胰蛋白酶的分离纯化及动力学研究

胰蛋白酶的分离纯化及动力学研究
胰蛋白酶的分离纯化及动力学研究

北京理工大学珠海学院2009届

胰蛋白酶的分离纯化及动力学研究

摘要

通过沉淀离心法提取胰蛋白酶的专一性抑制剂-鸡卵类粘蛋白(CHOM),作为亲和配基,利用亲和层析法进行分离纯化胰蛋白酶,接着以抑制剂对酶反应速度的影响了解酶促反应,掌握其规律,来最大限度地实现酶促反应的高效率,寻找最有利的反应条件以及了解酶在代谢中的作用,最后SDS-PAGE进行酶纯度检验以及其相对分子量的测定。

关键词:胰蛋白酶鸡卵粘蛋白亲和层析法米氏常数酶促反应动力聚丙烯酰胺凝胶电泳

Trypsin of isolation and purification and dynamic research

ABSTRACT

Through the precipitation centrifugation extraction specificity of trypsin inhibitor - chicken egg kind mucin (CHOM), as affinity ligands, using the method of affinity chromatography separation and purification, and then to by trypsin inhibitor enzyme reaction speed is known about the effects of enzymatic reaction, grasp their rule, come maximally realize enzymatic reaction efficient, find the most favorable reaction conditions and understand the role in metabolic enzymes, finally sds-page for enzyme and its relative molecular weight inspection purity of determination.

目录

摘要 (Ⅰ)

ABSTRACT (Ⅱ)

目录 (Ⅲ)

1 引言 (1)

2 材料与方法 (1)

2.1原料与试剂 (1)

2.2仪器设备 (1)

2.3实验方法 (2)

2.3.1CHOM的分离 (2)

2.3.2CHOM的定量 (2)

2.3.3胰蛋白酶的分离 (2)

2.3.4酶活力的测定 (2)

2.3.5纯化效果及纯化蛋白质相对分子量的测定 (2)

3 结果与讨论 (3)

3.1CHOM的分离和定量 (3)

3.2胰蛋白酶的纯化 (4)

3.3酶活力的测定 (5)

3.4纯化效果及纯化蛋白质分子量的测定 (6)

4总结 (7)

参考文献 (8)

附录 (9)

1 引言

胰蛋白酶是取自猪胰脏的一种蛋白质水解酶,属于丝氨酸蛋白酶家族的消化酶。胰蛋白酶在胰腺中合成并以非活性的酶原形式分泌到消化道中,在消化道中酶原通过除去部分肽链转变成活性酶形式。所以胰蛋白酶不仅是一种重要的消化酶,而且对胰蛋白酶及胰凝乳蛋白酶前体的活性化等其重要作用。胰蛋白酶也是一种重要的工具酶,特别在生物化学、蛋白质组学、细胞生物学、医学等领域中得到了广泛的应用,利用胰蛋白酶可将大分子蛋白质酶解成小分子多肽片段以用于质朴分析、动物细胞培养、制备人胰岛素等。

2 材料与方法

2.1原料与试剂

蛋清制得的CHOM冻存于-4℃冰箱内备用;

澄清金黄色胰脏抽提液(PX),考马斯亮蓝试剂,亲和柱平衡液,亲和柱洗脱液,标准蛋白质溶液,BAEE底物溶液,0.05M,pH8.0Tris-HCl缓冲液,电泳缓冲液

(disc-PAGE,SDS-PAGE),凝胶加样缓冲液(Loading Buffer)等等。

2.2仪器设备

抽滤装置;移液枪;磁力搅拌器;高速离心机;分光光度计;小型亲和层析柱;蠕动泵;恒温浴水锅;DYY-6C型直流稳压电泳仪;DYCZ-24EN双垂直蛋白电泳槽(北京六一仪器厂);脱色摇床;凝胶成像系统等。

2.3实验方法

2.3.1CHOM的分离

取蛋清50mL放入一个50mL烧杯中,加入75mLTCA-丙酮,边加边搅拌,立即出现大量白色絮状沉淀,调节pH至3.5左右,继续搅拌15min,然后置于-20℃冰箱放置30min。将溶液装于50mL离心管中,5000rpm、离心5min,取上清液边搅拌边加入2倍体积-20℃预冷丙酮,生成沉淀;在-20℃下静置30min;取下部沉淀6000rpm、离心15min;挖出沉淀溶于10mL纯水,调节pH至4.5,然后再-20℃下对1L纯水进行透析,每1h换一次水。透析后若产生沉淀,6000rpm、离心10min除去,将上清边搅拌边加入4倍体积-20℃预冷丙酮,

产生大量沉淀,在-20℃冰箱放置10min,6000rpm、离心10min,倒弃上清,用预冷丙酮小心洗涤沉淀表面,稍微干燥。加入5mL纯水轻轻震荡溶解,便得到CHOM.

2.3.2CHOM的定量

Bradford法:利用CBG可与蛋白质结合而变色的特性来定量,若样品中蛋白质含量较多,则结合到蛋白质而变色的CBG也多,因而显色较深。实验以一组标准蛋白质为对象,制作一条蛋白质与光吸收值的标准曲线,

来求得样品蛋白质含量。

2.3.3 胰蛋白酶的分离

取2g甲壳素加入2mLCHOM水溶液(8.07mg蛋白含量)和0.25mLCHOM水溶液(173.5mg蛋白含量)混匀,加入1.25mL25%戊二醛,和12.4mL水,室温下反应45min,加入Tris-HCl缓冲液悬浮,装于固定好的并装有1/4体积的亲和柱平衡液的亲和层析柱中,自然沉淀,调节蠕动泵流速2~4mL/10min,不断加入Tris-HCl缓冲液,保持柱内液面高于吸附剂面,收集出口溶液,并用分光光度计测定A280值小于0.01即可。当柱面与床面刚好相切时便上样,调整流速越4s一滴,收集15管流出液4mL/管,经紫外分光光度计测定A280值。再用亲和柱洗脱液进行洗脱,控制流速8s一滴,收集21管流出液2mL/管,考马斯亮蓝法测定每根试管的蛋白含量,保留蛋白含量最高试管的收集液。BAEE法测定胰蛋白酶的酶活力和比活力。

2.3.4 酶活力的测定

以BAEE为底物进行测定,按已下表格依次得出数据,根据每个底物浓度下的△

A253/min,求得酶促反应的初速度v,利用双倒数作图法,以不同浓度的抑制剂下的1/v对1/[S]作图,判断抑制剂类型。

2.3.5 纯化效果及纯化蛋白质分子量的测定

在外场力的作用下,带电的蛋白质分子,将向着与其电荷符号相反的电极移动,该现象称为电泳。目前使用较广泛的凝胶电泳。聚丙烯酰胺凝胶电泳用于蛋白质的分离。通过各阶段纯化效果及纯化蛋白分子量用SDS-聚丙烯酰胺凝胶电泳(SDS-PAGE)分析,并与相对分子质量标准蛋白质(低)做对照,用考马斯亮蓝R-250染色。

3 结果与讨论

3.1 CHOM的分离和定量

蛋白质标准曲线图

样品稀释了200倍,A595=0.116nm。根据y=1.0481x-0.0108得,样品蛋白质含量为8.07mg/mL。

根据以上得出的结果,可知道样品蛋白质含量偏低,原因如下:

①样品透析之后仍具浑浊现象,表明该样品不纯。

②标准曲线数据侧得有偏差。

③调节pH值的时候并未达到那个要求,致使部分蛋白质耗失。

3.2胰蛋白酶的纯化

亲和层析平衡曲线图

通过与亲和层析法的典型溶离图谱做对比,得出以下结论:

①第一个波峰表明该收集液中主要为杂蛋白,而在第十根管的时候突然上升的原因是比色皿未清洗干净。

②再经过洗脱后,第二个波峰表明该收集液主要为胰蛋白酶,这时候收集的两根收集液含有的胰蛋白酶较高,也就其纯度达到最大值。

③所制得的曲线图谱与典型图谱相差不大,说明本实验较为合理,得到的胰蛋白酶较纯。

00.050.10.150.20.25

0.30.350

1

2

34567

T/min

A 253

酶时间-光吸收关系

根据以上计算所得的结果,可有以下结论:

