电力电子元件简介

电力电子元件简介
电力电子元件简介

電力電子元件簡介
Introduction to Power Electronic Devices
C. M. Liaw Department of Electrical Engineering National Tsing Hua University Hsinchu, Taiwan, ROC.
兩段式電熱控制
(應用 Power diode)
AC source Power diode AC source
Load
無段式電熱控制 (應用 SCR)
SCR
P
Load
Firing circuit
Diode: Uncontrolled turn-on and turn-off
SCR: Controlled turn-on and uncontrolled turn-off
不可控制交流輸出電壓 故控制性能較差
可控制交流輸出電壓 故控制性能較佳
Page 1

常用功率半導體元件之額定(表二) Voltage/current ratings Switching frequency (speed) Switching time On-state resistance (or on-state voltage/current)
功率半導體元件 功率半導體元件
(A) 閘流體 (Thyristor) 或矽控整流器 (Silicon Controlled Rectifier, SCR) : Controlled turn-on, uncontrolled turn-off (B) 雙向閘流體 (Bidirectional Thyristor 或 TRIAC) (C) GTO (Gate Turn-off Thysistor) (D) 基體閘換向閘流體 (Integrated Gate-Commutated Thyristor, IGCT): It is introduced by ABB in 1997. It is a high-voltage, hard-driven, asymmetrical-blocking GTO with unity gain. The gate drive circuit is built-in on the device module. (E) 功率電晶體 (Power BJT) : Current control device (F) IGBT (Insulated Gate Bipolar Transistor): - Combines the conduction characteristic of BJT and the control characteristic of the MOSFET (G) MOS控制閘流體 (MOS -controlled Thyristor, MCT): - Combines the load characteristic of the thyristor and the control characteristic of the MOSFET - Low on-state voltage (H) 功率金氧半電晶體 (Power MOSFET) : Voltage control device (I) 其它
耐壓 耐流
操作 速度
Page 2

功率半導體元件之控制特性 功率半導體元件之控制特性
(1) Uncontrolled turn-on and off: (diode) (2) Controlled turn-on and uncontrolled turn-off: (SCR) (3) Controlled turn-on and off (Controllable switches): (GTO, IGCT, MCT, BJT, IGBT, MOSFET) (4) Continuous gate signal requirement: (IGCT, BJT, IGBT, MOSFET) (5) Pulse gate signal requirement: (MCT, SCR, TRIAC, GTO) (6) Bipolar voltage-withstanding capability: (SCR) (7) Unipolar voltage-withstanding capability: (GTO, IGCT, MCT, BJT, IGBT, MOSFET) (8) Bidirectional current capability: (TRIAC) (9) Unidirectional current capability: (SCR, GTO, IGCT, MCT, BJT, IGBT, MOSFET, diode)
Power Semiconductors
Classification of state-of-the-art Power Semiconductors
SiC
Page 3

常用功率半導體元件之符號 及操作特性
功率換流器之典型結構 功率換流器之典型結構
(強電)
Power source (AC, DC) Input filter Power Converter Output filter
Output source (to load)
(濾波及/或 功因控制)
Command
(隔離、驅動)
Switching Control Signal Generator Feedback
Loads: Power supplies Motor drives
型 式: 型 式:
(弱電)
? 交流至交流交流至交流換流器 (Cycloconverter) (含交流至直流至交流換流器) ? 交流至直流換流器 (Converter): Phase control, integral cycle control ? 直流至交流換流器 (Inverter): VVVF, VVFF ? 直流至直流換流器 (Chopper): PWM control, FM control
Page 4

如何設計一個電力電子設備 ? 如何設計一個電力電子設備 ?
(1) 由機械負載特性選定馬達及換流器之型式。 (2) 設計組裝電力電路:選定功率半導體元件、組裝換流器 及其保護電路。 (3) 決定並設計適當之換流器切換控制方式及電路。 (4) 設計邏輯決策電路、隔離電路及觸發驅動電路。 (5) 設計輸入及輸出濾波電路(功因控制電路)。 (6) 感測元件及其信號放大處理電路之組立。 (7) 電力電子系統之動態模式建立:推導或由量測估算得之。 (8) 閉迴路控制系統之設計及實作。 (9) 組裝(注意接地與屏蔽等考量安排設計)。
常用功率半導體簡介
Power diodes:
General purpose (for high-power rectification) High speed (for switching application) Schottky (for extra-low voltage rectification)
Thyristors Power transistors
Page 5

SCR (矽控整流器)
閘流體 (Thyristor)- 矽控整流器 (Silicon Controlled Rectifier,
SCR) : Controlled turn-on, uncontrolled turn-off Construction, symbol, equivalent circuit, triggering control, v-i characteristics:
A A P N G G K K P N G A P N N P P N K
Q1
A
i c1 = ib2
G
i c2 = ib1
Q2
K
Two-transistor model
Page 6

SCR之逆偏
v AK > V RB (V RWM ) T Breakdown
i AK
A P N G P N K
i AK ? 0 RB FB RB
+
VRB (VRWM )
IH
iG1 > iG2 > iG3
VFB (VBO )
vAK
SCR之順偏 順偏:
A P N G P
i AK i AK
FB
RB
+
iGK
N K
FB
-
VRB (VRWM )
IH
iG1 > iG2 > iG3
VFB (VBO )
vAK
Page 7

Two-transistor model
ib T i c T ib T i c T (Current is cumulatively amplified)
Normally triggered: 當 v AK > 0 時,加以適當之 i GS > 0 Abnormally triggered: High dv/dt High temperature v AK > V FB
A
Q1
i c1 = i b 2
G Q2
i c2 = i b1
K
觸發控制 Turn on: Turn off:
當 v AK > 0 時,加以適當之 i GS > 0
i AK < I H ( Holding current )
在使用時,須注意外加之電壓 正負峰值不可大於順向崩潰 電壓 V FB 及逆向崩潰電壓 V RB 。
i AK
VRB (VRWM )
IH
iG1 > iG2 > iG3
VFB (VBO )
vAK
Page 8

沒有 Gate 之SCR
T
蕭克萊二極體 (Shockley diode)
on 及 off:
v AK 3 V
FB
T ON ,
i AK < I H T OFF
符號:
A
K
Triac (AC Thyristor)
A three-terminal, five layer, bilateral semiconductor device. Bidirectional TRIode AC thyristor.
TRIAC
T 1
Tab electrically connected to T2
T 2
G
Page 9

Triac 之簡易測試
Power supply TRIAC IT48TH + + T1 T2 G
TRIAC
A three-terminal, five layer, bilateral semiconductor device.
T2
T 2 ? T1 : P2 - N2 - P - N1 1 T 1 ? T 2 : P - N2 - P2 - N3 1
P2
N3
N2
P1
N1 T1
N4
G
Page 10

