高二数列和基本不等式常见题型

高二数列和基本不等式常见题型
高二数列和基本不等式常见题型

一、最全的数列通项公式的求法

数列是高考中的重点内容之一,每年的高考题都会考察到,小题一般较易,大题一般较难。而作为给出数列的一种形式——通项公式,在求数列问题中尤其重要。本文给出了求数列通项公式的常用方法。 ◆1、直接法又称观察法

根据数列的特征,使用作差法等直接写出通项公式。 例1. 根据下列数列的前几项,说出数列的通项公式:

2121

2,1,,,,3253

………

◆2、公式法

①利用等差数列或等比数列的定义求通项

②若已知数列的前n 项和n S 与n a 的关系,求数列{}n a 的通项n a 可用公式

???≥???????-=????????????????=

-2111n S S n S a n n n 求解. (注意:求完后一定要考虑合并通项) ◆3、累加或累乘法

对于形如)(1n f a a n n +=+型或形如n n a n f a )(1=+型的数列,我们可以根据递推公式,写出n 取1到n 时的所有的递推关系式,然后将它们分别相加(或相乘)

即可得到通项公式。

例4. 若在数列{}n a 中,31=a ,n a a n n +=+1,求通项n a 。 解析:由n a a n n +=+1得n a a n n =

-+1,所以 11-=--n a a n n ,221-=---n a a n n , (112)

-a a , 将以上各式相加得:1)2()1(1

+???+-+-=-n n a a n ,又31=a 所以 n a =

32

)

1(+-n n ◆4、待定系数法:

一般地,形如a 1+n =p a n +q (p ≠1,pq ≠0)型的递推式均可通过待定系数法对常数

a 1+n +k=p ( a n +k )

二、一、利用常用求和公式求和

利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、

等差数列求和公式:d n n na a a n S n n 2

)1(2)(1

1-+=+=

2、等比数列求和公式:?????≠--=--==)

1(11)1()1(111

q q q a a q q a q na S n n

n

例1、已知3

log 1log 23-=

x ,求???++???+++n

x x x x 32的前n 项和. 解:由21

2log log 3log 1log 3

32

3=?-=?-=x x x 由等比数列求和公式得n

n

x x x x S +???+++=32(利用常用公式) =x

x x n

--1)1(=2

11)

21

1(2

1--n =1-n 21 练习:求22222222

123456...99100-+-+-+--+的和。 解:2222222212345699100

-+-+-+--+ ()()()()

22222222

21436510099=-+-+-++- ()()()()()()()()2121434365651009910099=-++-++-++-+ 3711199

=++++ 由等差数列的求和公式得()50

503199S 50502+==

二、错位相减法求和

这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{a n }、{b n }分别是等差数列和等比数列.

例2求和:132)12(7531--+???++++=n n

x n x x x S ………………………① 解:由题可知,{1)12(--n x

n }的通项是等差数列{2n -1}的通项与等比数列{1-n x }的通项之积

设n

n

x n x x x x xS )12(7531432-+???++++=……………………….②(设制错位)

①-②得n

n n

x n x x x x x S x )12(222221)1(1432--+???+++++=--(错位相减)

再利用等比数列的求和公式得:n

n n

x n x

x x S x )12(1121)1(1

----?+=--

∴2

1)

1()

1()12()12(x x x n x n S n

n n -+++--=+ 练习:求数列??????,2

2,,26,24,2232n n

前n 项的和.

解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 2

1

}的通项之积

设n

n n

S 2226242232+???+++=…………………………………① 2341

124622

2222

n n n

S +=+++???+………………………………② ①-②得

1

4322

22222222222)211(+-+???++++=-n n n n

S (错位相减) 1

122212+--

-

=n n n

∴1

2

2

4-+-

=n n n S 三、倒序相加法求和

这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(倒序),再把它与原数列相加,就可以得到n 个)(1n a a +.

例3求 89

sin 88sin 3sin 2sin 1sin 22222++???+++的值 解:设 89

sin 88sin 3sin 2sin 1sin 22222++???+++=S ………….① 将①式右边倒序得

1

sin 2sin 3sin 88sin 89sin 22222+++???++=S …………..②(倒序) 又因为1

cos sin ),90cos(sin 2

2=+-=x x x x ①+②得(倒序相加)

)

89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222

++???++++=S =89 ∴S =44.5 四、分组法求和

有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.

例4、求和:???

? ??+++???? ??++???? ??+n n y x y x y x 11

122 ()1,1,0≠≠≠y x x 解:原式=()

n x x x x ++++ 32???? ?

?++++n y y y 1112

=

()

y

y y x

x x n n

1111111-

???? ??-+

--=n n n n y y y x x x --+--++111

1 练习:求数列的前n 项和:231

,,71,41,111

2-+???+++-n a a a n ,… 解:设)231

()71()41()11(1

2-++???++++++=-n a

a a S n n 将其每一项拆开再重新组合得

)23741()1

111(1

2-+???+++++???+++=-n a a a S n n (分组) 当a =1时,2)13(n n n S n

-+==2

)13(n

n +(分组求和) 当1≠a 时,2)13(111

1n n a

a S n n -+

--

==2)13(11n n a a a n -+--- 练习:求数列111

11,2,3,,(),248

2

n n ???+???的前n 项和。 解:

231111

123()2482

1111

(123)()2222

11(1)122

n n

n n

S n n n n =+++???++=+++???+++++???+=++-

五、裂项法求和

这是分解与组合思想在数列求和中的具体应用.裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的.通项分解(裂项)

例5求数列

?

??++???++,1

1

,,321,211

n n 的前n 项和.

