卡诺循环与汽车发动机

卡诺循环与汽车发动机
卡诺循环与汽车发动机

卡诺循环与汽车发动机

摘要:卡诺循环(Carnot cycle) 是由法国工程师尼古拉·莱昂纳尔·萨迪·卡诺于1824年

提出的。该循环以理想气体为工质,由两个等温循环和两个绝热循环组成,而按照卡诺循环工作的热机叫做卡诺热机。1862年法国一位工程师首先提出四冲程循环原理,1876年德国工程师尼古拉斯·奥托利用这个原理发明了发动机,因这种发动机具有转动平稳、噪声小等优良性能,对工业影响很大,故把这种循环命名为奥托循环。

关键字:卡诺循环汽车发动机奥托循环

正文:

随着对热力学这一部分物理知识了解的不断深入,我感觉到了物理学中的循环之美。而卡诺循环便是热力学这一部分知识中几近完美的表现。

卡诺循环(Carnot cycle) 是由法国工程师尼古拉·莱昂纳尔·萨迪·卡诺于1824年提出的,以分析热机的工作过程。要完整的了解卡诺循环,我们就需要从卡诺循环的四个过程入手,只有详细在详细了解这四个过程的基础上,我们才能更加深刻地了解卡诺循环。卡诺循环包括四个步骤:等温膨胀,绝热膨胀,等温压缩,绝热压缩。首先是等温膨胀,即理想气体从状态1(P1,V1,T1)等温膨胀到状态2(P2,V2,T2)在这个过程中,理想气体与高温热源接触,由状态1等温膨胀到状态2,从高温热源吸收热量,吸收的热量为

Q1=νRT1ln(V2/V1)(1)

其次是绝热膨胀,即从状态2绝热膨胀到状态3(P3,V3,T3),

然后是等温压缩,即从状态3等温压缩到状态4(P4,V4,T4),在这个过程中,理想气体与低温热源接触,由状态3等温压缩到状态4,向低温热源放出热量,放出的热量为

Q2=νRT2ln(V3/V4)(2)

最后从状态4绝热压缩回到状态1如图(一)。

图(一)

不难看出,卡诺循环可以想象为是工作与两个恒温热源之间的准静态过程,其高温热源的温度为T1,低温热源的温度为T2。

1824年N.L.S.卡诺在对热机的最大可能效率问题作理论研究时提出的一个理想循环。他假设工质只与两个恒温热源交换热量,没有耗散效应。为使过程是准静态过程,工作物质从高温热源吸热应是无温度差的等温膨胀过程,同样,向低温热源放热应是等温压缩过程。因限制只与两热源交换热量,脱离热源后只能是绝热过程。而根据循环效率的定义式可得的到卡诺循环的效率为:

(3)

从式(3)不难看出以理想气体为工质的卡诺循环的效率只由两个热源的热力学温度决定,而实际生活中由于耗散效应,效率往往低于此效率。因此,此效率是实际热机可以达到的效率的极限值。

与卡诺循环原理有着一定的相似性,同时在实际生活中与之联系最密切的也是我们最常见的当属汽车发动机。

据调查显示,目前几乎所有汽车都使用四冲程燃烧循环来将汽油转化为运动。而汽车的这种四冲程方式又称作“奥托循环”,以此纪念1867年发明它的尼克劳斯?奥托 (Nikolaus Otto)。这四个冲程如图(二)所示。它们分别是:进气冲程,压缩冲程,燃烧冲程,排气冲程。现在,就让我们走进奥托循环的四个过程。