TRIAC: 為兩個反並接之SCR,可於正負半週觸發導通, 為具 bidirectional current capability 之元件。
G
符號:
T1 ( A )
T2 ( K )
G
T
T1
T2
觸發控制 Turn on: Turn off:
當 v AK > 0 時,加以適當之 i GK > 0 當 v AK < 0 時,加以適當之 i GK < 0
i AK < I H ( Holding current )
i AK
+
vT = vT 2-T1
-
T2
T1
iT = iT 2 - T 1
G iG
VRB
IH
iG 1 > iG 2 > iG 3
VFB
vT
(v AK )
2 -T1
Typical Applications of SCR and TRIAC n Converter power control (1) Phase control (2) Integral cycle control n SSR (Solid State Relay) or AC Switch
Page 11

可控開關 (Controllable Switches)
元件:(1) Forced-commutated SCR
(2) BJT, MOSFET, IGBT, MCT, ...
iT Control signal
+ vT -
所欲之特性: 穩態:
(1) Off : Leakage current ˉˉ (2) On : R ON
V ON
Conduction loss ˉˉ
pT =vT ′ iT
暫態:
vT
Switching speed -Switching losses ˉˉ
iT
V ON
R
ON
ˉˉ ,
V
ON
ˉˉ
p T = v T ′ iT
t
iT
turn-off turn-on (Switching losses)
Power BJT
Current-controlled device
IB
B
C
IC
E
Turn on:
I B 3 I C ,sat / b min
Page 12

Power BJT
Voltage ratings: (primary breakdown)
BV SUS ,
BV CEO ,
BV CBO
VCB , max (E is open circuited)
VCE , max (B is open circuited)
VCE ,max when I C 1 0
Secondary breakdown: Caused by large di/dt at turn-on instant.
Power BJT
b is smaller compared with small-signal BJTs.
Hard saturation and quasi-saturation: Quasi-saturation:
I B = I C ,sat / b min
iC IB v CE
Hard-saturation: Conduction loss Switching speed I B > I C , sat / b min
Page 13

Power MOSFET
Voltage-controlled device Turn on: v GS > v GS , th i G ,steady - state ? 0 (very small)
v GS
v GS , th
D
v GS
Parasitic C
G
S
v GS
,max
Power MOSFET > v GS > v GS ,th
v GS - T i D ,sat - , Ron ˉ , Pswitching 2. R DS ,on = k BV DS5 ~ 2 .7
n Light load:
Switching loss dominant : v GS ˉ T P g = Q g vGS f sw ˉ Q g = total gate charge
iD
1 / Ron
vGS2 > vGS1
vGS1 iD2 > iD1 iD1 v DS
n Heavy load:
Conduction loss dominant : v GS - T R DS ,on ˉ
Page 14

Cool MOSFET
It is a new revolutionary technology for high voltage power MOSFETs. It implements a compensation structure in the vertical drift region of a MOSFET in order to improve the on-state resistance.
R DS ,on ˉ , Q g ˉ , q JA slightly higher (~ 10%) Pulse current rating is lower.
Page 15

Page 16

Page 17

Page 18

Page 19

Power MOSFET 與 Power BJT 之比較
Power MOSFET (Enhancement mode)
D G + 觸發控制 Turn on: - S
v GS
導通 特 性:
{ { { {
R ON V ON
v GS > v GS ,th , i G , steady - state ? 0( very small )
為電壓控制元件 需有特殊驅動電路以加速 switching speed
VON = 0, RON 較大,但綜合導通損較大。 電阻之溫度係數為正,無 Thermal run away 問題,並聯分流特性佳。
Power BJT
C B 觸發控制 Turn on:
I B > I C,sat / bmin , 為電流控制元件
需有電流放大之驅動電路, switching speed 比MOSFET慢
V ON = V CE , sat , R ON
IC
E 導通 特 性:
IB
較小,但綜合導通損 較MOSFET小。
電阻之溫度係數為負,有 Thermal run away 問題,不易並聯分流。
Page 20

常用电力电子器件特性测试

实验二:常用电力电子器件特性测试 (一)实验目的 (1)掌握几种常用电力电子器件(SCR、GTO、MOSFET、IGBT)的工作特性;(2)掌握各器件的参数设置方法,以及对触发信号的要求。 (二)实验原理 图1.MATLAB电力电子器件模型 MATLAB电力电子器件模型使用的是简化的宏模型,只要求器件的外特性与实际器件特性基本相符。MATLAB电力电子器件模型主要仿真了电力电子器件的开关特性,并且不同电力电子器件模型都具有类似的模型结构。 模型中的电阻Ron和直流电压源Vf分别用来反映电力电子器件的导通电阻和导通时的门槛电压。串联电感限制了器件开关过程中的电流升降速度,模拟器件导通或关断时的动态过程。MATLAB电力电子器件模型一般都没有考虑器件关断时的漏电流。 在MATLAB电力电子器件模型中已经并联了简单的RC串联缓冲电路,在参数表中设置,名称分别为Rs和Cs。更复杂的缓冲电路则需要另外建立。对于MOSFET模型还反并联了二极管,在使用中要注意,需要设置体内二极管的正向压降Vf和等效电阻Rd。对于GTO和IGBT需要设置电流下降时间Tf和电流拖尾时间Tt。 MATLAB的电力电子器件必须连接在电路中使用,也就是要有电流的回路,

但是器件的驱动仅仅是取决于门极信号的有无,没有电压型和电流型驱动的区别,也不需要形成驱动的回路。尽管模型与实际器件工作有差异,但使MATLAB电力电子器件模型与控制连接的时候很方便。MATLAB的电力电子器件模型中含有电感,因此具有电流源的性质,所以在模块参数中还包含了IC即初始电流项。此外也不能开路工作。 含电力电子模型的电路或系统仿真时,仿真算法一般采用刚性积分算法,如ode23tb、ode15s。电力电子器件的模块上,一般都带有一个测量输出端口,通过输出端m可以观测器件的电压和电流。本实验将电力电子器件和负载电阻串联后接至直流电源的两端,给器件提供触发信号,使器件触发导通。 (三)实验内容 (1)在MATLAB/Simulink中构建仿真电路,设置相关参数。 (2)改变器件和触发脉冲的参数设置,观察器件的导通情况及负载端电压、器件电流的变化情况。 (四)实验过程与结果分析 1.仿真系统 Matlab平台 2.仿真参数 (1)Thyristor参数设置: 直流源和电阻参数:

常用电子元器件简介

1.常用电子元器件简介 (1)名称·电路符号·文字符号 (2)555时基集成电路 555时基集成电路是数字集成电路,是由21个晶体三极管、4个晶体二极管和16个电阻组成的定时器,有分压器、比较器、触发器和放电器等功能的电路。它具有成本低、易使用、适应面广、驱动电流大和一定的负载能力。在电子制作中只需经过简单调试,就可以做成多种实用的各种小电路,远远优于三极管电路。 555时基电路国内外的型号很多,如国外产品有:NE555、LM555、A555和CA555等;国内型号有5GI555、SL555和FX555等。它们的内部结构和管脚序号都相同,因此,可以直接互相代换。但要注意,并不是所有的带555数字的集成块都是时基集成电路,如MMV 555、AD555和AHD555等都不是时基集成电路。 常见的555时基集成电路为塑料双列直插式封装(见图5-36),正面印有555字样,左下角为脚①,管脚号按逆时针方向排列。