解:设n

n n n a n -+=++=

11

1

(裂项) 则11

321211+++???++++=n n S n

(裂项求和) =)1()23()12(n n -++???+-+- =11-+n

练习:11113153563

求、、、的和 解:11111111

31535631335577911111111111(1)()()()2323525727911111111(1)()()()23355779114(1)299

+++=++

+

????=-+-+-+-??=-+-+-+-??

??=-=

在各项均为正数的等比数列中,若1

3231365log log log ,9a a a a a +???++=求的值.

解:设1

32313log log log a a a S n +???++= 由等比数列的性质q p n m a a a a q p n m =?+=+(找特殊性质项) 和对数的运算性质N M N M a

a a ?=+log log log 得 )log (log )log (log )log (log 6

353932310313a a a a a a S n ++???++++=(合并求和)

=)(log )(log )(log 6539231013a a a a a a ?+???+?+? =9log 9log 9log 333+???++ =10

六、利用数列的通项求和

先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求数列的前n 项和,是一个重要的方法.

例6、求5,55,555,…,的前n 项和。

解:∵a n =59(10n -1)

∴S n =59(10-1)+59(102-1)+59(103-1)+…+59(10n -1) =59[(10+102+103+……+10n )-n]

=(10n +1

-9n-10)

练习:求数列:1,,,

的前n 项和。

解: =

=

(1))()1(n f n f a n -+=(2)111)1(1+-=+=n n n n a n

n n n n -+=++11

1

)3( 四、利用基本不等式求最值的技巧

在运用基本不等式ab

b a 22

2≥+与2

b

a a

b +≤或其变式解题时,要注意如下技巧 ◆1:配系数凑常数 【例1】 已知23

0<

3

=

x 时,8

9max =y . ◆2:添加项凑常数

【例2】已知23>

x ,求322-+=x x y 的最小值. 答案:当且仅当322)32(21-=-x x 即2

7

min =y . ◆3:拆项配凑法

【例3】已知2>x ,求26

32-+-=x x x y 的最小值.

【解】由于2>x ,所以,

3

12

4)2(2124)2(2)2(3)22(26322=+-?-≥+-+-=---+-=-+-=x x x x x x x x x x y 当且仅当2

4

2-=

-x x 即4=x 时,3min =y . ◆4:常数代换法(如用”1”代换) ◆5:由等式转化为不等式

【例9】已知正数b a ,满足3++=b a ab ,求ab 的取值范围. 【分析】由于条件式3++=b a ab 含有b a ab +,,它们都在2

b

a a

b +≤式中出现,故可直接运用基本不等式转化为待求式的关系式后再求.

【解】利用基本不等式b a ab +≤2得323+≥++=ab b a ab ,令ab t =,则得

0322

≥--t t ,所以0

)1)(3(≥+-t t ,由于0>t ,所以3≥t 即9≥ab ,故ab 的取值范围是),9[+∞.

高考数列与不等式压轴题(难题)

高考数列与不等式压轴题 1. 已知数列{}n a 为等差数列,且满足211n n n a a na +=-+,*n N ∈。 1) 求数列{}n a 的通项公式; 2) 求证: 12321 1111 ...ln 2n n n n a a a a ++++++++<. 3) 当01λ<<时,设1 ()2n n b a λ=-,(1)n n c a λ=-,数列1n n b c ?????? 的前n 项和为n T ,求证: 91 43 n n T n -> +。 2. (2013?蓟县一模)已知数列{}n a 中,11a =,*12311 23()2 n n n a a a na a n N +++++???+= ∈ 1) 求数列{}n a 的通项n a ; 2) 求数列2 {}n n a 的前n 项和n T ; 3) 若存在* n N ∈,使得(1)n a n λ≥+成立,求实数λ的取值范围. 3. (2010?无锡模拟)已知数列{}n a 的前n 项和为n S ,数列是公比为2的等比数列. 1) 证明:数列{}n a 成等比数列的充要条件是13a =; 2) 设*5(1)()n n n b n a n N =--∈,若1n n b b +<对*n N ∈恒成立,求1a 的取值范围. 4. 已知数列{}n a 中,2 2(a a a =+为常数),n S 是{}n a 的前n 项和,且n S 是n na 与na 的等差中项. 1) 求数列{}n a 的通项公式; 2) 设数列{}n b 是首项为1,公比为2 3 - 的等比数列,n T 是{}n b 的前n 项和,问是否存在常数a ,使1012n a T ?<恒成立?若存在,求出a 的取值范围;若不存在,说明理由. 5. 已知数列{}n a 满足11a =,2*123()1 n n n n a a m a n N a +++=∈+。 1) 若恒有1n n a a +≥,求m 的取值范围. 2) 在31m -≤<时,证明: 121111 11112 n n a a a ++???+≥-+++ 3) 设正项数列{}n a 的通项n a 满足条件:*() 10()n n n a na n N +-=∈,求证:1 02 n a ≤≤ 。

基本不等式常见题型训练

必修5 基本不等式基本题型训练 一、选择题 1. [2013·常州质检]已知f (x )=x +1x -2(x <0),则f (x )有( ) A. 最大值为0 B. 最小值为0 C. 最大值为-4 D. 最小值为-4 答案:C 解析:∵x <0,∴-x >0, ∴x +1x -2=-(-x +1-x )-2≤-2(-x )·1 -x -2=-4, 当且仅当-x =1 -x ,即x =-1时,等号成立. 2. [2013·长沙质检]若0-1)的图象最低点的坐标为( ) A. (1,2) B. (1,-2) C. (1,1) D. (0,2) 答案:D 解析:y =(x +1)2 +1x +1=x +1+1 x +1≥2, 当x +1=1 x +1,即x =0时,y 最小值为2,故选D 项.