①达到的纯化倍数相对很低,因为CHOM 含杂蛋白比较多。

②亲和吸附剂的制作转移过程中,耗掉了少量的吸附剂,以至于耗失少量的胰蛋白酶。 ③装柱与平衡时,收集的出口溶液,经紫外光分光光度计测定A 280值并未小于0.01,稍大。

④由于酶放置久其酶活力会下降。但是酶的纯度相对较高。

3.3酶活力的测定

利用米式作图法以及双倒数作图法,所制得的关于测定胰蛋白酶K m 值与酶初速度v 之间的关系图,如下:

1/[S]

1/v

米氏方程 双倒数法作图

根据以上图示T 方程式y=0.0519x+0.1211,得, K m=2.11;V max=0.16μmol/(L·min)

1/[S]

1/v

抑制剂类型判断图

根据图中T 1和T 2的曲线做对比,可知道Km 基本上不变,而Vmax 是降低了。即该抑制剂类型为竞争性抑制。

3.4纯化效果及纯化蛋白质分子量的测定

纯化效果以及目的蛋白质分子质量大小以SDS-PAGE 表示如图:

蛋白质相对分子质量的测定

①通过以上标准蛋白质分子质量标准曲线得出的方程式为

y=-1.0496x+5.0389

②CHOM中蛋白质到前沿距离为1.82cm~2.34cm, ,得出其中蛋白质分子量大小分别为44978~ 14300。从图谱作比较可知该CHOM含杂蛋白较多。

③纯酶到前沿距离为2.85cm,得到胰蛋白酶的分子量大小为26915。从图谱中发现只有一条色带,表明该酶纯度较高。

④粗酶到前沿距离为1.17cm,得到胰蛋白酶的分子量大小为61802。

4 总结

在配置亲和基时,根据所得的蛋白质含量,纯度分析,用透析法配置的CHOM纯度不够大,致使纯化后的酶的比活力不大,纯度倍数不明显。纯酶的分子量大小仅为26915。本实验的周期比较长,因此酶的活力总体上是较低的。根据实验数据及结果分析,本实验的设计是教合理的。通过对胰蛋白酶的分离纯化及其动力学研究来掌握蛋白质的分离纯化方法,将理论与实践相结合,达到真正的运用。蛋白质分离纯化方法在生物化学、医学等领域中的应用是必不可少的,因此必须很好的掌握该技巧。

参考文献

王镜岩朱圣庚徐长法编著生物化学。

朱超锋,苟斌全,刘小刚LMB2011.ZHBIL生物化学实验手册

附录1.标准蛋白质含量测定

2.亲和层析平衡

3.粗酶时间-光吸收测定

表3-2

4.细酶时间-光吸收测定

5.酶活力测定

表3-2

蛋白质分离纯化的步骤

蛋白质分离纯化的一般程序可分为以下几个步骤: (一)材料的预处理及细胞破碎 分离提纯某一种蛋白质时,首先要把蛋白质从组织或细胞中释放出来并保持原来的天然状态,不丧失活性。所以要采用适当的方法将组织和细胞破碎。常用的破碎组织细胞的方法有: 1. 机械破碎法 这种方法是利用机械力的剪切作用,使细胞破碎。常用设备有,高速组织捣碎机、匀浆器、研钵等。 2. 渗透破碎法 这种方法是在低渗条件使细胞溶胀而破碎。 3. 反复冻融法 生物组织经冻结后,细胞内液结冰膨胀而使细胞胀破。这种方法简单方便,但要注意那些对温度变化敏感的蛋白质不宜采用此法。 4. 超声波法 使用超声波震荡器使细胞膜上所受张力不均而使细胞破碎。 5. 酶法 如用溶菌酶破坏微生物细胞等。 (二)蛋白质的抽提 通常选择适当的缓冲液溶剂把蛋白质提取出来。抽提所用缓冲液的pH、离子强度、组成成分等条件的选择应根据欲制备的蛋白质的性质而定。如膜蛋白的抽提,抽提缓冲液中一般要加入表面活性剂(十二烷基磺酸钠、tritonX-100 等),使膜结构破坏,利于蛋白质与膜分离。在抽提过程中,应注意温度,避免剧烈搅拌等,以防止蛋白质的变性。(三)蛋白质粗制品的获得选用适当的方法将所要的蛋白质与其它杂蛋白分离开来。比较方便的有效方法是根据蛋白质溶解度的差异进行的分离。常用的有下列几种方法: 1.等电点沉淀法不同蛋白质的等电点不同,可用等电点沉淀法使它们相互分离。 2.盐析法 不同蛋白质盐析所需要的盐饱和度不同,所以可通过调节盐浓度将目的蛋白沉淀析出。被盐析沉淀下来的蛋白质仍保持其天然性质,并能再度溶解而不变性。 3.有机溶剂沉淀法 中性有机溶剂如乙醇、丙酮,它们的介电常数比水低。能使大多数球状蛋白质在水溶液中的溶解度降低,进而从溶液中沉淀出来,因此可用来沉淀蛋白质。此外,有机溶剂会破坏蛋白质表面的水化层,促使蛋白质分子变得不稳定而析出。由于有机溶剂会使蛋白质变性,使用该法时,要注意在低温下操作,选择合适的有机溶剂浓度。 (四)样品的进一步分离纯化

DNA与蛋白质分离与鉴定巩固习题

DNA与蛋白质分离鉴定巩固练习 姓名:_______________ 学号:________ 成绩:________________ 一、选择题。 1.下列有关“DNA的粗提取与鉴定”实验的叙述,正确的是 ( ) A.DNA在NaCl溶液中的溶解度随NaCl浓度的升高而增大 B.DNA对洗涤剂的耐受性差,对高温的耐受性强 C.在沸水浴的条件下,DNA遇二苯胺试剂会被染成蓝色 D.可以选择新鲜的猪血、花椰菜等作为实验材料 2.DNA在不同浓度的NaCl溶液中溶解度不同;DNA不溶于酒精溶液,而细胞中的某些物质溶于酒精溶液。下图为“DNA的粗提取”实验的相关操作步骤,其操作目的错误的是() A.①是洗涤红细胞、去除红细胞表面的杂质 B.②是稀释NaCl溶液至0.14mol/L,析出DNA C.③是选用2mol/LNaCl溶液,溶解粘稠物中的DNA D.④是纯化DNA,去除溶于95%酒精的杂质 3.在利用洋葱进行DNA粗提取的实验中,加入洗涤剂和食盐的作用分别是 ( ) A.破坏细胞壁;溶解DNA B.破坏细胞膜;溶解DNA C.破坏细胞壁;溶解蛋白质 D.破坏细胞膜;溶解蛋白质 4.下列关于DNA粗提取与鉴定的说法正确的是 ( ) A.析出DNA时要缓慢地加蒸馏水,当析出黏稠物时即不再加水 B.在探究洗涤剂对植物细胞DNA提取的影响实验中,自变量是洗涤剂和食盐 C.提取的DNA溶解后加入二苯胺试剂即可染成蓝色 D.将含有DNA的滤液放在60~75℃的恒温水浴箱中保温后过滤,能去除蛋白质杂质 5.去除DNA杂质时,可直接在滤液中加入(),反应10-15min A.嫩肉粉 B.蒸馏水 C.2mol/lNaCl D.酒精 6.在向溶解DNA的NaCl溶液中,不断加入蒸馏水的目的是() A.加快溶解DNA的速度 B.加快溶解杂质的速度 C.减少DNA的溶解度,加快DNA析出 D.减小杂质的溶解度,加快杂质的析出 7.下列操作中,对DNA的提取量影响较小的是() A.使鸡血细胞在蒸馏水中充分破裂,发出DNA等核物质 B.搅拌时,要用玻璃棒沿一个方向轻缓搅动 C.在析出DNA粘稠物时,要缓缓加蒸馏水,直至溶液中粘稠物不再增多 D.在用酒精沉淀DNA时,要使用冷酒精,甚至再将混合液放入冰箱中冷却 8.在研究DNA的基因样本前,采集来的血样需要蛋白水解酶处理,然后用有机溶剂除去蛋白质。用蛋白水解酶处理血样的目的是() A.除去血浆中的蛋白质 B.除去染色体上的蛋白质 C.除去血细胞表面的蛋白质 D.除去血细胞中的所有的蛋白质,使DNA释放,便于进一步提纯 9.下列关于“DNA的粗提取与鉴定”实验原理与方法的叙述,错误的是 ( ) A.DNA在NaCl溶液中的溶解度随着溶液浓度的减小而减小 B.向鸡血细胞中加入蒸馏水的目的是使其吸水涨破,释放出其中的DNA C.向滤液中加入冷却的酒精的目的是除去DNA中的杂质,纯化DNA D.向初步纯化的DNA中加入二苯胺溶液,沸水浴后可观察到溶液显蓝色 10.与析出DNA粘稠物有关的叙述,不正确的是 ( ) A.操作时缓缓滴加蒸馏水,降低DNA的溶解度 B.在操作A时,用玻璃棒轻缓搅拌,以保证DNA分子完整 C.加蒸馏水可同时降低DNA和蛋白质的溶解度,两者均可析出