(图5-36) 555时基集成电路各管脚的作用:脚①是公共地端为负极;脚②为低触发端TR,低于1/3电源电压以下时即导通;脚③是输出端V,电流可达2000mA;脚④是强制复位端MR,不用可与电源正极相连或悬空;脚⑤是用来调节比较器的基准电压,简称控制端VC,不用时可悬空,或通过0.01μF电容器接地;脚⑥为高触发端TH,也称阈值端,高于2/3电源电压发上时即截止;脚⑦是放电端DIS;脚⑧是电源正极VC。 555时基集成电路的主要参数为(以NE555为例)电源电压4.5~16V。 输出驱动电流为200毫安。 作定时器使用时,定时精度为1%。 作振荡使用时,输出的脉冲的最高频率可达500千赫。 使用时,驱动电流若大于上述电流时,在脚③输出端加装扩展电流的电路,如加一三极管放大。 (3)音乐片集成电路 它同模仿动物叫声和人语言集成电路都是模拟集成电路,采用软包装,即将硅芯片用黑的环氧树脂封装在一块小的印刷电路板上。

电力电子器件

电力电子器件 电力电子器件(Power Electronic Device)是指可直接用于处理电能的主电路中,实现电能的变换或控制的电子器件。主电路:在电气设备或电力系统中,直接承担电能的变换或控制任务的电路。 电力电子器件的特征 ◆所能处理电功率的大小,也就是其承受电压和电流的能力,是其最重要的参数,一般都远大于处理信息的电子器件。 ◆为了减小本身的损耗,提高效率,一般都工作在开关状态。 ◆由信息电子电路来控制,而且需要驱动电路。 ◆自身的功率损耗通常仍远大于信息电子器件,在其工作时一般都需要安装散热器。 电力电子器件的功率损耗 断态损耗 通态损耗:是电力电子器件功率损耗的主要成因。 开关损耗:当器件的开关频率较高时,开关损耗会随之增大而可能成为器件功率损耗的主要因素。分为开通损耗和关断损耗。 电力电子器件在实际应用中,一般是由控制电路、驱动电路和以电力电子器件为核心的主电路组成一个系统。 电力电子器件的分类 按照能够被控制电路信号所控制的程度 ◆半控型器件:指晶闸管(Thyristor)、快速晶闸管、逆导晶闸管、光控晶闸管、双向晶闸管。 ◆全控型器件:IGBT、GTO、GTR、MOSFET。 ◆不可控器件:电力二极管(Power Diode)、整流二极管。 按照驱动信号的性质 ◆电流驱动型:通过从控制端注入或者抽出电流来实现导通或者关断的控制。Thyrister,GTR,GTO。 ◆电压驱动型:仅通过在控制端和公共端之间施加一定的电压信号就可实现导通或者关断的控制。电力MOSFET,IGBT,SIT。 按照驱动信号的波形(电力二极管除外) ◆脉冲触发型:通过在控制端施加一个电压或电流的脉冲信号来实现器件的开通或者关断的控制。晶闸管,SCR,GTO。 ◆电平控制型:必须通过持续在控制端和公共端之间施加一定电平的电压或电流信号来使器件开通并维持在通断状态。GTR,MOSFET,IGBT。 按照载流子参与导电的情况 ◆单极型器件:由一种载流子参与导电。MOSFET、SBD(肖特基势垒二极管)、SIT。 ◆双极型器件:由电子和空穴两种载流子参与导电。电力二极管,PN结整流管,SCR,GTR,GTO。 ◆复合型器件:由单极型器件和双极型器件集成混合而成,也称混合型器件。IGBT,MCT。 GTO:门极可关断晶闸管。SITH(SIT):静电感应晶体管。 GTR:电力晶体管。MCT:MOS控制晶体管。 ITBT:绝缘栅双极晶体管。MOSFET:电力场效应晶体管。 电力二极管 二极管的基本原理——PN结的单向导电性 ◆当PN结外加正向电压(正向偏置)时,在外电路上则形成自P区流入而从N区流出的电流,称为正向电流IF,这就是PN结的正向导通状态。 ◆当PN结外加反向电压时(反向偏置)时,反向偏置的PN结表现为高阻态,几乎没有电流流过,被称为反向截止状态。 ◆PN结具有一定的反向耐压能力,但当施加的反向电压过大,反向电流将会急剧增大,破坏PN结反向偏置为截止的工作状态,这就叫反向击穿。

电力电子器件图形符号

P325 计算题: √1.三相半波可控整流电路,变压器二次侧相电压为20Ⅴ,带大电感负载,无续流二极管,试计算α=45°时的输出电压,画出输出电压u d 的波形,如负载电流为200 A ,求晶闸管所承受的最高电压和晶闸管电流的平均值I T(AV)、有效值I VT 。 解: U d =1.17U 2φcos α=1.17×20×cos45°=16.5 V U TV =√6U 2φ=√6×20=49 Ⅴ I d =200 A I VT =I d /√3=200/√3=115.5 A I dVT =I d /3=200÷3=66.7 A 2.三相桥式全控整流电路如下图所示,已知:U d =220V ,R d =5Ω,大电感负载。 求:(1)变压器二次侧线电压U 21,及变压器容量S (2)选择晶闸管,并写出型号。(在α=0°时i 2倍裕量) 解:(1)变压器二次侧线电压U 21及变压器容量S : U d =2.34 U 2φCOS α (α=0°) U 2φ=220/(2.34×1) = 94V I d =U 2φ/R d =44 A I 2=3 2 I d =0.817×44=35.9≈36 A 所以,变压器的线电压和容量为: U 21=√3U 2φ=√3×94=162.8 S =√3U 21=√3×162.8×36=10151.2=10.2 kVA (2)选择晶闸管: I 2=3 1 I d =0.577×44=25.4A I dT(AV)=2×57.1VT I =2×25.4/1.57 = 32.36 A 取50 A U TM =√6 U 2φ=2.54×94=230V 取2倍裕量500 V 。 选择晶闸管KP50-5。