4. 已知m =a +1a -2 (a >2),n =(12)x 2-2(x <0),则m ,n 之间的大小关系是( ) A. m >n B. m 2,x <0, ∴m =(a -2)+1a -2 +2 ≥2(a -2)·1a -2+2=4, n =22-x 2<22=4,∴m >n ,故选A. 5. [2013·商丘模拟]若向量a =(x -1,2),b =(4,y )相互垂直,则9x +3y 的最小值为( ) A. 12 B. 2 3 C. 32 D. 6 答案:D 解析:依题意得4(x -1)+2y =0,即2x +y =2,9x +3y =32x +3y ≥232x ×3y =232x +y =232=6,当且仅当2x =y =1时取等号,因此9x +3y 的最小值是6,选D. 6. 已知a ,b 为正实数且ab =1,若不等式(x +y )(a x +b y )>m 对任意正实数x ,y 恒成立,则实数m 的取值范围是( ) A. [4,+∞) B. (-∞,1] C. (-∞,4] D. (-∞,4) 答案:D 解析:因为(x +y )(a x +b y )=a +b +ay x +bx y ≥a +b +2≥2ab +2=4,当且仅当a =b ,ay x =bx y 时等号成立,即a =b ,x =y 时等号成立,故只要m <4即可,正确选项为D. 二、填空题 7. [2013·金版原创]规定记号“?”表示一种运算,即a ?b =ab +a +b (a ,b 为正实数).若 1?k =3,则k 的值为________,此时函数f (x )=k ?x x 的最小值为________. 答案:1 3 解析:1?k =k +1+k =3, 即k +k -2=0,

基本不等式练习题及标准答案

基本不等式练习题及答案

————————————————————————————————作者:————————————————————————————————日期:

双基自测 1.(人教A 版教材习题改编)函数y =x +1 x (x >0)的值域为( ). A .(-∞,-2]∪[2,+∞) B .(0,+∞) C .[2,+∞) D .(2,+∞) 2.下列不等式:①a 2+1>2a ;②a +b ab ≤2;③x 2+1 x 2+1≥1,其中正确的个数是 ( ). A .0 B .1 C .2 D .3 3.若a >0,b >0,且a +2b -2=0,则ab 的最大值为( ). A.1 2 B .1 C .2 D .4 4.(2011·重庆)若函数f (x )=x + 1 x -2 (x >2)在x =a 处取最小值,则a =( ). A .1+ 2 B .1+ 3 C .3 D .4 5.已知t >0,则函数y =t 2-4t +1 t 的最小值为________. 考向一 利用基本不等式求最值 【例1】?(1)已知x >0,y >0,且2x +y =1,则1x +1 y 的最小值为________; (2)当x >0时,则f (x )= 2x x 2+1 的最大值为________. 【训练1】 (1)已知x >1,则f (x )=x + 1 x -1 的最小值为________. (2)已知0<x <2 5,则y =2x -5x 2的最大值为________. (3)若x ,y ∈(0,+∞)且2x +8y -xy =0,则x +y 的最小值为________. 考向二 利用基本不等式证明不等式 【例2】?已知a >0,b >0,c >0,求证:bc a +ca b +ab c ≥a +b +c . .

专题:基本不等式常见题型归纳(学生版)

专题:基本不等式 基本不等式求最值 利用基本不等式求最值:一正、二定、三等号. 三个不等式关系: (1)a ,b ∈R ,a 2+b 2≥2ab ,当且仅当a =b 时取等号. (2)a ,b ∈R + ,a +b ≥2ab ,当且仅当a =b 时取等号. (3)a ,b ∈R ,a 2+b 22≤(a +b 2)2 ,当且仅当a =b 时取等号. 上述三个不等关系揭示了a 2+b 2 ,ab ,a +b 三者间的不等关系. 其中,基本不等式及其变形:a ,b ∈R + ,a +b ≥2ab (或ab ≤(a +b 2)2),当且仅当a =b 时取等号,所以当和为定值时,可求积的最值;当积为定值是,可求和的最值. 【题型一】利用拼凑法构造不等关系 【典例1】已知1>>b a 且7log 3log 2=+a b b a ,则 1 12 -+b a 的最小值为 . 练习:1.若实数满足,且,则的最小值为 . 2.若实数,x y 满足1 33(0)2xy x x +=<< ,则313 x y +-的最小值为 . 3.已知0,0,2a b c >>>,且2a b += ,则 2ac c c b ab +-+ 的最小值为 . 【典例2】已知x ,y 为正实数,则4x 4x +y +y x +y 的最大值为 . 【典例3】若正数a 、b 满足3ab a b =++,则a b +的最小值为__________. 变式:1.若,a b R +∈,且满足22 a b a b +=+,则a b +的最大值为_________. 2.设0,0>>y x ,822=++xy y x ,则y x 2+的最小值为_______ 3.设R y x ∈,,142 2 =++xy y x ,则y x +2的最大值为_________ 4.已知正数a ,b 满足 19 5a b +=,则ab 的最小值为 ,x y 0x y >>22log log 1x y +=22 x y x y +-

(完整版)基本不等式题型总结(经典,非常好,学生评价高)

基本不等式 一. 基本不等式 ①公式:(0,0)2 a b a b +≥≥≥,常用a b +≥ ②升级版:22222a b a b ab ++??≥≥ ??? ,a b R ∈ 选择顺序:考试中,优先选择原公式,其次是升级版 二.考试题型 【题型1】 基本不等式求最值 求最值使用原则:一正 二定 三相等 一正: 指的是注意,a b 范围为正数。 二定: 指的是ab 是定值为常数 三相等:指的是取到最值时a b = 典型例题: 例1 .求1(0)2y x x x =+<的值域 分析:x 范围为负,提负号(或使用对钩函数图像处理) 解:1()2y x x =--+- 00x x <∴->Q 1 2x x ∴-+≥=-1 2x x ∴+≤ 得到(,y ∈-∞