蛋白质纯化的方法选择

蛋白质纯化的方法选择 随着分子生物学的发展,越来越多的科研人员熟练掌握了分子生物学的各种试验技术,并研制成套试剂盒,使基因克隆表达变得越来越容易。但分子生物学的上游工作往往并非是最终目的,分子克隆与表达的关键是要拿到纯的表达产物,以研究其生物学作用,或者大量生产出可用于疾病治疗的生物制品。相对与上游工作来说,分子克隆的下游工作显得更难,蛋白纯化工作非常复杂,除了要保证纯度外,蛋白产品还必须保持其生物学活性。纯化工艺必须能够每次都能产生相同数量和质量的蛋白,重复性良好。这就要求应用适应性非常强的方法而不是用能得到纯蛋白的最好方法去纯化蛋白。在实验室条件下的好方法却可能在大规模生产应用中失败,因为后者要求规模化,且在每日的应用中要有很好的重复性。本文综述了蛋白质纯化的基本原则和各种蛋白纯化技术的原理、优点及局限性,以期对蛋白纯化的方法选择及整体方案的制定提供一定的指导。 1、蛋白纯化的一般原则 蛋白纯化要利用不同蛋白间内在的相似性与差异,利用各种蛋白间的相似性来除去非蛋白物质的污染,而利用各蛋白质的差异将目的蛋白从其他蛋白中纯化出来。每种蛋白间的大小、形状、电荷、疏水性、溶解度和生物学活性都会有差异,利用这些差异可将蛋白从混合物如大肠杆菌裂解物中提取出来得到重组蛋白。蛋白的纯化大致分为粗分离阶段和精细纯化阶段二个阶段。粗分离阶段主要将目的蛋白和其他细胞成分如DNA、RNA等分开,由于此时样本体积大、成分杂,要求所用的树脂高容量、高流速,颗粒大、粒径分布宽.并可以迅速将蛋白与污染物分开,防止目的蛋白被降解。精细纯化阶段则需要更高的分辨率,此阶段是要把目的蛋白与那些大小及理化性质接近的蛋白区分开来,要用更小的树脂颗粒以提高分辨率,常用离子交换柱和疏水柱,应用时要综合考虑树脂的选择性和柱效两个因素。选择性树脂与目的蛋白结合的特异性,柱效则是指各蛋白成分逐个从树脂上集中洗脱的能力,洗脱峰越窄,柱效越好。仅有好的选择性,洗脱峰太宽,蛋白照样不能有效分离。 2、各种蛋白纯化方法及其优、缺点 2.1 蛋白沉淀蛋白能溶于水是因为其表面有亲水性氨基酸,在蛋白质的等电点处若溶液的离子强度特别高或者特别低,蛋白则倾向于从溶液中析出。硫酸铵是沉淀蛋白最常用的盐,因为它在冷的缓冲液中溶解性好,冷的缓冲液有利于保持目的蛋白的活性。硫酸铵分馏常用作试验室蛋白纯化的第一步,它可以初步粗提蛋白质,去除非蛋白成分。蛋白质在硫酸铵沉淀中较稳定,可以短期在这种状态下保存中间产物,当前蛋白质纯化多采用这种办法进行粗分离翻。在规模化生产上硫酸铵沉淀方法仍存在一些问题,硫酸铵对不锈钢器具的腐蚀性很强。其他的盐如硫酸钠不存在这种问题,但其纯化效果不如硫酸铵。除了盐析外蛋白还可以用多聚物如PEG和防冻剂沉淀出来,PEG是一种惰性物质,同硫酸铵一样对蛋白有稳定效果,在缓慢搅拌下逐渐提高冷的蛋白溶液中的PEG浓度,蛋白沉淀可通过离心或过滤获得,蛋白可在这种状态下长期保存而不损坏。蛋白沉淀对蛋白纯化来说并不是多么好的方法,因为它只能达到几倍的纯化效果,而我们在达到目的前需要上千倍的纯化。其好处是可以把蛋白从混杂有蛋白酶和其他有害杂质的培养基及细胞裂解物中解脱出来。 2.2 缓冲液的更换虽然更换缓冲液不能提高蛋白纯度,但它却在蛋白纯化方案中起着极其重要的作用。不同的蛋白纯化方法需要不同pH及不同离子强度的缓冲液。假如你用硫酸铵将蛋白沉淀出来,毫无疑问蛋白是处在高盐环境中,需要想办法脱盐,可用的方法有利用半透膜透析,通过勤换透析液体去除盐分,此法尚可,但需几个小时,通常要过夜,也难以用于大规模纯化中。新型的设备将透析膜夹在两个板中间,板的一侧加缓冲液,另一侧加需脱盐的蛋白溶液,并在蛋白溶液一侧通过泵加压,可以使两侧溶液在数小时内达到平衡,若增加对蛋白溶液的压力,还可迫使水分和盐更多通过透析膜进入透析液达到对蛋白浓缩的目的。也有出售的脱盐柱,柱内的填料是小孔径的颗粒,蛋白分子不能进入孔内,先于高浓度盐离子从柱中流出,从而使二者分离。蛋白纯化的每一步都会造成目的蛋白的丢失,缓冲液平衡的步骤尤甚。蛋白会结合在任何它能接触的表面上,剪切力、起泡沫和离子强度的快速变化很容易让蛋白失活。 2.3 离子交换色谱这是在所有的蛋白纯化与浓缩方法中最有效方法。基于蛋白与离子交换树脂间的相互电荷作用,通过选择不同的缓冲液,同一种蛋白既可以和阴离子交换树脂(能结合带负电荷的分子)结合,也可以和阳离子交换树脂结合。树脂所用的带电基团有四种:二乙基氨基乙基用于弱的阴离子交换树脂;羧甲基用于弱的阳离子交换树脂;季铵用于强阴离子交换树脂;甲基磺酸酯用于强阳离子交换树脂。蛋白质由氨基酸组成,氨基酸在不同的pH环境中所带总电荷不同。大多数蛋白在生理pH(pH6~8)下带负电荷,需用阴离子交换柱纯化,极端的pH下蛋白会变性失活.应尽量避免。由于在某个特定的pH下不同的蛋白所带电荷数不同,与树脂的结合力也不同,随着缓冲液中盐浓度的增加或pH的变化,蛋白按结合力的强弱被依次洗脱。在工业化生产中更多地是改变盐浓度而不是去改变pH值,因为前者更容易控制。在实验室中几乎总是用盐浓度梯度去洗脱离子交换柱,利用泵的辅助可以使流入柱的缓冲液中盐浓度平稳地上升,当离子强度能够中和蛋白的电荷时,蛋白就被从柱上洗脱下来。但在工业生产中盐浓度很难精确控制,所以常用分步洗脱而不足连续升高的盐梯度。与排阻层析相比,离子交换特异性更好,有更多的参数可以调整以获得最优的纯化效果,树脂也比较便宜。值得一提的是,即便是用最精确控制的条件,仅用离子交换单一的方法也得不到纯的蛋白,还需要其他的纯化步骤。

