(12分) (1)(1)仅当今晚有时间,我去看电影. (2)(2)假如上午不下雨,我去看电影,否则就在家里读书. (3)你能通你能通过考试,除非你不复习. (4)(4)并非发光的都是金子. (5)(5)有些男同志,既是教练员,又是国家选手. (6)(6)有一个数比任何数都大. 四、设,给定上的两个关系和分别是 (1)(1)写出和的关系矩阵.(2)求及(12分) 五、求的主析取范式和主合取范式.(10分) 六、设是到的关系,是到的关系,证明:(8分) 七、设是一个等价关系,设对某一个,有

,证明: 也是一个等价关系.(10分) 八、(10分)用命题推理理论来论证 下述推证是否有效? 甲、乙、丙、丁四人参加比赛,如果甲获胜,则乙失败;如果丙获胜,则乙也获 胜,如果甲不获胜,则丁不失败.所以,如果丙获胜,则丁不失败. 九、(10分) 用谓词推理理论来论证下述推证. 任何人如果他喜欢步行,他就不喜欢乘汽车,每一个人或喜欢乘汽车,或喜欢骑 自行车(可能这两种都喜欢).有的人不爱骑自行车,因而有的人不爱步行 (论 域是人). 十、(8分) 利用命题公式求解下列问题. 甲、乙、丙、丁四人参加考试后,有人问他们,谁的成绩最好, 甲说:“不是我,”乙说:“是丁,”丙说:“是乙,” 丁说:“不是我.” 四人的回答只有一人符合实际,问若只有一人成绩最 好,是谁? 离散数学期末考试试卷答案(A 卷) 一、判断题:(每题2分,共10分) (1)}}{{}{x x x -∈ ( ∨) (2) 对任意的命题公式C B A ,,, 若 C B C A ∧?∧, 则B A ? ( ? ) (3)设R 是集合A 上的等价关系, L 是由R A 诱导的A 上的等价关系,则 L R =. ( ∨ ) (4) 任意一个命题公式都与某一个只含合取和析取两种联结词的命题公式等价. ( ? ) (5)设R 是A 上的关系,)(),(R t R s 分别表示R 的对称和传递闭包,则 )()(R st R ts ? ( ? ) 二、填空题:(每题2分,共10分) (1) 空集的幂集的幂集为 ( }},{{φφ). (2) 写出)()(R P Q P →∧∨的对偶式( )()(R P Q P ∧?∨∧ ). (3)设A 是我校本科生全体构成的集合,两位同学等价当且仅当他们在 同一个班,则等价类的个数为(我校本科生的班级数 ),同学小王所在 的等价类为(小王所在的班的集合). (4)设},,,{},,,{><><==3121321R A 是A 上的关系,则R 满足下列性质的哪 几条:自反的,对称的,传递的,反自反的,反对称的. ( 传递的,反自反的,反对称的 ) (5)写出命题公式Q P ?的两种等价公式 ( )()()()(P Q Q P P Q Q P ∨?∧∨?→∧→). 三、用命题公式符号化下列命题(1)(2)(3),用谓词公式符号化下列命题 (4)(5)(6).(12分) (3)(1)仅当今晚有时间,我去看电影.

《离散数学》及答案

《离散数学》+答案 一、选择或填空: 1、下列哪些公式为永真蕴含式?( ) (1)?Q=>Q→P (2)?Q=>P→Q (3)P=>P→Q (4)?P∧(P∨Q)=>?P 答:在第三章里面有公式(1)是附加律,(4)可以由第二章的蕴含等值式求出(注意与吸收律区别) 2、下列公式中哪些是永真式?( ) (1)(┐P∧Q)→(Q→?R) (2)P→(Q→Q) (3)(P∧Q)→P (4)P→(P∨Q) 答:(2),(3),(4)可用蕴含等值式证明 3、设有下列公式,请问哪几个是永真蕴涵式?( ) (1)P=>P∧Q (2) P∧Q=>P (3) P∧Q=>P∨Q (4)P∧(P→Q)=>Q (5) ?(P→Q)=>P (6) ?P∧(P∨Q)=>?P 答:(2)是第三章的化简律,(3)类似附加律,(4)是假言推理,(3),(5),(6)都可以用蕴含等值式来证明出是永真蕴含式 4、公式?x((A(x)→B(y,x))∧?z C(y,z))→D(x)中,自由变元是( ),约束变元是( )。 答:x,y, x,z(考察定义在公式?x A和?x A中,称x为指导变元,A为量词的辖域。在?x A和?x A的辖域中,x的所有出现都称为约束出现,即称x为约束变元,A中不是约束出现的其他变项则称为自由变元。于是A(x)、B(y,x)和?z C(y,z)中y为自由变元,x和z为约束变元,在D(x)中x为自由变元) 5、判断下列语句是不是命题。若是,给出命题的真值。( ) (1)北京是中华人民共和国的首都。 (2) 陕西师大是一座工厂。 (3) 你喜欢唱歌吗? (4) 若7+8>18,则三角形有4条边。 (5) 前进! (6) 给我一杯水吧! 答:(1)是,T (2)是,F (3)不是(4)是,T (5)不是(6) 44

