离散数学复习资料

离散数学复习资料
离散数学复习资料

离散数学复习资料

第1章命题逻辑

本章重点:命题与联结词,公式与解释,真值表,公式的类型及判定, (主)析取(合取)范式,命题逻辑的推理理论.

一、重点内容

1. 命题

命题表述为具有确定真假意义的陈述句。命题必须具备二个条件:其一,语句是陈述句;其二,语句有唯一确定的真假意义.

2. 六个联结词及真值表

h“”否定联结词,P是命题,P是P的否命题,是由联结词和命题P组成的复合命题.P取真值1,P取真值0,P取真值0,P取真值1. 它是一元联结词.

h “”合取联结词,P Q是命题P,Q的合取式,是“”和P,Q组成的复合命题. “”在语句中相当于“不但…而且…”,“既…又…”. P Q取值1,当且仅当P,Q均取1;P Q取值为0,只有P,Q之一取0.

h “”析取联结词,“”不可兼析取(异或)联结词, P Q是命题P,Q的析取式,是“”和P,Q组成的复合命题. P Q是联结词“”和P,Q组成的复合命题. 联结词“”或“”在一个语句中都表示“或”的含义,前者表示相容或,后者表示排斥或不相容的或. 即“P Q”“(P Q)(P Q)”. P Q取值1,只要P,Q之一取值1,P Q取值0,只有P,Q都取值0.

h “”蕴含联结词, P Q是“”和P,Q组成的复合命题,只有P取值为1,Q取值为0时,P Q取值为0;其余各种情况,均有P Q的真值为1,亦即10的真值为0,01,11,00的真值均为1. 在语句中,“如果P则Q”或“只有Q,才P,”表示为“P Q”.

h “” 等价联结词,P Q是P,Q的等价式,是“”和P,Q组成的复合命题. “”在语句中相当于“…当且仅当…”,P Q取值1当且仅当P,Q真值相同.

3. 命题公式、赋值与解释,命题公式的分类与判别

h命题公式与赋值,命题P含有n个命题变项P1,P2,…,P n,给P1,P2,…,P n各指定一个真值,称为对P的一个赋值(真值指派). 若指定的一组值使P的真值为1,则这组值为P的真指派;若使P的真值为0,则称这组值称为P的假指派.

h命题公式分类,在各种赋值下均为真的命题公式A,称为重言式(永真式);在各种赋值下均为假的命题公式A,称为矛盾式(永假式);命题A不是矛盾式,称为可满足式;

判定命题公式类型的方法:其一是真值表法,任给公式,列出该公式的真值表,若真值表的最后一列全为1,则该公式为永真式;若真值表的最后一列全为0,则该公式是永假式;若真值表的最后一列既非全1,又非全0,则该公式是可满足式.其二是推导演算法. 利用基本等值式(教材的十六个等值式或演算律),对给定公式进行等值推导,若该公式的真值为1,则该公式是永真式;若该公式的真值为0,则该公式为永假式.既非永真,也非用假,成为非永真的可满足式.其三主析取(合取)范式法,该公式的主析取范式有2n个极小项(即无极大项),则该公式是永真式;该公式的主合取范式有2n个极大项(即无极小项),则该公式是永假式;该公式的主析取(或合取)范式的极小项(或极大项)个数大于0小于2n,,则该公式是可满足式.

h等值式A B,命题公式A,B在任何赋值下,它们的真值均相同,称A,B等值。

定理1 设(A)是含命题公式A 的命题,(B)是用命题公式B 置换(A)中的A 之后得到的命题公式. 如果A B ,则(A)(B).

4. 范式

h 析取(合取)范式,仅有有限个简单合取式(析取式)构成的析取式(合取式),就是析取(合取)范式.

h 极小项(极大项),n 个命题变项P 1,P 2,…,P n ,每个变项或它的否定两者只有其一出现且仅出现一次,第i 个命题变项或者其否定出现在从左起第i 个位置上(无脚标时,按字典序排列),这样的简单合取式(析取式)为极小项(极大项).

以两个命题变项为例,m 00=P Q ,m 01=P Q,m 10=P Q,m 11=P Q 是极小项;M 00=P Q ,M 01=P Q,M 10=P Q,M 11=P Q 是极大项.

h 主析取范式(主合取范式) 含有n 个命题变项的命题公式,如果与一个仅有极小项(极大项)的析取(合取)构成的析取(合取)范式等值,则该等值式称为原命题公式的主析取(合取)范式。

每项含有n 个命题变项(变项字母齐全)的合取式(析取式)的析取(合取)为主析取(合取)范式.

任意命题公式都存在与之等值的范式,存在与之等值的主范式,且是惟一的.

求范式,包括求析取范式、合取范式、主析取范式和主合取范式. 关键有两点:其一是准确掌握范式定义;其二是巧妙使用基本等值式中的分配律、同一律和摩根律,结果的前一步适当使用幂等律.

求析取(合取)范式的步骤:

① 将公式中的联结词都化成,,(即消去个数中的联结词,,);

② 将否定联结词消去或移到各命题变项之前;

③ 利用分配律、结合律等,将公式化为析取(合取)范式.

求命题公式A 的主析取(合取)范式的步骤:

① 求公式A 的析取(合取)范式;

② “消去”析取(合取)范式中所有永假式(永真式)的析取项(合取项),如P P(P P)用0(1)替代. 用幂等律将析取(合取)范式中重复出现的合取项(析取项)或相同的变项合并,如P P(P P)用P 替代,m i m i (M i M i )用m i (M i )替代.

③ 若析取(合取)范式的某个合取项(析取项)B 不含有命题变项P i 或P i ,则添加P i P i (P i P i ),再利用分配律展开,使得每个合取项(析取项)的命题变项齐全;

④ 将极小(极大)项按由小到大的顺序排列,用()表示.

5. 命题演算的推理理论

h 设A 1,A 2,…,A n ,C 是命题公式,如果C A A A n →∧∧∧Λ21是重言式,称C 是前提集合{ A 1,A 2,…,A n }的有效结论或{A 1,A 2,…,A n }逻辑地推出C 。记作C A A A n ?∧∧∧Λ21 掌握演绎或形式证明. 要理解并掌握14个重言蕴含式(即I 1~I 14),17个等值式(E 1~E 17);二是会使用三个规则(P 规则、T 规则和CP 规则)。

推理方法有:

真值表法;等值演算法;主析取范式法,构造证明法(直接证明法、附加前提证明法和间接证明法)

第2章 谓词逻辑

本章重点:谓词与量词,公式与解释,前束范式,谓词逻辑推理证明.

一、重点内容

1. 谓词与量词

h 谓词,在谓词逻辑中,原子命题分解成个体词和谓词. 个体词是可以独立存在的客体,它可以是具体事物或抽象的概念。谓词是用来刻划个体词的性质或事物之间关系的词. 个体词分个体常项(用a,b,c,…表示)和个体变项(用x,y,z,…表示);谓词分谓词常项(表示具体性质和关系)和谓词变项(表示抽象的或泛指的谓词),用F,G,P,…表示. 注意,单独的个体词和谓词不能构成命题,将个体词和谓词分开不是命题.

h 量词,是在命题中表示数量的词,量词有两类:全称量词,表示“所有的”或“每一个”;存在量词,表示“存在某个”或“至少有一个”.

在谓词逻辑中,使用量词应注意以下几点:

(1) 在不同个体域中,命题符号化的形式可能不同,命题的真值也可能会改变.

(2) 在考虑命题符号化时,如果对个体域未作说明,一律使用全总个体域.

(3) 多个量词出现时,不能随意颠倒它们的顺序,否则可能会改变命题的含义. 谓词公式只是一个符号串,没有什么意义,但我们给这个符号串一个解释,使它具有真值,就变成一个命题. 所谓解释就是使公式中的每一个变项都有个体域中的元素相对应.

在谓词逻辑中,命题符号化必须明确个体域,无特别说明认为是全总个体域。一般地,使用全称量词,特性谓词后用;使用存在量词,特性谓词后用.

2. 公式与解释

h 谓词公式,由原子公式、联结词和量词可构成谓词公式(严格定义见教材). 命题的符号化结果都是谓词公式.

例如x(F(x)G(x)),x(F(x)G(x)),x y(F(x)F(y)L(x,y)H(x,y))等都是谓词公式.

h 变元与辖域,在谓词公式xA 和xA 中,x 是指导变元,A 是相应量词的辖域. 在x 和x 的辖域A 中,x 的所有出现都是约束出现,即x 是约束变元,不是约束出现的变元,就是自由变元. 也就是说,量词后面的式子是辖域. 量词只对辖域内的同一变元有效. h 换名规则,就是把公式中量词的指导变元及其辖域中的该变元换成该公式中没有出现的个体变元,公式的其余部分不变.

h 代入规则,就是把公式中的某一自由变元,用该公式中没有出现的个体变元符号替代,且要把该公式中所有的该自由变元都换成新引入的这个符号.

h 解释(赋值),谓词公式A 的个体域D 是非空集合,则

(1) 每一个常项指定D 中一个元素;

(2) 每一个n 元函数指定D n 到D 的一个函数;

(3) 每一个n 元谓词指定D n 到{0,1}的一个谓词;

按这个规则做的一组指派,称为A 的一个解释或赋值.