蛋白质的分离纯化和表征

蛋白质的分离纯化和表征 第一节蛋白质的酸碱性质 各个解离基团的pK 值与游离氨基酸的不完全相同。等电点要用等电聚焦等方法测定。 第二节蛋白质分子的大小与形状

一、根据化学组成测定最低相对分子质量 假定某种微量成分只有一个,测出其百分含量后,可用比例式算出最低相对分子质量。 若测出两种微量成分的百分含量,分别用比例式算出的最低相对分子质量不相同时,可计算两个最低相对分子质量近似的最小公倍数。 例题:一种纯酶含亮氨酸(Mr 131)1.65%,含异亮氨酸(Mr131)2.48%,求最低相对分子质量。 解:按照Leu 的百分含量计算,最低Mr X1: X1=(100′ 131)/1.65=7939.4。 按照Ile 的百分含量计算最低Mr X2: X2=(100′ 131)/2.48=5282.3。 由于X1 和X2 数字差异较大,提示这种酶含Leu 和Ile 不止1 个,为了估算Leu 和Ile 的个数,首先计算: X1/X2=7939.4/5282.3≈1.5。 这种酶含任何氨基酸的个数均应是整数,说明该酶至少含有2 个Leu,3 个Ile,其最低相对分子质量为: 7939.4 ′2 =15878.8或5282.3×3=15846.9。 二、渗透压法测定相对分子质量 三、沉降分析法测定相对分子质量

基本原理: (一)离心力(centrifugal force,Fc) 当一个粒子(生物大分子或细胞器)在高速旋转下受到离心力作用时,此离心力“Fc”由下式定义: F=m·a=m·ω2 r a—粒子旋转的加速度,m—沉降粒子的有效质量,ω—粒子旋转的角速度,r—粒子的旋转半径(cm)。 (二)相对离心力(relative centrifugal force,RCF) 由于各种离心机转子的半径或者离心管至旋转轴中心的距离不同,离心力而受变化,因此在文献中常用“相对离心力”或“数字×g”表示离心力,只要RCF 值不变,一个样品可以在不同的离心机上获得相同的结果。 RCF 就是实际离心场转化为重力加速度的倍数。

蛋白质的分离纯化方法(参考资料)

蛋白质的分离纯化方法 2.1根据分子大小不同进行分离纯化 蛋白质是一种大分子物质,并且不同蛋白质的分子大小不同,因此可以利用一些较简单的方法使蛋白 质和小分子物质分开,并使蛋白质混合物也得到分离。根据蛋白质分子大小不同进行分离的方法主要有透析、超滤、离心和凝胶过滤等。透析和超滤是分离蛋白质时常用的方法。透析是将待分离的混合物放入半透膜制成的透析袋中,再浸入透析液进行分离。超滤是利用离心力或压力强行使水和其它小分子通过半透膜,而蛋白质被截留在半透膜上的过程。这两种方法都可以将蛋白质大分子与以无机盐为主的小分子分开。它们经常和盐析、盐溶方法联合使用,在进行盐析或盐溶后可以利用这两种方法除去引入的无机盐。由于超滤过程中,滤膜表面容易被吸附的蛋白质堵塞,以致超滤速度减慢,截流物质的分子量也越来越小。所以在使用超滤方法时要选择合适的滤膜,也可以选择切向流过滤得到更理想的效果离心也是经常和其它方法联合使用的一种分离蛋白质的方法。当蛋白质和杂质的溶解度不同时可以利用离心的方法将它们分开。例如,在从大米渣中提取蛋白质的实验中,加入纤维素酶和α-淀粉酶进行预处理后,再用离心的方法将有用物质与分解掉的杂质进行初步分离[3]。使蛋白质在具有密度梯度的介质中离心的方法称为密度梯度(区带)离心。常用的密度梯度有蔗糖梯度、聚蔗糖梯度和其它合成材料的密度梯度。可以根据所需密度和渗透压的范围选择合适的密度梯度。密度梯度离心曾用于纯化苏云金芽孢杆菌伴孢晶体蛋白,得到的产品纯度高但产量偏低。蒋辰等[6]通过比较不同密度梯度介质的分离效果,利用溴化钠密度梯度得到了高纯度的苏云金芽孢杆菌伴孢晶体蛋白。凝胶过滤也称凝胶渗透层析,是根据蛋白质分子大小不同分离蛋白质最有效的方法之一。凝胶过滤的原理是当不同蛋白质流经凝胶层析柱时,比凝胶珠孔径大的分子不能进入珠内网状结构,而被排阻在凝胶珠之外,随着溶剂在凝胶珠之间的空隙向下运动并最先流出柱外;反之,比凝胶珠孔径小的分子后流出柱外。目前常用的凝胶有交联葡聚糖凝胶、聚丙烯酰胺凝胶和琼脂糖凝胶等。在甘露糖蛋白提纯的过程中使用凝胶过滤方法可以得到很好的效果,纯度鉴定证明产品为分子量约为32 kDa、成分是多糖∶蛋白质(88∶12)、多糖为甘露糖的单一均匀糖蛋白[1]。凝胶过滤在抗凝血蛋白的提取过程中也被用来除去大多数杂蛋白及小分子的杂质[7]。 2.2 根据溶解度不同进行分离纯化 影响蛋白质溶解度的外部条件有很多,比如溶液的pH值、离子强度、介电常数和温度等。但在同一条件下,不同的蛋白质因其分子结构的不同而有不同的溶解度,根据蛋白质分子结构的特点,适当地改变外部条件,就可以选择性地控制蛋白质混合物中某一成分的溶解度,达到分离纯化蛋白质的目的。常用的方法有等电点沉淀和pH值调节、蛋白质的盐溶和盐析、有机溶剂法、双水相萃取法、反胶团萃取法等。 等电点沉淀和pH值调节是最常用的方法。每种蛋白质都有自己的等电点,而且在等电点时溶解度最

分离纯化蛋白质的方法及原理

(二)利用溶解度差别 影响蛋白质溶解度的外部因素有:1、溶液的pH;2、离子强度;3、介电常数;4、温度。但在同一的特定外部条件下,不同蛋白质具有不同的溶解度。 1、等电点沉淀:原理:蛋白质处于等电点时,其净电荷为零,由于相邻蛋白质分子之间没有静电斥力而趋于聚集沉淀。因此在其他条件相同时,他的溶解度达到最低点。在等电点之上或者之下时,蛋白质分子携带同种符号的净电荷而互相排斥,阻止了单个分子聚集成沉淀,因此溶解度较大。不同蛋白质具有不同的等电点,利用蛋白质在等电点时的溶解度最低的原理,可以把蛋白质混合物分开。当pH被调到蛋白质混合物中其中一种蛋白质的等电点时,这种蛋白质大部分和全部被沉淀下来,那些等电点高于或低于该pH的蛋白质则仍留在溶液中。这样沉淀出来的蛋白质保持着天然的构象,能重新溶解于适当的pH和一定浓度的盐溶液中。 5、盐析与盐溶:原理:低浓度时,中性盐可以增加蛋白质溶解度这种现象称为盐溶.盐溶作用主要是由于蛋白质分子吸附某种盐类离子后,带电层使蛋白质分子彼此排斥,而蛋白质与水分子之间的相互作用却加强,因而溶解度增高。球蛋白溶液在透析过程中往往沉淀析出,这就是因为透析除去了盐类离子,使蛋白质分子之间的相互吸引增加,引起蛋白质分子的凝集并沉淀。当溶液的离子强度增加到一定程度时,蛋白质溶解程度开始下降。当离子强度增加到足够高时,例如饱和或半饱和程度,很多蛋白质可以从水中沉淀出来,这种现象称为盐析。盐析作用主要是由于大量中性盐的加入使水的活度降低,原来溶液中的大部分甚至全部的自由水转变为盐离子的水化水。此时那些被迫与蛋白质表面的疏水集团接触并掩盖他们的水分子成为下一步最自由的可利用的水分子,因此被移去以溶剂化盐离子,留下暴露出来的疏水基团。蛋白质疏水表面进一步暴露,由于疏水作用蛋白质聚集而沉淀。 盐析沉淀的蛋白质保持着他的天然构象,能再溶解。盐析的中性盐以硫酸铵为最佳,在水中的溶解度很高,而溶解度的温度系数较低。 3、有机溶剂分级分离法:与水互溶的有机溶剂(甲醇、乙醇和丙酮等)能使蛋白质在水中的溶解度显著降低。在室温下有机溶剂会引起蛋白质变性,如果预先将有机溶剂冷却到-40°C以下,然后在不断搅拌下逐滴加入有机溶剂,以防局部浓度过高,那么变性可以得到很大程度缓解。蛋白质在有机溶剂中的溶解度也随温度、pH和离子强度而变化。在一定温度、pH和离子强度条件下,引起蛋白质沉淀的有机溶剂的浓度不同,因此控制有机溶剂浓度也可以分