安徽大学期末试卷离散数学上卷及参考答案.doc

安徽大学20 09 — 20 10 学年第 1 学期 《离散数学(上)》考试试卷(A 卷) (时间120分钟) 院/系 专业 姓名 学号 题 号 一 二 三 四 五 总分 得 分 一、单选题(每小题2分,共20分) 1. 设A={a,b,c},A 上二元关系R={〈a,a 〉,〈b,b 〉,〈a,c 〉},则关系R 的对称闭包S(R)是( ) A.R ∪I A B.R C.R ∪{〈c,a 〉} D.R ∩I A 2. 设X={a,b,c},I x 是X 上恒等关系,要使I x ∪{〈a,b 〉,〈b,c 〉,〈c,a 〉,〈b,a 〉}∪R 为X 上的等 价关系,R 应取( ) A. {〈c,a 〉,〈a,c 〉} B.{〈c,b 〉,〈b,a 〉} C. {〈c,a 〉,〈b,a 〉} D.{〈a,c 〉,〈c,b 〉} 3. 下列式子正确的是( ) A. ?∈? B.??? C.{?}?? D.{?}∈? 4. 设解释R 如下:论域D 为实数集,a=0, f(x,y)=x-y, A(x,y):x

离散数学试题(2006)_A(答案)

一、填空题(每小题3分,共15分) 1.设F(x):x是苹果,H(x,y):x与y完全相同,L(x,y):x=y, 则命题“没有完全相同的苹果”的符号化(利用全称量词)为?x?y(F(x)∧F(y)∧?L(x,y)→?H(x,y)). 2.命题“设L是有补格,在L中求补元运算‘′’是L中的一元 运算”的真值是0. 3.设G={e,a,b,c}是Klein四元群,H=?a?是G的子群,则商 群G/H={?a?,{b,c}}={{e,a},{b,c}}. 4.设群G=?P({a,b,c}),⊕?,其中⊕为集合的对称差运算,则 由集合{a,b}生成的子群?{a,b}? ={?,{a,b}}. 5.已知n阶无向简单图G有m条边,则G的补图有n(n-1)/2-m 条边. 二、选择题(每小题3分,共15分) 1.命题“只要别人有困难(p),小王就会帮助他(q),除非困难已 经解决了(r)”的符号化为【B】A.?(p∧r)→q.B.(?r∧p)→q. C.?r→(p∧q).D.?r→(q→ p). 2.设N为自然数集合,“≤”为通常意义上的小于等于关系,则 偏序集?N,≤?是【C】 A.有界格.B.有补格. C.分配格.D.布尔代数. 3.设n (n≥3) 阶无向图G=?V,E?是哈密尔顿图,则下列结论中 不成立的是【D】A.?V1?V,p(G-V1)≤|V1|.B.|E|≥n. C.无1度顶点.D.δ(G)≥n/2. 4.设A={a,b,c},在A上可以定义个二元运算,其 中有个是可交换的,有个是幂等的.【A】A.39,36,36.B.39,36,33. C.36,36,33.D.39,36,39. 5.下列图中是欧拉图的有【C】 A.K4,3.B.K6. C.K5.D.K3,3. 三、计算与简答题(每小题8分,共40分) 1.利用等值演算方法求命题公式(p∨q) → (q→p)的主合取范式; 利用该主合取范式求公式的主析取范式,并指出该公式的成真赋值和成假赋值. (p∨q) → (q→p) ??(p∨q)∨(?q∨p) ?(?p∧?q)∨(?q∨p) ?(?p∨?q∨p)∧(?q∨?q∨p) ??q∨p?p∨?q ?M1 此为公式的主合取范式. 该公式的主析取范式是m0∨m2∨m3. 公式的成真赋值为00,10,11. 公式的成假赋值为01. 哈尔滨工程大学试卷 考试科目:离散数学(041121,041131-32) 考试时间:14:00-16:30 1

