TP1-98SM 盘型制动器说明书介绍

TP1-98SM 盘型制动器说明书介绍
TP1-98SM 盘型制动器说明书介绍

矿井提升机(通用部件)

TP1盘形制动器

使用说明书

TP1-98SM

洛阳百 特科技发展股份有限公司

目录

1、盘形制动器的用途和适用范围-------------2

2、盘形制动器装置的主要结构和工作原理--------2

3、盘形制动器装置的安装、调整-------------3

4、盘形制动器的使用与维护---------------6

5、易损件------------------------7

6、盘形制动器性能参数表----------------8

7、盘形制动器的故障原因及维护-------------9附图一-------------------------10附图二-------------------------11附图三-------------------------12附图四-------------------------12附图五-------------------------13附图六-------------------------14

1、盘形制动器的用途和适用范围

盘形制动器是一种新型高性能制动器,是当今机械式制动器的发展方向。

它是有下列优点:体积小、重量轻、惯量小、动作快、可调性能好、可靠性高、能用性高、结构简单、维修调整方便。

盘形制动器可用于矿井提升机、皮带运输机、架空索道、升船机等各种机械。

盘形制动器在矿井提升机上作工作制动和紧急制动用,其驱动和控制由单独的液压站完成。

为满足大型提升机的需要,中高压盘型制动器的四种规格,性能参数见表1。

2、盘形制动器装置的主要结构和工作原理

2.1盘形制动器装置的主要结构

如图1所示盘形制动器装置由盘形制动器(1)、支架(2)、制动器限位开关(3)、螺栓(4)、(5)等组成。盘形制动器用螺栓(4)、(5)成对地把在支架(2)上,每支架可以同时安装1、2、3、4、5、6对,甚至更多,其规格和对数可根据提升机所需要的制动力矩选定。

盘形制动器由闸瓦(8)、衬板(9)、碟形弹簧(10)、液压组件(11)、连接螺栓(13)、密封圈(12)、制动器体(14)等组成。

液压组件由油缸(1)、活塞(2)、调整螺母(3)、密封(4)、(5)、油缸盖(6)等组成(如图2所示)。

盘形制动器和液压组件对同一种规格为通用互换件。

制动器限位开关由接线板(1)、开关盒(2)、微动开关(3)、压板(4)、(7)、调整螺钉(5)、轴(6)等组成(图3所示)。制动器限位开关分A 组和B组各装一半(见图4).制动器限位开关用以监视闸瓦的磨损(压板4)和碟形弹簧的疲劳(压板7)。

2.2盘形制动器的工作原理

盘形制动器靠油压力松闸、靠弹簧力制动,如图5所示。当油腔Y通入

压力时碟形弹簧组被压缩,随着油压P的升高,碟簧组被压缩并且储存弹簧力,弹簧力越大闸瓦离开闸盘的间隙越大,此时盘形制动器处开松闸状态。调整闸瓦间隙△为1mm,当油压P降低时,弹簧力释放,推动衬板及闸瓦向闸盘方向移动,当闸瓦间隙△为零后,弹簧力F作用在闸盘上,并产生正压力,随着油压P的降低正压力加大,当油压力P为零时,正压力N最大既Nmax,在N力的作用下闸瓦与闸盘间产生摩擦力即制动力最大(全制动状态)。

由上可以看出盘形制动器的摩擦力决定于弹簧力F和油压力F1,当闸瓦间隙为零后

N=F-F1=F-△PA=f(P)

其中:N——正压力

F——弹簧力

F1=△PA——油压力

A——活塞有效面积

△P——油压下降值(P贴-P1)

上述说明改变油压P可以获得不同的正压力N,即可得到不同的制动力。当油压P为零时抽动动力最大。反之油压P为最大时,制动力为零,制动器处于松闸状态。

3、盘形制动器装置的安装、调整

在安装就位前将制动器限位开关(见图5)调整螺母(5)调整到最短位置或暂时整体拆下,带制动器调整后,再进行复原和调整,以免调整闸瓦间隙(充油时)将限位开关压坏。

3.1盘形制动器的安装

3.1.1安装要求(见图6a,图6b)

盘形制动器装置安装时要达到下列要求:

(1)中心高h偏差△h=±3mm

(以测量L值为准)。并要证闸(2)摩擦半径实际值应大于理论值R

0p

瓦包络在闸盘内。

(3)架相对于制动盘两侧面距离H应相等、最大偏差△H不得大于0.5mm。

(4)支架两侧面与闸盘两侧面应平行,不平行度不得大于0.2mm。

(5)闸盘表面粗糙度不低于Ra6.3μm,闸盘偏摆不得大于设计图纸要求。

其安要求应符合安装规范国家建委标准TJ231(六)-78的规定。

3.1.2安装程序

(1)清洗闸盘并干清洗剂。

(2)检查闸盘端面偏摆量,其值不得大于设计图纸要求,表面粗糙度不低于Ra6.3μm。

(3)安装调整垫板并清洗干净。

(4)调整螺母(3)使成对的两制动器闸瓦间的间隙大于闸盘的厚度。

(5)盘形制动器装置安装就位并符合要求(图6a,图6b)拧上地脚螺栓但不要拧死。用扭力扳手检查制动器体与支架连接的双头螺栓,拧紧到图纸上所要求的力矩。

(6)连接管路(进油管接到符号P处接头上),盘形制动器与液压站连接。

(7)旋转调整螺母(3),使闸瓦与闸盘接触、然后向盘形制动器充入约0.5MPa油压并放气,再升高油压到Pmax(实际需要最大油压按液压站说明书计算)。旋进调整螺母使闸瓦与闸盘间隙为0.5mm,再反向旋转调整螺母(3),使闸瓦与闸盘间隙增加到0.8mm,将调整螺母上两个M8螺栓拧紧顶在制动器体上。

(8)降低油压到残压使闸瓦(8)紧紧抱住闸盘并反复动作三次,检查安装位置是否正确。如支架与垫板不接触可调整垫铁,使垫板紧贴于支架底面上。

(9)拧紧地脚螺栓,并检查安装位置是否变化,如有变化要查明原因,并

重新调整。

(10)安装好后将垫铁组和垫板点焊在一起,然后二次灌浆。

(11)贴磨闸瓦使闸瓦接触面积大于60%。

(12)负荷试验:

工作制动、紧急制动、二级制动、提升、下放减速度等试验均按提升机、液压站使用说明书进行。

3.2盘形制动器的调整

3.2.1放气

安装盘形制动器和连接管路或维修后重新充油时要放出系统中的空气,否则会影响制动器系统的动作时间等。

方法:取下测压排气装置微型接头保护罩,用测压排气装置的接头或铁丝压微型接头里的球阀就可放气(在低压下操作)直至冒油无气泡时放气结束,拧上保护罩即可。

3.2.2闸瓦间隙调整

盘形制动器新安装和使用中闸瓦磨损后都要调整闸瓦间隙。

调整方法:油压升高到Pmax,即松闸油压、拧松调整螺母上两个M8螺栓、用扳手旋转调整螺母(3),使闸瓦逐步靠近闸盘使之间隙为0.5mm,再反向旋转调整螺母(3),使闸瓦间隙为1~1.5mm,即可并反复动作几次以求无误,再将M8螺栓顶到制动器体上。

3.2.3制动器限位开关调整(见图3、图4)

盘形制动器闸瓦间隙调整好后,调整闸瓦磨损监视压板(4)和碟形弹簧疲劳监视压板(7)。

调整方法:制动器处于松闸状态,调整好螺钉(5)顶在闸瓦衬板上,微动开关(3)(A组上面开关、B组下面开关)处于常闭状态,压板(4)上螺钉(8)拧松,在微动开关(3)和压板(4)之间加2mm厚塞尺,移动压板(4),使微

动开关(3)常闭触点断开(用万用表测量),此时用螺钉(8)将压板(4)固定在轴(6)上,抽掉塞尺,完成闸瓦磨损监视压板(4)的调整。

碟形弹簧疲劳监视压板(7)的调整。

盘形制动器处于松闸状态、调整螺钉(5)顶在闸瓦衬板上,拧松压板(7)上的定位螺钉(8),在微动开关(3)(A组下面开关,B组上面开关)和压板(7)之间加上2mm厚的塞尺,移动压板(7),使微动开关(3)的常闭触点断开(用万用表测量或电控回路对应的指示灯亮同时显示),此时用螺钉(8)将压板(7)固定在轴(6)上,抽掉塞尺,调整完毕。

当闸瓦磨损开关和碟形弹簧疲劳开并动作发出信号后,维修人员应及进调整闸瓦间隙和更换碟形弹簧。

当闸瓦磨损后重新调整闸瓦间隙时,应调整螺钉(5)使之顶在衬板上,反时针旋转螺钉(5),调整螺钉(5)的初始调整尺寸(到开关盒中心)为65mm,闸瓦磨损后,由于螺钉(5)往前调这个尺寸,最大可为85mm。

4、盘形制动器的使用与维护

4.1碟形弹簧组的更换(见图1、图5)。

当碟形弹簧组疲劳或有裂纹时应立即更换。

方法:

(1)拆卸下液压组件。

(2)用压簧工具压在弹簧垫上,套上联接螺栓(13),用套筒扳手旋进

螺栓(13),压缩弹簧,用外张尖咀弹簧钳从卡槽中取出弹簧卡圈。

(3)缓慢小心地旋出联接螺栓(13),取出压簧工具和卡圈、弹簧垫。

(4)取出弹簧即可检查或更换。

4.2密封圈和液压组件的更换(见图1、2)。

当盘形制动器密封圈损坏,油缸渗漏油时需重新更换密封圈。更换密封圈需拆卸液压组件,液压组件也可单独更换。

方法:

(1)松闸、拧松锁紧螺钉,尽量旋出调整螺母(3)(这一步必须在一付制动器的两边同时进行)。

(2)释放油压碟簧卸载。

(3)拆下进油管和进油接头(7)把起吊手柄旋进接头螺孔“P”。

(4)拆下后盖并松开联接螺栓(13),用套筒扳手(加长杆套)旋出联接螺栓(13)大约保留15mm的螺纹长。

(5)完全旋出调整螺母(3)以至使液压组件支撑在连接螺栓(13)上。

(6)用一只手爪住起吊手柄,一只手旋出连接螺栓(13),拆下液压组件。

(7)拆下油缸盖(图2——(6))和密封圈。

(8)用装配圆锥卸掉活塞,更换密封圈。

4.3当闸瓦磨损和碟簧疲劳时,按前述3.2.3方法重新调整闸瓦磨损监视压板4和碟簧监视压板7.

4.4图1所示各润滑点应定期加润滑剂。

4.5在盘形制动器维护中应注意下列事项:

(1)拆卸应在清洁的房间里并在耐油胶垫上进行,拆下的零件严禁成堆乱堆放,相互碰撞。

(2)所有与密封圈相接触或相对滑动的表面是精加工并磨光的,严防碰伤,以免损伤密封圈导致漏油。

(3)装配圆锥的外表面也必须涂油妥善保管、严防损伤,否则会人困损坏密封圈。

4.6盘形制动器常见故障原因及处理见表2。

5、易损件

密封圈、闸瓦和碟形弹簧详见随机提供的《供用户选用备件目录》。

盘形制动器性能参数表

表1技术参数单位型号

TP1-40TP1-6

3

TP1-8

TP1-1

00

TP1-

2.5

最大正压力KN40638010025设计摩擦系数0.4

最大工作油压MP

a

6.314 6.3

闸瓦最大比压N/c

m

53849511653

闸瓦允许最高温度℃≤210

活塞有效面积Cm94143.3/

138

84.294.267

重量Kg140200100

外形尺寸490×

380×

297490×380

×297

515×

420×

296

515×

420×

296

490×

380×

297

碟形弹簧疲劳位移mm2 2.532

故障原因修理

1、制动器不释放(不松闸)1.1没有没压或油压不足

1.2制动器密封圈损坏

检查液压站

更换密封圈

2、松闸和制动缓慢2.1液压系统有空气

2.2液压系统不正常,阀不在

正常

位置或有油污

2.3闸瓦间隙太大

2.4油太稠或太稀或泄漏太

2.5密封圈损坏

在制动状态,在最高点

放气

检查和清洗阀和系统

重调间隙

更换油、检查和修理液压

系统

更换密封圈

3、制动器不能制动3.1液压站管路有问题

3.2制动器损坏,带筒体的衬

板卡

在制动器体内

检查修理液压站

检查制动器并修理

4、制动时间或制动

滑行距离太长制动力小4.1载荷太大或速度太高

4.2闸瓦间隙太大,制动盘和

闸瓦

上有油漆或类似的东西

4.3所有制动器不动作

4.4碟簧组有毛病

4.5密封圈磨损

检查载荷和速度是否在容许范围

调节间隙

用三氯乙稀清制动盘更换沾有油

的闸瓦

检查液压站

更换碟簧组

更换密封圈并检查所有密封表面

5、闸瓦磨损不均匀5.1制动器校正不均匀

5.2制动盘偏摆太大,窜动或

主轴倾斜太大

检查安装技术要求

重车制动盘。

检查调整主轴倾斜度、偏角和轴

6、闸瓦意外的磨损

6.1制动器非正常使用

6.2闸瓦间隙太小

6.3制动器不能均匀地释放检查电气制动、速度限制器工作如何、司机操纵是否正确、检查载荷、速度和制动频率是否正确对待调节闸瓦间隙

检查油压和管路

盘式制动器制动间隙调整测量方法

盘式制动器制动间隙调整测量方法 为确保前轴盘式制动器正确使用,现对前轴盘式制动器制动间隙的 制动间隙的测测量方法进一步明确规范,请认真参阅执行。测量制动间隙前,应首 应首先先 活塞总成)可以正常工作。本确认间隙自动调整机构((AZ9100443500 AZ9100443500 AZ9100443500活塞总成) 文首先表述如何判断活塞总成是否可靠工作,再进一步说明制动间 再进一步说明制动间隙隙的测量方法。

(盘式制动器外形)外形)/ /(各部件名称)判断活塞总成是否有效: 1、用SW10SW10扳手逆时针转动手调轴至极限位置(大体上逆时针旋转扳手逆时针转动手调轴至极限位置(大体上逆时针旋转扳手逆时针转动手调轴至极限位置(大体上逆时针旋转两两周),而后反向微调少许(以防螺纹发卡),而后反向微调少许(以防螺纹发卡); ;2、在气压足够大的情况下,原地连续踩刹车、在气压足够大的情况下,原地连续踩刹车101010次左右。注意:踩刹 次左右。注意:踩刹车时将扳手扣在手调轴上,以观察刹车时手调轴是否转动,正常现正常现象象应该是开始几次制动时扳手转动(顺时针)角度较大,越来越小,最后稳定到某个角度,此时即表明间隙已经调整到设计值。如果踩刹如果踩刹车车时手调轴不转动或者有逆时针转动状况,则该自动调整机构(活塞(活塞总总成)已不能正常工作,必须更换。 图一图一//图二图二/ /图三

制动间隙的测量: 盘式制动器从设计结构上已设定了制动间隙,并且制动间隙是自动并且制动间隙是自动调 调整的,不允许人为调整,制动间隙在0.80.8~ ~1.0mm 范围内是正常的。如果整车使用过程中出现左右制动力差值偏大、制动力不足或制动制动力不足或制动过过热等故障现象时,可按如下步骤检查制动间隙: 1、拆下压板(如塞尺插入方便可不拆压板),向箭头所指方向推动向箭头所指方向推动钳 钳体,使外侧制动块与制动盘紧密结合。(图一) 2、拨动内侧制动块使其靠近制动盘,测量间隙活塞总成整体推盘与制动块背板之间的间隙。(图二) 3、整体推盘与制动块背板之间的间隙应在、整体推盘与制动块背板之间的间隙应在0.80.80.8~ ~1.mm 之间,如小于0.8mm 0.8mm,应更换间隙自动调整机构(,应更换间隙自动调整机构(,应更换间隙自动调整机构(AZ9100443500AZ9100443500AZ9100443500活塞总成)(图三)活塞总成)注意事项: 盘式制动器从设计结构上已设定了制动间隙,并同时保证了制动间并同时保证了制动间隙 隙的自动调整。制动块和制动盘的间隙在制动块寿命期内是永远保持制动块和制动盘的间隙在制动块寿命期内是永远保持不不变的,只需按整车维修保养手册,定期检查制动块的磨损情况。因因此 此1.必须按上述正确方法测量制动间隙; 2.当制动块的摩擦材料的最小厚度小于2mm 时,必须更换制动块(此情况属于正常磨损,不属于三包范围)

盘式制动器课程设计方案

中北大学 课程设计说明书 学生姓名:学号: 学院(系):机电工程学院 专业:车辆工程 题目:夏利汽车盘式制动器方案设计 综合成绩: 职称: 年月日

目录 一、夏利汽车主要性能参数---------------------4 二、制动器的形式-----------------------------5 三、盘式制动器主要参数的确定-----------------7 四、盘式制动器制动力矩的设计计算-------------9 五、盘式制动器制器的校核计算----------------10 1.前轮制动器制动力矩的校核计算 2.摩擦衬片的磨损特性计算 六、经过计算最终确定后轮制动器的参数--------13 七、设计小结--------------------------------13 八、设计参考资料----------------------------13

轿车前轮制动器设计说明书前言汽车制动系是用以强制行驶中的汽车减速或停车、使下坡行驶的汽车车速保持稳定以及使已停驶的汽车在原地(包括在斜坡上)驻留不动的机构。随着高速公路的迅速发展和车速的提高以及车流密度的日益增大,为了保证行车安全,汽车制动系的工作可靠性显得日益重要。也只有制动性能良好、制动系工作可靠的汽车,才能充分发挥其动力性能。本次课程设计根据任务要求只对夏利汽车盘式制动器方案设计。

一、汽车主要性能参数 主要尺寸和参数: (1)、轴距:L=2405mm (2)、总质量:M=900kg (3)、质心高度:0.65m (4)、车轮半径:165mm (5)、轮辋内径:120mm (6)、附着系数:0.8 (7)、制动力分配比:后制动力/总制动力=0.19 (8)、前轴负荷率:60%;即质心到前后轴距离分别为 L1=L?(1?60%)=962mm L2=L?60%=1443mm (9)、轮胎参数:165/70R13; 轮胎有效半径r e为: 轮胎有效半径=轮辋半径+(名义断面宽度×高宽比) 所以轮胎有效半径r e=(240 2 +165×70%)=235.5mm (10)、制动性能要求:初速度为50KM/h时,制动距离为15m。则 满足制动性能要求的制动减速度由:S=1 3.6(τ2‘+τ2“ 2 )μ0+μ02 25.92 a bmax 计算最大减速度 a bmax,其中μ0=U =50Km/h;S=15m;τ2‘= 0.05s;τ2“=0.2s。经计算得 最大减速度 a bmax≈7.47m s2 ?