蛋白质提取与制备的原理和方法

蛋白质提取与制备的原理和方法 蛋白质提取与制备蛋白质种类很多,性质上的差异很大,既或是同类蛋白质,因选用材料不同,使用方法差别也很大,且又处于不同的体系中,因此不可能有一个固定的程序适用各类蛋白质的分离。但多数分离工作中的关键部分基本手段还是共同的,大部分蛋白质均可溶于水、稀盐、稀酸或稀碱溶液中,少数与脂类结合的蛋白质溶于乙醇、丙酮及丁醇等有机溶剂中。因此可采用不同溶剂提取、分离及纯化蛋白质和酶。 蛋白质与酶在不同溶剂中溶解度的差异,主要取决于蛋白分子中非极性疏水基团与极性亲水基团的比例,其次取决于这些基团的排列和偶极矩。故分子结构性质是不同蛋白质溶解差异的内因。温度、pH、离子强度等是影响蛋白质溶解度的外界条件。提取蛋白质时常根据这些内外因素综合加以利用。将细胞内蛋白质提取出来。并与其它不需要的物质分开。但动物材料中的蛋白质有些可溶性的形式存在于体液(如血浆、消化硫等)中,可以不必经过提取直接进行分离。蛋白质中的角蛋白、胶原及丝蛋白等不溶性蛋白质,只需要适当的溶剂洗去可溶性的伴随物,如脂类、糖类以及其他可溶性蛋白质,最后剩下的就是不溶性蛋白质。这些蛋白质经细胞破碎后,用水、稀盐酸及缓冲液等适当溶剂,将蛋白质溶解出来,再用离心法除去不溶物,即得粗提取液。水适用于白蛋白类蛋白质的抽提。如果抽提物的pH用适当缓冲液控制时,共稳定性及溶解度均能增加。如球蛋白 类能溶于稀盐溶液中,脂蛋白可用 稀的去垢剂溶液如十二烷基硫酸钠、洋地黄皂苷(Digitonin)溶液或有机溶剂来抽提。其它不溶于水的蛋白质通常用稀碱溶液抽提。 蛋白质类别和溶解性质 白蛋白和球蛋白: 溶于水及稀盐、稀酸、稀碱溶液,可被50%饱和度硫酸铵析出。 真球蛋白: 一般在等电点时不溶于水,但加入少量的盐、酸、碱则可溶解。 拟球蛋白: 溶于水,可为50%饱和度硫酸铵析出 醇溶蛋白: 溶于70~80%乙醇中,不溶于水及无水乙醇 壳蛋白: 在等电点不溶于水,也不溶于稀盐酸,易溶于稀酸、稀碱溶液 精蛋白: 溶于水和稀酸,易在稀氨水中沉淀 组蛋白: 溶于水和稀酸,易在稀氨水中沉淀 硬蛋白质: 不溶于水、盐、稀酸及稀碱 缀合蛋白(包括磷蛋白、粘蛋白、糖蛋白、核蛋白、脂蛋白、血红蛋白、金属蛋白、黄素蛋白和氮苯蛋白等) : 此类蛋白质溶解性质随蛋白质与非蛋白质结合部分的不同而异,除脂蛋白外,一般可溶于稀酸、稀碱及盐溶液中,脂蛋白如

蛋白质的分离纯化方法

蛋白质的分离纯化方法 根据分子大小不同进行分离纯化 蛋白质是一种大分子物质,并且不同蛋白质的分子大小不同,因此可以利用一些较简单的方法使蛋白 质和小分子物质分开,并使蛋白质混合物也得到分离。根据蛋白质分子大小不同进行分离的方法主要有透析、超滤、离心和凝胶过滤等。透析和超滤是分离蛋白质时常用的方法。透析是将待分离的混合物放入半透膜制成的透析袋中,再浸入透析液进行分离。超滤是利用离心力或压力强行使水和其它小分子通过半透膜,而蛋白质被截留在半透膜上的过程。这两种方法都可以将蛋白质大分子与以无机盐为主的小分子分开。它们经常和盐析、盐溶方法联合使用,在进行盐析或盐溶后可以利用这两种方法除去引入的无机盐。由于超滤过程中,滤膜表面容易被吸附的蛋白质堵塞,以致超滤速度减慢,截流物质的分子量也越来越小。所以在使用超滤方法时要选择合适的滤膜,也可以选择切向流过滤得到更理想的效果离心也是经常和其它方法联合使用的一种分离蛋白质的方法。当蛋白质和杂质的溶解度不同时可以利用离心的方法将它们分开。例如,在从大米渣中提取蛋白质的实验中,加入纤维素酶和α-淀粉酶进行预处理后,再用离心的方法将有 用物质与分解掉的杂质进行初步分离[3]。使蛋白质在具有密度梯度的介质中离心的方法称为密度梯度(区带)离心。常用的密度梯度有蔗糖梯度、聚蔗糖梯度和其它合成材料的密度梯度。可以根据所需密度和渗透压的范围选择合适的密度梯度。密度梯度离心曾用于纯化苏云金芽孢杆菌伴孢晶体蛋白,得到的产品纯度高但产量偏低。蒋辰等[6]通过比较不同密度梯度介质的分离效果,利用溴化钠密度梯度得到了高纯度的苏云金芽孢杆菌伴孢晶体蛋白。凝胶过滤也称凝胶渗透层析,是根据蛋白质分子大小不同分离蛋白质最有效的方法之一。凝胶过滤的原理是当不同蛋白质流经凝胶层析柱时,比凝胶珠孔径大的分子不能进入珠内网状结构,而被排阻在凝胶珠之外,随着溶剂在凝胶珠之间的空隙向下运动并最先流出柱外;反之,比凝胶珠孔径小的分子后流出柱外。目前常用的凝胶有交联葡聚糖凝胶、聚丙烯酰胺凝胶和琼脂糖凝胶等。在甘露糖蛋白提纯的过程中使用凝胶过滤方法可以得到很好的效果,纯度鉴定证明产品为分子量约为32 kDa、成分是多糖∶蛋白质(88∶12)、多糖为甘露糖的单一均匀糖蛋白[1]。凝胶过滤在抗凝血蛋白的提取过程中也被用来除去大多数杂蛋白及小分子的杂质[7]。 根据溶解度不同进行分离纯化 影响蛋白质溶解度的外部条件有很多,比如溶液的pH值、离子强度、介电常数和温度等。但在同一条件下,不同的蛋白质因其分子结构的不同而有不同的溶解度,根据蛋白质分子结构的特点,适当地改变外部条件,就可以选择性地控制蛋白质混合物中某一成分的溶解度,达到分离纯化蛋白质的目的。常用的方法有等电点沉淀和pH值调节、蛋白质的盐溶和盐析、有机溶剂法、双水相萃取法、反胶团萃取法等。 等电点沉淀和pH值调节是最常用的方法。每种蛋白质都有自己的等电点,而且在等电点时溶解度最