离散数学期末试题及答案完整版

离散数学期末试题及答 案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

326《离散数学》期末考试题(B ) 一、填空题(每小题3分,共15分) 1.设,,},,{{b a b a A =?},则-A ? = ( ),-A {?} = ( ), )(A P 中的元素个数=|)(|A P ( ). 2.设集合A 中有3个元素,则A 上的二元关系有( )个,其中有( )个是A 到A 的函数. 3.谓词公式))()(())()((y P y Q y x Q x P x ?∧?∧→?中量词x ?的辖域为( ), 量词y ?的辖域为( ). 4.设}24,12,8,6,4,3,2,1{24=D ,对于其上的整除关系“|”,元素( )不存在补元. 5.当n ( )时,n 阶完全无向图n K 是平面图,当当n 为( )时,n K 是欧拉图. 二.1. 若n B m A ==||,||,则=?||B A ( ),A 到B 的2元关系共有( )个,A 上的2元关系共有( )个. 2. 设A = {1, 2, 3}, f = {(1,1), (2,1), (3, 1)}, g = {(1, 1), (2, 3), (3, 2)}和h = {(1, 3), (2, 1), (3, 1)},则( )是单射,( )是满射,( )是双射. 3. 下列5个命题公式中,是永真式的有( )(选择正确答案的番号). (1)q q p p →→∧)(; (2))(q p p ∨→; (3))(q p p ∧→; (4)q q p p →∨∧?)(; (5)q q p →→)(. 4. 设D 24是24的所有正因数组成的集合,“|”是其上的整除关系,则3的补元( ),4的补元( ),6的补元( ).

离散数学作业答案

第一章 1.假定A是ECNU二年级的学生集合,B是ECNU必须学离散数学的学生的集合。请用A 和B表示ECNU不必学习离散数学的二年级的学生的集合。 2.试求: (1)P(φ) (2)P(P(φ)) (3)P(P(P(φ))) 3.在1~200的正整数中,能被3或5整除,但不能被15整除的正整数共有多少个? 能被5整除的有40个, 能被15整除的有13个, ∴能被3或5整除,但不能被15整除的正整数共有 66-13+40-13=80个。 第三章 1.下列语句是命题吗? (1)2是正数吗? (2)x2+x+1=0。 (3)我要上学。 (4)明年2月1日下雨。 (5)如果股票涨了,那么我就赚钱。 2.请用自然语言表达命题(p?→r)∨(q?→r),其中p、q、r为如下命题: p:你得流感了 q:你错过了最后的考试

3.通过真值表求p→(p∧(q→p))的主析取范式和主合取范式。 4.给出p→(q→s),q,p∨?r?r→s的形式证明。 第四章 1.将?x(C(x)∨?y(C(y)∧F(x,y)))翻译成汉语,其中C(x)表示x有电脑,F(x,y) 表示x和y是同 班同学,个体域是学校全体学生的集合。 解: 学校的全体学生要么自己有电脑,要么其同班同学有电脑。 2.构造?x(P(x)∨Q(x)),?x(Q(x)→?R(x)),?xR(x)??xP(x)的形式证明。 解: ①?xR(x) 前提引入 ②R(e) ①US规则 ③?x(Q(x)→?R(x)) 前提引入 ④Q(e) →?R(e) ③US规则 ⑤?Q (e) ②④析取三段论 ⑥?x(P(x)∨Q(x)) 前提引入 ⑦P(e) ∨Q(e) ⑥US规则 ⑧P(e) ⑤⑦析取三段论 ⑨?x (P(x)) ⑧EG规则 第五章

离散数学试卷A答案

第1学期 《离散数学》试卷 A (试卷共6页,答题时间120分钟) 一、选择题(每小题 2分,共 20 分。请将答案填在下面的表格内) 1、从集合分类的角度看,命题公式可分为( ) A.永真式、矛盾式 B. 永真式、可满足式、矛盾式 C. 可满足式、矛盾式 D. 永真式、可满足式 2、设B 不含有x ,))((B x A x →?等值于 ( ) A. B x xA →?)( B.))((B x A x ∨? C.B x xA →?)( D.))((B x A x ∧? 3、设S,T,M 是集合,下列结论正确的是( ) A .如果S ∪T=S ∪M ,则T=M B .如果S-T=Φ,则S=T C .S S S =⊕ D .)(~T S T S I =- 4、设R 是集合A 上的偏序关系,则R 不一定是( ) A.自反的 B. 对称的 C. 反对称的 D. 传递的