图(二)

a进气冲程:活塞从上止点运动到下止点的过程叫进气冲程(曲轴旋转角度0~180°),该冲程进气门打开,排气门关闭,气室与大气相通,通过大气压力使油气混合气进入,进气终了汽缸内压力约为0.075~0.09MPa。

b压缩冲程:活塞从下止点运动到上止点的过程叫压缩冲程(曲轴旋转角度180°~360°),该冲程进排气门全关闭,气室内的油气混合气压力逐渐升高,压缩冲程终了气室内压力约为0.6~1.2MPa。

c作功冲程:活塞从上止点运动到下止点的过程叫作功冲程(曲轴旋转角度360°~540°),该冲程进排气门全关闭,活塞在上止点位置时火花塞跳火点燃油气混合气使气缸内的压力急剧升高(可达到3~5MPa),推动活塞作向曲轴的运动,压力逐渐下降,作功冲程终了气室内压力约为0.3~0.5MPa。

d排气冲程:活塞从下止点运动到上止点的过程叫排气冲程(曲轴旋转角度540°~720°),该冲程进气门关闭,排气门打开,活塞向上运动推动燃烧后的废气排出气室,该冲程终了气室内的气压约为0.105~0.115MPa。该冲程的结束也标志这发动机一个工作循环的结束。

汽车发动机的这种做功方式与卡诺循环在原理上有着一定的联系,但是从具体的过程中不难看出,发动机的一个工作循环与卡诺循环的一个循环有着极大的区别。首先,从循环过程的形式而言,卡诺循环的四个过程分别为等温膨胀、绝热膨胀、等温压缩、绝热压缩。这四个过程介绍了卡诺循环的工质,即理想气体的四种变化方式,从而使得理想气体在初状态和末状态拥有相同的物理状态。而汽车发动机的一个工作循环包括进气冲程,压缩冲程,燃烧冲程,排气冲程。这四个过程介绍了汽车发动机完成一个循环的过程中活塞等发动机配件的运转状态,可以说发动机的四个冲程是发动机在完成一个工作循环时的运动状态。其次,从功能转化进行分析,卡诺循环是一种理想状态,没有考虑在整个循环过程中能量的散耗效应。而汽车发动机的一个工作循环是实际生活中一种相当重要的功能转化方式。它与发动机的型号,器件参数,工作环境以及零件老化状态等诸多因素有关。

科学源于生活,科学高于生活。在我看来科学的崇高体现在它能反作用于生活,从而让我们可以以科学为标杆生活的更加方便,幸福。卡诺循环以及汽车发动机的原理--奥托循环的相同之处在于,卡诺循环为实际中如何提高燃煤电厂的效率指明了方向,而奥托循环更是推动了工业的发展,彰显了科学的崇高,激励着一代又一代科学登山者攀登科学的高峰。

参考文献:

[1]祝占元《汽车发动机原理》黄河水利出版社

[2]王忠福《汽车发动机构造与检修》电子工业出版社图片来源:

[1]百度图片

[2]奥杰汽车网

汽车发动机原理试题库及答案

一、发动机的性能 二、选择题 1、通常认为,汽油机的理论循环为( A ) A、定容加热循环 B、等压加热循环 C、混合加热循环 D、多变加热循环 6、实际发动机的膨胀过程是一个多变过程。在膨胀过程中,工质( B ) A、不吸热不放热 B、先吸热后放热 C、先放热后吸热 D、又吸热又放热 2、发动机的整机性能用有效指标表示,因为有效指标以( D ) A、燃料放出的热量为基础 B、气体膨胀的功为基础 C、活塞输出的功率为基础 D、曲轴输出的功率为基础 5、通常认为,高速柴油机的理论循环为( C ) A、定容加热循环 B、定压加热循环 C、混合加热循环 D、多变加热循环 6、实际发动机的压缩过程是一个多变过程。在压缩过程中,工质( B ) A、不吸热不放热 B、先吸热后放热 C、先放热后吸热 D、又吸热又放热 2、发动机工作循环的完善程度用指示指标表示,因为指示指标以( C ) A、燃料具有的热量为基础 B、燃料放出的热量为基础 C、气体对活塞的做功为基础 D、曲轴输出的功率为基础 2、表示循环热效率的参数有( C )。 A、有效热效率 B、混合热效率 C、指示热效率 D、实际热效率 3、发动机理论循环的假定中,假设燃烧是( B )。 A、定容过程 B、加热过程 C、定压过程 D、绝热过程 4、实际发动机的压缩过程是一个( D )。 A、绝热过程 B、吸热过程