制动器设计说明书

制动器设计说明书

摘要 制动器可以分两大类,工业制动器和汽车制动器,汽车制动器又分为行车制动器(脚刹)和驻车制动器。在行车过程中,一般都采用行车制动(脚刹),便于在前进的过程中减速停车,不单是使汽车保持不动。若行车制动失灵时才采用驻车制动。当车停稳后,就要使用驻车制动(手刹),防止车辆前滑和后溜。停车后一般除使用驻车制动外,上坡要将档位挂在一档(防止后溜),下坡要将档位挂在倒档(防止前滑)。 使机械运转部件停止或减速所必须施加的阻力矩称为制动力矩。制动力矩是设计、选用制动器的依据,其大小由机械的型式和工作要求决定。制动器上所用摩擦材料(制动件)的性能直接影响制动过程,而影响其性能的主要因素为工作温度和温升速度。摩擦材料应具备高而稳定的摩擦系数和良好的耐磨性。摩擦材料分金属和非金属两类。前者常用的有铸铁、钢、青铜和粉末冶金摩擦材料等,后者有皮革、橡胶、木材和石棉等。 臂架式盘式制动器是一种新型的主要适用于起重运输机械的制动装置。本论文着重介绍了其特点、关键零部件的选择或设计计算方法、主要性能参数及一些台架试验结果。除此之外还着重介绍了制动臂、松闸器等关键部件的设计参数及注意事项,同时细节方面对于制动器的静力矩也做了详细的计算设计。 Abstract Brakes can be divided into two categories, industrial brakes and automotive bra kes, automotive brake is divided into brake (foot brake) and the parking brake. In the driving process, generally used brake (foot brake), to facilitate the p rocess of deceleration in the forward stop, not just the car to remain intact. If the traffic Zhidongshiling when using the parking brake. When the car comple tely stopped, it has to use the parking brake (hand brake), to prevent the vehi cle front and rear slip slide. After stopping the general addition to the parki ng brake, the uphill hanging in a stall to stall (after the slide to prevent), downhill to hang in the reverse gear (to prevent forward slip.) Mechanical moving parts to stop or slow down the resistance of the moment must be applied as the brake torque. Braking torque is the design, selection based o n the brake, the size of the pattern and work by the mechanical requirements of the decision. Friction material used on brake (brake parts) directly affects t he performance of the braking process, and the main factors affecting the perfo rmance of the working temperature and the temperature rise speed. Friction mate rial should have high and stable friction coefficient and good wear resistance. Metallic and nonmetallic friction materials sub-categories. The former are com monly used cast iron, steel, bronze, and powder metallurgy friction materials, which have leather, rubber, wood and asbestos. Disc brake arm frame is a new major for the braking device handling equipment. This paper focuses on its characteristics, key components of the selection or d esign methods, the main performance parameters and some bench test results. Hig hlights in addition to the brake arm, loose brake components, etc. The key desi gn parameters and considerations, while the details of the static torque for th e brake has also done a detailed calculation of design.

盘式制动器说明书

第二章可控自冷盘式制动器 K P Z— / ?? ?? 制动器副数?规格 ?? ?制动盘直径 ?? ?制动 ?? ?盘式 ?? ?可控 ?? ?KPZ型号含义 1.可控盘闸系统的选用型号含义 2. 结构特征与工作原理 2.1 机械系统结构及工作原理 ?? ?1 电动机;2 联轴器;3 牵引体;4 传动轮;5 联轴器;6 垂直轴减速器;7 制动盘;8 弹簧;9 活塞;10 闸瓦; 11 油管 图1 制动装置布置图 自冷盘式可控制动装置主要由制动盘,液压制动器(含活塞、闸瓦、弹簧等),底座,液压站等组成,图1是制动装置在系统中的布置示意图。它主要由制动盘7和液压制动器(8,9,10)等组成。盘式制动装置的制动力是由闸瓦10与制动盘7摩擦而产生的。因此调节闸瓦对制动盘的正压力即可改变制动力。而制动器的正压力N 的大小决定于油压P与弹簧8的作用结果。当机电设备正常工作时,油压P达最大值,此时正压力N为0,并且闸瓦与制动盘间留有1-1.5mm的间隙,即制动器处于松闸状态。当机电设备需要制动时,根据工况和指令情况,电液控制系统将按预定的程序自动减小油压以达到制动要求。 2. 盘式制动器的安装说明: 2.1 盘式制动器主机的安装: 盘式制动装置安装前要准确测定位置及距离。通常制动盘与减速器的某一低速轴相连,也可以直接与驱动轮连接实现各种工作制动。 安装制动器时制动闸座与底座安装必须对中安装。制动盘安装后要求盘面的旋转跳动量≤0.1mm,闸盘与闸瓦的平行度≤0.2mm。盘式制动器在松闸状态下,闸瓦与制动盘的间隙为1~1.5mm;制动时,闸瓦与制动盘工作面的接触面积不应小于80%。

安装于减速机倒数二轴上安装于滚筒轴上 电动机; 2-联轴器; 3-牵引体; 4-传动轮; 5-联轴器; 6-减速器; 7-制动盘; 8, 9, 10-液压制动器; 11-油管 图2 制动装置安装布置示意图 其中制动盘安装分两种情况,1、胀套联接2、键连接 2.2 盘式制动装置的连接方式 胀套联接 KZP自冷盘式可控制动装置胀套联接 胀套示意图 表3 安装尺寸表 和无损伤。在清洗后的胀套结合面上均匀涂一层薄润滑油(不含二硫化钼等极压添加剂),预装到滚筒轴上。把制动盘推移到滚筒轴上,使达到设计规定的位置,然后按胀套拧紧力矩的要求将胀套螺钉拧紧。 拧紧胀套螺钉的方法: (1) 使用扭矩扳手,按对角、交叉的原则均匀的拧紧。 (2) 拧紧螺钉时按以下步骤拧紧: a. 以1/3MAX值拧紧 b. 以2/3MAX值拧紧 c. 以MAX值拧紧 d. 以MAX值检查全部螺钉 安装完毕后,在胀套外漏端面及螺钉头部涂上一层防锈油脂,并进行整体二次灌浆。

SEW电机制动器使用说明

SEW异步电机制动器的使用及故障排除 1 制动电压的初步确定 (3) 2 制动电压的铭牌确定………………………………………………………

3 制动器的接线 (5) 4 变频器控制电机时制动器的使用 (7) 5制动器快速制动的使用 (9) 没有变频器控制电机时快速制动的使用 (9) 变频器控制电机时快速制动的使用 (10) 6 制动器组成元件好坏的检测 (12) 7 制动器使用中常易犯的错误 (13) 8 制动器使用中常易误解的地方 (15) 9 制动器制动反应时间和制动间隙数据表 (17)