例2 .求12(3)3 y x x x =+>-的值域 解:123 y x x =+- (“添项”,可通过减3再加3,利用基本不等式后可出现定值) 12(3)63 x x =+-+- 330x x >∴->Q 12(3)3x x ∴ +-≥- 6y ∴≥, 即)6,y ?∈+∞? 例3.求2sin (0)sin y x x x π=+<<的值域 分析:sin x 的范围是(0,1),不能用基本不等式,当y 取到最小值时,sin x 不在范围内 解:令sin (0,1)t x t =∈, 2y t t =+ 是对钩函数,利用图像可知: 在(0,1)上是单减函数,所以23t t + >,(注:3是将1t =代入得到) (3,)y ∴∈+∞ 注意:使用基本不等式时,注意y 取到最值,x 有没有在范围内, 如果不在,就不能用基本不等式,要借助对钩函数图像来求值域。

高中不等式所有知识及典型例题(超全)

一.不等式的性质: 二.不等式大小比较的常用方法: 1.作差:作差后通过分解因式、配方等手段判断差的符号得出结果; 2.作商(常用于分数指数幂的代数式);3.分析法;4.平方法;5.分子(或分母)有理化; 6.利用函数的单调性;7.寻找中间量或放缩法 ;8.图象法。其中比较法(作差、作商)是最基本的方法。 三.重要不等式 1.(1)若R b a ∈,,则ab b a 22 2≥+ (2)若R b a ∈,,则2 22b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则1 2x x +≥ (当且仅当1x =时取“=”); 若0x <,则1 2x x + ≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2 (2 22b a b a +≤+(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求 它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 5.a 3+b 3+c 3≥3abc (a,b,c ∈ R +), a +b +c 3 ≥3abc (当且仅当a =b =c 时取等号); 6. 1 n (a 1+a 2+……+a n )≥12n n a a a (a i ∈ R +,i=1,2,…,n),当且仅当a 1=a 2=…=a n 取等号; 变式:a 2+b 2+c 2≥ab+bc+ca; ab ≤( a +b 2 )2 (a,b ∈ R +) ; abc ≤( a +b +c 3 )3(a,b,c ∈ R +) a ≤ 2a b a +b ≤ab ≤ a +b 2 ≤ a 2+b 2 2 ≤b.(0b>n>0,m>0; 应用一:求最值 例1:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1 x

数列与不等式专题练习[1]

数列与不等式专题练习 一、选择题 1.等差数列9}{,27,39,}{963741前则数列中n n a a a a a a a a =++=++项的和9S 等于( ) A .66 B .99 C .144 D .297 2.等比数列{}n a 中, ,243,952==a a 则{}n a 的前4项和为( ) A .81 B .120 C .168 D .192 3.12+与12-,两数的等比中项是( ) A .1 B .1- C .1± D .2 1 4.已知一等比数列的前三项依次为33,22,++x x x ,那么2113 -是此数列的第( )项 A .2 B .4 C .6 D .8 5.在公比为整数的等比数列{}n a 中,如果,12,183241=+=+a a a a 那么该数列的前8项之和为( ) A .513 B .512 C .510 D .8 225 6.已知等差数列{}n a 的公差为2,若431,,a a a 成等比数列, 则2a =( ) A .4- B .6- C .8- D .10- 7.设n S 是等差数列{}n a 的前n 项和,若==5 935,95S S a a 则( ) A .1 B .1- C .2 D . 21 8.若)32lg(),12lg(,2lg +-x x 成等差数列,则x 的值等于( ) A .1 B .0或32 C .32 D .5log 2 9.已知三角形的三边构成等比数列,它们的公比为q ,则q 的取值范围是( ) A .15(0,)2+ B .15(,1]2- C .15[1,)2+ D .)2 51,251(++- 10.在ABC ?中,tan A 是以4-为第三项, 4为第七项的等差数列的公差,tan B 是以 13为第三项, 9为第六项的等比数列的公比,则这个三角形是( ) A .钝角三角形 B .锐角三角形 C .等腰直角三角形 D .以上都不对 11.在等差数列{}n a 中,设n a a a S +++=...211,n n n a a a S 2212...+++=++,n n n a a a S 322123...+++=++,则,,,321S S S 关系为( ) A .等差数列 B .等比数列 C .等差数列或等比数列 D .都不对 12.等比数列{}n a 的各项均为正数,且564718a a a a +=,则3132310log log ...log a a a +++=( ) A .12 B .10 C .31log 5+ D .32log 5+