在有限个体域下,消除量词的规则为:如D ={a 1,a 2,…,a n },则

)(...)()()()(...)()()(2121n n a A a A a A x xA a A a A a A x xA ∨∨∨??∧∧∧?? h 谓词公式分类,在任何解释下,谓词公式A 取真值1,公式A 为逻辑有效式(永真式);在任何解释下谓词公式A 取真值0,公式A 为永假式;至少有一个解释使公式A 取真值1,公式A 称为可满足式.

3. 前束范式 一个谓词公式的前束范式仍是谓词公式. 若谓词公式F 等值地转化成 B x Q x Q x Q k k (2211)

那么B x Q x Q x Q k k ...2211就是F 的前束范式,其中Q 1,Q 2,…,Q k 只能是或,x 1,x 2,…,x k 是个体变元,B 是不含量词的谓词公式.

每个谓词公式F 都可以变换成与它等值的前束范式. 其步骤如下:

① 消去联结词,,;

② 将联结词移至原子谓词公式之前;

③ 利用换名或代入规则使所有约束变元的符号均不同,并且自由变元与约束变元的符号也不同; ④将x,x 移至整个公式最左边;

⑤ 得到公式的前束范式.

4.谓词逻辑的推理理论

谓词演算的推理是命题演算推理的推广和扩充,命题演算中的基本等值公式,重言蕴含式以及P ,T ,CP 规则在谓词演算中仍然使用. 在谓词演算推理中,某些前提和结论可能受到量词的限制,为了使用这些推理,引入消去和附加量词的规则,有US 规则(全称量词消去规则),UG 规则(全称量词附加规则),ES 规则(存在量词消去规则),EG 规则(存在量词附加规则)等,以便使谓词演算公式的推理过程可类似于命题演算的推理进行.

第3章 集合与关系

本章重点:集合概念,集合的运算,集合恒等式的证明,笛卡儿积.

一、重点内容

1. 集合的概念

h 集合与元素,具有确定的,可以区分的若干事物的全体称为集合,其中的事物叫元素.集合A 中元素的个数为集合的元数A .

h 集合的表示方法:列举法和描述法.

列举集合的元素,元素不能重复出现,集合中的元素无顺序之分. 集合与其元素之间存在属于“”或不属于“”关系.

2. 集合的关系:包含,子集,集合相等.

h 包含(子集),若B a A a ∈?∈?,则B 包含A(或A 包含于B),称A 是B 的子集,记B A ?,又A B ,则A 是B 的真子集,记A B.

h 集合相等,若A B ,B A ,则A =B.

注意:元素与集合,集合与子集,子集与幂集,与(),空集与所有集合等的关系.

3. 特殊集合:全集、空集和幂集.

h 全集合E ,在一个具体问题中,所涉及的集合都是某个集合的子集,该集合为全集. h 空集,不含任何元素的集合为空集. 空集是惟一的,它是任何集合的子集.

h 集合A 的幂集P(A),有集合A 的所有子集构成的集合 P(A)=}

{A x x ?. 若A =n, 则P(A)=2n .

4. 集合的运算

h 集合A 和B 的并A B ,由集合A 和B 的所有元素组成的集合.

h 集合A 和B 的交A B ,由集合A 和B 的公共元素组成的集合.

h 集合A 的补集A ,属于E 但不属于集合A 的元素组成的集合, A. 补集总相对于一个全集.

h 集合A 与B 的差集A -B ,由属于A ,而不属于B 的所有元素组成的集合..

h 集合A 与B 的对称差A B ,A B =(A -B)(B -A)或A B =)A B 〕-(A B )

应该很好地掌握10条运算律(运算的性质)(教材P71~72),即交换律、结合律、分配律、幂等律、同一律、零律、补余律、吸收律、摩根律和双补律等.

5. 恒等式证明

集合运算部分有三个方面的问题:其一是进行集合的运算;其二是集合运算式的化简;其三是集合恒等式的推理证明.

集合恒等式的证明方法通常有二:(1)要证明A =B ,只需要证明A B ,又A B ;(2)通过运算律进行等式推导.

6. 有序对与笛卡儿积

h 有序对,就是有顺序的数组,如,x,y 的位置是确定的,不能随意放置.

注意:有序对,以a,b 为元素的集合{a,b}={b,a};有序对(a,a)有意义,而集合{a,a}是单元素集合,应记作{a}.

h 笛卡儿积,把集合A ,B 合成集合A ×B ,规定

A ×

B ={x A y B}

由于有序对中x,y 的位置是确定的,因此A ×B 的记法也是确定的,不能写成B ×

A.

笛卡儿积也可以多个集合合成,A 1×A 2×…×A n .

笛卡儿积的运算性质. 一般不能交换.

第4章 二元关系与函数

本章重点:关系概念与其性质,等价关系和偏序关系,函数.

一、重点内容

1. 关系的概念 包括定义、关系的表示方法:集合表示、矩阵表示、图形表示.

h 二元关系,是一个有序对集合,设集合A,B ,},{B y A x y x R ∈∧∈><=,记作xRy

二元关系的定义域:Dom(R)A ?; 二元关系的值域:Ran(R)B ?

h 关系的表示方法:

集合表示法:关系是集合,有类似于集合的表示方法.

列举法,如R ={<1,1>,<1,2>};描述法:如},{B y A x y x R ∈∧∈><=

关系矩阵: R A ×B ,R 的矩阵???? ??==?????/==?n j m i b R a Rb a r r M j i j i ij n m ij R ,...,2,1,...,2,101,)(

关系图: R 是集合上的二元关系,若R ,由结点a I 画有向弧到b j 构成的图形.

2. 几个特殊的关系

空关系;唯一是任何关系的子集的关系.

全关系A A A b a b a E A ?≡∈><=},,{

恒等关系},{A a a a I A ∈><=,M I 是单位矩阵.

3. 关系的运算

h 关系的集合运算,有并、交、补、差和对称差.

h 复合关系 },,,{2121R c b R b a b c a R R R >∈<∧>∈<=?=使,有

复合关系矩阵:

21R R R M M M ?=(布尔运算),有结合律:(R S)T =R (S T) h 逆关系},,{1R y x x y R >∈<><=-,T R R M M =-1,(R S)-1=S -1R -1

. 4. 关系的性质

h 自反性 R x x A x >∈<∈?,,;矩阵R M 的主对角线元素全为1;关系图的每个结点都有自回路.

h 反自反性 R x x A x >?<∈?,,;矩阵R M 的主对角线元素全为0;关系图的每个结点都没有自回路.

h 对称性 若R y x >∈<,,则R x y >∈<,;矩阵R M 是对称矩阵,即ji ij r r =;关系

图中有向弧成对出现,方向相反. h 反对称性 若R y x >∈<,且R x y >∈<,,则x=y 或若y x R y x ≠>∈<,,,则R x y >?<,;矩阵R M 不出现对称元素.

h 传递性 若R b a >∈<,且R c b >∈<,,则R c a >∈<,;在关系图中,有从a 到b 的弧,有从b 到c 的弧,则有从a 到c 的弧. 判断传递性较为困难. 可以证明:R 是集合A 上的二元关系,

(1)(1)R 是自反的I A R; (2)R 是反自反的I A R =;

(3)R 是对称的 R =R -1; (4)R 是反对称的R R -1I A ;

(5)R 是传递的R R R.

关系的性质所具有的运算见表4-1.

运算 关系性

自反性 反自反性 对称性 反对称性 传递性

R -1

R 1R 2

R 1R 2

R 1-R 2

R 1R 2

I A

由表可见,I A 具有自反性,对称性、反对称性和传递性.E A 具有自反性,对称性和传递

性.故I A ,E A 是等价关系.具有反自反性、对称性、反对称性和传递性。是偏序关系.

关系性质的判定,可以用定义、关系矩阵或关系图.

传递性的判定,难度稍大. 也常如下判定:不破坏传递性的定义,可认为具有传递性. 例如可认为具有传递性,同时具有对称性和反对称性,但是不具有自反性;

5. 关系的闭包

设R 是非空集合A 上的二元关系,在关系R 中,添加最少的有序对,新关系用R 表示,使得R 具有关系的自反(对称、传递)性质,R 就是R 的自反(对称、传递)闭包,记作r(R) ,s(R)和t(R)。闭包的求法:

定理12:A I R R r Y =)(;定理13:1)(-=R R R s Y ;定理14的推论:

Y n i i R R t 1)(==

6. 等价关系和偏序关系 极大(小)元、最大(小)元问题 h 等价关系和偏序关系是具有不同性质的两个关系.