电力电子器件

新型电力电子器件 电力电子器件(Power Electronic Device)又称为功率半导体器件,用于电能变换和电能控制电路中的大功率(通常指电流为数十至数千安,电压为数百伏以上)电子器件。又称功率电子器件。20世纪50年代,电力电子器件主要是汞弧闸流管和大功率电子管。60年代发展起来的晶闸管,因其工作可靠、寿命长、体积小、开关速度快,而在电力电子电路中得到广泛应用。70年代初期,已逐步取代了汞弧闸流管。80年代,普通晶闸管的开关电流已达数千安,能承受的正、反向工作电压达数千伏。在此基础上,为适应电力电子技术发展的需要,又开发出门极可关断晶闸管、双向晶闸管、光控晶闸管、逆导晶闸管等一系列派生器件,以及单极型MOS功率场效应晶体管、双极型功率晶体管、静电感应晶闸管、功能组合模块和功率集成电路等新型电力电子器件。 各种电力电子器件均具有导通和阻断两种工作特性。功率二极管是二端(阴极和阳极)器件,其器件电流由伏安特性决定,除了改变加在二端间的电压外,无法控制其阳极电流,故称不可控器件。普通晶闸管是三端器件,其门极信号能控制元件的导通,但不能控制其关断,称半控型器件。可关断晶闸管、功率晶体管等器件,其门极信号既能控制器件的导通,又能控制其关断,称全控型器件。后两类器件控制灵活,电路简单,开关速度快,广泛应用于整流、逆变、斩波电路中,是电动机调速、发电机励磁、感应加热、电镀、电解电源、直接输电等电力电子装置中的核心部件。这些器件构成装置不仅体积小、工作可靠,而且节能效果十分明显(一般可节电10%~40%)。 单个电力电子器件能承受的正、反向电压是一定的,能通过的电流大小也是一定的。因此,由单个电力电子器件组成的电力电子装置容量受到限制。所以,在实用中多用几个电力电子器件串联或并联形成组件,其耐压和通流的能力可以成倍地提高,从而可极大地增加电力电子装置的容量。器件串联时,希望各元件能承受同样的正、反向电压;并联时则希望各元件能分担同样的电流。但由于器件的个异性,串、并联时,各器件并不能完全均匀地分担电压和电流。所以,在电力电子器件串联时,要采取均压措施;在并联时,要采取均流措施。 电力电子器件工作时,会因功率损耗引起器件发热、升温。器件温度过高将缩短寿命,甚至烧毁,这是限制电力电子器件电流、电压容量的主要原因。为此,必须考虑器件的冷却问题。常用冷却方式有自冷式、风冷式、液冷式(包括油冷式、水冷式)和蒸发冷却式等。 1. 超大功率晶闸管 晶闸管(SCR)自问世以来,其功率容量提高了近3000倍。现在许多国家已能稳定生产8kV / 4kA的晶闸管。日本现在已投产8kV / 4kA和6kV / 6kA的光触发晶闸管(LTT)。美国和欧洲主要生产电触发晶闸管。近十几年来,由于自关断器件的飞速发展,晶闸管的应用领域有所缩小,但是,(由于它的高电压、大电流特性,它在HVDC、静止无功补偿(SVC)、大功率直流电源及超大功率和高压变频调速应用方面仍占有十分重要的地位。预计在今后若干年内,晶闸管仍将在高电压、大电流应用场合得到继续发展。 现在,许多生产商可提供额定开关功率36MVA (6kV/ 6kA )用的高压大电流GTO。传统GTO的典型的关断增量仅为3~5。GTO关断期间的不均匀性引起的"挤流效应"使其在关断期间dv/dt必须限制在500~1kV/μs。为此,人们不得不使用体积大、昂贵的吸收电路。另外它的门极驱动电路较复杂和要求较大的驱动功率。但是,高的导通电流密度、高的阻断电压、阻断状态下高的dv/dt耐量和有可能在内部集成一个反并二极管,这些突出的优点仍使人们对GTO感到兴趣。到目前为止,在高压(VBR>3.3kV)、大功率(0.5~20 MVA)牵引、工业和电力逆变器中应用得最为普遍的是门控功率半导体器件。目前,GTO的最高研究水平为6in、6kV / 6kA以及9kV/10kA。为了满足电力系统对1GVA以上的三相逆变功率电压源的需

电力电子器件

第二讲电力电子器件的概述与电力二极管 2.1 电力电子器件概述 2.1.1 电力电子器件的概念 主电路(Main Power Circuit)—电气设备或电力系统中,直接承担电能的变换或控制任务的电路。 电力电子器件(Power Electronic Device)—可直接用于处理电能的主电路中,实现电能的变换或控制的电子器件。 广义上电力电子器件可分为电真空器件(Electron Device)和半导体器件(Semiconductor Device)两类。 电真空器件(Electron Device):自20世纪50年代以来,真空管(Vacuum Valve)仅在频率很高(如微波)的大功率高频电源中还在使用,而电力半导体器件已取代了汞弧整流器(Mercury Arc Rectifier)、闸流管(Thyratron)等电真空器件,成为绝对主力。因此,电力电子器件目前也往往专指电力半导体器件。 电力半导体器件(Power Semiconductor Device)所采用的主要材料仍然是硅。 2.1.2 电力电子器件的特征 同处理信息的电子器件相比,电力电子器件的一般特征: 1)能处理电功率的大小,即承受电压和电流的能力是最重要的参数 其处理电功率的能力小至毫瓦级,大至兆瓦级, 大多都远大于处理信息的电子器件。 2)电力电子器件一般都工作在开关状态 导通时【通态(On-State)】阻抗(Impedance)很小,接近于短路,管压降(V oltage Across the Tube)接近于零,而电流由外电路决定 阻断时【断态(Off-State)】阻抗很大,接近于断路,电流几乎为零,而管子两端电压由外电路决定 电力电子器件的动态特性(Dynamic Speciality)【也就是开关特性(Switching Speciality)】和参数,也是电力电子器件特性很重要的方面,有些时候甚至上升为第一位的重要问题。 作电路分析时,为简单起见往往用理想开关来代替 3)电力电子器件往往需要由信息电子电路来控制 在主电路和控制电路之间,需要一定的中间电路对控制电路的信号进行放大,这就是电力电子器件的驱动电路(Driving Circuit)。 4)为保证不致于因损耗散发的热量导致器件温度过高而损坏,不仅在器件

电力电子器件

电力电子器件 第二堂课是电力电子器件和功率二极管的概述。 2.1电力电子设备概述 2.1.1电力电子的概念 主电源电路——在电气设备或电力系统中直接承担转换或控制电能任务的电路。 电力电子设备——一种可直接用于主电路处理电能并实现电能转换或控制的电子设备。 广义地说,功率电子器件可以分为两类:电子器件和半导体器件。 电动真空装置:自XXXX时代以来,真空阀仅用于高功率、高频率的高频电源(如微波),而功率半导体器件已取代汞弧整流器、闸流管等电动真空装置成为绝对主力。因此,功率电子器件也经常被称为功率半导体器件。 硅仍然是功率半导体器件中使用的主要材料。 2.1.2电力电子设备的特性 与处理信息的电子设备相比,电力电子设备的一般特征是: 1)可处理的电量,即承受电压和电流的能力,是最重要的参数。它处理电力的能力小到毫瓦级,大到兆瓦级,大多比处理信息的电子设备大得多。 2)电力电子设备通常工作在开关状态 导通时,阻抗(导通状态)非常小,接近短路,管上的电压接近零,电流由外部电路决定。