C、放热过程 D、多变过程 5、通常认为,高速柴油机的理论循环为( C )加热循环。 A、定容 B、定压 C、混合 D、多变 6、实际发动机的膨胀过程是一个( D )。 A、绝热过程 B、吸热过程 C、放热过程 D、多变过程 7、通常认为,低速柴油机的理论循环为( B )加热循环。 A、定容 B、定压 C、混合 D、多变 8、汽油机实际循环与下列(B )理论循环相似。 A、混合加热循环 B、定容加热循环 C、定压加热循环 D、卡诺循环 9、汽油机常用的压缩比在( B )范围内。 A、4 ~7 B、7 ~11 C、11 ~15 D、15 ~22 10、车用柴油机实际循环与下列( A )理论循环相似。 A、混合加热循环 B、定容加热循环 C、定压加热循环 D、卡诺循环 11、非增压发动机在一个工作循环中,缸内压力最低出现在(D )。 A、膨胀结束 B、排气终了 C、压缩初期 D、进气中期 12、自然吸气柴油机的压缩比范围为(D )。 A、8 ~16 B、10 ~18 C、12 ~20 D、14 ~22 3、发动机理论循环的假设燃烧是加热过程,其原因是( B )。 A、温度不变 B、工质不变 C、压力不变 D、容积不变 6、实际发动机的膨胀过程是一个多变过程,原因是在膨胀过程中,工质( C )。

汽车发动机原理复习题

1、汽油机实际循环与下列()理论循环相似。 A、混合加热循环 B、定容加热循环 C、定压加热循环 D、卡诺循环 2、汽油机常用的压缩比在()范围内。 A、4 ~7 B、7 ~11 C、11 ~15 D、15 ~22 3、车用柴油机实际循环与下列()理论循环相似。 A、混合加热循环 B、定容加热循环 C、定压加热循环 D、卡诺循环 4、非增压发动机在一个工作循环中,缸内压力最低出现在() A、膨胀结束 B、排气终了 C、压缩初期 D、进气中期 5、发动机实际换气过程完善程度的评价参数有() A、机械效率 B、热效率 C、进气马赫数 D、充气效率 6、四冲程发动机换气过程中存在气门叠开现象的原因是() A、进气门早开和排气门早开 B、进气门晚关和排气门早开 C、进气门早开和排气门晚关 D、进气门晚关和排气门晚关 7、汽油机的火焰速度是() A、燃烧速度 B、火焰锋面移动速度 C、扩散速度 D、气流运动速度 8、提高压缩比使汽油机的爆震倾向加大,为此,可采取()的措施。 A、减小喷油提前角 B、减小点火提前角 C、加大喷油提前角 D、加大点火提前角 9、评价速燃期的重要指标中有() A、温度升高率 B、最大压力出现时刻 C、最高温度 D、压力升高时刻 10、下列措施中,不能够消除汽油机爆震的是() A、增大点火提前角 B、推迟点火提前角 C、加强冷却 D、选用高牌号的汽油 11、下面列出的()属于柴油机燃烧特点。 A、缺氧 B、空气过量 C、扩散燃烧 D、混合气预先形成 12、柴油机混合气形成过程中,存在燃料燃烧、燃料()、燃料与空气之间的扩散同步进行现象。 A、燃烧 B、凝结 C、蒸发 D、混合 13、球形油膜燃烧室属于柴油机()燃烧室。 A、涡流式 B、预燃室 C、间接喷射式 D、直接喷射式 14、下列四种燃烧室对喷射系统要求最高的是() A、开式燃烧室 B、半开式燃烧室 C、涡流室燃烧室 D、预燃室燃烧室 15、在发动机试验装置中,()是发动机试验台架的基本设备。 A、发动机 B、试验台 C、测功机 D、测量系统 17、万有特性图中,最内层的区域是() A、功率最高区域 B、油耗最小区域 C、转矩最大区域 D、转速最小区域 18、发动机的有效燃油消耗率和下面哪个参数成反比() A、机械效率 B、指示热效率 C、两个都是 D、两个都不是 19、三元催化转换器要求的空燃比范围是()理论空燃比。 A、小于 B、小于并接近 C、大于 D、大于并接近