蛋白质分离与纯化教学设计课题

蛋白质分离与纯化教学设计 一、教学背景分析 【教材分析】 “蛋白质的分离与纯化”实验是《高中生物》选修1生物技术实践 5.3血红蛋白的提取与分离中的容。本节课的主要容包括蛋白质的提取、分离纯化等基本知识,主要要求学生掌握凝胶电泳的实验原理以及操作方法。“血红蛋白分离与纯化”实验不仅是学习血红蛋白的提取、分离纯化方法,而且也是进一步掌握蛋白质的组成、结构和功能的基础。 【学情分析】 到目前为止,学生已经学习了蛋白质的相关知识,对蛋白质有了一定的了解,“蛋白质的分离与纯化”实验目的是使学生体验从复杂细胞混合物体系中提取和纯化生物大分子的基本原理、过程和方法,虽然操作难度较大,但原理清晰,动手机会较多,学习兴趣很高。学生有必修“生命活动的主要承担者——蛋白质”的基础,在一定程度上掌握了蛋白质的组成、结构和功能等基础知识,学生在进行实验前还是能大概了解影响蛋白质分离纯化的因素的,再者经过老师的指导,实验能取得良好的结果的。 二、教学目标 【知识目标】 1.了解从血液中提取蛋白质的原理与方法。 2.说出凝胶电泳的基本原理与方法。 【能力目标】 运用凝胶电泳对蛋白质进行分离纯化。 【情感态度与价值观目标】 1.培养学生科学实验的观点。 2.初步形成科学的思维方式,发展科学素养和人文精神。 三、教学重难点

【教学重点】 从血液中提取蛋白质;凝胶电泳分离纯化蛋白质。 【教学难点】 样品预处理,色谱柱的装柱,纯化分离操作。 四、实验实施准备 【教师准备】 1.分组。学生按学科能力的强中弱平均分组,各组尽量平衡,各组自行分工,并由实验员统一安排实验过程。 2.实验材料:血液 仪器:试管、胶头滴管、烧杯、玻璃棒、离心机、研磨器、透析袋、电泳仪等。 试剂:20mmol/L磷酸缓冲液(pH为8.6)、蒸馏水、聚丙烯酸铵、生理盐水、5%醋酸水溶液等。 【学生准备】 1.预习实验“蛋白质分离纯化”,了解蛋白质的相关信息。 2.进行分组。 五、教学方法 【教法】分析评价法、任务驱动法、直观演示法 【学法】自主学习法、合作交流法 六、教学媒体 黑板、多媒体 七、课时安排 两个课时(80min) 一个课时用来讲述理论部分知识:样品处理与色谱柱分离纯化蛋白质的原理与方法; 另一课时用来进行实验。

蛋白质分离与纯化技术

化工学院生物工程一班胡冠南 3010207234 蛋白质分离与纯化技术 蛋白质(protein)是生命的物质基础,没有蛋白质就没有生命。因此,它是与生命及与各种形式的生命活动紧密联系在一起的物质。机体中的每一个细胞和所有重要组成部分都有蛋白质参与。所以研究蛋白质的结构与功能是研究生物科学的基础。蛋白质分离纯化是用生物工程下游技术从混合物之当中分离纯化出所需要得目的蛋白质的方法。由于深入研究蛋白质的结构与功能需要用到高纯度的蛋白质,因此蛋白质分离与纯化技术是生物产业中的核心技术。然而该技术难度、成本均高;例如一个生物药品的成本75%都花在下游蛋白质分离纯化当中。所以对该项技术的改良与创新在实际应用中具有重要意义。 一.蛋白质分离的准备 从正常生物基质中提取各种蛋白质均需要有特定的条件。如果不能满足这一条件,蛋白将很快失去生物学活性,其生物半衰期也将迅速降低。因此,在蛋白质的特性研究中,确定提取条件是一个关键问题。在不同的实验中所通到的困难各不相同,有的困难是如何抵抗外源性蛋白酶的作用而维持蛋白质的稳定,在有些实验中的困难是如何维持酶的活性。在不同的实验中要针对不同的情况来解决不同的问题。然而对蛋白质研究而言却有着一些共同的参数。缓冲液可以抗衡蛋白质溶液中pH值的改变,选择合适的缓冲液对于维持—定pH 值下蛋白质的稳定及保证实验的重复性十分重要。pH和pKa是描述缓冲液的两个重要概念。pH值是指溶液中氢离子浓度的负对数,pH=-log(H+)。 pKa值是溶液中酸解离常数的负对数值。溶液的pH值与pKa值越接近表明溶液的缓冲能力越强,离pKa值越远则缓冲能力越弱。 表1 常用缓冲液的pKa值

分离纯化蛋白质的方法及原理

分离纯化蛋白质的方法及原理 (一)利用分子大小 1、透析:原理:利用蛋白质分子不能透过半透膜的性质,使蛋白质和其他小分子物质如无机盐、单糖、水等分开。 方法:将待提纯蛋白质放在透析袋中放在蒸馏水中进行 涉及的问题: 如何加快透析过程 (1)加大浓度差,及时更换透析液 (2)利用磁力搅拌器 常用的半透膜:玻璃纸、火棉和其他材料合成 2、超过滤:原理:利用压力和离心力,强行使其他小分子和水通过半透膜,而蛋白质留在膜上 3、凝胶过滤层析:原理:当不同分子大小的蛋白质混合物流进凝胶层析柱时,比凝胶网孔大的分子不能进入珠内网状结构,排阻在凝胶珠以外,在凝胶珠缝隙间隙中向下移动。而比孔小的分子不同程度地进入凝胶珠内,这样由于不同大小分子所经历的路径不同而到分离。 结果:大分子先被洗脱下来,小分子后被洗脱下来 (二)利用溶解度差别 4、等电点沉淀:原理:不同蛋白质具有不同的等电点,当蛋白质混合物调到其中一种蛋白质的等电点时,这种蛋白质大部分和全部被沉淀下来.。 5、盐析与盐溶:原理:低浓度时,中性盐可以增加蛋白质溶解度这种现象称为盐溶.当离子强度增加,足够高时,例如饱和或半饱和程度,很多蛋白质可以从水中沉淀出来,这种现象称为盐析

(三)根据电荷不同 6、SDS-PAGE 全称十二烷基硫酸钠—聚丙烯酰胺凝胶电泳 原理:通过加热和SDS可以使蛋白质变性,多亚基的蛋白质也解离为单亚基,处理后的样品中肽链是处于无二硫键连接的,分离的状态。电泳时SDS-蛋白质复合物在凝胶中的迁移率不再受蛋白质原有电荷和形状的影响,而主要取决于蛋白质分子量。所以SDS-PAGE常用来分析蛋白质的纯度和大致测定蛋白质的分子量。 7、离子交换层析:原理:氨基酸分离常用阳离子交换树脂,树脂被处理成钠型,将混合氨基酸上柱,氨基酸主要以阳离子形式存在,在树脂上与钠离子发生交换,而被挂在树脂上。 氨基酸在树脂上结合的牢固程度取决于氨基酸与树脂之间的亲和力,决定亲和力的因素有:(1)主要是静电吸引力(2)氨基酸侧链同树脂之间的疏水作用氨基酸与阳离子交换树脂间的静电引力大小次序依次是: 碱性氨基酸R2+>中性氨基酸R+>酸性氨基酸R0。 因此洗脱顺序应该是: 酸性氨基酸中性氨基酸碱性氨基酸 为使氨基酸从树脂上洗脱下来采用逐步提高pH和盐浓度的方法