阻塞时,[关态]阻抗非常大,接近开路,电流几乎为零,管上的电压由外部电路决定。 电力电子器件的动态特性(即开关特性)和参数也是电力电子器件特性的非常重要的方面,有时甚至上升到第一个重要问题。 在电路分析中,理想的开关经常被用来代替电力电子设备。为了简单起见,电力电子设备通常由信息电子电路控制。 在主电路和控制电路之间,需要一个中间电路来放大控制电路的信号,控制电路是电力电子装置的驱动电路。 4)为了确保装置不会因散热引起的温度过高而损坏,不仅在装置中 封装注重散热设计,散热器通常在工作时安装。 导通时,器件上有一定的导通压降,形成导通损耗。 在阻塞期间,小漏电流流过器件,形成关断状态损耗。 在器件导通或关断的切换过程中,会产生导通损耗和关断损耗,统称为开关损耗。 对于某些设备,驱动电路注入的功率也是设备发热的原因之一。通常,电力电子器件的漏电流很小,因此导通损耗是器件功耗的主要原因 当器件的开关频率较高时,开关损耗会增加,并可能成为器件功率损耗的主要因素。 2.1.3使用电力电子设备的系统组成 电力电子系统:由控制电路、驱动电路和主电路组成,以电力电子器件为核心。 控制电路驱动电路V2主电路检测电路V1LR

电力电子器件考试题及答案

一、填空题。 1、电子技术包括(信息电子)技术和(电力电子)技术。 2、电力电子器件可以分为(电真空器件)和(半导体器件)两类,目前广泛使用的是基于(半导体材料)的电力电子器件。 3、电力电子器件工作在(开关)状态。 4、电力电子器件的损耗包括(通态损耗)、(断态损耗)和(开关损耗)。 5、按照电力电子器件能够被控制电路所控制的程度,可将电力电子器件分为(半控型器件)、(全控型器件)和(不可控器件)。 6、写出以下电力电子器件的中英文名臣:常见的半控型器件为(晶闸管Thyristor),常见的不可控器件为(电力二极管Power Diode),常见的全控型器件为(门极可关断晶闸管GTO)、(电力晶体管GTR)、(电力场效应晶体管Power MOSFET)和(绝缘栅双极晶体管IGBT)。 7、电力二极管的基本工作原理为(PN结的单项导电性),常见的电力二极管主要有(普通二极管Genera; Purpose Diode)、(快恢复二极管Fast Recovery Diode-FRD)、(肖特基二极管SBD)。 8、晶闸管又被称作(可控硅整流器SCR),有(螺栓型)和(平板型)两种封装结构,引出(阳极A)、(阴极K)和(门极G)三个连接端。 9、写出下列晶闸管的派生器件的英文缩写:快速晶闸管(FST),双向晶闸管(TRIAC),逆导晶闸管(RCT),光控晶闸管(LTT)。 10、GTO为(PNPN四层半导体)结构,外部引出阳极、阴极和门极,结构上类似晶闸管,当给门极施加正的脉冲电流时,GTO导通,若要使其关断,则需(在门极施加负的脉冲电流)。GTO的(电压)和(电流)容量较大,多用在(兆瓦级)

最新常用电子元件简介

常用电子元件简介

常用电子元件简介 一、电阻 电阻在电路中用“R”加数字表示,如:R15表示编号为15的电阻。电阻在电路中的主要作用为分流、限流、分压、偏置、滤波(与电容器组合使用)和阻抗匹配等。 1、参数识别:电阻的单位为欧姆(Ω),倍率单位有:千欧(KΩ),兆欧(MΩ)等。换算方法是:1兆欧=1000千欧=1000000欧电阻的参数标注方法有3种,即直标法、色标法和数标法。 a、数标法主要用于贴片等小体积的电路,如:472 表示47×102Ω(即4.7K); 104则表示100K b、色环标注法使用最多,现举例如下: 四色环电阻五色环电阻(精密电阻) 2、电阻的色标位置和倍率关系如下表所示:颜色有效数字倍率允许偏差(%) 银色 / 10-2 ±10 金色 / 10-1 ±5 黑色 0 100 / 棕色 1 101 ±1 红色 2 102 ±2 橙色 3 103 / 黄色 4 104 / 绿色 5 105 ±0.5 蓝色 6 106 ±0.2 紫色 7 107 ±0.1 灰色 8 108 / 白色 9 109 +5至 -20 无色 / / ±20 二、电容 1、电容在电路中一般用“C”加数字表示(如C25表示编号为25的电容)。电容是由两片金属膜紧靠,中间用绝缘材料隔开而组成的元件。电容的特性主要是隔直流通交流。 电容容量的大小就是表示能贮存电能的大小,电容对交流信号的阻碍作用称为容抗,它与交流信号的频率和电容量有关。 容抗XC=1/2πf c (f表示交流信号的频率,C表示电容容量)电话机中常用电容的种类有电解电容、瓷片电容、贴片电容、独石电容、钽电容和涤纶电容等。 2、识别方法:电容的识别方法与电阻的识别方法基本相同,分直标法、色标法和数标法3种。电容的基本单位用法拉(F)表示,其它单位还有:毫法(mF)、微法(uF)、纳法(nF)、皮法(pF)。 其中:1法拉=103毫法=106微法=109纳法=1012皮法 容量大的电容其容量值在电容上直接标明,如10 uF/16V 容量小的电容其容量值在电容上用字母表示或数字表示 字母表示法:1m=1000 uF 1P2=1.2PF 1n=1000PF

电力电子元件简介

電力電子元件簡介
Introduction to Power Electronic Devices
C. M. Liaw Department of Electrical Engineering National Tsing Hua University Hsinchu, Taiwan, ROC.
兩段式電熱控制
(應用 Power diode)
AC source Power diode AC source
Load
無段式電熱控制 (應用 SCR)
SCR
P
Load
Firing circuit
Diode: Uncontrolled turn-on and turn-off
SCR: Controlled turn-on and uncontrolled turn-off
不可控制交流輸出電壓 故控制性能較差
可控制交流輸出電壓 故控制性能較佳
Page 1

常用功率半導體元件之額定(表二) Voltage/current ratings Switching frequency (speed) Switching time On-state resistance (or on-state voltage/current)
功率半導體元件 功率半導體元件
(A) 閘流體 (Thyristor) 或矽控整流器 (Silicon Controlled Rectifier, SCR) : Controlled turn-on, uncontrolled turn-off (B) 雙向閘流體 (Bidirectional Thyristor 或 TRIAC) (C) GTO (Gate Turn-off Thysistor) (D) 基體閘換向閘流體 (Integrated Gate-Commutated Thyristor, IGCT): It is introduced by ABB in 1997. It is a high-voltage, hard-driven, asymmetrical-blocking GTO with unity gain. The gate drive circuit is built-in on the device module. (E) 功率電晶體 (Power BJT) : Current control device (F) IGBT (Insulated Gate Bipolar Transistor): - Combines the conduction characteristic of BJT and the control characteristic of the MOSFET (G) MOS控制閘流體 (MOS -controlled Thyristor, MCT): - Combines the load characteristic of the thyristor and the control characteristic of the MOSFET - Low on-state voltage (H) 功率金氧半電晶體 (Power MOSFET) : Voltage control device (I) 其它
耐壓 耐流
操作 速度
Page 2