汽车发动机的工作原理和各部件作用

汽车发动机的工作原理和各部件作用 汽车, 原理, 发动机 发动机,又称为引擎,是一种能够把一种形式的能转化为另一种更有用的能的机器,通常是把化学能转化为机械能。(把电能转化为机器能的称谓电动机)有时它既适用于动力发生装置,也可指包括动力装置的整个机器.比如汽油发动机,航空发动机. 基本理论 汽油发动机将汽油的能量转化为动能来驱动汽车,最简单的办法是通过在发动机内部燃烧汽油来获得动能。因此,汽车发动机是内燃机----燃烧在发动机内部发生。 有两点需注意: 1.内燃机也有其他种类,比如柴油机,燃气轮机,各有各的优点和缺点。 2.同样也有外燃机。在早期的火车和轮船上用的蒸汽机就是典型的外燃机。燃料(煤、木头、油)在发动机外部燃烧产生蒸气,然后蒸气进入发动机内部来产生动力。内燃机的效率比外燃机高不少,也比相同动力的外燃机小很多。所以,现代汽 车不用蒸汽机。 相比之下,内燃机比外燃机的效率高,比燃气轮机的价格便宜,比电动汽车容易添加燃料。这些优点使得大部分现代汽车都使用往复式的内燃机。 结构 机体是构成发动机的骨架,是发动机各机构和各系统的安装基础,其内、外安装着发动机的所有主要零件和附件,承受各种载荷。因此,机体必须要有足够的强度和刚度。机体组主要由气缸体、曲轴箱、气缸盖和气缸垫等零件组成。 一. 气缸体 水冷发动机的气缸体和上曲轴箱常铸成一体,称为气缸体——曲轴箱,也可称为气缸体。气缸体一般用灰铸铁铸成,气缸体上部的圆柱形空腔称为气缸,下半部为支承曲轴的曲轴箱,其内腔为曲轴运动的空间。在气缸体内部铸有许多加强筋,冷却 水套和润滑油道等。 气缸体应具有足够的强度和刚度,根据气缸体与油底壳安装平面的位置不同,通常 把气缸体分为以下三种形式。

内燃机的工作循环

内燃机的工作循环 生物与农业工程学院孙舒畅45090120 一,内燃机的理论循环 通常根据内燃机所使用的燃料、混合气形成方式、缸内燃烧过程(加热方式)等特点,把火花点火发动机的实际循环简化为等容加热循环,把压燃式柴油机的实际循环简化为混合加热循环或等压加热循环,这些循环称为内燃机的理论循环。根据不同的假设和研究目的,可以形成不同的理论循环,如图1,a、b和c所示为四冲程内燃机的理想气体理论循环的p-V示功图。为建立这些内燃机的理论循环,需对内燃机的实际循环中大量存在的湍流耗散、温度压力和成分的不均匀性以及摩擦、传热、燃烧、节流和工质泄漏等一系列不可逆损失作必要的简化和假设,归纳起来有: 1)忽略发动机进排气过程,将实际的开口循环简化为闭口循环。 2)将燃烧过程简化为等容、等压或混合加热过程,将排气过程简化为等容放热过程。 3)把压缩和膨胀过程简化成理想的绝热等熵可逆过程,忽略工质与外界的热量交换及其泄漏等的影响。 4)以空气为工质,并视为理想气体,在整个循环牛工质物理及化学性质保持不变,比热容为常数。 图1 四冲程内燃机典型的理论循环 a)等容加热循环b)等压加热循环c)混合加热循环 通过对理论循环的热力学研究,可以达到以下目的: 1)用简单的公式来阐明内燃机工作过程中各基本热力参数间的关系,明确提高以理论循环热效率为代表的经济性和以循环平均压力为代表的动力性的基本途径。 2)确定循环热效率的理论极限,以判断实际内燃机工作过程的经济性和循环进行的完善程度以及改进潜力。 3)有利于比较内燃机各种热力循环的经济性和动力性。