1 制动电压的初步确定 根据中国的实际使用情况,SEW公司电机通常使用220VAC或380VAC制动电压的制动器,如果客户定货时没有指明制动电压的要求,SEW公司将按以下原则配置制动器的制动电压,机座号63—100的电机配置220VAC制动电压的制动器;机座号112以上的电机配置380VAC制动电压的制动器; (电机机座号与电机功率对照表见SEW《电机技术手册》) 对于最常使用的4级电机而言,—3Kw的电机配置220VAC制动电压的制动器(电机有56机座号和63机座号两种,56机座号除外);4Kw以上的电机配置380VAC制动电压的制动器。 当然,客户也可指明制动器制动电压的等级,电气设计人员为方便控制的要求,最好能与机械设计人员协商,指明制动器制动电压的等级。

2 制动电压的铭牌确定 电机的铭牌上左下脚标明了所配制动器制动电压的等级,请以此为准配置正确的制动电压。 3制动器的接线 对于单速电机,为方便客户使用,在电机出厂时SEW公司已将制动器控制

盘式制动器设计说明书

错误!未找到引用源。盘式制动器设计说明书 一汽车制动系概述 使行驶中的汽车减速甚至停车,使下坡行驶的汽车的速度保持稳定,以及使已经停驶的汽车保持不动,这些作用统称为汽车制动。 对汽车起到制动作用的是作用在汽车上,其方向与汽车行驶方向相反的外力。作用在行驶汽车上的滚动阻力,上坡阻力,空气阻力都能对汽车起制动作用,但这外力的大小是随机的,不可控制的。因此,汽车上必须设一系列专门装置,以便驾驶员能根据道路和交通等情况,借以使外界在汽车上某些部分施加一定的力,对汽车进行一定程度的强制制动。这种可控制的对汽车进行制动的外力,统称为制动力。这样的一系列专门装置即成为制动系。 1 制动系的功用:使汽车以适当的减速度降速行驶直至停车;在下坡行驶时,使汽车保持适当的稳定车速;使汽车可靠的停在原地或--=-坡道上。 2 制动系的组成 任何制动系都具有以下四个基本组成部分: (1)供能装置——包括供给、调节制动所需能量以及改善传能介质状态的各种部件。其中,产生制动能量的部位称为制动能源。 (2)控制装置——包括产生制动动作和控制制动效果的各种部件。 (3)传动装置——包括将制动能量传输到制动器的各个部件。 (4)制动器——产生阻碍车辆的运动或运动趋势的力的部件,其中也包括辅助制动系中的缓速装置。 较为完善的制动系还具有制动力调节装置以及报警装置、压力保护装置等附加装置。 3 制动系的类型 (1)按制动系的功用分类 1)行车制动系——使行使中的汽车减低速度甚至停车的一套专门装置。 2)驻车制动系——是以停止的汽车驻留在原地不动的一套装置。 3)第二制动系——在行车制动系失效的情况下,保证汽车仍能实现减速或停车的一套装置。在许多国家的制动法规中规定,第二制动系是汽车必须具备的。 4)辅助制动系——在汽车长下坡时用以稳定车速的一套装置。 (2)按制动系的制动能源分类 1)人力制动系——以驾驶员的肢体作为唯一的制动能源的制动系。 2)动力制动系——完全靠由发动机的动力转化而成的气压或液压形式的势能进行制动的制动系。 3)伺服制动系——兼用人力和发动机动力进行制动的制动系。 按照制动能量的传输方式,制动系又可分为机械式、液压式、气压式和电磁等。同时采用两种以上传能方式的制动系,可称为组合式制动系。 4 设计制动系时应满足如下主要要求: 1)具有足够的制动效能。行车制动能力是用一定制动初速度下的制动减速度和制动距离两相指标来评定的;驻坡能力是以汽车在良好路面上能可靠的停驻

制动器调整装置使用说明书

制动器调整装置使用说明书 1、调试前的准备 (1)关断电梯主电源,拆除曳引机抱闸接线端子所有外接线缆; (2)按信号名将本装置线缆分别连接至控制柜79、00、接地排及曳引机抱闸接线端子; (3)接通电梯主电源,确认79、00向本装置提供DC125V电压。 2、差值模式 (1)将STATUS开关拨至“STATUS1”位置,并将清零开关向“CLR”位置拨动一次以进入本模 式; (2)将BS开关拨至“LEFT”位置,打开左抱闸,数码管显示为左抱闸打开时间; (3)将BS开关拨至“RIGHT”位置,打开右抱闸,数码管显示为右抱闸打开时间; (4)将BS开关拨至中间位置,数码管显示为左侧减去右侧的差值时间; (5)完成上述操作后将清零开关拨向“CLR”位置,则装置恢复到准备状态; 注意 (1)本说明中抱闸打开时间指抱闸得电至微动开关动作之间的历时; (2)本装置所显示的时间为有符号十进制,单位为毫秒; (3)差值模式下,如果数码管显示左右两侧抱闸打开的差值时间在70ms以内,说明抱 闸触点动作已满足同步性要求。 (4)差值模式下,每次动作后应停顿一段时间,以便抱闸内的电磁力完全释放,该等待 时间的确认方法为同一侧相邻两次测试值相差不超过2毫秒。(例:第一次使用该 装置打开左侧抱闸,打开时间显示为280ms,等待数秒以后,再次使用该装置打开 左侧抱闸,打开时间应显示为280±2ms。如果显示的打开时间超出280±2ms范围,则应等待更长时间。) 3、间隙调节模式 (1)将STATUS开关拨至“STATUS2”位置,并将清零开关向“CLR”位置拨动一次以进入本模 式; (2)将BS开关拨至“LEFT”位置,全压打开左抱闸,持续120秒后自动切断电源输出; (3)将BS开关拨至“RIGHT”位置,全压打开右抱闸,持续120秒后自动切断电源输出。 4、故障代码列表

毕业设计盘式制动器设计说明书

汽车盘式制动器设计 摘要:本文主要是介绍盘式制动器的分类以及各种盘式制动器的优缺点,对所选车型制动器的选用方案进行了选择,针对盘式制动器做了主要的设计计算,同时分析了汽车在各种附着系数道路上的制动过程,对前后制动力分配系数和同步附着系数、利用附着系数、制动效率等做了计算。在满足制动法规要求及设计原则要求的前提下,提高了汽车的制动性能。 关键词:盘式制动器;制动力分配系数;同步附着系数;利用附着系数;制动效率