基本不等式求值的类型与方法-经典大全

基本不等式求最值的类型与方法-经典大全

————————————————————————————————作者:————————————————————————————————日期: 2

5 6 专题:基本不等式求最值的类型及方法 一、几个重要的基本不等式: ①,、)(2 22 22 2 R b a b a a b ab b a ∈+≤ ?≥+当且仅当a = b 时,“=”号成立; ②, 、)(222 + ∈?? ? ??+≤?≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; ③,、、)(3 33 333 3 3 +∈++≤?≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立; ④)(333 3+ ∈?? ? ??++≤?≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=”号成立. 注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”; ② 熟悉一个重要的不等式链:b a 112 +2a b ab +≤≤≤ 2 2 2b a +。 二、函数()(0)b f x ax a b x =+ >、图象及性质 (1)函数()0)(>+ =b a x b ax x f 、图象如图: (2)函数()0)(>+ =b a x b ax x f 、性质: ①值域:),2[]2,(+∞--∞ab ab Y ; ②单调递增区间:(,]b a -∞-,[,)b a +∞;单调递减区间:(0, ]b a ,[,0)b a -. 三、用均值不等式求最值的常见类型 类型Ⅰ:求几个正数和的最小值。 例1、求函数2 1 (1)2(1) y x x x =+ >-的最小值。 解析:21(1)2(1)y x x x =+ >-21(1)1(1)2(1)x x x =-++>-2 111 1(1)222(1) x x x x --=+++>- 3 2 111 31222(1) x x x --≥??+-312≥+52=, 当且仅当 211(1)22(1)x x x -=>-即2x =时,“=”号成立,故此函数最小值是5 2 。 评析:利用均值不等式求几个正数和的最小值时,关键在于构造条件,使其积为常数。通常要通过添加常数、拆项(常常是拆底次的式子)等方式进行构造。 类型Ⅱ:求几个正数积的最大值。 例2、求下列函数的最大值: ①23 (32)(0)2 y x x x =-<< ②2sin cos (0)2y x x x π=<< 解析:①30,3202 x x << ->Q ∴, ∴23(32)(0)(32)2y x x x x x x =-<<=??-3 (32)[]13 x x x ++-≤=, 当且仅当32x x =-即1x =时,“=”号成立,故此函数最大值是1。 ②0,sin 0,cos 02 x x x π << >>Q ∴,则0y >,欲求y 的最大值,可先求2y 的最 大值。 2 4 2 sin cos y x x =?2 2 2 sin sin cos x x x =??222 1(sin sin 2cos )2 x x x =??22231sin sin 2cos 4()2327x x x ++≤?=, 当且仅当22 sin 2cos x x =(0)2 x π << tan 2x ?=,即tan 2x arc =时 “=”号成立,故 此函数最大值是 23 9 。 评析:利用均值不等式求几个正数积的最大值,关键在于构造条件,使其和为常数。通常要 通过乘以或除以常数、拆因式(常常是拆高次的式子)、平方等方式进行构造。 类型Ⅲ:用均值不等式求最值等号不成立。 例3、若x 、y + ∈R ,求4 ()f x x x =+ )10(≤、图象及性质知,当(0,1]x ∈时,函数 4 ()f x x x =+是减函数。证明:任取12,(0,1]x x ∈且1201x x <<≤,则 x a b ab 2-ab 2a b - o y

基本不等式完整版(非常全面)

2 8 基本不等式专题辅导 2 2 2、基本不等式一般形式(均值不等式) 若 a,b R ,则 a b 2 ab 3、基本不等式的两个重要变形 (1)若 a,b R *,则 2 总结:当两个正数的积为定植时,它们的和有最小值; 当两个正数 的和为定植时,它们的积有最小值; a b 6、柯西不等式 (1)若 a, b,c, d R ,则(a 2 b 2)(c 2 d 2) (ac bd )2 (2) 若 a 1, a 2, a 3, bi, b 2, b 3 R ,则有: 2 2 2 2 2 2 2 (a 1 a 2 a 3 )(柑 b ? b 3 ) (aQ a ?b 2 a s b s ) (3) 设a 1,a 2, ,a n 与 db, ,b 是两组实数,则有 2 2 2 p22 2 佝 a 2 a . )(0 b 2 b n )(日山 a 2b 2 a n b n ) 一、知识点总结 1、基本不等式原始形式 二、题型分析 题型一:利用基本不等式证明不等式 (1)若 a,b R ,则 a 2 b 2 2ab 1、设a,b 均为正数,证明不等式:、.ab 二 (2)右 a, b R ,则 ab a,b,c 为两两不相等的实数, (2)若 a, b R ,则 ab b 2 ab bc ca 4、求最值的条件:“一正, 二定,三相等” 5、常用结论 1 (1)若 x 0,则 x — 2 (当且仅当 x 1时取“=”) x 1 (2)若 x 0,则 X - 2 (当且仅当 x 1时取 “=”) X (3)若 ab 0,则-- 2 (当且仅当 a b 时取 “=”) b a 2 2 (4)若 a, b R ,则 ab ( 旦 b)2 a b 2 2 (5)若 a, b R ,贝U 1 . a ab b a 2 b 2 v ------ 1 1 2 2 (1 已知a a,b,c a )(1 1, 求证: b)(1 c) 8abc a, b, c R

数列与不等式知识点及练习

数列与不等式 一、看数列是不是等差数列有以下三种方法: ①),2(1为常数d n d a a n n ≥=--②211-++=n n n a a a (2≥n )③b kn a n +=(k n ,为常数). 二、看数列是不是等比数列有以下两种方法: ①)0,,2(1≠≥=-且为常数q n q a a n n ②112 -+?=n n n a a a (2≥n ,011≠-+n n n a a a ) (2)在等差数列{n a }中,有关S n 的最值问题:(1)当1a >0,d<0时,满足?? ? ≤≥+0 01m m a a 的项数m 使得m s 取最大值. (2)当1a <0,d>0时,满足?? ?≥≤+0 1m m a a 的项数m 使得m s 取最小值.在解含绝 对值的数列最值问题时,注意转化思想的应用。 四.数列通项的常用方法: (1)利用观察法求数列的通项.(2)利用公式法求数列的通项:①;②{}n a 等差、等比数列{}n a 公式.(3)应用迭加(迭乘、迭代)法求数列的通项:①;②(4)造等差、等比数列求通项:;②;③;④.第一节通项公式常用方法题型1 利用公式法求通项 例1:1.已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 2.已知为数列{}n a 的前项和,求下列数列{}n a 的通项公式: ⑴ ; ⑵.总结:任何一个数列,它的前项和n S 与通项n a 都存在关系:???≥-==-)2() 1(11n S S n S a n n n 若1a 适合n a ,则把它们 统一起来,否则就用分段函数表示. 题型2 应用迭加(迭乘、迭代)法求通项 例2:⑴已知数列{}n a 中,,求数列{}n a 的通项公式; ⑵已知为数列{}n a 的前项和,,,求数列{}n a 的通项公式. 总结:⑴迭加法适用于求递推关系形如“”; 迭乘法适用于求递推关系形如““;⑵迭加法、迭乘法公式:① ② . 题型3 构造等比数列求通项 例3已知数列{}n a 中,,求数列{}n a 的通项公式. 总结:递推关系形如“” 适用于待定系数法或特征根法: ①令;② 在中令,;③由得,. 例4已知数列{}n a 中,,求数列{}n a 的通项公式. 总结:递推关系形如“”通过适当变形可转化为: “”或“求解. 数列求和的常用方法