各种理论循环的热效率和循环平均压力可以依照热力学的方法进行推导[1-3]。内燃机理论循环热效率和循环平均压力的表达式及特点见表1。 表1 内燃机理论循环的比较 注:V P c c k = 为等熵指数,c a c V V =ε为压缩比,c z P P P =λ为压力升高比,c z V V =0ρ为初始膨胀比。 分析表1中三种理论循环的热效率和平均压力表达式,不难发现: 1)三种理论循环的热效率均与压缩比 有关,提高压缩比可以提高循环的热效率。高压缩比c ε可以提高工质的最高燃烧温度,扩大了循环的温度阶梯,从而使热效率t η增加,但热效率t η增加率随着压缩比c ε的提高而逐渐减小。 2)增大压力升高比,可以增加混合加热循环中等容部分的加热量,使循环的最高温度和压力增加,因而提高了燃料热量的利用率,即循环的热效率t η。 3)增大初期膨胀比,使等压部分加热量增加,将导致混合加热循环热效率t η的降低,因为这部分热量是在活塞下行的膨胀行程中加入的,做功能力较低。 4)所有提高内燃机理论循环热效率的措施,以及增加循环始点的进气压力,降低进气温度a T ,增加循环供油量(b g ,即循环加热量B Q )等措施,均有利于循环平均压力的t P 提高。 理论上能够提高内燃机理论循环热效率和平均压力的措施,往往受到内燃机实际工作条 件的限制:

循环过程,卡诺循环,热机效率,致冷系数

1. 摩尔理想气体在400K 与300K 之间完成一个卡诺循环,在400K 的等温线上,起始体积为0.0010m 3,最后体积为0.0050m 3,试计算气体在此循环中所作的功,以及从高温热源吸收的热量和传给低温热源的热量。 解答 卡诺循环的效率 %25400 300 1112=-=- =T T η (2分) 从高温热源吸收的热量 2110.005 ln 8.31400ln 53500.001 V Q RT V ==??=(J ) (3分) 循环中所作的功 10.2553501338A Q η==?=(J ) (2分) 传给低温热源的热量 21(1)(10.25)53504013Q Q η=-=-?=(J ) (3分) 2. 一热机在1000K 和300K 的两热源之间工作。如果⑴高温热源提高到1100K ,⑵低温热源降到200K ,求理论上的热机效率各增加多少?为了提高热机效率哪一种方案更好? 解答: (1) 效率 %701000300 1112=-=- =T T η 2分 效率 %7.721100 300 1112=-=- ='T T η 2分 效率增加 %7.2%70%7.72=-=-'='?ηηη 2分 (2) 效率 %801000 2001112=-=- =''T T η 2分 效率增加 %10%70%80=-=-''=''?ηηη 2分 提高高温热源交果好