???==+??????+偏序关系等价关系传递性反对称性对称性自反性 h 等价关系图的特点:每一个结点都有一个自回路;两个结点间如有有向弧线,则是双向弧线,如果从a 到b ,从b 到c 各有一条有向弧线,则从a 到c 一定有有向弧线。

h 等价类,若R 是等价关系,与R 中的某个元素等价的元素组成的集合,就是R 的一个等价类,[a]R ={b b A aRb}.

h 偏序集的哈斯图 偏序集概念和偏序集的哈斯图。哈斯图的画法:(1) 用空心点表示结点,自环不画;(2) 若a b ,则结点b 画在上边,a 画在下边,并画a 到b 的无向弧;(3) 若,,则R ,此时,a 到c 的有向弧不画出.

确定任一子集的最大(小)元,极大(小)元.

极大(小)元、最大(小)元、界 一个子集的极大(小)元可以有多个,而最大(小)元若有,只能惟一. 且极元、最元只在该子集内;而上界与下界可在子集之外确定,最小上界是所有上界中最小者,最小上界再小也不会小于子集中的任一元素;可以与某一元素相等,最大下界也是同样.

7. 函数

h 函数, 设f 是集合A 到B 的二元关系,a A,b B,且f ,且Dom(f)=A ,f 是一个函数(映射). 函数是一种特殊的关系.

集合A ×B 的任何子集都是关系,但不一定是函数. 函数要求对于定义域A 中每一个元素a ,B 中有且仅有一个元素与a 对应,而关系没有这个限制.

二函数相等是指:定义域相同,对应关系相同,而且定义域内每个对应值都相同.

h 函数的类型

单射 若)()(2121a f a f a a ≠?≠

满射 f(A)=B. 即)(,,x f y A x B y =∈?∈?使得

双射 单射且满射.

h 复合函数,:,:,:C A g f C B g B A f →?→→则即))(()(x f g x g f =?. 复合成立的条件是:)(Dom )(Ran g f ?

一般f g g f ?≠?,但)()(h g f h g f ??=??

复合函数的性质:

如果f,g 都是单射的,则f g 是单射的; 如果f,g 都是满射的,则f g 是满射的; 如果f,g 都是双射的,则f g 是双射的; 如果f,g 是单射的,则f 是单射的; 如果f,g 是满射的,则g 是满射的;

如果f ,g 是双射的,则f 是单射的,g 是满射的.

h 反函数 若f :A B 是双射,则有反函数f -1:B A

},)(,,{1A a b a f B b a b f ∈=∈><=-,f f f g g f =?=?-----11111)(,)(

第5章 代数结构 本章重点:代数运算及性质,群的概念,置换和置换群、交换群和循环群. 一、重点内容 1.代数运算及其性质

h 二元运算,非空集合A 上的函数(映射) f :A 2A 就是A 上的二元代数运算,

就是说二元运算是一个变换(对应关系).

代数运算的性质: h 交换律 x,y A ,有x y=y x ,在A 上适合交换律.

h 结合律 x,y A ,有(x y)z =x (y z),运算在A 上适合结合律.

h 分配律 x,y,z A ,有x (y z)=(x y)(x z) 或(y z)x=(y x)(z x), 对 适合分配律.

h 幂等律 x A ,有x x=x ,则运算在A 上适合幂等律.

h 吸收律 x,y A, 有x (x y)=x, x (x y)=x , 和 满足吸收律.

h 单位元 e l , (或e r )A ,对x A, 有e l x=x (x e r =x), e l (或e r )是A 的运算的左单位元(或右单位元). e 既是右单位元又是左单位元就是单位元.

h 逆元 对x A ,若x -1A, 有x -1x=x x -1=e ,x -1是x 的逆元.

h 代数系统 在非空集合A 上,定义了若干代数运算f 1,f 2,…,f m , (A, f 1,f 2,…,f m )称为代数系统. 若B A ,f 1,f 2,…,f m 在B 上成立,(B, f 1,f 2,…,f m )称为子代数系统.

2.群

h 代数系统

子群群半群)(存在逆元、单位元具有结合律,*)(,***H G G H ??→???????→?????→?? 注意:由上可见,代数系统、半群、群(子群)是一条线下来,条件逐步加强,半群和群是我们讨论的重点.

h 群的性质:(1) (a -1)-1=a; (2) (a*b)-1=b -1*a -1;(3) a m *a n =a m+n ;(4) (a m )n =a mn ; (5)(方

程的可解性) 方程a*x=b 或y*a=b 有唯一解; (6) (消去律) 由a*c=b*c 或 c*a=c*b ,可得a=b

3. 特殊群

h 交换群,群(G,*)的二元运算*满足交换律,(G,*)是交换群(阿贝尔群) .

h 循环群,群G 能表成

G={a k k Z ,a G}

G 是循环群. 记作G =(a),a 是群G 的生成元.

h 变换群 设A 是一个非空集合,A 上的所有一一变换构成的集合E(A), 对于变换乘法,E(A)构成一个群,称为集合A 上的一一变换群. E(A)的子群称为变换群.

h 置换群,n 元集合M 上的所有n 元置换S n ,关于置换乘法构成n 元对换群,它的子群叫置换群.

4. 置换,

h 置换,有限集合M ={a 1,a 2,…,a n }上的双射:M M ,n 元置换

???? ??=)()()(11121a a a a a a n σσσσΛΛ

h 置换复合(乘法),设???? ??=)()()(2121n n a a a a a a σσσσΛΛ,???? ??=)()()(2121n n a a a a a a ττττΛΛ 那么???? ??===?))(())(())(())((*2121n n a a a a a a x στστστστσττσΛΛ

h 单位置换,???? ??=n n a a a a a a I ΛΛ2121

h 逆置换,-1=???? ??n n a a a a a a ΛΛ2121)()()(σσσ

n 元集合M 上的n 元置换有n!个,有n 元置换构成的集合,记作S n .

h 轮换,满足:(1)(a 1)=a 2, (a 2)=a 3, …,(a m )=a 1; (2)(a)=a ,当a a k ,(k=1,2,…,m)时. 则是一个长度为m 的轮换,记作(a 1,a 2,…,a m ).

h 重要结论:置换有结合律;不相交的轮换有交换律;S n 中任一置换都可以唯一地表示成一系列不相交的轮换之积.

5. 同态与同构

h 同态,代数系统(G,*)和(S, ),f 是从G 到S 上的一个映射. a,b G ,有 f(a*b)=f(a) f(b)

则称f 是由(G,*)到(S, )的一个同态映射. 并称G 与S 同态. 如果f 是满射,则称G 与S 是满同态,记作G ~S ;如果f 是单射,则称G 与S 是单同态. (f(G), )称为(G,*)在f 下的同态象..

h 同构,代数系统(G,*)到(S, ),如果f 是从G 到S 的一个双射,则称f 是从G 到S 的同构,

h 群同构,设群(G,*)和(S, ),存在从(G,*)到(S, )的同态双射,则称群(G,*)与(S, )同构.

第7章 几种特殊的图

本章重点:欧拉图和哈密顿图、平面图和树的基本概念.

一、重点内容

1. 欧拉图

h 欧拉通路(回路)与欧拉图 通过图G 的每条边一次且仅一次,而且走遍每个结点的通路(回路),就是欧拉通路(回路). 存在欧拉回路的图就是欧拉图.

欧拉回路要求边不能重复,结点可以重复. 笔不离开纸,不重复地走完所有的边,且走过所有结点,就是所谓的一笔画.

h欧拉图或通路的判定

(1) 无向连通图G是欧拉图G不含奇数度结点(G的所有结点度数为偶数):(定理1)

(2) 非平凡连通图G含有欧拉通路G最多有两个奇数度的结点;(定理1的推论)

(3) 连通有向图D含有有向欧拉回路(即欧拉图)D中每个结点的入度=出度

连通有向图D含有有向欧拉通路D中除两个结点外,其余每个结点的入度=出度,且此两点满足deg-(u)-deg+(v)= 1. (定理2)

2. 哈密顿图

h哈密顿通路(回路)与哈密顿图通过图G的每个结点一次,且仅一次的通路(回路),就是哈密顿通路(回路). 存在哈密顿回路的图就是哈密顿图.

判断哈密顿图是较为困难的.

h哈密顿图的充分条件和必要条件

(1) 在无向简单图G=中V3,任意不同结点

V

v

u

G

v

u≥

+

∈)

deg(

)

deg(

,

,

,则G

是哈密顿图.(充分条件,定理4)

(2) 有向完全图D=, 若

3

V

,则图D是哈密顿图. (充分条件,定理5推论)

(3) 设无向图G=,V1V,则P(G-V1)V1(必要条件,定理3)

若此条件不满足,即V1V,使得P(G-V!)>V1,则G一定不是哈密顿图(非哈密顿图的充分条件).

3.平面图

h 平面图一个图能画在平面上,除结点之外,再没有边与边相交.

面、边界和面的次数由连通平面图G的边围成的其内部不含G的结点和边的区域是面,常用r表示. 围成面的各边组成的回路是边界. 边界回路的长度是面的次数,记作deg(r).

h重要结论

(1)平面图

e

r

e

E

v

V

E

V

G

r

i

i

2

)

deg(

,

,

,

,

1

=

=

=

>

=<∑

=

(所有面的次数之和=边的2

倍)(定理6).