Automobile disc brake design Abstract:This paper is mainly the disc brake of the classification and various kinds of disc brake of the advantages and disadvantages are introduced, the selection scheme of the chosen vehicle brake was selected and for disc brake do the main design calculation and analysis of the car in a variety of attachment coefficient road on the braking process of, of braking force distribution coefficient and the synchronous adhesion coefficient, utilization coefficient of adhesion, braking efficiency calculated. Under the premise of meeting the requirements of the braking regulation requirement and design principle and improve the braking performance of automobile. Key words: Disc brake,Braking force distribution,coefficient,Synchronization coefficient,Synchronous adhesion coefficient,The use of adhesion coefficient,Braking efficiency

盘式制动器设计说明书

盘式制动器设计说明书 一汽车制动系概述 使行驶中的汽车减速甚至停车,使下坡行驶的汽车的速度保持稳定,以及使已经停驶的汽车保持不动,这些作用统称为汽车制动。 对汽车起到制动作用的是作用在汽车上,其方向与汽车行驶方向相反的外力。作用在行驶汽车上的滚动阻力,上坡阻力,空气阻力都能对汽车起制动作用,但这外力的大小是随机的,不可控制的。因此,汽车上必须设一系列专门装置,以便驾驶员能根据道路和交通等情况,借以使外界在汽车上某些部分施加一定的力,对汽车进行一定程度的强制制动。这种可控制的对汽车进行制动的外力,统称为制动力。这样的一系列专门装置即成为制动系。 1 制动系的功用:使汽车以适当的减速度降速行驶直至停车;在下坡行驶时,使汽车保持适当的稳定车速;使汽车可靠的停在原地或--=-坡道上。 2 制动系的组成 任何制动系都具有以下四个基本组成部分: (1)供能装置——包括供给、调节制动所需能量以及改善传能介质状态的各种部件。其中,产生制动能量的部位称为制动能源。 (2)控制装置——包括产生制动动作和控制制动效果的各种部件。 (3)传动装置——包括将制动能量传输到制动器的各个部件。 (4)制动器——产生阻碍车辆的运动或运动趋势的力的部件,其中也包括辅助制动系中的缓速装置。 较为完善的制动系还具有制动力调节装置以及报警装置、压力保护装置等附加装置。 3 制动系的类型 (1)按制动系的功用分类 1)行车制动系——使行使中的汽车减低速度甚至停车的一套专门装置。 2)驻车制动系——是以停止的汽车驻留在原地不动的一套装置。 3)第二制动系——在行车制动系失效的情况下,保证汽车仍能实现减速或停车的一套装置。在许多国家的制动法规中规定,第二制动系是汽车必须具备的。 4)辅助制动系——在汽车长下坡时用以稳定车速的一套装置。 (2)按制动系的制动能源分类 1)人力制动系——以驾驶员的肢体作为唯一的制动能源的制动系。 2)动力制动系——完全靠由发动机的动力转化而成的气压或液压形式的势能进行制动的制动系。 3)伺服制动系——兼用人力和发动机动力进行制动的制动系。 按照制动能量的传输方式,制动系又可分为机械式、液压式、气压式和电磁等。同时采用两种以上传能方式的制动系,可称为组合式制动系。 4 设计制动系时应满足如下主要要求: 1)具有足够的制动效能。行车制动能力是用一定制动初速度下的制动减速度和制动距离两相指标来评定的;驻坡能力是以汽车在良好路面上能可靠的停驻的最大坡度来评定的。详见GB/T7258-2004

制动器的正确使用

制动器的正确使用汽车上一般都设有脚制动和手制动两套独立的制动机构。使用制动 的目的是强制汽车迅速减速直至停车,或在下坡时维持一定车速, 另外,还可用来使停歇的汽车可靠地保持在原地不溜滑。在行车中,正确使用制动,不仅有利于保证行车安全,而且有利于节约燃料, 减少轮胎磨损,防止机件损坏。 一、预见性制动 驾驶员按照自己的目的或针对已发现的情况,为停车采取的提前减 速制动措施,称预见性制动。方法是迅速抬起油门踏板,充分利用 发动机的牵制作用,同时轻踩制动踏板,使汽车降低车速。当汽车 接近停止时,踏下离合器踏板,将变速器挡位置于空挡,将车平稳 地停在预定的位置上。这种方法最常用、最节约、也最安全。 二、紧急制动 行车中,遇到突然发生的危险情况,为使汽车迅速停住而采取的制 动措施称为紧急制动。方法是迅速抬起油门踏板并立即用力踏下制

动踏板,同时急拉手制动,使汽车迅速停住。这种方法不仅使轮胎 和底盘机件损坏严重,而且极易产生甩尾,不利于行车安全,因此,不在万不得己的情况下不可使用。 三、下坡路制动 谁也不会否认,下坡没有制动是不行的,但下坡绝不能完全靠制动。下坡时应减速,并挂上与车速相符的挡位,只有在发动机声音难听 和挡位控制不住车速时,才辅之以制动。方法是,对气压制动来说,踏板不宜过多地随踏随放,避免过快降低气压。应该根据所需制动 强度,适当踏下制动踏板的行程,使控制阀保持“双阀齐闭”状态。当车速较快需加大制动强度时,可继续踏下一段行程;需减少制动 强度时,就少许放松踏板。在下长陡坡时,只要气压能满足需要, 可采用适当的间歇制动。这样,有利于制动毂与制动蹄片的冷却。 如果你驾驶的汽车有排气制动,应尽量多用排气制动。对液压制动 来说,应将制动踏板踏踩两次后,用脚踩住踏板,使踏板处在较为 高的临近制动状态。需增强制动力时,往下再踏一点,需减少制动 力时稍抬一点。当制动踏板高度逐渐降低后,可再踏踩两次,使踏 板高度重新升起。