3.以理想气体为工作热质的热机循环,如图所示。试证明其效率为 1112121-??? ? ??-???? ??-=P P V V γη 解答: )(22211V p V p R C T C M M Q V V mol -=?= 3分 )(22122V p V p R C T C M M Q p P mol -=?= 3分 )1()1( 1)()(112 12 1 222122121 2---=--- =- =p p V V V p V p C V p V p C Q Q V p γη 4. 如图所示,AB 、DC 是绝热过程,CEA 是等温过程,BED 是任意过程,组成一个循环。若图中EDCE 所包围的面积为70 J ,EABE 所包围的面积为30 J ,过程中系统放热100 J ,求BED 过程中系统吸热为多少? 解:正循环EDCE 包围的面积为70 J ,表示系统对外作正功70 J ;EABE 的面积为30 J ,因图中表示为逆循环,故系统对外作负功,所以整个循环过程系统对外 作功为: W =70+(-30)=40 J 3 分 设CEA 过程中吸热Q 1,BED 过程中吸热Q 2 ,由热一律, W =Q 1+ Q 2 =40 J 3 分 p V O A B E D C 2 V 1 V p p

第一章 发动机工作循环及性能指标

第一章 发动机工作循环及性能指标 §1-1 发动机理想循环概述 一 实际循环向理想循环的简化 (一) 实际循环 (以车用柴油机为例) 1 进气过程: 0~1 ( p > p 0 →p < p 0 ) 2 压缩过程: 1~2 ( p ↑,T ↑ ) 初期: 工质吸热;后期: 工质放热。 3 燃烧过程: 2~3~4 ( p ↑↑,T ↑↑ ) 4 膨胀过程: 4~5 ( p ↓,T ↓ ) 初期: 工质放热;后期: 工质吸热。 5 排气过程: 5~0 ( p > p 0 ) (二) 实际循环的简化 1 忽略进、排气过程 2 压缩、膨胀过程 (复杂的多变过程) 简化为绝热过程 3 燃烧过程简化为定容加热过程 (2~3) 和定压加热过程 (3~4) 4 排气放热简化为定容放热过程 5 假定工质为定比热的理想气体 二 理想循环及其分析比较 (一) 混合加热循环 -车用柴油机的理想循环 1 循环特征参数 (1) 压缩比 ε= v v 12 (2) 压力升高比 λ= p p 32 (3) 预胀比 ρ= v v 43 2 热效率 ηt v v p w q q q q q q = =- =- +01 21 21111

计算得: ηε λρ λλρt k k k =- ? --+--11 1 111 ()() 3 分析 (1) ε 为定值 λ↑ → ηt ↑ ;ρ↑ → ηt ↓ 。ρ = 1 → ηt = const. (汽油机,定容加热循环) (2) ε↑ → ηt ↑ ;当 ε = 20 左右时,ε↑ → ηt ↑ 不大 柴油机 ε = 12~ 22 (二) 定容加热循环 (奥托OTTO 循环) - 汽油机的理想循环 1 热效率 因为: 预胀比 ρ= =v v 43 1 所以: 热效率 ηε t k =- -11 1 2 分析 ρ = 1 → ηt = const. ε↑ → ηt ↑ ;当 ε = 10 左右时,ε↑ → ηt ↑ 不大 且汽油机容易爆燃,因此,汽油机 ε = 6~10 (三) 定压加热循环 (狄赛尔DIESEL 循环) -船舶用大型低速柴油机的理想循环 1 热效率 因为: 压力升高比 λ==p p 32 1 所以: 热效率 ηε ρ ρt k k k =- ? ---11 1 11 ()