电力电子课后习题答案-部分

2-11试列举你所知道的电力电子器件,并从不同的角度对这些电力电子器件进行分类。目前常用的控型电力电子器件有哪些? 答:1. 按照器件能够被控制的程度,分为以下三类: (1)半控型器件:晶闸管及其派生器件 (2)全控型器件:IGBT,MOSFET,GTO,GTR (3)不可控器件:电力二极管 2. 按照驱动信号的波形(电力二极管除外) (1)脉冲触发型:晶闸管及其派生器件 (2)电平控制型:(全控型器件)IGBT,MOSFET,GTO,GTR 3. 按照器件内部电子和空穴两种载流子参与导电的情况分为三类: (1)单极型器件:电力 MOSFET,功率 SIT,肖特基二极管 (2)双极型器件:GTR,GTO,晶闸管,电力二极管等 (3)复合型器件:IGBT,MCT,IGCT 等 4.按照驱动电路信号的性质,分为两类: (1)电流驱动型:晶闸管,GTO,GTR 等 (2)电压驱动型:电力 MOSFET,IGBT 等 常用的控型电力电子器件:门极可关断晶闸管, 电力晶闸管,电力场效应晶体管,绝缘栅双极晶体管。 2-15 对晶闸管触发电路有哪些基本要求?晶闸管触发电路应满足下列要求: 1)触发脉冲的宽度应保证晶闸管的可靠导通; 2)触发脉冲应有足够的幅度,对户外寒冷场合,脉冲电流的幅度应增大为器件最大触发电流的3-5倍,脉冲前沿的陡度也需增加,一般需达到1-2A/US。 3)所提供的触发脉冲应不超过晶闸管门极的电压、电流和功率定额,且在门极伏安特性的可靠出发区域之内。 4)应有良好的抗干扰性能、温度稳定性及与主电路的电气隔离。 2-18 IGBT、GTR、GTO和电力MOSFET的驱动电路各有什么特点? IGBT驱动电路的特点是:驱动电路具有较小的输出电阻,IGBT是电压驱动型器件,IGBT 的驱动多采用专用的混合集成驱动器。 GTR驱动电路的特点是:驱动电路提供的驱动电流有足够陡的前沿,并有一定的过冲,这样可加速开通过程,减小开通损耗;关断时,驱动电路能提供幅值足够大的反向基极驱动电流,并加反偏截止电压,以加速关断速度。 GTO驱动电路的特点是:GTO要求其驱动电路提供的驱动电流的前沿应有足够的幅值和陡度,且一般需要在整个导通期间施加正门极电流,关断需施加负门极电流,幅值和陡度要求更高,其驱动电路通常包括开通驱动电路,关断驱动电路和门极反偏电路三部分。 电力MOSFET驱动电路的特点:要求驱动电路具有较小的输入电阻,驱动功率小且电路简单。 2、晶闸管对触发脉冲的要求是要有足够的驱动功率、触发脉冲前沿要陡幅值要高和触发脉冲要与晶闸管阳极电压同步。 1.晶闸管两端并联R、C吸收回路的主要作用有哪些?其中电阻R的作用是什么? 答:R、C回路的作用是:吸收晶闸管瞬间过电压,限制电流上升率,动态均压作用。R的作用为:使L、C形成阻尼振荡,不会产生振荡过电压,减小晶闸管的开通电流上升率,降低开通损耗。、

电力电子元件总结

? SR ★静态特性(伏安特性) @ ★动态特性 关断特性 开通特性 ^ SCR 等效电路 , ★伏安特性 当IG=0,Ubo >UAK>0 Icbo ≈0,正向阻断,如果UAK>Ubo,,Icbo>0器件开通。当IG ↑,Ubo ↓。当IG

GTO V1、V2的共基极电流 增益分别是α1、。 α1+α2=1是器件临 则关断。 关断。动态特性 < 开通过程:开通过程与普通晶闸管类似,UAK>0,IG> 0。 关断过程:IG<0,GTO 关断。门极负脉冲电流幅值越大,前沿越陡, ts就越短。使门极负脉冲的后沿缓慢衰减,在tt阶段仍能保持适当的负电压,则可以缩短尾部时间。 静态特性

在共发射极接法时的典型输出特性分为截止区、放大区和饱和区三个区域。在电力电子电路中,GTR工作在开关状态,即工作在截止区或饱和区。动态特性 , 开通过程 需要经过延迟时间td 和上升时间tr,二者之和为开通时间ton。增大基极驱动电流ib 的幅值并增大dib/dt,可以缩短延迟时间,同时也可以缩短上升时间,从而加快开通过程。 关断过程 需要经过储存时间ts 和下降时间tf,二者之和为关断时间toff。减小导通时的饱和深度以减小储存的载流子,或者增大基极抽取负电流Ib2的幅值和负偏压,可以缩短储存时间,从而加快关断速度。GTR

都短很多。MOSFET (1)静态特性! (2)动态特性 @

(1)静态特性IGBT : MOSFET (2)动态特性

电力电子器件的发展

电力电子器件的发展浅析 引言 电子技术被认为是现代科技发展的主力军,电力电子就是电力电子学,又称功率电子学,是利用电子技术对电力机械或电力装置进行系统控制的一门技术性学科,主要研究电力的处理和变换,服务于电能的产生、输送、变换和控制。(电力电子的发展动向)电力电子技术包括功率半导体器件与IC技术、功率变换技术及控制技术等几个方面,其中电力电子器件是电力电子技术的重要基础,也是电力电子技术发展的“龙头”。 电力电子器件(Power Electronic Device)又称为功率半导体器件,用于电能变换和电能控创电路中的大功率(通常指电流为数十至数千安,电压为数百伏以上)电子器件。广义上电力电子器件可分为电真空器件(Electron Device)和半导体器件(Semiconductor Device)两类。 1 电力电子器件 1.1概述 1957年可控硅(晶闸管)的问世,为半导体器件应用于强电领域的自动控制迈出了重要的一步,电力电子开始登上现代电气传动技术舞台,这标志着电力电子技术的诞生。20世纪60年代初已开始使用电力电子这个名词,进入70年代晶闸管开始派生各种系列产品,普通晶闸管由于其不能自关断的特点,属于半控型器件,被称作第一代电力电子器件。随着理论研究和工艺水平的不断提高,以门极可关断晶闸管(GTO)、电力双极性晶体管(BJT)和电力场效应晶体管(Power-MOSFET)为代表的全控型器件迅速发展,被称作第二代电力电子器件。80年代后期,以绝缘栅极双极型晶体管(IGBT)为代表的复合型第三代电力电子器件异军突起,而进入90年代电力电子器件开始朝着智能化、功率集成化发展,这代表了电力电子技术发展的一个重要方向。 1.2发展 1.2.1 整流管 整流管是电力电子器件中结构最简单、应用最广泛的一种器件。目前主要有普通整流管、快恢复整流管和肖特基整流管三种类型。电力整流管在改善各种电力电子电路的性能、降低电路损耗和提高电源使用效率等方面发挥着非常重要的作用。目前,人们已通过新颖结构的设计和大规模集成电路制作工艺的运用,研制出集PIN整流管和肖特基整流管