(2)欧拉公式:平面图

,

,

,

,e

E

v

V

E

V

G=

=

>

=<

面数为r,则2

=

+

-r

e

v(结点数

与面数之和=边数+2)(定理7)

(3)平面图

6

3

3

,

,

,

,-

=

=

>

=

e

v

e

E

v

V

E

V

G,则

(定理8)

h判定条件:图G是平面图的充分必要条件是G不含与K3,3或K5在2度结点内同构的子图.

4. 树

h树连通无回路的无向图.

h树的判别图

m

E

n

V

E

V

T=

=

>

=<,

,

,

,T是树的充分必要条件是(六个等价定义)

(定理14):

(1) T是无回路的连通图; (2) 图T无回路且m=n-1;

(3) 图T连通且m=n-1

(4) 图T无回路,若增加一条边,就得到一条且仅一条回路;

(5) 图T连通,若删去任一边,G则不连通;

(6) 图T的每一对结点之间有一条且仅有一条通路.

h生成树图G的生成子图是树,该树就是生成树.

h权与带权图 n个结点的连通图G,每边指定一正数,称为权,每边带权的图称为带权图. G的生成树T的所有边的权之和是生成树T的权,记作W(T).

h最小生成树带权最小的生成树.

h有向树有向图删去边的方向为树,该有向图就是有向树.

h根树与树根非平凡有向树,恰有一个结点的入度为0(该结点为树根),其余结点的入度为1,该树为根树.

h每个结点的出度小于或等于2的根树为二元树(二叉树);每个结点的出度等于0或2的根树为二元完全树(二叉完全树);每个结点的出度等于2的根树称为正则二元树(正则二叉树).

h哈夫曼树用哈夫曼算法得到的最优二叉树.

4. 有关树的求法

h生成树的破圈法和避圈法求法;

h最小生成树的克鲁斯克尔求法;

h哈夫曼树的哈夫曼求法.

电大离散数学形成性考核作业集合

离散数学形成性考核作业( 一) 集合论部分 分校_________ 学号____________________ 姓名__________________ 分数 本课程形成性考核作业共 4 次, 内容由中央电大确定、统一布置。本次形考作业是第一次作业, 大家要认真及时地完成集合论部分的形考作业, 字迹工整, 抄写题目, 解答题有解答过程。 第 1 章集合及其运算 1.用列举法表示”大于2而小于等于9 的整数” 集合. 2.用描述法表示”小于5 的非负整数集合” 集合. 3 .写出集合B={1, {2, 3 }} 的全部子集. 4 .求集合A={ ,{ } } 的幂集. 5 .设集合A={{ a }, a }, 命题: { a } P(A) 是否正确, 说明理由. 6 .设 A {1,2,3}, B { 1,3,5}, C { 2,4,6}, 求 (1) A B (2) A B C (3) C - A (4) A B 7 .化简集合表示式: (( A B ) B) - A B.

试证:A - ( B C ) = ( A - B ) - C. 9 .填写集合{4, 9 } {9, 10, 4} 之间的关系. 10 .设集合A = {2, a , {3}, 4}, 那么下列命题中错误的是() A .{a } A B . { a , 4, {3}} A C . {a } A D . A 11 .设B = { {a }, 3, 4, 2}, 那么下列命题中错误的是() 第2章关系与函数 并验证 A (B C ) = ( A B ) (A C ). 4 .写出从集合A = { a , b , c }到集合B = {1}的所有二元关系. 8 .设A B C 是三个任意集合 A . {a } B B .{2, { a }, 3, 4} B C . {a } B D .设集合A = {a , b }, B = {1, 2, 3}, C = {3, 4}, 求 A (B C ), (A B) (A C ) .对任意三个集合 B 和 C 若ABA C 是否一定有B C ?为什么? .对任意三个集合 B 和 C 试证若A B = AC 」A

离散数学考试试题(A卷及答案)

离散数学考试试题(A卷及答案) 一、(10分)证明?(A∨B)→?(P∨Q),P,(B→A)∨?P A。 证明:(1)?(A∨B)→?(P∨Q) P (2)(P∨Q)→(A∨B) T(1),E (3)P P (4)A∨B T(2)(3),I (5)(B→A)∨?P P (6)B→A T(3)(5),I (7)A∨?B T(6),E (8)(A∨B)∧(A∨?B) T(4)(7),I (9)A∧(B∨?B) T(8),E (10)A T(9),E 二、(10分)甲、乙、丙、丁4个人有且仅有2个人参加围棋优胜比赛。关于谁参加竞赛,下列4种判断都是正确的: (1)甲和乙只有一人参加; (2)丙参加,丁必参加; (3)乙或丁至多参加一人; (4)丁不参加,甲也不会参加。 请推出哪两个人参加了围棋比赛。 解符号化命题,设A:甲参加了比赛;B:乙参加了比赛;C:丙参加了比赛;D:丁参加了比赛。 依题意有, (1)甲和乙只有一人参加,符号化为A⊕B?(?A∧B)∨(A∧?B); (2)丙参加,丁必参加,符号化为C→D; (3)乙或丁至多参加一人,符号化为?(B∧D); (4)丁不参加,甲也不会参加,符号化为?D→?A。 所以原命题为:(A⊕B)∧(C→D)∧(?(B∧D))∧(?D→?A) ?((?A∧B)∨(A∧?B))∧(?C∨D)∧(?B∨?D)∧(D∨?A) ?((?A∧B∧?C)∨(A∧?B∧?C)∨(?A∧B∧D)∨(A∧?B∧D))∧((?B∧D)∨(?B∧?A)∨(?D∧?A)) ?(A∧?B∧?C∧D)∨(A∧?B∧D)∨(?A∧B∧?C∧?D)?T 但依据题意条件,有且仅有两人参加竞赛,故?A∧B∧?C∧?D为F。所以只有:(A∧?B∧?C∧D)∨(A∧?B∧D)?T,即甲、丁参加了围棋比赛。 三、(10分)指出下列推理中,在哪些步骤上有错误?为什么?给出正确的推理形式。 (1)?x(P(x)→Q(x)) P (2)P(y)→Q(y) T(1),US (3)?xP(x) P (4)P(y) T(3),ES (5)Q(y) T(2)(4),I (6)?xQ(x) T(5),EG 解 (4)中ES错,因为对存在量词限制的变元x引用ES规则,只能将x换成某个个体常元c,而不能将其改为自由变元。所以应将(4)中P(y)改为P(c),c为个体常元。 正确的推理过程为: (1)?xP(x) P (2)P(c) T(1),ES (3)?x(P(x)→Q(x)) P (4)P(c)→Q(c) T(3),US (5)Q(c) T(2)(4),I (6)?xQ(x) T(5),EG 四、(10分)设A={a,b,c},试给出A上的一个二元关系R,使其同时不满足自反性、反自反性、对称性、反对称性和传递性。 解设R={},则

离散数学考试题详细答案

离散数学考试题(后附详细答案) 一、命题符号化(共6小题,每小题3分,共计18分) 1.用命题逻辑把下列命题符号化 a)假如上午不下雨,我去看电影,否则就在家里读书或看报。 设P表示命题“上午下雨”,Q表示命题“我去看电影”,R表示命题“在家里读书”,S表示命题“在家看报”,命题符号化为:(PQ)(PRS) b)我今天进城,除非下雨。 设P表示命题“我今天进城”,Q表示命题“天下雨”,命题符号化为:Q→P或P→Q c)仅当你走,我将留下。 设P表示命题“你走”,Q表示命题“我留下”,命题符号化为:Q→P 2.用谓词逻辑把下列命题符号化 a)有些实数不是有理数 设R(x)表示“x是实数”,Q(x)表示“x是有理数”,命题符号化为: x(R(x) Q(x)) 或x(R(x) →Q(x)) b)对于所有非零实数x,总存在y使得xy=1。 设R(x)表示“x是实数”,E(x,y)表示“x=y”,f(x,y)=xy, 命题符号化为: x(R(x) E(x,0) →y(R(y) E(f(x,y),1)))) c) f 是从A到B的函数当且仅当对于每个a∈A存在唯一的b∈B,使得f(a)=b. 设F(f)表示“f是从A到B的函数”, A(x)表示“x∈A”, B(x)表示“x∈B”,E(x,y)表示“x=y”, 命题符号化为:F(f)a(A(a)→b(B(b) E(f(a),b) c(S(c) E(f(a),c) →E(a,b)))) 二、简答题(共6道题,共32分) 1.求命题公式(P→(Q→R))(R→(Q→P))的主析取范式、主合取范式,并写出所有成真赋值。 (5分) (P→(Q→R))(R→(Q→P))(PQR)(PQR) ((PQR)→(PQR)) ((PQR) →(PQR)). ((PQR)(PQR)) ((PQR) (PQR)) (PQR)(PQR) 这是主合取范式 公式的所有成真赋值为000,001,010,100,101,111,故主析取范式为 (PQR(PQR(PQR(PQR(PQR(PQR 2.设个体域为{1,2,3},求下列命题的真值(4分) a)xy(x+y=4) b)yx (x+y=4) a) T b) F 3.求x(F(x)→G(x))→(xF(x)→xG(x))的前束范式。(4分) x(F(x)→G(x))→(xF(x)→xG(x)) x(F(x)→G(x))→(yF(y)→zG(z)) x(F(x)→G(x))→yz(F(y)→G(z)) xyz((F(x)→G(x))→(F(y)→G(z))) 4.判断下面命题的真假,并说明原因。(每小题2分,共4分)