5 设R 为实数集,定义R 上4个二元运算,不满足结合律的是( )。 A. f 1(x,y)= x+y B. f 2(x,y)=x-y C. f 3(x,y)=xy D. f 4(x,y)=max{x,y} 6、设是一个格,则它不满足( ) A.交换律 B. 结合律 C. 吸收律 D. 消去律 7、设A={1,2},则群>?<),(A P 的单位元和零元是( ) A. Φ与A B. A 与Φ C. {1}与Φ D. {1}与A 8、下列编码是前缀码的是( ). A.{1,11,101} B.{1,001,0011} C. {1,01,001,000} D.{0,00,000} 9、下图中既是欧拉图又是哈密顿图的是( ) A . 9K B .10K C .3,2K D .3,3K 10、下图所示的二叉树中序遍历的结果是( ) A .abcde B .edcba C .bdeca D .badce 二、填空题(每题3分,共24分) 1、含3个命题变项的命题公式的主合取范式为76430M M M M M ∧∧∧∧, 则它的主析取范式为 。(的形势表示成m m ∨) 2、〈4Z ,⊕〉模4加群, 则3是 阶元,3⊕3= ,3的逆元是 。

离散数学期末试卷

北京工业大学经管学院期末试卷 《离散数学》(A) 学号姓名:成绩 一、单项选择题(每题2分,共18分) 1.令P:今天下雪了,Q:路滑,则命题“虽然今天下雪了,但是路不.滑”可符号化为(D)A.P→Q B.P∨Q C.P∧Q D.P∧Q p→q,蕴涵式,表示假设、条件、“如果,就”。 “→”与此题无关 2. 关于命题变元P和Q的极大项M1表示( C )。书P1520,此题换作p、q更容易理解 A.┐P∧Q B.┐P∨Q p∨┐q 01 1 M1 ∨┐Q∧┐Q 3.设R(x):x是实数;S():x小于y。用谓词表达下述命题:不存在最小的实数。其中错误的表达式是:(D) 4.在论域{}中与公式(x?)A(x)等价的不含存在量词的公式是(B) A.)b( )a( A∨ A A )a( A∧ B. )b( C. )b( )b( A→ A A )a( A→ D. )a( 5.下列命题公式为重言式的是(C) A.Q→(P∧Q)B.P→(P∧Q) C.(P∧Q)→P D.(P∨Q)→Q 牢记→真假条件,作为选择题可直接代入0、1,使选项出现1→0,排除。熟练的可直接看出C不存在1→0的情况 6. 设{1,2,3},{},下列二元关系R为A到B的函数的是( A ) A. {<1>,<2>,<3>} B. {<1>,<2>} C. {<1>,<1>,<2>,<3>} D. {<1>,<2>,<3>,<1>} 7.偏序关系具有性质(D)背

A.自反、对称、传递 B.自反、反对称 C.反自反、对称、传递 D.自反、反对称、传递 8.设R 为实数集合,映射:,R R σ→2 ()21,x x x σ=-+-则σ 是( D ). (A) 单射而非满射 (B) 满射而非单射 (C) 双射 (D) 既不是单射也不是满射. 书P96.设函数f :A→B (1)若,则f 是满射的【即值域为B 的全集,在本题中为R ,该二次函数有最高点,不满足】 (2)若对于任何的x 12∈A , x 1≠x 2,都有f(x 1)≠f(x 2),则称f 是单射的【即真正一一对应,甚至不存在一个y 对应多个x 。显然,本题为二次函数,不满足】 (3)若f 既是满射的,又是单射的,则称f 是双射的【本题中两个都不满足,既不是单射也不是满射】 二、填空题(每空2分,共22分) 1.设Q 为有理数集,笛卡尔集×Q ,*是S 上的二元运算,?,∈S, *=<, >, 则*运算的幺元是<1,0>。?∈S, 若a≠0, 则的逆元是<1>。书P123定义 2.在个体域D 中,公式)x (xG ?的真值为假当且仅当某个G(x)的真值为假,公式)x (xG ?的真值为假,当且仅当所有G(x)的真值都为假。 3.给定个体域为整数域,若F (x ):表示x 是偶数,G (x ):表示x 是奇数;那么,)x (G )x ()x (F )x (?∧?是一个 永真式 ;而))x (G )x (F )(x (∧?是一个 永假式 。 4.设{}{}===)R (r ,c ,b ,b ,a R A ,c ,b ,a A 则上的二元关系  {<>,<>,<>,<>,<>,<>} ; s(R)= {<>,<>,<>,<>} 。 书P89、P85. 自反闭包:r(R) = R U R 0 ={<>,<>} U {<>,<>,<>,<>} ={<>,<>,<>,<>,<>,<>} 对称闭包:s(R) = R U R -1 = {<>,<>} U {<>,<>} = {<>,<>,<>,<>} 传递闭包:t(R) = 2 3U…… 5. 设{1,2,3}{},则从X 到Y 的不同的函数共有8个. 书P96,B 上A 的概念:

离散数学课后答案

离散数学课后答案 习题一 6.将下列命题符号化。 (1)小丽只能从框里那一个苹果或一个梨. (2)这学期,刘晓月只能选学英语或日语中的一门外语课. 答: (1)(p Λ?q )ν(?pΛq)其中p:小丽拿一个苹果,q:小丽拿一个梨(2)(p Λ?q )ν(?pΛq)其中p:刘晓月选学英语,q:刘晓月选学日语 14.将下列命题符号化. (1) 刘晓月跑得快, 跳得高. (2)老王是山东人或河北人. (3)因为天气冷, 所以我穿了羽绒服. (4)王欢与李乐组成一个小组. (5)李辛与李末是兄弟. (6)王强与刘威都学过法语. (7)他一面吃饭, 一面听音乐. (8)如果天下大雨, 他就乘班车上班. (9)只有天下大雨, 他才乘班车上班. (10)除非天下大雨, 他才乘班车上班. (11)下雪路滑, 他迟到了. (12)2与4都是素数, 这是不对的. (13)“2或4是素数, 这是不对的”是不对的. 答: (1)p∧q, 其中, p: 刘晓月跑得快, q: 刘晓月跳得高. (2)p∨q, 其中, p: 老王是山东人, q: 老王是河北人. (3)p→q, 其中, p: 天气冷, q: 我穿了羽绒服. (4)p, 其中, p: 王欢与李乐组成一个小组, 是简单命题. (5)p, 其中, p: 李辛与李末是兄弟. (6)p∧q, 其中, p: 王强学过法语, q: 刘威学过法语. (7)p∧q, 其中, p: 他吃饭, q: 他听音乐. (8)p→q, 其中, p: 天下大雨, q: 他乘班车上班. (9)p→q, 其中, p: 他乘班车上班, q: 天下大雨. (10)p→q, 其中, p: 他乘班车上班, q: 天下大雨. (11)p→q, 其中, p: 下雪路滑, q: 他迟到了. (12) ? (p∧q)或?p∨?q, 其中, p: 2是素数, q: 4是素数. (13) ? ? (p∨q)或p∨q, 其中, p: 2是素数, q: 4是素数. 16. 19.用真值表判断下列公式的类型: (1)p→ (p∨q∨r) (2)(p→?q) →?q

离散数学习题答案

离散数学习题答案 习题二及答案:(P38) 5、求下列公式的主析取范式,并求成真赋值: (2)()()p q q r ?→∧∧ 解:原式()p q q r ?∨∧∧q r ?∧()p p q r ??∨∧∧ ()()p q r p q r ??∧∧∨∧∧37m m ?∨,此即公式的主析取范式, 所以成真赋值为011,111。 6、求下列公式的主合取范式,并求成假赋值: (2)()()p q p r ∧∨?∨ 解:原式()()p p r p q r ?∨?∨∧?∨∨()p q r ??∨∨4M ?,此即公式的主合取范式, 所以成假赋值为100。 7、求下列公式的主析取范式,再用主析取范式求主合取范式: (1)()p q r ∧∨ 解:原式()(()())p q r r p p q q r ?∧∧?∨∨?∨∧?∨∧ ()()()()()()p q r p q r p q r p q r p q r p q r ?∧∧?∨∧∧∨?∧?∧∨?∧∧∨∧?∧∨∧∧ ()()()()()p q r p q r p q r p q r p q r ??∧?∧∨?∧∧∨∧?∧∨∧∧?∨∧∧ 13567m m m m m ? ∨∨∨∨,此即主析取范式。 主析取范式中没出现的极小项为0m ,2m ,4m ,所以主合取范式中含有三个极大项0M ,2M ,4M ,故原式的主合取范式024M M M ?∧∧。 9、用真值表法求下面公式的主析取范式: (1)()()p q p r ∨∨?∧ 解:公式的真值表如下:

由真值表可以看出成真赋值的情况有7种,此7种成真赋值所对应的极小项的析取即为主析取范式,故主析取范式 1234567m m m m m m m ?∨∨∨∨∨∨ 习题三及答案:(P52-54) 11、填充下面推理证明中没有写出的推理规则。 前提:,,,p q q r r s p ?∨?∨→ 结论:s 证明: ① p 前提引入 ② p q ?∨ 前提引入 ③ q ①②析取三段论 ④ q r ?∨ 前提引入 ⑤ r ③④析取三段论 ⑥ r s → 前提引入 ⑦ s ⑤⑥假言推理

大学《离散数学》期末考试试卷及答案-(1)

安徽大学2006-2007学年第1学期 《离散数学》期末考试试卷(A卷) (时间120分钟) 开课院(系、部)姓名学号. 一、选择题(每小题2分,共20分)1.下列语句中,哪个是真命题()A、 4 2= + x; B、我们要努力学习; C、如果ab为奇数,那么a是奇数,或b是偶数; D、如果时间流逝不止,你就可以长生不老。 2.下列命题公式中,永真式的是() A、P Q P→ →) (; B、P P Q∧ → ?) (; C、Q P P? ? ∧) (; D、) (Q P P∨ →。3.在谓词逻辑中,令) (x F表示x是火车;) (y G表示y是汽车;) , (y x L表示x比y快。 命题“并不是所有的火车比所有的汽车快”的符号表示中哪些是正确的()

I.)),()()((y x L y G x F y x →∧??? II.)),()()((y x L y G x F y x ?∧∧?? III. )),()()((y x L y G x F y x ?→∧?? A 、仅I ; B 、仅III ; C 、I 和II ; D 、都不对。 4.下列结论正确的是:( ) A 、若C A B A =,则 C B =; B 、若B A B A ?,则B A =; C 、若C A B A =,则C B =; D 、若B A ?且D C ?,则D B C A ?。 5.设φ=1A ,}{2φ=A ,})({3φρ=A ,)(4φρ=A ,以下命题为假的是( ) A 、42A A ∈; B 、31A A ?; C 、24A A ?; D 、34A A ∈。 6.设R 是集合},,,{d c b a A =上的二元关系, },,,,,,,,,,,{><><><><><><=b d d b a c c a a d d a R 。下列哪些命题为真( ) I.R R ?是对称的 II. R R ?是自反的 III. R R ?不是传递的 A 、仅I ; B 、仅II ; C 、I 和II ; D 、全真。

离散数学期末试卷及答案

一.判断题(共10小题,每题1分,共10分) 在各题末尾的括号内画 表示正确,画 表示错误: 1.设p、q为任意命题公式,则(p∧q)∨p ? p ( ) 2.?x(F(y)→G(x)) ? F(y)→?xG(x)。( ) 3.初级回路一定是简单回路。( ) 4.自然映射是双射。( ) 5.对于给定的集合及其上的二元运算,可逆元素的逆元是唯一的。( ) 6.群的运算是可交换的。( ) 7.自然数集关于数的加法和乘法构成环。( ) 8.若无向连通图G中有桥,则G的点连通度和边连通度皆为1。( ) 9.设A={a,b,c},则A上的关系R={,}是传递的。( ) 10.设A、B、C为任意集合,则A?(B?C)=(A?B)?C。( ) 二、填空题(共10题,每题3分,共30分) 11.设p:天气热。q:他去游泳。则命题“只有天气热,他才去游泳”可符号 化为。 12.设M(x):x是人。S(x):x到过月球。则命题“有人到过月球”可符号 化为。 13.p?q的主合取范式是。 14.完全二部图K r,s(r < s)的边连通度等于。 15.设A={a,b},,则A上共有个不同的偏序关系。 16.模6加群中,4是阶元。 17.设A={1,2,3,4,5}上的关系R={<1,3>,<1,5>,<2,5>,<3,3>,<4,5>},则R的传递闭包t(R) = 。. 18.已知有向图D的度数列为(2,3,2,3),出度列为(1,2,1,1),则有向图D的入度