蛋白质分离纯化

蛋白质分离纯化 蛋白质分离纯化是用生物工程下游技术从混合物之当中分离纯化出所需要得目的蛋白质的方法。 是当代生物产业当中的核心技术。该技术难度、成本均高;例如一个生物药品的成本75%都花在下游蛋白质分离纯化当中。常用技术有: 1、沉淀, 2、电泳:蛋白质在高于或低于其等电点的溶液中是带电的,在电场中能向电场的正极或负极移动。根据支撑物不同,有薄膜电泳、凝胶电泳等。 3、透析:利用透析袋把大分子蛋白质与小分子化合物分开的方法。 4、层析: a.离子交换层析,利用蛋白质的两性游离性质,在某一特定PH时,各蛋白质的电荷量及性质不同,故可以通过离子交换层析得以分离。如阴离子交换层析,含负电量小的蛋白质首先被洗脱下来。 b.分子筛,又称凝胶过滤。小分子蛋白质进入孔内,滞留时间长,大分子蛋白质不能时入孔内而径直流出。 5、超速离心:既可以用来分离纯化蛋白质也可以用作测定蛋白质的分子量。不同蛋白质其密度与形态各不相同而分开。 编辑本段 蛋白质分离纯化技术 蛋白质的分离纯化 一、沉淀法 沉淀法也称溶解度法。其纯化生命大分子物质的基本原理是根据各种物质的结构差异性来改变溶液的某些性质,进而导致有效成分的溶解度发生变化。 1、盐析法 盐析法的根据是蛋白质在稀盐溶液中,溶解度会随盐浓度的增高而上升,但当盐浓度增高到一定数值时,使水活度降低,进而导致蛋白质分子表面电荷逐渐被中和,水化膜逐渐被破坏,最终引起蛋白质分子间互相凝聚并从溶液中析出。 2、有机溶剂沉淀法 有机溶剂能降低蛋白质溶解度的原因有二:其一、与盐溶液一样具有脱水作用;其二、有机溶剂的介电常数比水小,导致溶剂的极性减小。 3、蛋白质沉淀剂 蛋白质沉淀剂仅对一类或一种蛋白质沉淀起作用,常见的有碱性蛋白质、凝集素和重金属等。 4、聚乙二醇沉淀作用

蛋白质纯化试题整理

名词解释 1. 截留分子量(molecular weight cut-off, MWCO):不能通过膜的最小分子量 2. 超滤:选择合适孔径的超滤膜,在离心力或较高压力下,使水分子和其他小分子物质通过超滤膜,而目标蛋白样品分子被截留不能通过超滤膜,从而增加蛋白样品浓度,达到浓缩效果的方法 3、陶南效应:离子交换剂表面pH与溶液pH是不一致的。在阳IE表面的微环境中,H+被吸引而OH-被排斥,交换剂表面pH比周围低1个pH单位;而阴IE表面的微环境中,H+被排斥,交换剂表面pH比周围高1个pH单位 4、离子交换剂的有效(实际)交换容量:指在一定的实验条件下,每克干介质或每毫升湿胶吸附蛋白质的实际容量 5. 聚沉(coagulation)是指在聚沉剂的作用下,溶液中的蛋白质相互聚集为较大在聚沉物(>1mm)的过程 ?常见的聚沉剂:无机盐类(如氯化锌、氯化铁、氯化铝、硫酸锌、硫酸铝),聚合无机盐(聚合铝、聚合铁等) ?聚沉条件:-20℃以下,pH3~6,较高离子强度,高多价金属离子(Fe3+、Al3+) 6. 絮凝(flocculation)是指在絮凝剂的作用下,通过吸附、交联、网捕,把蛋白质聚结为大絮体沉降的过程 ?常见的絮凝剂:淀粉、树脂、单宁、离子交换树脂及纤维素衍生物 ?絮凝作用一般在聚沉作用之后使用;絮凝剂的选择应根据成本、毒性等具体情况考虑;应通过试验筛选获得最适合的絮凝剂类型、用量及作用条件 7、盐溶:蛋白质在稀盐溶液中,溶解度会随着盐浓度的增高而上升 8、盐析:但当盐浓度增高到一定数值时,其溶解度又逐渐下降,直至蛋白质析出 9、透析:利用小分子能通过,而大分子不能透过半透膜的原理,把不同性质的物质彼此分开的一种方法。对于蛋白质样品,透析过程中因蛋白质分子体积很大,不能透过半透膜,而溶液中的无机盐小分子则能透过半透膜进入水中,因此不断更换透析用水即可将蛋白质与无机盐小分子物质完全分开。蛋白的分离纯化过程中常用此法脱去无机盐(如硫酸铵) 10、排阻极限:指不能进入凝胶颗粒内部网孔的最小蛋白的分子量 11、凝胶颗粒的分级范围:指能进入凝胶颗粒内部网孔的最大分子和最小分子的分子量范围 12、过滤:利用多孔介质(滤纸、滤膜等)阻截大的颗粒物质,而使小于孔隙的物质通过的一种的分离方法。主要用于悬浮液的分离,最简单、最常用 13、离子交换剂的电荷密度:指IE介质颗粒单位表面积的功能基团数量,它决定着离子交换剂的总交换容量 14、离子交换剂膨胀度(吸水值):指干态的离子交换剂在水溶液中吸水后造成的体积膨胀程度。用每克干离子交换剂吸水膨胀后的体积表示(ml/g) 15、梯度洗脱:进行梯度洗脱时,洗脱缓冲液的pH或离子强度是连续发生变化的,洗脱剂的洗脱能力也是连续增加的 16、阶段洗脱:指在一个时间段内用一固定pH或I的条件进行洗脱,而在下一个时间段内用另一固定pH或I的条件进行洗脱的分段式洗脱方式 也分为pH阶段洗脱和I阶段洗脱 17、亲和层析:利用蛋白质与其专一性配体之间的特异性生物学亲和力作用,对蛋白质进行分离纯化的层析技术。 18、等电聚焦电泳:利用不同蛋白质的等电点的不同而使其在pH梯度中相互分离的一

蛋白质分离纯化的新技术和技术要点

蛋白质分离纯化的新技术及技术要点 浅述蛋白质分离纯化的新技术 摘要:本文主要介绍了浊点萃取法、置换色谱法、亲和层析法、亲和色谱法、凝胶电泳、双水相萃取等蛋白质的最新分离纯化技术,综和近年来国内外的一些研究结果,结合实际应用的例子,分析了各种分离纯化方法的优点,同时指出其不足之处。文章最后展望了蛋白质分离纯化技术的发展趋势。 关键词:分离纯化蛋白质进展 生物技术的发展非常迅速,基因工程、蛋白质工程、发酵工程等生物技术,已经能设计、制造、生产人们急需的多种蛋白质。和其它生物产品的生产过程一样蛋白质的生产过程一般也分为上、中、下游过程。上、中游过程是运用生物技术生产目标产物,下游过程是指对含有目标产物的物料进行处理、分离、纯化、加工目标产物。本文主要综和近年来国内外的研究结果,介绍了蛋白质的最新分离纯化技术。 2. 蛋白质的分离纯化方法: 2.1 浊点萃取法(CPE): 2.1.1 概念及原理: 浊点萃取法(cloud point extraction,CPE)〔1〕是近年来出现的一种新兴的液—液萃取技术,它不使用挥发性有机溶剂,不影响环境。它以中性表面活性剂胶束水溶液的溶解性和浊点现

象为基础,改变实验参数引发相分离,将疏水性物质与亲水性物质分离。目前该法已成功地应用于金属螯合物、生物大分子的分离与纯化及环境样品的前处理中[2-5]。 CPE 法除了利用增溶作用外,还利用了表面活性剂另一个重要性质——浊点现象。溶液静置一段时间(或离心)后会形成两个透明的液相:一为表面活性剂相(约占总体积的5%);另一为水相(胶束浓度等于CMC)。外界条件(如温度)向相反方向变化,两相便消失,再次成为均一溶液。溶解在溶液中的疏水性物质如膜蛋白,与表面活性剂的疏水基团结合,被萃取进表面活性剂相,亲水性物质留在水相,这种利用浊点现象使样品中疏水性物质与亲水性物质分离的萃取方法就是浊点萃取。图1显示了由温度变化引发的这种相分离现象。温度的改变,引起水化层的破坏,增强了表面活性剂的疏水性。 2.1.2 蛋白质分离纯化中的应用: CPE 法可用于分离膜蛋白、酶、动物、植物和细菌的受体,还可以替代一些分离方法如硫酸铵分级法作为纯化蛋白的第一步,与色谱方法联用。另外,CPE 法分离纯化蛋白质已经可以实现大规模操作。Minuth等人成功地进行了胆固醇氧化酶浊点萃取的中试研究。虽然使用离心分离器可以使CPE大规模连续进行,但商品离心分离器用于CPE 的效率和容量仍需进一步研究。而且,他们发现相分离操作受时产生的表面活性物质影响较大,体系两相间密度差较小,表面张力较小,含产物的表面活性剂相的流变学行为较复杂,操作较难。表1列出了CPE法近几年来在蛋白质分离纯化中的应用。 (1) CPE法用于分离纯化膜蛋白