离散数学期末试题

离散数学考试试题(A 卷及答案) 一、(10分)求(P ↓Q )→(P ∧?(Q ∨?R ))的主析取范式 解:(P ↓Q )→(P ∧?(Q ∨?R ))??(?( P ∨Q ))∨(P ∧?Q ∧R )) ?(P ∨Q )∨(P ∧?Q ∧R )) ?(P ∨Q ∨P )∧(P ∨Q ∨?Q )∧(P ∨Q ∨R ) ?(P ∨Q )∧(P ∨Q ∨R ) ?(P ∨Q ∨(R ∧?R ))∧(P ∨Q ∨R ) ?(P ∨Q ∨R )∧(P ∨Q ∨?R )∧(P ∨Q ∨R ) ?0M ∧1M ?2m ∨3m ∨4m ∨5m ∨6m ∨7m 二、(10分)在某次研讨会的休息时间,3名与会者根据王教授的口音分别作出下述判断: 甲说:王教授不是苏州人,是上海人。 乙说:王教授不是上海人,是苏州人。 丙说:王教授既不是上海人,也不是杭州人。 王教授听后说:你们3人中有一个全说对了,有一人全说错了,还有一个人对错各一半。试判断王教授是哪里人? 解 设设P :王教授是苏州人;Q :王教授是上海人;R :王教授是杭州人。则根据题意应有: 甲:?P ∧Q 乙:?Q ∧P 丙:?Q ∧?R 王教授只可能是其中一个城市的人或者3个城市都不是。所以,丙至少说对了一半。因此,可得甲或乙必有一人全错了。又因为,若甲全错了,则有?Q ∧P ,因此,乙全对。同理,乙全错则甲全对。所以丙必是一对一错。故王教授的话符号化为: ((?P ∧Q )∧((Q ∧?R )∨(?Q ∧R )))∨((?Q ∧P )∧(?Q ∧R )) ?(?P ∧Q ∧Q ∧?R )∨(?P ∧Q ∧?Q ∧R )∨(?Q ∧P ∧?Q ∧R ) ?(?P ∧Q ∧?R )∨(P ∧?Q ∧R ) ??P ∧Q ∧?R ?T 因此,王教授是上海人。 三、(10分)证明tsr (R )是包含R 的且具有自反性、对称性和传递性的最小关系。 证明 设R 是非空集合A 上的二元关系,则tsr (R )是包含R 的且具有自反性、对称性和传递性的关系。 若'R 是包含R 的且具有自反性、对称性和传递性的任意关系,则由闭包的定义知r (R )?' R 。则sr (R )?s ('R )='R ,进而有tsr (R )?t ('R )='R 。

电大 离散数学作业7答案

离散数学作业7 离散数学数理逻辑部分形成性考核书面作业 本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。本次形考书面作业是第三次作业,大家要认真及时地完成数理逻辑部分的综合练习作业。 要求:将此作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,要求本学期第17周末前完成并上交任课教师(不收电子稿)。并在07任务界面下方点击“保存”和“交卷”按钮,以便教师评分。 一、填空题 1.命题公式()P Q P →∨的真值是 1或T . 2.设P :他生病了,Q :他出差了.R :我同意他不参加学习. 则命题“如 果他生病或出差了,我就同意他不参加学习”符号化的结果为 (P ∨Q )→R . 3.含有三个命题变项P ,Q ,R 的命题公式P ∧Q 的主析取范式是 (P ∧Q ∧R)∨(P ∧Q ∧?R) . 4.设P (x ):x 是人,Q (x ):x 去上课,则命题“有人去上课.” 可符号化为 ?x(P(x) ∧Q(x)) . 5.设个体域D ={a , b },那么谓词公式)()(y yB x xA ?∨?消去量词后的等值式为 (A(a) ∨A(b)) ∨((B(a) ∧B(b)) . 6.设个体域D ={1, 2, 3},A (x )为“x 大于3”,则谓词公式(?x )A (x ) 的真值为 0(F) . 7.谓词命题公式(?x )((A (x )∧B (x )) ∨C (y ))中的自由变元为 y . 8.谓词命题公式(?x )(P (x ) →Q (x ) ∨R (x ,y ))中的约束变元为 x . 三、公式翻译题 1.请将语句“今天是天晴”翻译成命题公式. 设P :今天是晴天。 姓 名: 学 号: 得 分: 教师签名:

(完整版)离散数学试卷及答案

离散数学试题(A卷答案) 一、(10分)求(P↓Q)→(P∧?(Q∨?R))的主析取范式 解:(P↓Q)→(P∧?(Q∨?R))??(?( P∨Q))∨(P∧?Q∧R)) ?(P∨Q)∨(P∧?Q∧R)) ?(P∨Q∨P)∧(P∨Q∨?Q)∧(P∨Q∨R) ?(P∨Q)∧(P∨Q∨R) ?(P∨Q∨(R∧?R))∧(P∨Q∨R) ?(P∨Q∨R)∧(P∨Q∨?R)∧(P∨Q∨R) ? M∧1M ? m∨3m∨4m∨5m∨6m∨7m 2 二、(10分)在某次研讨会的休息时间,3名与会者根据王教授的口音分别作出下述判断: 甲说:王教授不是苏州人,是上海人。 乙说:王教授不是上海人,是苏州人。 丙说:王教授既不是上海人,也不是杭州人。 王教授听后说:你们3人中有一个全说对了,有一人全说错了,还有一个人对错各一半。试判断王教授是哪里人? 解设设P:王教授是苏州人;Q:王教授是上海人;R:王教授是杭州人。则根据题意应有: 甲:?P∧Q 乙:?Q∧P 丙:?Q∧?R 王教授只可能是其中一个城市的人或者3个城市都不是。所以,丙至少说对了一半。因此,可得甲或乙必有一人全错了。又因为,若甲全错了,则有?Q ∧P,因此,乙全对。同理,乙全错则甲全对。所以丙必是一对一错。故王教授的话符号化为:

((?P ∧Q )∧((Q ∧?R )∨(?Q ∧R )))∨((?Q ∧P )∧(?Q ∧R )) ?(?P ∧Q ∧Q ∧?R )∨(?P ∧Q ∧?Q ∧R )∨(?Q ∧P ∧?Q ∧R ) ?(?P ∧Q ∧?R )∨(P ∧?Q ∧R ) ??P ∧Q ∧?R ?T 因此,王教授是上海人。 三、(10分)证明tsr (R )是包含R 的且具有自反性、对称性和传递性的最小关系。 证明 设R 是非空集合A 上的二元关系,则由定理4.19知,tsr (R )是包含R 的且具有自反性、对称性和传递性的关系。 若'R 是包含R 的且具有自反性、对称性和传递性的任意关系,则由闭包的定义知r (R )?'R 。由定理4.15和由定理4.16得sr (R )?s ('R )='R ,进而有tsr (R )?t ('R )='R 。 综上可知,tsr (R )是包含R 的且具有自反性、对称性和传递性的最小关系。 四、(15分)集合A ={a ,b ,c ,d ,e }上的二元关系R 为R ={}, (1)写出R 的关系矩阵。 (2)判断R 是不是偏序关系,为什么? 解 (1) R 的关系矩阵为: ??? ??? ? ? ? ?=100001100010100 10110 11111 )(R M (2)由关系矩阵可知,对角线上所有元素全为1,故R 是自反的;ij r +ji r ≤1,故R 是反对称的;可计算对应的关系矩阵为:

最新离散数学期末考试试卷(A卷)

最新离散数学期末考试试卷(A卷) 一、判断题:(每题2分,共10分) (1) (1) (2)对任意的命题公式,若,则 (0) (3)设是集合上的等价关系,是由诱导的上的等价关系,则. (1) (4)任意一个命题公式都与某一个只含合取和析取两种联结词的命题公式等价. (0) (5)设是上的关系,分别表示的对称和传递闭包,则 (0) 二、填空题:(每题2分,共10分) (1) 空集的幂集的幂集为(). (2) 写出的对偶式(). (3)设是我校本科生全体构成的集合,两位同学等价当且仅当他们在 同一个班,则等价类的个数为(),同学小王所在 的等价类为(). (4)设是上的关系,则满足下列性质的哪几条:自反的,对称的,传递的,反自反的,反对称的. () (5)写出命题公式的两种等价公式( ). 三、用命题公式符号化下列命题(1)(2)(3),用谓词公式符号化下列命题(4)(5)(6).(12分) (1)(1)仅当今晚有时间,我去看电影. (2)(2)假如上午不下雨,我去看电影,否则就在家里读书. (3)你能通你能通过考试,除非你不复习. (4)(4)并非发光的都是金子. (5)(5)有些男同志,既是教练员,又是国家选手. (6)(6)有一个数比任何数都大. 四、设,给定上的两个关系和分别是 (1)(1)写出和的关系矩阵.(2)求及(12分) 五、求的主析取范式和主合取范式.(10分) 六、设是到的关系,是到的关系,证明:(8分) 七、设是一个等价关系,设对某一个,有