常用电子元件介绍

常见电子元件认识 在我们生产的产品中,PNP,插件接触的元器件有电阻、电容、二极管、三极管、双栅极场效应管、IC、PCB板等,下面分别对其简单说明。 1、电阻(RESISTOR简称RES) 1-01.分类 (1)固定电阻: 按材料分有金属皮膜,碳素皮膜等电阻; 按外形分有插脚电阻,表面电阻等电阻; 按名称分有热敏电阻,压敏电阻,色环电阻,贴片电阻等电阻 (2)微调电阻:亦称半可调电阻 (3)可调电阻:亦称电位器或可变电阻 一般情况下(1)类电阻值不变化,(2)(3)类电阻阻值可随调整而变化,我们常用的有色环电阻,代号类电阻,表面电阻等,此类电阻没有方向性 1-02.基本单位及换算: 如右图(二)所示: A=第一色环(十位数)C=第三色环(幂指数) B=第二色环(个位数)D=最末环(误差值色环)

电阻值计算:R =(A×10+B)×10C A=红色=2C=黄色=4B=黑色=0D=银色=±10% 电阻值:R=(2×10+0)×104 =200KΩ 误差值:=±10% (二) 即该阻值180=200-200×10%≤R≤200+200×10%=220内均为OK 注:区分最末环 1)一般金色、银色为最末环 2)与其它色环隔离较远的一环为最末环 特例:五色环电阻的计算方法与四色环计算方法相同,五色色环前三位 为有效数字,如右图(三)所示:A=第一色环(百位数)A=红色2(三) B=第二色环(十位数)B=红色2C=第三色环(个位数)C=棕色1D=第四色环(幂指数)D=橙色3E=最末环(误差值色环) E=红色=±2% 电阻值计算:R=(A×100+B×10+C)×10 D R=(2×100+2×10+1)×10 3 误差值:=±2% 注:由于五色环电阻阻值准确,通常只有两种误差代号:±1%及±2%1-03-02代号类电阻,如右图(四)所示: 其阻值用三位代号数值来表示。 计算方法有两种:a)用LCR 测试仪直接读出其电阻值; b)根据表面数值来计算 (四) 代号电阻值 10110×10=100Ω10210×100=1KΩ10310×1000=10KΩ10410×10000=100KΩ271 27×10=270 B A C D 分隔开 B A C D E 103

常用电子元器件介绍介绍

常用电子元器件介绍 一、电阻器 电阻器是既能导电又有确定电阻数值的元件。它主要用于控制和调节电路中的电流和电压(限流,分流,降压,分压,偏置等),或者作消耗电能的负载电阻没有极性,在电路中它的两根引脚可以交换连接。 主要特性参数 1、标称阻值:电阻器上面所标示的阻值。 2、允许误差:标称阻值与实际阻值的差值跟标称阻值之比的百分数称阻值偏差,它表示电阻器的精度。允许误差与精度等级对应关系如下:±0.5%-0.05、±1%-0.1(或00)、±2%-0.2(或0)、±5%-Ⅰ级、±10%-Ⅱ级、±20%-Ⅲ级 3、额定功率:在正常的大气压力90-106.6KPa及环境温度为-55℃~+70℃的条件下,电阻器长期工作所允许耗散的最大功率。 线绕电阻器额定功率系列为(W):1/20、1/8、1/4、1/2、1、2、4、8、10、16、25、40、50、75、100、150、250、500 非线绕电阻器额定功率系列为(W):1/20、1/8、1/4、1/2、1、2、5、10、25、50、100 4、额定电压:由阻值和额定功率换算出的电压。 5、最高工作电压:允许的最大连续工作电压。在低气压工作时,最高工作电压较低。 6、温度系数:温度每变化1℃所引起的电阻值的相对变化。温度系数越小,电阻的稳定性越好。阻值随温度升高而增大的为正温度系数,反之为负温度系数。 7、老化系数:电阻器在额定功率长期负荷下,阻值相对变化的百分数,它是表示电阻器寿命长短的参数。 电阻器阻值标示方法: 1、直标法:用数字和单位符号在电阻器表面标出阻值,其允许误差直接用百分数表示,若电阻上未注偏差,则均为±20%。 2、文字符号法:用阿拉伯数字和文字符号两者有规律的组合来表示标称阻值,其允许偏差也用文字符号表示。符号前面的数字表示整数阻值,后面的数字依次表示第一位小数阻值和第二位小数阻值。 表示允许误差的文字符号 文字符号D F G J K M 允许偏差±0.5% ±1% ±2% ±5% ±10% ±20% 3、数码法:在电阻器上用三位数码表示标称值的标志方法。数码从左到右,第 一、二位为有效值,第三位为指数,即零的个数,单位为欧。偏差通常采用文字符号表示。 4、色标法:用不同颜色的带或点在电阻器表面标出标称阻值和允许偏差。国外电阻大部分采用色标法。 黑-0、棕-1、红-2、橙-3、黄-4、绿-5、蓝-6、紫-7、灰-8、白-9、金-±5%、银-±10%、无色-±20% 当电阻为四环时,最后一环必为金色或银色,前两位为有效数字,第三位为乘方数,第四位为偏差。 当电阻为五环时,最后一环与前面四环距离较大。前三位为有效数字,第四位

常用电气元件的功能介绍

常用电气元件功能介绍 一、保护、隔离元件 1、刀开关、倒顺开关 功能:用于不频繁分断电源主回路,形成明显的断点。没有带灭弧装置,不能带大电流操作,无保护功能;倒顺开关有换向的作用。 参数:额定电流、接线方式、操作方式等 常用型号:HD11-400/39、HS11-600/39 2、断路器 功能:用于线路保护,主要保护有:短路保护、过载保护等,也可在正常条件下用来非频繁地切断电路。 常用的断路器一般根据额定电流大小分为:框架式断路器(一般630A 以上)、塑壳断路器(一般630A以下)、微型断路器(一般63A以下)。 参数:额定电流、框架电流、额定工作电压、分断能力等 常用型号:C65N D10A/3P、NSX250N、MET20F202 详见《断路器基础知识及常用断路器选型》 3、熔断器 功能:熔断器是一种最简单的保护电器,在电路中主要起短路保护作用。 熔断器就功能上可分为普通熔断器(gG)和半导体熔断器(aR),半导体熔断器主要是用于半导体电子器件的保护,一般动作时间较普通熔断器和断路器快,因此也经常称为快熔;普通熔断器一般只用于线路短路保护。 做线路保护用的熔断器一般只用在一些检测、控制回路中,大部分都被断路器而取代。

参数: 常用型号:RT18-2A/32X、NGTC1-250A/690V 4、刀熔开关 功能:主要用于动力回路的短路保护,也可用于正常情况下非频繁的切断电路。 可替代断路器的部分功能,比断路器更经济。一般用于驱动器前端或总进线电源处做短路保护。 由熔断器和隔离开关延伸而来,也有叫做熔断器式隔离开关。 参数:框架电流、额定电流、额定电压 常用型号: 5、过电压保护器(浪涌保护器) 功能:用于线路的过电压保护,主要用于保护由于雷电等引起的感应电压的冲击,保护线路上的电子元器件。 可分为几个级别,电源进线回路保护的,也有控制回路保护的,应与避雷针等防雷器件配合使用。 参数: 常用型号: 6、热继电器 功能:用于控制对象(电机)的过载保护,常见于对多电机的保护。 当一台变频器驱动多台电机时,需要加热继电器做过载保护,防止其中某台电机因过载而烧坏。一般用于鼠笼或者变频电机,绕线式电机一般不采用热继电器来做过载保护,而用过流继电器。(绕线式电机一般过载能力较鼠笼式强,直接启动时启动电流也交鼠笼式小。)