列为。 19.n阶无向简单连通图G的生成树有条边。 20.7阶圈的点色数是。 三、运算题(共5小题,每小题8分,共40分) 21.求?xF(x)→?yG(x,y)的前束范式。 22.已知无向图G有11条边,2度和3度顶点各两个,其余为4度顶点,求G 的顶点数。 23.设A={a,b,c,d,e,f},R=I A?{,},则R是A上的等价关系。求等价类[a]R、[c]R及商集A/R。 24.求图示带权图中的最小生成树,并计算最小生成树的权。 25.设R*为正实数集,代数系统< R*,+>、< R*,·>、< R*,/>中的运算依次为普通加法、乘法和除法运算。试确定这三个代数系统是否为群?是群者,求其单位元及每个元素的逆元。 四、证明题(共3小题,共20分) 26 (8分)在自然推理系统P中构造下述推理的证明: 前题:p→(q∨r),?s→?q,p∧?s 结论:r 27 (6分)设是群,H={a| a∈G∧?g∈G,a*g=g*a},则是G的子群 28.(6分)设G是n(≥3)阶m条边、r个面的极大平面图,则r=2n-4。

离散数学答案

02任务_000 1 试卷总分:100 测试时间:0 单项选择题 一、单项选择题(共10 道试题,共100 分。) 1. 设集合A = {1, a },则P(A) = ( ). A. {{1}, {a}} B. {,{1}, {a}} C. {{1}, {a}, {1, a }} D. {,{1}, {a}, {1, a }} 2. 集合A={1, 2, 3, 4}上的关系R={|x=y且x, y A},则R的性质为(). A. 不是自反的 B. 不是对称的 C. 传递的 D. 反自反 3. 若集合A={ a,{a},{1,2}},则下列表述正确的是( ). A. {a,{a}}A B. {1,2}A C. {a}A D. A 4. 设集合A ={1 , 2, 3}上的函数分别为:f = {<1, 2>,<2, 1>,<3, 3>},g = {<1, 3>,<2, 2>,<3, 2>},h = {<1, 3>,<2, 1>,<3, 1>}, 则h =(). A. f?g B. g?f C. f?f D. g?g

5. 设集合A={1 , 2 , 3 , 4}上的二元关系R={<1, 1>,<2, 2>,<2, 3>,<4, 4>},S={<1, 1>,<2, 2>,<2, 3>,<3, 2>,<4, 4>},则S是R的()闭包. A. 自反 B. 传递 C. 对称 D. 自反和传递 6. 若集合A={1,2},B={1,2,{1,2}},则下列表述正确的是( ). A. A B,且A B B. B A,且A B C. A B,且A B D. A B,且A B 7. 设集合A={1,2,3,4,5},偏序关系≤是A上的整除关系,则偏序集上的元素5 是集合A的(). A. 最大元 B. 最小元 C. 极大元 D. 极小元 8. 若集合A的元素个数为10,则其幂集的元素个数为(). A. 1024 B. 10 C. 100 D. 1 9. 如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有()个. A. 0 B. 2 C. 1

离散数学期末试卷(A)

离散数学期末试卷(A) XXXX大学XX学院2007 ~2008学年第一学期《离散数学》期末试卷年级专业题号得分适用年级专业:2006级软件工程专业试卷说明:闭卷考试,考试时间120分钟一、单项选择题1.下列语句中只有不是命题。C A.今年元旦会下雪。B.1+1=10。C.嫦娥一号太棒了!D.嫦娥奔月的神话已成为现实。2.p?q 的主合取范式是。 B A.(p?q)?(p??q)B.(p??q)?(?p?q) C.(p?q)?(?p??q)D.(p?q)?(?p?q) 3.与p? q等值的命题公式是。D A.?p?q B.p??q C.p??q D.?p?q 4.在一阶逻辑中使用的量词只有个。B A.1B.2 C.3D.4 5.??xA(x)?。C A.??xA(x) B.?x?A(x) C.?x?A(x)