简述汽车发动机ECU工作原理

简述汽车发动机ECU工作原理 汽车电脑工作原理汽车电脑是按照预定程序自动地对各种传感器的输入信号进行处理,然后输出信号给执行器,从而控制汽车运行的电子设备。 汽车电脑的分类 目前汽车电脑已经得到了广泛的应用,例如车身电脑、发动机电脑、变速器电脑以及ABS 电脑等。虽然不同车型上配置的电脑数量和类型不尽相同,但总的发展趋势是用一台主电脑处理大多数传感器的输入信号,用一些较小的电子控制单元控制其他系统。 汽车电脑的构成 汽车电脑的主要部分是单片机,单片机是一块集成了微处理器(CPU)、存储器以及输入和输出接口的电路板。微处理器是单片机的核心部件,微处理器将输入模拟信号转化为数字信号,并根据存储的参考数据进行对比处理,计算出输出值,输出信号经过功率放大后控制执行器,例如喷油器和继电器等。随着单片机计算能力和内存容量越来越大,汽车电脑的功能也越来越多。 汽车电脑的工作过程 (1)信号过滤和放大输入电路接收传感器和其他装置的输入信号,并对信号进行过滤和放大。输入信号放大的目的是使信号增加到汽车电脑可以识别的程度,某些传感器,例如氧传感器,产生一个小于1V的低电压信号,只能产生极小的电流,这样的信号送入电脑内的微处理器之前必须放大,这个放大作用由电脑中输入芯片中的放大电路来完成。 (2)模数(A/D)转换由于很多传感器产生的是模拟信号,而微处理器处理的是数字信号,所以必须把模拟信号转换为数字信号,这项工作由电脑输入芯片中的模数转换器完成。模数转换器以固定的时间间隔不断对传感器的模拟输入信号进行扫描,并对模拟信号赋予固定的数值,然后将这个固定值转换成二进制码。在一些汽车电脑中,输入处理芯片和微处理器制成一体。 (3)微处理器将已经预处理过的信号进行运算,并将处理后的数据送至输出电路。输出电路将数字信号放大,有些还要还原为模拟信号,以驱动执行元件工作 随着汽车电子化和自动化程度的提高,汽车电脑将越来越多,这样必将导致车身线束日益复杂。为了实现多个汽车电脑之间的信息快速传递、简化电路以及降低成本,汽车电脑之间要采用通信网络技术连成一个网络系统。例如变速器需要与发动机协调配合,根据车速、发动机转速以及动力负荷等因素自动进行换挡,因此变速器电脑需要得到节气门位置传感器、车速传感器、水温传感器以及发动机转速传感器等信号,这就要实现变速器电脑与发动机电脑之间的信息传递,这个工作通常是由CAN总线来完成的。

汽车发动机原理课后习题答案知识讲解

第一章发动机的性能 1.简述发动机的实际工作循环过程。 1)进气过程:为了使发动机连续运转,必须不断吸入新鲜工质,即是进气过程。此时进气门开启,排气门关闭,活塞由上止点向下止点移动。2)压缩过程:此时进排气门关闭,活塞由下止点向上止点移动,缸内工质受到压缩、温度。压力不断上升,工质受压缩的程度用压缩比表示。3)燃烧过程:期间进排气门关闭,活塞在上止点前后。作用是将燃料的化学能转化为热能,使工质的压力和温度升高,燃烧放热多,靠近上止点,热效率越高。4)膨胀过程:此时,进排气门均关闭,高温高压的工质推动活塞,由上止点向下至点移动而膨胀做功,气体的压力、温度也随之迅速下降。(5)排气过程:当膨胀过程接近终了时,排气门打开,废气开始靠自身压力自由排气,膨胀过程结束时,活塞由下止点返回上止点,将气缸内废气移除。 3.提高发动机实际工作循环热效率的基本途径是什么?可采取哪些基本措施? 提高实际循环热效率的基本途径是:减小工质传热损失、燃烧损失、换气损失、不完全燃烧损失、工质流动损失、工质泄漏损失。提高工质的绝热指数κ。可采取的基本措施是:⑴减小燃烧室面积,缩短后燃期能减小传热损失。⑵. 采用最佳的点火提前角和供油提前角能减小提前燃烧损失或后燃损失。⑶采用多气门、最佳配气相位和最优的进排气系统能减小换气损失。⑷加强燃烧室气流运动,改善混合气均匀性,优化混合气浓度能减少不完全燃烧损失。⑸优化燃烧室