十大最常用电子元器件基础概念和相关知识

对于从事电子行业的工程师来说,电子元器件就像人们日常进口的米饭一样,是每天都需要去接触,每天都需要用到的,但其实里面的门门道道很多工程师未必了解。这里列举出工程师门常用的十大电子元器件,及相关的基础概念和知识,和大家一起温习一遍。 一:电阻 作为电子行业的工作者,电阻是无人不知无人不晓的。它的重要性,毋庸置疑。人们都说“电阻是所有电子电路中使用最多的元件。” 电阻,因为物质对电流产生的阻碍作用,所以称其该作用下的电阻物质。电阻将会导致电子流通量的变化,电阻越小,电子流通量越大,反之亦然。没有电阻或电阻很小的物质称其为电导体,简称导体。不能形成电流传输的物质称为电绝缘体,简称绝缘体。 在物理学中,用电阻(Resistance)来表示导体对电流阻碍作用的大小。导体的电阻越大,表示导体对电流的阻碍作用越大。不同的导体,电阻一般不同,电阻是导体本身的一种特性。电阻元件是对电流呈现阻碍作用的耗能元件。 电阻元件的电阻值大小一般与温度有关,衡量电阻受温度影响大小的物理量是温度系数,其定义为温度每升高1℃时电阻值发生变化的百分数。 电阻在电路中用“R”加数字表示,如:R1表示编号为1的电阻。电阻在电路中的主要作用为分流、限流、分压、偏置等。 1、参数识别:电阻的单位为欧姆(Ω),倍率单位有:千欧(KΩ),兆欧(MΩ)等。换算方法是:1兆欧=1000千欧=1000000欧电阻的参数标注方法有3种,即直标法、色标法和数标法。a、数标法主要用于贴片等小体积的电路,如:472表示47×100Ω(即4.7K);104则表示100Kb、色环标注法使用最多,现举例如下:四色环电阻五色环电阻(精密电阻)。 2、电阻的色标位置和倍率关系如下表所示:颜色有效数字倍率允许偏差(%)银色/x0.01±10金色/x0.1±5黑色0+0/棕色1x10±1红色2x100±2橙色3x1000/黄色4x10000/绿色5x100000±0.5蓝色6x1000000±0.2紫色7x10000000±0.1灰色8x100000000/白色9x1000000000/。

电力电子器件

电力电子器件的发展和现状 引言 现代电力电子技术是从上世纪八十年代发展起来的一门新型学科,它集电子技术、电力技术和控制理论于一体,已经发展成为一个涉及领域广阔的独立而日趋成熟的重要学科。现代电力电子技术无论对传统工业的改造还是对高新技术产业的发展都有着至关重要的作用,它涉及的应用领域包括国民经济的各个工业部门。毫无疑问,电力电子技术将成为21 世纪的重要关键技术之一。电力电子技术是应用电力电子器件对电能进行变换和控制的技术,其中电力电子器件是电力电子技术的重要基础。以电力电子器件为核心的电力电子装置中器件所占的价值虽然只有装置总价值的20 %~30 %左右,但器件的性能对整个装置的各项技术指标和性能有着重要的影响。 1 电力电子器件概述 电力电子器件又称为开关器件,是应用于电力领域的电子器件,其控制功率范围可以从1W以下到数百MW,甚至GW。对于电力电子器件而言,它的工作特性应当是:导通状态能流过大电流且导通电压降低,截止状态能承受高电压;开关转换时,开关时间短,开关过程中要能承受足够高的d i/d t 和d v/d t ;能控制器件的开通和关断。 目前,电力电子器件有多种分类方式。例如,按照其可控程度可分为,不可控器件,半控型器件,全控型器件及模块化器件;按照器件的结构和工作机理可分为,双极型器件,单极型器件和混合型器件。根据可控程度以及构造特点等因素可以把电力电子器件分成四类: (1)半控型器件——第一代电力电子器件 2O世纪5O年代,由美国通用电气公司发明的硅晶闸管的问世,标志着电力电子技术的开端。到了2O世纪7O年代,已经派生出了许多半控型器件,这些电力电子器件的功率也越来越大,性能日渐完善,但是由于晶闸管的固有特性,大大限制了它的应用范围。 (2)全控型器件一一第二代电力电子器件

电力电子器件

电力电子器件 电力电子器件 ( Power Electronic Device )是指可直接用于处理电能的主电路中,实现电能的变换或控制的电子器件。主电路:在电气设备或电力系统中,直接承担电能的变换或控制任务的电路。 电力电子器件的特征 ?所能处理电功率的大小,也就是其承受电压和电流的能力,是其最重要的参数,一般都远大于处理信息的电子器件。 ?为了减小本身的损耗,提高效率,一般都工作在开关状态。 ?由信息电子电路来控制,而且需要驱动电路。 ?自身的功率损耗通常仍远大于信息电子器件,在其工作时一般都需要安装散热器。 电力电子器件的功率损耗 断态损耗 通态损耗:是电力电子器件功率损耗的主要成因。 开关损耗:当器件的开关频率较高时,开关损耗会随之增大而可能成为器件功率损耗的主要因素。分为开通损耗和关断损耗。 电力电子器件在实际应用中,一般是由控制电路、驱动电路和以电力电子器件为核心的主电路组成一个系统。 电力电子器件的分类 按照能够被控制电路信号所控制的程度 ?半控型器件:指晶闸管(Thyristor )、快速晶闸管、逆导晶闸管、光控晶闸管、双向晶闸管。

?全控型器件:IGBT、GTO、GTR、MOSFET。 ?不可控器件:电力二极管( Power Diode )、整流二极管。 按照驱动信号的性质 ?电流驱动型:通过从控制端注入或者抽出电流来实现导通或者关断的控制。Thyrister ,GTR,GTO。 ?电压驱动型:仅通过在控制端和公共端之间施加一定的电压信号就可实现导通或者关断的控制。 电力MOSFET ,IGBT,SIT。 按照驱动信号的波形(电力二极管除外 ) ?脉冲触发型:通过在控制端施加一个电压或电流的脉冲信号来实现器件的开通或者关断的控制。 晶闸管,SCR,GTO。 ?电平控制型:必须通过持续在控制端和公共端之间施加一定电平的电压或电流信号来使器件开 通并维持在通断状态。GTR,MOSFET ,IGBT。 按照载流子参与导电的情况 ?单极型器件:由一种载流子参与导电。MOSFET 、SBD (肖特基势垒二极管) 、SIT。 ?双极型器件:由电子和空穴两种载流子参与导电。电力二极管,PN 结整流管,SCR,GTR, GTO。 ?复合型器件:由单极型器件和双极型器件集成混合而成,也称混合型器件。IGBT,MCT 。 GTO :门极可关断晶闸管。SITH ( SIT):静电感应晶体管。

相关文档
最新文档