2019高考数学二轮复习专题三数列与不等式第1讲等差数列与等比数列学案

第1讲 等差数列与等比数列 [考情考向分析] 1.等差、等比数列基本量和性质的考查是高考热点,经常以小题形式出现.2.等差、等比数列的判定及综合应用也是高考考查的重点,注意基本量及定义的使用,考查分析问题、解决问题的综合能力. 热点一 等差数列、等比数列的运算 1.通项公式 等差数列:a n =a 1+(n -1)d ; 等比数列:a n =a 1·q n -1 . 2.求和公式 等差数列:S n = n (a 1+a n ) 2 =na 1+ n (n -1) 2 d ; 等比数列:S n =????? a 1(1-q n )1-q =a 1-a n q 1-q (q ≠1),na 1(q =1). 3.性质 若m +n =p +q , 在等差数列中a m +a n =a p +a q ; 在等比数列中a m ·a n =a p ·a q . 例1 (1)(2018·全国Ⅰ)记S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5等于( ) A .-12 B .-10 C .10 D .12 答案 B 解析 设等差数列{a n }的公差为d ,由3S 3=S 2+S 4, 得3???? ??3a 1+3×(3-1)2×d =2a 1+2×(2-1)2×d +4a 1+4×(4-1)2×d ,将a 1=2代入上式,解得d =-3, 故a 5=a 1+(5-1)d =2+4×(-3)=-10.故选B. (2)(2018·杭州质检)设各项均为正数的等比数列{a n }中,若S 4=80,S 2=8,则公比q =________,a 5=________. 答案 3 162

不等式常见考试题型总结

不等式常见考试题型总结 Prepared on 22 November 2020

《不等式》常见考试题型总结一、高考与不等式 高考试题,有关不等式的试题约占总分的12% 左右,主要考查不等式的基本知识,基本技能,以及学生的运算能力,逻辑思维能力,分析问题和解决问题的能力.选择题和填空题主要考查不等式的性质、比较大小和解简单不等式,还可能与函数、方程等内容相结合的小综合.解答题主要是解不等式或证明不等式或以其他知识为载体的综合题。不等式常与下列知识相结合考查: ①不等式的性质的考查常与指数函数、对数函数、三角函数的性质的考查相结合,一般多以选择题的形式出现,有时也与充要条件、函数单调性等知识结合,且试题难度不大; ②解不等式的试题主要在解答中出现,常常是解含参不等式较多,且多与二次函数、指数、对数、可能还会出现导数相结合命题; ③证明不等式是理科考查的重点,经常同一次函数、二次函数、数列、解析几何,甚至还可能与平面向量等结合起来考查. 二、常见考试题型 (1)求解不等式解集的题型 (分式不等式的解法,根式不等式的解法,绝对值不等式的解法,含参不等式的解法,简单的一元高次不等式的解法) (2)不等式的恒成立问题 (不等式恒成立问题的常规处理方式常应用函数方程思想,分离变量法,数形结合 法) (3)不等式大小比较 常用方法: 1.作差:作差后通过分解因式、配方等手段判断差的符号得出结果; 2.作商(常用于分数指数幂的代数式); 3.分析法;

4.平方法; 5.分子(或分母)有理化; 6.利用函数的单调性; 7.寻找中间量或放缩法 ; 8.图象法。 (4)不等式求函数最值 技巧一:凑项 例:已知5 4x < ,求函数14245 y x x =-+-的最大值。 技巧二:凑系数 例. 当 时,求(82)y x x =-的最大值。 技巧三: 分离 例. 求2710 (1)1 x x y x x ++= >-+的值域。 技巧四:换元 例. 求2710 (1)1x x y x x ++= >-+的值域。 技巧五:函数的单调性 (注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数()a f x x x =+的单调性。) 例:求函数22 4 y x = +的值域。 技巧六:整体代换 (多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错。) 例:(1)已知0,0x y >>,且19 1x y +=,求x y +的最小值。 (2)若+ ∈R y x ,且12=+y x ,求y x 11+的最小值 (3)已知+ ∈R y x b a ,,,且1=+y b x a ,求y x +的最小值

基本不等式几大题型(教师版)

题型1 基本不等式正用a +b ≥2ab 例1:(1)函数f (x )=x +1x (x >0)值域为________; 函数f (x )=x +1x (x ∈R )值域为________; (2)函数f (x )=x 2+1x 2+1 的值域为________. 解析:(1)∵x >0,x +1x ≥2x ·1 x =2, ∴f (x )(x >0)值域为[2,+∞); 当x ∈R 时,f (x )值域为(-∞,-2]∪[2,+∞); (2)x 2 +1x 2+1=(x 2+1)+1x 2+1-1 ≥2 x 2+1 ·1x 2+1 -1=1, 当且仅当 x =0 时等号成立. 答案:(1)[2,+∞) (-∞,-2]∪[2,+∞) (2)[1,+∞) 例2:(2013·镇江期中)若x >1,则x +4x -1 的最小值为________. 解析:x +4x -1=x -1+4x -1 +1≥4+1=5. 当且仅当x -1=4x -1 ,即x =3时等号成立. 答案:5 例3:(1)已知x <0,则f (x )=2+4x +x 的最大值为________. (1)∵x <0,∴-x >0,