盘式制动器设计

目录 绪论 (3) 一、设计任务书 (3) 二、盘式制动器结构形式简介 ................... 错误!未定义书签。 2.1、盘式制动器的分类...................... 错误!未定义书签。 2.2、盘式制动器的优缺点.................... 错误!未定义书签。 2.3、该车制动器结构的最终选择.............. 错误!未定义书签。 三、制动器的参数和设计 ....................... 错误!未定义书签。 3.1、制动盘直径 ........................... 错误!未定义书签。 3.2、制动盘厚度 ........................... 错误!未定义书签。 3.3、摩擦衬块的内半径和外半径.............. 错误!未定义书签。 3.4、摩擦衬块面积 ......................... 错误!未定义书签。 3.5、制动轮缸压强 ......................... 错误!未定义书签。 3.6、摩擦力的计算和摩擦系数的验算.......... 错误!未定义书签。 3.7、制动力矩的计算和验算.................. 错误!未定义书签。 3.8、驻车制动计算 ......................... 错误!未定义书签。 四、制动器的主要零部件的结构设计 ............. 错误!未定义书签。 4.1、制动盘 ............................... 错误!未定义书签。 4.2、制动钳 ............................... 错误!未定义书签。 4.3、制动块 ............................... 错误!未定义书签。 4.4、摩擦材料 ............................. 错误!未定义书签。

盘式制动器使用说明书

盘式制动器使用说明书 盘式制动器使用说明书盘式制动器使用说明书目录一、性能与用途.1二、结构特征与工作原理..1三、安装与调整..4四、使用与维护..9五、润滑...12六、特别警示...13七、故障原因及处理方法...12附图1:盘式制动器结构图...15附图2:盘形闸结 盘式制动器使用说明书 目???录 一、性能与用途 (1) 二、?结构特征与工作原理 (1) 三、?安装与调整 (4) 四、?使用与维护 (9) 五、?润滑? (12) 六、特别警示 (13) 七、?故障原因及处理方法? (12) 附图1:盘式制动器结构图 (15) 附图2:盘形闸结构图 (16) 附图3:?制动器限位开关结构图 (17) 附图4:?盘式制动器的工作原理图 (18) 附图5:?盘式制动器安装示意图 (19) 附图6:?制动器信号装置安装示意图 (20) 一、性能与用途 盘式制动器是靠碟形弹簧产生制动力,用油压解除制动,制动力沿轴向作用的制动器。 盘式制动器和液压站、管路系统配套组成一套完整的制动系统。适用于码头缆车、矿井提升机及其它提升设备,作工作制动和安全制动之用。 其制动力大小、使用维护、制动力调整对整个提升系统安全运行都具有重大的影响,安装、使用单位必须予以重视,确保运行安全。 盘式制动器具有以下特点: 1、制动力矩具有良好的可调性; 2、惯性小,动作快,灵敏度高; 3、可靠性高; 4、通用性好,盘式制动器有很多零件是通用的,并且不同的矿井提升机可配不同数量相同型号的盘式制动器; 5、结构简单、维修调整方便。 二、结构特征与工作原理 1、盘式制动器结构(图1)

盘式制动器是由盘形闸(7)、支架(10)、油管(3)、(4)制动器信号装置(8)、螺栓(9)、配油接头(11)等组成。盘形闸(7)由螺栓(9)成对地把紧在支架(10)上,每个支架上可以同时安装1、2、3、4对甚至更多对盘形闸,盘形闸的规格和对数根据提升机对制动力矩的大小需求来 确定。 2、盘形闸结构(图2) 盘形闸由制动块(1)、压板(2)、螺钉(3)、弹簧垫圈(4)、滑套(5)、碟形弹簧(6)、接头(7)、组合密封垫(8)、支架(9)、调节套(10)、油缸(11)、油缸盖(12)、盖(13)、放气螺栓(17)、放 气螺钉(19)、O形密封圈(20)、Yx密封圈(21)、螺塞(22)、Yx密封圈(23)、压环(24)、活塞(25)、套筒(26)、联接螺钉(27)、键(28)及其它副件、标件等组成。 3、制动器限位开关结构(图3) 制动器限位开关由弹簧座(1)、弹簧(2)、滑动轴(3)、压板(6)、开关盒(7)、螺栓M4x45(9)、轴套(11)、盒盖(14)、螺钉M4X10(17)、微动开关JW-11(20)、支座板(23)、导线 BVR(24)、装配板(29)及其它副件、标件等组成。 4、盘式制动器的工作原理(图4)??????????????????????????????????????????????????????????? 盘式制动器是靠碟形弹簧预压力制动,油压解除制动,制动力沿轴向作用的制动器。提升机制动时,图2中碟形弹簧(6)的预压力迫使活塞(25)向制动盘移动,通过联接螺钉(27),将滑套(5)连同其上的制动块(又名闸瓦)推出,使制动块(1)与卷筒的制动盘接触,并产生正压力,形成摩擦力而产生制动。提升机松闸运行时,油缸(11)A腔中充入压力油,活塞(25)再次压缩碟形弹簧(6),并通过联接螺钉(27)带动滑套(5)向后移动(离开制动盘),从而使制动 块(1)离开制动盘,解除制动力(即松闸)。 滑套(5)是由钢套和拉杆组成的装配件,其拉杆承受制动时的切向力。制动块(1)嵌合在滑套(5)的燕尾槽中,并用压板(2)、螺钉(3)将其固定。键(28)防止滑套(5)转动。转动放气螺钉(19),可排出油缸中的存留气体,以保证盘形闸能灵活地工作。盘形闸在密封件允许泄漏范围内,可能有微量的内泄,虽内泄油可起润滑滑套(5)与支架(9)的作用,但时间较长时,内泄油可能存留过多,因此应定期从螺塞(22)处排放内泄油液。 如上所述,盘式制动器的工作原理是油压松闸,弹簧力制动。如(图4)所示:当油腔Y 通入压力油时,碟形弹簧组(3)被压缩,随着油压P的升高,碟形弹簧组(3)被压缩并贮存弹簧力F,且弹簧力F越来越大,制动块离开闸盘的间隙随之增大,此时盘形制动器处于松闸状态,调整闸瓦间隙△为1mm?(注:调整方法见后);当油压P降低时,弹簧力释放,推动活塞、滑套连同其上的制动块(又名闸瓦),使制动块向制动盘方向移动,当闸瓦间隙△为零后,弹簧力F作用在闸盘上并产生正压力,随着油压P的降低正压力加大,当油压P=0时,正压力N=Nmax,在N力的作用下闸瓦与闸盘间产生摩擦力即制动力最大(全制动状态);当P=Pmax时,N=0,△=△max,即全松闸。 由上可以看出盘形制动器的摩擦力决定于弹簧力F和油压力F1,当闸瓦间隙为零后: N=F-F1=F-△PA=f(p)