,证明: 也是一个等价关系.(10分) 八、(10分)用命题推理理论来论证 下述推证是否有效? 甲、乙、丙、丁四人参加比赛,如果甲获胜,则乙失败;如果丙获胜,则乙也获 胜,如果甲不获胜,则丁不失败.所以,如果丙获胜,则丁不失败. 九、(10分) 用谓词推理理论来论证下述推证. 任何人如果他喜欢步行,他就不喜欢乘汽车,每一个人或喜欢乘汽车,或喜欢骑 自行车(可能这两种都喜欢).有的人不爱骑自行车,因而有的人不爱步行 (论 域是人). 十、(8分) 利用命题公式求解下列问题. 甲、乙、丙、丁四人参加考试后,有人问他们,谁的成绩最好, 甲说:“不是我,”乙说:“是丁,”丙说:“是乙,” 丁说:“不是我.” 四人的回答只有一人符合实际,问若只有一人成绩最 好,是谁? 离散数学期末考试试卷答案(A 卷) 一、判断题:(每题2分,共10分) (1)}}{{}{x x x -∈ ( ∨) (2) 对任意的命题公式C B A ,,, 若 C B C A ∧?∧, 则B A ? ( ? ) (3)设R 是集合A 上的等价关系, L 是由R A 诱导的A 上的等价关系,则 L R =. ( ∨ ) (4) 任意一个命题公式都与某一个只含合取和析取两种联结词的命题公式等价. ( ? ) (5)设R 是A 上的关系,)(),(R t R s 分别表示R 的对称和传递闭包,则 )()(R st R ts ? ( ? ) 二、填空题:(每题2分,共10分) (1) 空集的幂集的幂集为 ( }},{{φφ). (2) 写出)()(R P Q P →∧∨的对偶式( )()(R P Q P ∧?∨∧ ). (3)设A 是我校本科生全体构成的集合,两位同学等价当且仅当他们在 同一个班,则等价类的个数为(我校本科生的班级数 ),同学小王所在 的等价类为(小王所在的班的集合). (4)设},,,{},,,{><><==3121321R A 是A 上的关系,则R 满足下列性质的哪 几条:自反的,对称的,传递的,反自反的,反对称的. ( 传递的,反自反的,反对称的 ) (5)写出命题公式Q P ?的两种等价公式 ( )()()()(P Q Q P P Q Q P ∨?∧∨?→∧→). 三、用命题公式符号化下列命题(1)(2)(3),用谓词公式符号化下列命题 (4)(5)(6).(12分) (3)(1)仅当今晚有时间,我去看电影.

国家开放大学2020年春季学期电大《离散数学》形成性考核三

一、单项选择题(每小题2分,共38分) 题目1 正确 获得2.00分中的2.00分 未标记标记题目 题干 假定一棵二叉树中,双分支结点数为15,单分支结点数为30,则叶子结点数为()。 选择一项: A. 16 B. 47 C. 15 D. 17 题目2 正确 获得2.00分中的2.00分 未标记标记题目 题干 二叉树第k层上最多有()个结点。 选择一项: A. 2k-1 B. 2k-1 C. 21 k D. 2k 题目3 正确 获得2.00分中的2.00分 未标记标记题目 题干 将含有150个结点的完全二叉树从根这一层开始,每一层从左到右依次对结点进行编号,根结点的编号为1,则编号为69的结点的双亲结点的编号为()。 选择一项: A. 34 B. 35 C. 33 D. 36 题目4 正确 获得2.00分中的2.00分 未标记标记题目

如果将给定的一组数据作为叶子数值,所构造出的二叉树的带权路径长度最小,则该树称为()。 选择一项: A. 二叉树 B. 哈夫曼树 C. 完全二叉树 D. 平衡二叉树 题目5 正确 获得2.00分中的2.00分 未标记标记题目 题干 在一棵度具有5层的满二叉树中结点总数为()。 选择一项: A. 33 B. 32 C. 31 D. 16 题目6 正确 获得2.00分中的2.00分 未标记标记题目 题干 一棵完全二叉树共有6层,且第6层上有6个结点,该树共有()个结点。 选择一项: A. 37 B. 72 C. 38 D. 31 题目7 正确 获得2.00分中的2.00分 未标记标记题目 题干 利用3、6、8、12这四个值作为叶子结点的权,生成一棵哈夫曼树,该树中所有叶子结点中的最长带权路径长度为()。 选择一项: A. 18 B. 30

离散数学期末考试试卷(A卷)

离散数学期末考试试卷(A卷) 一、判断题:(每题2分,共10分) (1) (1) (2)对任意的命题公式, 若, 则 (0) (3)设是集合上的等价关系, 是由诱导的上的等价关系,则。(1) (4)任意一个命题公式都与某一个只含合取和析取两种联结词的命题公式等价。 (0) (5)设是上的关系,分别表示的对称和传递闭包,则 (0) 二、填空题:(每题2分,共10分) (1) 空集的幂集的幂集为()。 (2) 写出的对偶式()。 (3)设是我校本科生全体构成的集合,两位同学等价当且仅当他们在 同一个班,则等价类的个数为(),同学小王所在 的等价类为()。 (4)设是上的关系,则满足下列性质的哪几条:自反的,对称的,传递的,反自反的,反对称的。 () (5)写出命题公式的两种等价公式( )。 三、用命题公式符号化下列命题(1)(2)(3),用谓词公式符号化下列命题(4)(5)(6)。(12分) (1)(1)仅当今晚有时间,我去看电影。 (2)(2)假如上午不下雨,我去看电影,否则就在家里读书。 (3)你能通你能通过考试,除非你不复习。 (4)(4)并非发光的都是金子。 (5)(5)有些男同志,既是教练员,又是国家选手。 (6)(6)有一个数比任何数都大。 四、设,给定上的两个关系和分别是

(1)(1)写出 和 的关系矩阵。(2)求 及 (12分) 五、求 的主析取范式和主合取范式。(10分) 六、设 是 到 的关系, 是 到 的关系,证明: (8分) 七、设 是一个等价关系,设 对某一个 ,有 ,证明: 也是一个等价关系。(10分) 八、(10分)用命题推理理论来论证 下述推证是否有效? 甲、乙、丙、丁四人参加比赛,如果甲获胜,则乙失败;如果丙获胜,则乙也获 胜,如果甲不获胜,则丁不失败。所以,如果丙获胜,则丁不失败。 九、(10分) 用谓词推理理论来论证下述推证。 任何人如果他喜欢步行,他就不喜欢乘汽车,每一个人或喜欢乘汽车,或喜欢骑 自行车(可能这两种都喜欢)。有的人不爱骑自行车,因而有的人不爱步行 (论 域是人)。 十、(8分) 利用命题公式求解下列问题。 甲、乙、丙、丁四人参加考试后,有人问他们,谁的成绩最好, 甲说:“不是我,”乙说:“是丁,”丙说:“是乙,” 丁说:“不是我。” 四人的回答只有一人符合实际,问若只有一人成绩最 好,是谁? 离散数学期末考试试卷答案(A 卷) 一、判断题:(每题2分,共10分) (1)}}{{}{x x x -∈ ( ∨) (2) 对任意的命题公式C B A ,,, 若 C B C A ∧?∧, 则B A ? ( ? ) (3)设R 是集合A 上的等价关系, L 是由 R A 诱导的A 上的等价关系,则L R =。 ( ∨ ) (4) 任意一个命题公式都与某一个只含合取和析取两种联结词的命题公式等 价。 ( ? ) (5)设R 是A 上的关系,)(),(R t R s 分别表示R 的对称和传递闭包,则 )()(R st R ts ? ( ? ) 二、填空题:(每题2分,共10分)