∴f (x )=2+4x +x =2-???? ??4-x + -x . ∵-4x +(-x )≥24=4,当且仅当-x =4-x ,即x =-2时等号成立. ∴f (x )=2-???? ??4-x + -x ≤2-4=-2, ∴f (x )的最大值为-2. 例4:当x >0时,则f (x )=2x x 2 +1的最大值为________. 解析:(1)∵x >0,∴f (x )=2x x 2+1=2x +1x ≤22=1, 当且仅当x =1x ,即x =1时取等号. 例5:函数y =x 2+2x -1 (x >1)的最小值是________. 解析:∵x >1,∴x -1>0. ∴y =x 2+2x -1=x 2-2x +2x +2x -1 =x 2-2x +1+2 x -1 +3x -1 = x -1 2+2 x -1 +3x -1 =x -1+ 3x -1+2 ≥2 x -1 3x -1+2=23+2. 当且仅当x -1= 3x -1 ,即x =1+3时,取等号. 答案:23+2 例6:已知x >0,a 为大于2x 的常数,求y = 1a -2x -x 的最小值. 解:y =1a -2x +a -2x 2-a 2≥2 12-a 2=2-a 2 .

2017高考数列与不等式

2017高考数列与不等式 1.【2017课标1,文7】设x,y满足约束条件 33, 1, 0, x y x y y +≤ ? ? -≥ ? ?≥ ? 则z=x+y的最大值为 A.0 B.1 C.2 D.3 2.【2017课标II,文7】设,x y满足约束条件 2+330 2330 30 x y x y y -≤ ? ? -+≥ ? ?+≥ ? ,则2 z x y =+的最小值是 A.15 - B.9- C.1 D 9 3.【2017课标3,文5】设x,y满足约束条件 3260 x y x y +-≤ ? ? ≥ ? ?≥ ? ,则z x y =-的取值范围是() A.[–3,0] B.[–3,2] C.[0,2] D.[0,3] 4.【2017北京,文4】若,x y满足 3, 2, , x x y y x ≤ ? ? +≥ ? ?≤ ? 错误!未找到引用源。则2 x y +的最大值为 (A)1(B)3 (C)5 (D)9 5.【2017山东,文3】已知x,y满足约束条件 250 30 2 x y x y -+≤ ? ? +≥ ? ?≤ ? ,则z=x+2y的最大值是 A.-3 B.-1 C.1 D.3 6.【2017浙江,4】若x,y满足约束条件 30 20 x x y x y ≥ ? ? +-≥ ? ?-≤ ? ,则y x z2 + =的取值范围是 A.[0,6] B.[0,4] C.[6,)∞ +D.[4,)∞ + 7.【2017浙江,6】已知等差数列{a n}的公差为d,前n项和为S n,则“d>0”是“S4 + S6>2S5”的A.充分不必要条件B.必要不充分条件 C.充分必要条件D.既不充分也不必要条件

必修五基本不等式题型分类(绝对经典)

一对一个性化辅导教案课题基本不等式复习 教学 重点 基本不等式 教学 难点 基本不等式的应用 教学目标掌握利用基本不等式求函数的最值学会灵活运用不等式 教学步骤及教学 容一、教学衔接: 1、检查学生的作业,及时指点; 2、通过沟通了解学生的思想动态和了解学生的本周学校的学习容。 二、容讲解: 1.如果,a b R+ ∈2 a b ab +≥那么当且仅当时取“=”号). 2.如果,a b R+ ∈ 2 2 a b ab + ?? ≤ ? ?? 那么(当且仅当时取“=”号) 3、在用基本不等式求函数的最值时,应具备三个条件:一正二定三相等。①一正:函数的解析式中,各项均为正数;②二定:函数的解析式中,含变数的各项的和或积必须有一个为定值;③三取等:函数的解析式中,含变数的各项均相等,取得最值。 三、课堂总结与反思: 带领学生对本次课授课容进行回顾、总结 四、作业布置: 见讲义 管理人员签字:日期:年月日 作1、学生上次作业评价:○好○较好○一般○差 备注:

基本不等式复习 知识要点梳理知识点:基本不等式 1.如果,a b R +∈2a b ab +≥(当且仅当时取“=”号). 2.如果,a b R +∈22a b ab +??≤ ???( 当且仅当时取“=”号).在用基本不等式求函数的最值时,应具 备三个条件:一正二定三取等。① 一正:函数的解析式中,各项均为正数;② 二定:函数的解析式中,含变数的各项的和或积必须有一个为定值;③ 三取等:函数的解析式中,含变数的各项均相等,取得最值。 类型一:利用(配凑法)求最值 1.求下列函数的最大(或最小)值. (1)求11x x +≥+(x 0)的最小值; (2)若x 0,0,24,xy y x y >>+=求的最大值 (3)已知 ,,且. 求的最大值及相应的的值 变式1:已知51,y=42445 x x x < -+-求函数的最大值 类型二:含“1”的式子求最值 2.已知且,求的最小值.