盘式制动器说明书教材

机械工程学院毕业设计(论 文) 题目:基于别克凯越有关数据对汽车前轮制动器的设计 专业:________________ 车辆工程________________ 班级:10 车辆(2)班__________________________ 姓名:_________________ 马千里____________ 学号:1608100218 _____________________________ 指导教师:______________ 苑风霞___________________ 日期:2014 年5月___________________________ 目录 第一章绪论 (1) 1.1 引言 (1) 1.2盘式制动器的特点 (2)

1.3国内汽车盘式制动器的应用情况 (3) 1.4未来汽车盘式制动器的研究应侧重的问题 (4) 1.5钳盘式制动器按制动钳的结构型式 (4) 第二章方案论证 (4) 2.1制动器的分类 (4) 2.2盘式制动器的分类与介绍 (5) 2.3制动器设计的一般原则 (7) 第三章汽车整车基本参数计算 (8) 第四章制动系的主要参数及其选择 (10) 4.1制动力与制动力的分配系数 (10) 4.2同步附着系数 (11) 4.3制动强度和附着系数利用率 (11) 4.4制动器的最大制动力矩 (12) 4.5制动器因数 (12) 第五章盘式制动器的设计 (12) 5.1盘式制动器的结构参数与摩擦系数的确定 (13) 5.2制动衬块的设计计算 (14) 5.3摩擦衬块磨损特性的计算 (14) 5.4制动器主要零件的结构设计 (15) 第六章制动驱动机构的结构型式选择与设计计算 (17) 6.1制动驱动机构的结构型式选择 (17) 6.2制动管路的选择 (18) 6.3液压制动驱动机构的设计计算 (19) 第七章结论 (21) 第八章致谢 (21) 参考文献 (21) 附录: (23) 基于别克凯越有关参数对汽车前轮制动器的设计 摘要:当今,车速已经越来越高,车流密度也在日益增大,道路条件越来越好,从行车安全的角度考虑,汽车制动系统的工作可靠性也就显得格外重要。当制动系 的工作可靠性强并且它的制动性能好,其动力性能才能得到充分的发挥。作为汽车 制动系统中的执行装置,汽车制动器显然对汽车制动性能有着很积极的意义。此设 计任务要求是针对普通家用轿车进行前轮盘式制动器的设计。大致主题思路为首先 了解盘式制动器当前的发展情、其结构以及工作原理,并查阅有关书籍结合网上的相关资料,在其基础上对浮钳盘式制动器进行方案的初步选定以及总体论证,对相 关参数进行选定并计算,后期还要确定制动力的分配问题、同步附着系数、制动器 效能因数、制动力矩的大小、制动系统性能要求及校核,基于上述研究的基础上,确定主要尺寸及制造材料,并用相关绘图软件绘制出制动器所有零件的零件图以及装配图。

Stromag Braker制动器使用说明书

Stromag Limited 29 Wellingborough Road Rushden Northamptonshire NN10 9YE United Kingdom Tel. (+44) 0 1933 350407 Fax. (+44) 0 1933 358692 e-mail. stromagltd@https://www.360docs.net/doc/a32545973.html,

Page 2JCB110698

Electromagnetic Fail Safe Brakes Series NFA/NFF Stromag Versions: Basic & Dockside Cranes Stromag Limited 29 Wellingborough Road,Rushden Northamptonshire · NN10 9YE · United Kingdom Tel. 01933 350407 · Fax. 01933 358692 e-mail stromagltd@https://www.360docs.net/doc/a32545973.html, CB110698Page 3

NFA / NFF SERIES BRAKE Advantages: Comprehensive range 20 -10,000 Nm. Simple assembly to motor, no dismantling of brake required. Concentricity through body for Tacho fixing. No setting required when changing discs, therefore eliminating human error. Compatibility of consumable spares. Simple maintenance, once only adjustment by shim removal. Positive feel hand release mechanism. Proven reliable design. Sealed inspection holes for Airgap / Lining wear. Extremely low inertia. High heat dissipation. Free from axial loads when braking and running. Suitable for vertical mounting (subject to conditions). Many optional extras available. Facilities to design to customer's special requirements. Protection available up to IP66. "Asbestos free" linings as standard. Holding and Working brake variations. =============================================================== Voltages Available: Standard 24v DC, 97v DC (110v Rectified), and 198v DC (220v Rectified). Other Voltages available. Coils available to suit : AC Supplies with Integral Half and Full Wave rectification. We suggest the following alternative - Customer to take standard voltage 24V / 110VDC, and we can provide Transformer Rectifier unit. Page 4JCB110698

起重机械制动器的设计与应用(新编版)

( 安全技术 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 起重机械制动器的设计与应用 (新编版) Technical safety means that the pursuit of technology should also include ensuring that people make mistakes

起重机械制动器的设计与应用(新编版) 制动器是保证起重机械安全工作的重要部件,其用途是防止悬吊的物品或吊臂下落,防止转台或起重机在风力或坡道分力作用下滑动;或者使运转中的机构降低速度,最后停止运转;或者保证吊运的重物能随时停在空中。因此,为了保证起重机械安全可靠的工作,就必须选用符合设计要求的制动器。 制动器的设计 2.1制动器的设计原则 起重机械上常用的机械摩擦式制动器,一般是高度通用的标准化配套产品,在非特殊情况下,通常采用标准制动器。 在传动机构当中,制动器是一种使用广泛、高度通用的重要配套部件,因此在进行制动器的设计时,应该遵循以下的基本原则:(1)标准原则:起重机上使用的制动器(尤其是高速轴上使用

的制动器)已经高度通用化。在进行制动器的设计时,除特殊情况外,应遵循相关的标准规定,尤其是连接尺寸应尽量按相关行业标准的规定。 (2)安全原则:制动器是涉及到起重机械机构作业性能和安全的重要配套部件,在设计时,要充分考虑构件的材料、强度和安全裕度,尤其是像制动弹簧、制动臂、制动拉杆等重要构件的设计寿命要不小于500万次,或者是使用寿命超过30年。 (3)与驱动机构匹配原则:制动器是在起重机械各个机构中使用的制动装置,在设计制动器时,要充分考虑其与机构之间在安装空间、性能参数以及机构使用环境等之间的各种匹配关系。 2.2制动器设计输入参数的确定 (1)制动轮(盘)直径规格参数的确定 规格参数是制动器设计的主要输入参数,由于制动器是机构传动链当中的一种部件,所以制动轮(盘)直径参数的确定首先要考虑与相应机构的驱动电动机或制动轴中心高相匹配,否则制动器安装在机构传动链中可能会出现安装困难或不匹配现象;此外,如果

相关文档
最新文档