离散数学题库

常熟理工学院20 ~20 学年第学期 《离散数学》考试试卷(试卷库01卷) 试题总分: 100 分考试时限:120 分钟 题号一二三四五总分阅卷人得分 一、单项选择题(每题2分,共20分) 1.下列表达式正确的有( ) (A)(B)(C)(D) 2.设P:2×2=5,Q:雪是黑的,R:2×4=8,S:太阳从东方升起,下列( )命题的真值为 真。 (A)(B)(C)(D) 3.集合A={1,2,…,10}上的关系R={|x+y=10,x,y A},则R 的性质为( ) (A)自反的(B)对称的(C)传递的,对称的(D)传递的 4.设,,其中表示模3加法,*表示模2乘法,在集合上 定义如下运算: 有称为的积代数,则的积代数幺元是( ) (A)<0,0> (B)<0,1> (C)<1,0> (D)<1,1> 5.下图中既不是Eular图,也不是Hamilton图的图是( ) 6.设为无向图,,则G一定是( ) (A)完全图(B)树(C)简单图(D)多重图 7.设P:我将去镇上,Q:我有时间。命题“我将去镇上,仅当我有时间”符号化为()。 (A) P Q (B)Q P (C)P Q (D) 8.在有n个结点的连通图中,其边数() (A)最多有n-1条(B)最多有n 条(C)至少有n-1条(D)至少有n条 9.设A-B=,则有() (A)B=(B)B(C)A B (D)A B 10.设集合A上有3个元素,则A上的不同的等价关系的个数为() (A)5 (B)7 (C)3 (D)6 二、填空题(每题2分,共20分)

1.n个命题变元组成的命题公式共有种不同的等价公式。 2.设〈L,≤〉为有界格,a为L中任意元素,如果存在元素b∈L,使,则称b是a 的补元。 3.设*,Δ是定义在集合A上的两个可交换二元运算,如果对于任意的x,y∈A,都有 ,则称运算*和运算Δ满足吸收律。 4.设T是一棵树,则T是一个连通且的图。 5.一个公式的等价式称作该公式的主合取范式是指它仅由组成。 6.量词否定等价式? ("x)P(x) ?,? ($x)P(x) ?。 7.二叉树有5个度为2的结点,则它的叶子结点数为。 8.设是一个群,是阿贝尔群的充要条件是。9.集合S={α,β,γ,δ}上的二元运算*为 * αβγδ αδαβγ βαβγδ γβγγγ δαδγδ 那么,代数系统中的幺元是,α的逆元是。 10.设A={<1,2>,<2,4>,<3,3>},B={<1,3>,<2,4>,<4,2>} = 。 = 。 三、判断题(每题1分,共10分) 1.命题公式是一个矛盾式。() 2.,若,则必有。() 3.设S为集合X上的二元关系,则S是传递的当且仅当(S S)S。() 4.任何一棵二叉树的结点可对应一个前缀码。() 5.代数系统中一个元素的左逆元一定等于该元素的右逆元。() 6.一个有限平面图,面的次数之和等于该图的边数。() 7.A′B = B′A () 8.设*定义在集合A上的一个二元运算,如果A中有关于运算*的左零元θl和右零θr,则A中 有零元。() 9.一个循环群的生成元不是唯一的。() 10.任何一个前缀码都对应一棵二叉树。() 四、解答题(5小题,共30分) 1.(5分)什么是欧拉路?如何用欧拉路判定一个图G是否可一笔画出? 2.(8分)求公式 (P∨Q)R 的主析取范式和主合取范式。

离散数学期末试题及答案完整版

离散数学期末试题及答 案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

326《离散数学》期末考试题(B ) 一、填空题(每小题3分,共15分) 1.设,,},,{{b a b a A =?},则-A ? = ( ),-A {?} = ( ), )(A P 中的元素个数=|)(|A P ( ). 2.设集合A 中有3个元素,则A 上的二元关系有( )个,其中有( )个是A 到A 的函数. 3.谓词公式))()(())()((y P y Q y x Q x P x ?∧?∧→?中量词x ?的辖域为( ), 量词y ?的辖域为( ). 4.设}24,12,8,6,4,3,2,1{24=D ,对于其上的整除关系“|”,元素( )不存在补元. 5.当n ( )时,n 阶完全无向图n K 是平面图,当当n 为( )时,n K 是欧拉图. 二.1. 若n B m A ==||,||,则=?||B A ( ),A 到B 的2元关系共有( )个,A 上的2元关系共有( )个. 2. 设A = {1, 2, 3}, f = {(1,1), (2,1), (3, 1)}, g = {(1, 1), (2, 3), (3, 2)}和h = {(1, 3), (2, 1), (3, 1)},则( )是单射,( )是满射,( )是双射. 3. 下列5个命题公式中,是永真式的有( )(选择正确答案的番号). (1)q q p p →→∧)(; (2))(q p p ∨→; (3))(q p p ∧→; (4)q q p p →∨∧?)(; (5)q q p →→)(. 4. 设D 24是24的所有正因数组成的集合,“|”是其上的整除关系,则3的补元( ),4的补元( ),6的补元( ).

电大历年离散数学试题汇总

计算机科学与技术专业级第二学期离散数学试题 2012年1月 一、单项选择题(每小题3分,本题共15分)1. C 2. C 3. B 4. A 5. D 1-若集合4的元素个数为10,则其幕集的元素个数为()? A. 10 B. 100 C. 1024 D. 1 2. 设A={a, d},伊{1,2}, R、,电、足是刀到8的二元关系,旦用二{<Q, 2>,<。】>},他二{<。 1>,<。2>,<》,】>},足={<。,】>,</?, 2>),则()是从/到8的函数. A. R[和R? B . R仁 C. R3 D. R\和足 3. 设木{1,2,3,45,6,7,8}, /?是/上的整除关系,位{2, 4, 6},则集合8的最大元、最小元、上界、下界依次为()? A. 8、2、8、2 B.无、2、无、2 C. 6、2、6、2 D. 8、1、6、1 4.若完全图G中有77个结点777条边,则当()时,图G中存在欧拉回路. A.。为奇数 B. ”为偶数 C. "7为奇数 D. s为偶数 5.已知图G的邻接矩阵为 % o o 1 T 0 0 0 0 1 0 0 0 1 1 10 10 1 11110 则。有(). A. 6 点,8 边 B.6点,6边 C. 5 点,8 边 D.5点,6边 二、埴空题(每小题3分,本题共15分) 6. 设集合乂 = {况,那么集合/的富集是{。腥}}. 7. 若吊和%是/上的对称关系,则R\U电,R、nw R'-电,传用中对称关系有个. 8. 设图G是有5个结点的连通图,结点度数总和为10,则可从G中删去1 条边后使之变成树. 9. 设连通平面图G的结点数为5,边数为6,贝1|面数为 3 . 10. 设个体域D = G d},则谓词公式(VA)MW A B(X))消去重词后的等值式为(乂(Q) A8(Z?))A(4 (。)AB(/?)) . 三、逻辑公式翻译(每小题6分,本题共12分) 11. 将语句“今天有联欢活动,明天有文艺晚会翻译成命题公式. 设户:今天有联欢活动,Q:明天有文艺晚会,(2分) PN Q.(6 分)

离散数学试卷二十三试题与答案

试卷二十三试题与答案 一、单项选择题:(每小题1分,本大题共10分) 1.命题公式)(P Q P ∨→是( )。 A 、 矛盾式; B 、可满足式; C 、重言式; D 、等价式。 2.下列各式中哪个不成立( )。 A 、)()())()((x xQ x xP x Q x P x ?∨??∨?; B 、)()())()((x xQ x xP x Q x P x ?∨??∨?; C 、)()())()((x xQ x xP x Q x P x ?∧??∧?; D 、Q x xP Q x P x ∧??∧?)())((。 3.谓词公式)())()((x Q y yR x P x →?∨?中的 x 是( )。 A 、自由变元; B 、约束变元; C 、既是自由变元又是约束变元; D 、既不是自由变元又不是约束变元。 4.在0 Φ之间应填入( )符号。 A 、= ; B 、?; C 、∈; D 、?。 5.设< A , > 是偏序集,A B ?,下面结论正确的是( )。 A 、 B 的极大元B b ∈且唯一; B 、B 的极大元A b ∈且不唯一; C 、B 的上界B b ∈且不唯一; D 、B 的上确界A b ∈且唯一。 6.在自然数集N 上,下列( )运算是可结合的。 (对任意N b a ∈,) A 、b a b a -=*; B 、),max(b a b a =*; C 、b a b a 5+=*; D 、b a b a -=*。 7.Q 为有理数集N ,Q 上定义运算*为a*b = a + b – ab ,则的幺元为( )。 A 、a ; B 、b ; C 、1; D 、0。 8.给定下列序列,( )可以构成无向简单图的结点度数序列。 A 、(1,1,2,2,3); B 、(1,1,2,2,2); C 、(0,1,3,3,3); D 、(1,3,4,4,5)。 9.设G 是简单有向图,可达矩阵P(G)刻划下列 ( )关系。 A 、点与边; B 、边与点; C 、点与点; D 、边与边。 10.一颗树有两个2度结点,1个3度结点和3个4度结点,则1度结点数为( )。 A 、5; B 、7; C 、9; D 、8。