基本不等式经典例题(含知识点和例题详细解析) (1)

基本不等式专题 知识点: 1. (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ (当且仅当 b a =时取“=”) 2. (1)若*,R b a ∈,则 ab b a ≥+2 (2)若*,R b a ∈,则ab b a 2≥+ (当且仅当b a =时取“=”) (3)若* ,R b a ∈,则2 2? ? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则1 2x x + ≥ (当且仅当1x =时取“=”) 若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”)若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 5.若R b a ∈,,则2 )2(2 22b a b a +≤ +(当且仅当b a =时取“=”) 注意: (1)当两个正数的积为定植时,可以求它们的和的最小值, 当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用 应用一:求最值 例:求下列函数的值域 (1)y =3x 2+ 1 2x 2 (2)y =x +1 x 解:(1)y =3x 2+ 1 2x 2 ≥23x 2· 1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2;

高考数学复习专题14数列与不等式理

专题1.4 数列与不等式 总分 _______ 时间 _______ 班级 _______ 学号 _______ 得分_______ 一、选择题(12*5=60分) 一、单选题 1.【2018届四川省成都外国语学校高三11 月月考】已知全集为R ,集合 2{|0.51},{|680}x A x B x x x =≤=-+≤,则C A B ?=R A. (],0∞- B. []2,4 C. [)()0,24,∞?+ D. ][() 0,24,∞?+ 【答案】C 2.在等比数列{}n a 中,151,4a a =-=-,则3a = A. 2± B. 2± C. 2 D. 2- 【答案】D 【解析】由等比数列的性质可得2 3154a a a ==,因为151,4a a =-=-,所以3 2.a =-选D. 3.【2018届天津市滨海新区大港油田第一中学高三上期中】若a 、b 、c∈R,则下列命题中正确的是( ) A. 若ac>bc ,则a>b B. 若a 2 >b 2 ,则a>b C. 若 11 a b <,则a>b D. 若a b >,则a>b 【答案】D 【解析】若ac>bc ,则c>0时 a>b ;若2 a >2 b ,则|a|>|b|;若11 a b <,则a>b 或a<0,则a>b ,所以选D.

4.【2018届山东省枣庄市第三中学高三一调】已知均为正实数,且,则 的最小值为( ) A. B. C. D. 【答案】 C 5.【2018届北京丰台二中高三上期中】若n S 是数列{} 2n 的前n 项和,则83S S -=(). A. 504 B. 500 C. 498 D. 496 【答案】D 【解析】83S S - 45678a a a a a =++++ 458222=+++L 163264128256=++++ 496=. 故选D . 6.关于x y 、的不等式组360, {20, 40, x y x y x y +-≥--≤+-≤则2z x y =+的最大值是( ) A. 3 B. 5 C. 7 D. 9 【答案】C 【解析】作可行域,如图,则直线2z x y =+过点A (1,3)取最大值7,选C.

放缩法证明数列不等式经典例题

放缩法证明数列不等式 主要放缩技能: 1.211111111(1)(n 1)1n n n n n n n n -=<<=-++-- 2221144112()141(21)(21)21214 n n n n n n n <===--+--+- ==>= ==<= =<= == =< = = 5. 121122211(21)(21)(22)(21)(21)2121 n n n n n n n n n n ---<==-------- 6. 111 22(1)11(1)2(1)22(1)2n n n n n n n n n n n n n +++++-==-+?+??+?

例1.设函数2*2()1x x n y n N x -+=∈+的最小值为n a ,最大值为n b , 且n c =(1)求n c ;(2)证明: 4444123111174n c c c c ++++ < 例2.证明:1611780<+ ++< 例3.已知正项数列{}n a 的前n 项的和为n s ,且12n n n a s a + =,*n N ∈; (1)求证:数列{} 2n s 是等差数列; (2)解关于数列n 的不等式:11()48n n n a s s n ++?+>- (3)记312311112,n n n n b s T b b b b = = ++++,证明:312n T <<

例4. 已知数列{}n a 满足:n a n ?????? 是公差为1的等差数列,且121n n n a a n ++=+; (1) 求n a ;(2 12n na +++< 例5.在数列{}n a 中,已知1112,2n n n n a a a a a ++==-; (1)求n a ;(2)证明:112233(1)(1)(1)(1)3n n a a a a a a a a -+-+-++-< 例6. 数列{}n a 满足:11122,1()22 n n n n n a a a n a ++==++; (1)设2n n n b a =,求n b ;(2)记11(1)n n c n n a +=+,求证:12351162 n c c c c ≤++++<

基本不等式题型归纳

基本不等式题型归纳 【重点知识梳理】 1.基本不等式:2a b ab +≤ (1)基本不等式成立的条件:0a >,0b >. (2)等号成立的条件:当且仅当a b =时,等号成立. 2.几个重要的不等式:(1)222a b ab +≥(,a b R ∈); (2) 2b a a b +≥(0ab >); (3)2( )2a b ab +≤(,a b R ∈); (4)2222()()a b a b +≥+(,a b R ∈). 3.算术平均数与几何平均数 设0a >,0b >,则,a b 的算术平均数为 2 a b +,几何平均数为ab ,基本不等式可叙述为两个正数的算术平均数不小于它们的几何平均数. 4.利用基本不等式求最值问题 已知0a >,0b >,则 (1)如果积ab 是定值p ,那么当且仅当a b =时,a b +有最小值是2p .(简记:积定和最小) (2)如果和a b +是定值p ,那么当且仅当a b =时,ab 有最大值是2 4 p .(简记:和定积最大) 题型一览 1、已知0a >,0b >,且41a b +=,则ab 的最大值为_______,则 1ab 的最小值为_______; 2、已知21x y +=,则24x y +的最小值为_______ 3、设03x <<,则函数4(52)y x x =-的最大值为_______ 4、若0x >,则4x x + 的最小值为_______;若0x <,则4x x +的最大值为_______ 5、若2x > ,则12x x +-的最小值为_______;若2x < ,则12 x x +-的最大值为_______ 若函数1()(2)2f x x x x =+ >-在 x a =处有最小值,则a =_______ 6、已知,a b R +∈,且22a b +=,则 12a b +(2a b b a +)的最小值为_______,此时,a b 的值分别是_______ 7、已知0x >,0y >,2 12x y +=(22x y xy +=或220x y xy +-=),则2x y +的最小值为_______

相关文档
最新文档