蛋白质和酶的分离与纯化

蛋白质和酶的分离纯化及鉴定 蛋白质是生命体中的重要物质基础之一。从分子水平上认识生命现象,已成为现代生物学发展的主要方向。要研究蛋白质,首先要得到高度纯化的目的蛋白。蛋白质在组织或细胞中一般都是以复杂的混合物形式存在,每种类型的细胞都含有上千种不同的蛋白质。要想从成千上万种蛋白质混合物中纯化出目的蛋白,就要根据蛋白质的理化性质不同设计出合理的分离方法。 目前研究为止酶除核酶外本质都是蛋白质,因此酶的分离纯化方法基本是采用蛋白质的分离纯化方法,但是酶的活性受到多种因素的影响,因此酶的分离纯化比一般的蛋白质要求更高。 一、质分离纯化的一般原则 1. 原料的选择 原则:来源方便,成本低,易操作、安全的原料。 蛋白分布:体液、组织、细胞定位 2. 破碎方法: (1) 机械方法:通过机械运动产生的剪切力的作用,使细胞或组织破碎的方法。 如:捣碎法、研磨、匀桨法 (2) 物理方法:通过温度、压力、声波等各种物理因素的作用,使组织细胞破碎的方法。 如:反复冻融、渗透压、超声破碎 (3) 化学方法:通过各种化学试剂对细胞膜的作用,使细胞破碎的方法. 如:甲苯、丙酮、氯仿和非离子型的表面活性剂(Triton和Tween) (4) 酶促法:溶菌酶、蜗牛酶等 3. 目的蛋白或酶的特异、快速、精确的定性或定量方法 4. 先粗后细,分级分离 粗分:将得到的蛋白溶液先利用简单、快速、易处理的方法除去大部分杂蛋白。如: 盐析、离心、有机溶剂沉淀等。 精制:利用蛋白质性质的差异,采用不同的方法,如:离子交换层析、分子筛、吸附层析、亲和层析、电泳、离心、结晶等方法进一步纯化。 5. 避免蛋白质的变性(pH、适合的温度和缓冲体系等) 二、常用的蛋白质的分离纯化技术 可以根据各种蛋白质的结构、理化性质不同设计分离方法。 (一)根据蛋白质的溶解度不同进行分离

分离纯化蛋白质的方法及原理-推荐下载

(2)利用溶解度差别 影响蛋白质溶解度的外部因素有:1、溶液的pH;2、离子强度;3、介电常数;4、温度。但在同一的特定外部条件下,不同蛋白质具有不同的溶解度。 1、等电点沉淀:原理:蛋白质处于等电点时,其净电荷为零,由于相邻蛋白质分子之间没有静电斥力而趋于聚集 沉淀。因此在其他条件相同时,他的溶解度达到最低点。在等电点之上或者之下时,蛋白质分子携带同种符号的净 电荷而互相排斥,阻止了单个分子聚集成沉淀,因此溶解度较大。不同蛋白质具有不同的等电点,利用蛋白质在等 电点时的溶解度最低的原理,可以把蛋白质混合物分开。当pH被调到蛋白质混合物中其中一种蛋白质的等电点时,这种蛋白质大部分和全部被沉淀下来,那些等电点高于或低于该pH的蛋白质则仍留在溶液中。这样沉淀出来的蛋 白质保持着天然的构象,能重新溶解于适当的pH和一定浓度的盐溶液中。 5、盐析与盐溶:原理:低浓度时,中性盐可以增加蛋白质溶解度这种现象称为盐溶.盐溶作用主要是由于蛋白质分子吸附某种盐类离子后,带电层使蛋白质分子彼此排斥,而蛋白质与水分子之间的相互作用却加强,因而溶解度 增高。球蛋白溶液在透析过程中往往沉淀析出,这就是因为透析除去了盐类离子,使蛋白质分子之间的相互吸引增加,引起蛋白质分子的凝集并沉淀。当溶液的离子强度增加到一定程度时,蛋白质溶解程度开始下降。当离子强度 增加到足够高时,例如饱和或半饱和程度,很多蛋白质可以从水中沉淀出来,这种现象称为盐析。盐析作用主要是 由于大量中性盐的加入使水的活度降低,原来溶液中的大部分甚至全部的自由水转变为盐离子的水化水。此时那些 被迫与蛋白质表面的疏水集团接触并掩盖他们的水分子成为下一步最自由的可利用的水分子,因此被移去以溶剂化 盐离子,留下暴露出来的疏水基团。蛋白质疏水表面进一步暴露,由于疏水作用蛋白质聚集而沉淀。 盐析沉淀的蛋白质保持着他的天然构象,能再溶解。盐析的中性盐以硫酸铵为最佳,在水中的溶解度很高,而溶 解度的温度系数较低。 3、有机溶剂分级分离法:与水互溶的有机溶剂(甲醇、乙醇和丙酮等)能使蛋白质在水中的溶解度显著降低。在 室温下有机溶剂会引起蛋白质变性,如果预先将有机溶剂冷却到-40°C以下,然后在不断搅拌下逐滴加入有机溶剂,以防局部浓度过高,那么变性可以得到很大程度缓解。蛋白质在有机溶剂中的溶解度也随温度、pH和离子强度而变化。在一定温度、pH和离子强度条件下,引起蛋白质沉淀的有机溶剂的浓度不同,因此控制有机溶剂浓度也可以分离纯化蛋白质。 有机溶剂引起蛋白质沉淀的主要原因之一是改变了介质的介电常数。有机溶剂的加入使水溶液的介电常数降低。介 电常数的降低将增加两个相反电荷之间的吸引力。蛋白质分子表面可解离基团的离子化程度减弱,水化程度降低, 因此促进了蛋白质分子的聚集和沉淀。 水溶性非离子聚合物如聚乙二醇与蛋白质亲水集团发生相互作用并在空间上阻碍了蛋白质与水相接近。蛋白质在聚 乙二醇中的溶解度明显的依赖于聚乙二醇的分子量。 4、温度对蛋白质溶解度的影响:在一定温度范围内,约0~40℃之间,大部分球状蛋白的溶解度随温度升高而增加,在40~50℃以上,大部分蛋白质变得不稳定并开始变性,一般在中性pH介质中即失去溶解力。大多数蛋白质在低温下比较稳定,因此蛋白质的分级分离操作一般都在0℃或更低的温度下进行。 (三)根据电荷不同 根据蛋白质的电荷不同即酸碱性质不同分离蛋白质混合物的方法有电泳和离子交换层析两类。 1、电泳:在外电场的作用下,带点颗粒将向着与其电性相反的电极移动,这种现象称为电泳。电泳技术可用于氨 基酸、肽、蛋白质和核苷酸等生物分子的分析分离和制备。 区带电泳是由于在支持物上电泳蛋白质混合物被分离为若干区带。 电泳前用缓冲液浸润薄膜或滤纸等支持物或用缓冲液直接配置成凝胶,将待分离的蛋白质样品加在它的一端或中央,支持物的两端与电极连接,通电电泳。电泳完毕,各个组分分布在不同的区域,用显色剂(蛋白质可用考马斯亮蓝 或氨基黑等染色)显色后可以显示出各个组分。 氨基酸混合物特别是寡聚核苷酸混合物一次电泳往往不能完全分开。这种情况可以将第一次电泳分开的斑点通过支 持介质间的接触印迹转移到第二个支持介质上,旋转90°,进行第二次电泳。这种方法称为双向电泳。 2、聚丙烯酰胺凝胶电泳:以聚丙烯酰胺凝胶为支持物,一般制成凝胶柱或凝胶板,凝胶是由相连的两部分组成 (小的部分是浓缩胶,大的部分为分离胶),这两部分凝胶的浓度、缓冲液组分和离子强度、pH以及电场强度都是 不同的,即不连续性。电泳时样品首先在不连续的两相间积聚浓缩而成很薄的起始区带,然后再进行电泳分离。 电泳有三种物理效应:1、样品的浓度效应;2、凝胶对被分离分子的筛选效应;3、一般电泳分离的电荷效应。

相关文档
最新文档