D.?xA(x) 6.若|A|=4,则|P(A)|=。 C A.4B.8C.16 D.64 7.设A、B、C为任意集合,集合的对称差运算不具有的性质是。 D A.A?B = B?A B.(A?B)?C = B?(A?C) 班级学号一二三姓名____________ 四总分C.A?A = ?D.A?A = A 8.二元关系是。B A.两个集合的笛卡儿积B.序偶的集合C.映射的集合D.以上都不是9.下面关于函数的叙述中正确的是。D A.函数一定是满射B.函数一定是单射C.函数不是满射就单射D.函数是特殊的关系10.半群中的二元运算一定满足=。B A.交换律B.结合律C.分配律D.幂等律11.环中有个二元运算。 B A.一B.二C.三D.四12.群与独异点的区别是。 C A.满足交换律B.满足结

离散数学期末考试试题及答案

离散数学试题(B卷答案1) 一、证明题(10分) 1)(P∧(Q∧R))∨(Q∧R)∨(P∧R)R 证明: 左端(P∧Q∧R)∨((Q∨P)∧R) ((P∧Q)∧R))∨((Q∨P)∧R) ((P∨Q)∧R)∨((Q∨P)∧R) ((P∨Q)∨(Q∨P))∧R ((P∨Q)∨(P∨Q))∧R T∧R(置换)R 2) x (A(x)B(x))xA(x)xB(x) 证明:x(A(x)B(x))x(A(x)∨B(x)) x A(x)∨xB(x) xA(x)∨xB(x) xA(x)xB(x) 二、求命题公式(P∨(Q∧R))(P∧Q∧R)的主析取范式和主合取范式(10分)。 证明:(P∨(Q∧R))(P∧Q∧R)(P∨(Q∧R))∨(P∧Q∧R)) (P∧(Q∨R))∨(P∧Q∧R) (P∧Q)∨(P∧R))∨(P∧Q∧R) (P∧Q∧R)∨(P∧Q∧R)∨(P∧Q∧R))∨(P∧Q∧R))∨(P∧Q∧R) m0∨m1∨m2∨m7 M3∨M4∨M5∨M6 三、推理证明题(10分) 1)C∨D,(C∨D)E, E(A∧B),(A∧B)(R∨S)R∨S证明:(1) (C∨D) E ?P (2) E(A∧B) ??P (3) (C∨D)(A∧B) T(1)(2),I (4) (A∧B)(R∨S)??P (5) (C∨D)(R∨S) ? T(3)(4),I (6) C∨D P (7) R∨S T(5),I 2) x(P(x)Q(y)∧R(x)),xP(x)Q(y)∧x(P(x)∧R(x)) 证明(1)xP(x) P

(2)P(a) T(1),ES (3)x(P(x)Q(y)∧R(x)) P (4)P(a)Q(y)∧R(a) T(3),US (5)Q(y)∧R(a) T(2)(4),I (6)Q(y) T(5),I (7)R(a) T(5),I (8)P(a)∧R(a) T(2)(7),I (9)x(P(x)∧R(x)) T(8),EG (10)Q(y)∧x(P(x)∧R(x)) T(6)(9),I 四、某班有25名学生,其中14人会打篮球,12人会打排球,6人会打篮球和排球,5人会打篮球和网球,还有2人会打这三种球。而6个会打网球的人都会打另外一种球,求不会打这三种球的人数(10分)。 解:A,B,C分别表示会打排球、网球和篮球的学生集合。则|A|=12,|B|=6,|C|=14,|A∩C|=6,|B∩C|=5,|A∩B∩C|=2。 先求|A∩B|。 ∵6=|(A∪C)∩B|=|(A∩B)∪(B∩C)|=|(A∩B)|+|(B∩C)|-|A∩B∩C|=|(A∩B)|+5-2,∴|(A∩B)|=3。 于是|A∪B∪C|=12+6+14-6-5-3+2=20。不会打这三种球的人数25-20=5。五、已知A、B、C是三个集合,证明A-(B∪C)=(A-B)∩(A-C)(10分)。 证明:∵x A-(B∪C) x A∧x(B∪C) xA∧(xB∧x C) (x A∧x B)∧(x A∧xC) x(A-B)∧x(A-C) x(A-B)∩(A-C) ∴A-(B∪C)=(A-B)∩(A-C) 六、已知R、S是N上的关系,其定义如下:R={| x,yN∧y=x2} R*S={| x,y N∧y=x2+1} S*R={<x,y>| x,yN∧y=(x+1)2},R{1,2}={<1,1>,<2,4>},S[{1,2}]={1,4}。 七、设R={<a,b>,,<c,a>},求r(R)、s(R)和t(R) (15分)。 解:r(R)={,,,<b,b>,

相关文档
最新文档