离散数学试题与答案

试卷二试题与参考答案 一、填空 1、 P:您努力,Q:您失败。 2、 “除非您努力,否则您将失败”符号化为 ; “虽然您努力了,但还就是失败了”符号化为 。 2、论域D={1,2},指定谓词P P (1,1) P (1,2) P (2,1) P (2,2) T T F F 则公式x ??真值为 。 3设A={2,3,4,5,6}上的二元关系}|,{是质数x y x y x R ∨<><=,则 R= (列举法)。 R 的关系矩阵M R = 。 4、设A={1,2,3},则A 上既不就是对称的又不就是反对称的关系 R= ;A 上既就是对称的又就是反对称的关系R= 。 5、设代数系统,其中A={a,b,c}, 则幺元就是 ;就是否有幂等 性 ;就是否有对称性 。 6、4阶群必就是 群或 群。 7、下面偏序格就是分配格的就是 。 8、n 个结点的无向完全图K n 的边数为 ,欧拉图的充要条件就是 。 * a b c a b c a b c b b c c c b

二、选择 1、在下述公式中就是重言式为( ) A.)()(Q P Q P ∨→∧; B.))()(()(P Q Q P Q P →∧→??; C.Q Q P ∧→?)(; D.)(Q P P ∨→。 2、命题公式 )()(P Q Q P ∨?→→? 中极小项的个数为( ),成真赋值的个数为 ( )。 A.0; B.1; C.2; D.3 。 3、设}}2,1{},1{,{Φ=S ,则 S 2 有( )个元素。 A.3; B.6; C.7; D.8 。 4、设} 3 ,2 ,1 {=S ,定义S S ?上的等价关系 },,,, | ,,,{c b d a S S d c S S b a d c b a R +=+?>∈∈<><><<=则由 R 产 生的S S ?上一个划分共有( )个分块。 A.4; B.5; C.6; D.9 。 5、设} 3 ,2 ,1 {=S ,S 上关系R 的关系图为 则R 具有( )性质。 A.自反性、对称性、传递性; B.反自反性、反对称性; C.反自反性、反对称性、传递性; D.自反性 。 6、设 ο,+ 为普通加法与乘法,则( )>+<ο,,S 就是域。 A.},,3|{Q b a b a x x S ∈+== B.},,2|{Z b a n x x S ∈== C.},12|{Z n n x x S ∈+== D.}0|{≥∧∈=x Z x x S = N 。 7、下面偏序集( )能构成格。

离散数学期末试卷

北京工业大学经管学院期末试卷 《离散数学》(A) 学号姓名:成绩 一、单项选择题(每题2分,共18分) 1.令P:今天下雪了,Q:路滑,则命题“虽然今天下雪了,但是路不.滑”可符号化为(D)A.P→Q B.P∨Q C.P∧Q D.P∧Q p→q,蕴涵式,表示假设、条件、“如果,就”。 “→”与此题无关 2. 关于命题变元P和Q的极大项M1表示( C )。书P1520,此题换作p、q更容易理解 A.┐P∧Q B.┐P∨Q p∨┐q 01 1 M1 ∨┐Q∧┐Q 3.设R(x):x是实数;S():x小于y。用谓词表达下述命题:不存在最小的实数。其中错误的表达式是:(D) 4.在论域{}中与公式(x?)A(x)等价的不含存在量词的公式是(B) A.)b( )a( A∨ A A )a( A∧ B. )b( C. )b( )b( A→ A A )a( A→ D. )a( 5.下列命题公式为重言式的是(C) A.Q→(P∧Q)B.P→(P∧Q) C.(P∧Q)→P D.(P∨Q)→Q 牢记→真假条件,作为选择题可直接代入0、1,使选项出现1→0,排除。熟练的可直接看出C不存在1→0的情况 6. 设{1,2,3},{},下列二元关系R为A到B的函数的是( A ) A. {<1>,<2>,<3>} B. {<1>,<2>} C. {<1>,<1>,<2>,<3>} D. {<1>,<2>,<3>,<1>} 7.偏序关系具有性质(D)背

A.自反、对称、传递 B.自反、反对称 C.反自反、对称、传递 D.自反、反对称、传递 8.设R 为实数集合,映射:,R R σ→2 ()21,x x x σ=-+-则σ 是( D ). (A) 单射而非满射 (B) 满射而非单射 (C) 双射 (D) 既不是单射也不是满射. 书P96.设函数f :A→B (1)若,则f 是满射的【即值域为B 的全集,在本题中为R ,该二次函数有最高点,不满足】 (2)若对于任何的x 12∈A , x 1≠x 2,都有f(x 1)≠f(x 2),则称f 是单射的【即真正一一对应,甚至不存在一个y 对应多个x 。显然,本题为二次函数,不满足】 (3)若f 既是满射的,又是单射的,则称f 是双射的【本题中两个都不满足,既不是单射也不是满射】 二、填空题(每空2分,共22分) 1.设Q 为有理数集,笛卡尔集×Q ,*是S 上的二元运算,?,∈S, *=<, >, 则*运算的幺元是<1,0>。?∈S, 若a≠0, 则的逆元是<1>。书P123定义 2.在个体域D 中,公式)x (xG ?的真值为假当且仅当某个G(x)的真值为假,公式)x (xG ?的真值为假,当且仅当所有G(x)的真值都为假。 3.给定个体域为整数域,若F (x ):表示x 是偶数,G (x ):表示x 是奇数;那么,)x (G )x ()x (F )x (?∧?是一个 永真式 ;而))x (G )x (F )(x (∧?是一个 永假式 。 4.设{}{}===)R (r ,c ,b ,b ,a R A ,c ,b ,a A 则上的二元关系  {<>,<>,<>,<>,<>,<>} ; s(R)= {<>,<>,<>,<>} 。 书P89、P85. 自反闭包:r(R) = R U R 0 ={<>,<>} U {<>,<>,<>,<>} ={<>,<>,<>,<>,<>,<>} 对称闭包:s(R) = R U R -1 = {<>,<>} U {<>,<>} = {<>,<>,<>,<>} 传递闭包:t(R) = 2 3U…… 5. 设{1,2,3}{},则从X 到Y 的不同的函数共有8个. 书P96,B 上A 的概念:

2020年电大离散数学(本)期末考试题库及答案

2020年电大离散数学(本)期末考试题库及答案 一、单项选择题 1.设P:a是偶数,Q:b是偶数。R:a + b是偶数,则命题“若a是偶数,b是偶数,则a + b 也是偶数”符号化为(D.P Q→R)。2.表达式?x(P(x,y)∨Q(z))∧?y(Q(x,y)→?zQ(z))中?x的辖域是(P(x,y)Q(z))。 3.设) ( }), ({ }, { , 4 3 2 1 ? = ? = ? = ? =P S P S S S则命题为假的是( 4 2 S S∈)。 4.设G是有n个结点的无向完全图,则G的边数(1/2 n(n-1))。 5.设G是连通平面图,有v个结点,e条边,r个面,则r=(e-v+2)。 6.若集合A={1,{2},{1,2}},则下列表述正确的是( {1}?A ). 7.已知一棵无向树T中有8个顶点,4度、3度、2度的分支点各一个,T的树叶数为( 5 ). 8.设无向图G的邻接矩阵为 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 1 1 1 1 1 1 1 1 1 1 1 1 1 则G的边数为( 7 ). 9.设集合A={a},则A的幂集为({?,{a}} ). 10.下列公式中(?A∧?B ??(A∨B) )为永真式. 11.若G是一个汉密尔顿图,则G一定是( 连通图). 12.集合A={1, 2, 3, 4}上的关系R={|x=y且x, y∈A},则R的性质为(传递的). 13.设集合A={1,2,3,4,5},偏序关系≤是A上的整除关系,则偏序集上的元素5是集合A的(极大元). 14.图G如图一所示,以下说法正确的是( {(a, d) ,(b, d)}是边割集) .图一 15.设A(x):x是人,B(x):x是工人,则命题“有人是工人”可符号化为((?x)(A(x)∧B(x)) ). 16.若集合A={1,2},B={1,2,{1,2}},则下列表述正确的是(A?B,且A∈B ). 17.设有向图(a)、(b)、(c)与(d)如图一所示,则下列结论成立的是( (d)是强连通的). 18.设图G的邻接矩阵为 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 1 1 1 1 1 1 1 1 1 则G的边数为( 5 ). 19.无向简单图G是棵树,当且仅当(G连通且边数比结点数少1 ). 20.下列公式((P→(?Q→P))?(?P→(P→Q)) )为重言式. 21.若集合A={ a,{a},{1,2}},则下列表述正确的是({a}?A). 22.设图G=,v∈V,则下列结论成立的是(E v V v 2 ) deg(= ∑ ∈ ) . 23.命题公式(P∨Q)→R的析取范式是((?P∧?Q)∨R ) 24.下列等价公式成立的为(P→(?Q→P) ??P→(P→Q) ). 25.设A={a, b},B={1, 2},R1,R2,R3是A到B的二元关系,且R1={, },R2={, , },R3={, },则(R2)不是从A到B的函数. 26.设A={1, 2, 3, 4, 5, 6, 7, 8},R是A上的整除关系,B={2, 4, 6},则集合B的最大元、最小元、上界、下界依次为(无、2、无、2).

相关文档
最新文档