结构减少缸内流动损失。⑹采用合理的配缸间隙,提高各密封面的密封性减少工质泄漏损失。 4.什么是发动机的指示指标?主要有哪些? 答:以工质对活塞所作之功为计算基准的指标称为指示性能指标。它主要有:指示功和平均指示压力.指示功率.指示热效率和指示燃油消耗率。 5.什么是发动机的有效指标?主要有哪些? 答:以曲轴输出功为计算基准的指标称为有效性能指标。主要有:1)发动机动力性指标,包括有效功和有效功率.有效转矩.平均有效压力.转速n和活塞平均速度;2)发动机经济性指标,包括有效热效率.有效燃油消耗率;3)发动机强化指标,包括升功率PL.比质量me。强化系数P meCm. 6.总结提高发动机动力性能和经济性能的基本途径。 ①增大气缸直径,增加气缸数②增压技术③合理组织燃烧过程④提高充量系数⑤提高转速⑥提高机械效率⑦用二冲程提高升功率。 7.什么是发动机的平均有效压力、油耗率、有效热效率?各有什么意义? 平均有效压力是指发动机单位气缸工作容积所作的有效功。平均有效压力是从最终发动机实际输出转矩的角度来评定气缸工作容积的利用率,是衡量发动机动力性能方面的一个很重要的指标。有效燃油消耗率是单位有效功的耗油量,通常以每千瓦小时有效功消耗的燃料量来表示。有效热效率是实际循环有效功与所消耗的燃料热量之比

汽车工作原理

带您真正去了解汽车——总体工作原理概述 可以说,汽车是当代科学与艺术的结晶。从汽车的引擎启动开始就已经发生了涉及到物理、化学、机械等数不清的多种变化,因此,汽车的总体工作是一个非常复杂的过程。由于汽车行业的飞速发展,所以,我们仅对当今非常普遍的采用燃油喷射(EFI)引擎的汽车予以了解。 在驾驶者通过钥匙启动点火开关时: 此时点火开关迅速接通蓄电池与起动机,起动机将蓄电池的电能转化为机械能,起动机的前端齿轮啮合引擎曲轴后方的大飞轮旋转实现发动机的运转。 在引擎正常运转以后,起动机停止工作。此时,引擎控制计算机(在钥匙插入点火开关并旋转时已经开始工作)同时控制燃油泵通过油箱向引擎输送燃油、引擎点火线圈在适当时机点火。 因为引擎的运转,气缸内的活塞已经高速的在气缸内上下运动,同时产生真空效应将外界的新鲜空气通过空气流量计和进气门引入到气缸内。在空气进入到气缸同时,引擎控制计算机所控制的燃油也通过喷油嘴喷注到气缸内并与空气形成混合气体。在混合气体形成后,计算机控制点火线圈通过火花塞迅速在气缸内点燃混合气体,产生巨大能量的爆炸将活塞向下推动。 在汽车的怠速阶段: 引擎多个气缸内的活塞在混合气爆炸的推动下有顺序的交替上下运动,带动引擎曲轴的高速转动,这样就形成了汽车的最原始动力。这时曲轴输出的原始动力将通过离合器(手排挡方式的变速箱)传递到变速箱。在怠速阶段变速箱应处于空挡状态,此时,引擎传递过来的原始动力不会通过变速箱传递到车轮,而是

在变速箱内部转化为热能。这样就形成了汽车的停车怠速。在此状态下驾驶者通过油门对发动机所做出的任何动作都不会导致汽车运行。 在汽车的行驶阶段: 在怠速过程中踩下离合器(使变速箱与引擎的原始动力脱离)时,将档位操纵杆推入到相应的档位上,再松开离合器(使变速箱接受引擎的原始动力)。这时,由引擎所传递的动力在变速箱内通过不同档位的齿轮比转换后,通过传动轴传递到车轮上,就形成了汽车的行驶运动。同时在行驶时按照需要,可以变换不同的档位使动力动态的传递到车轮上来满足行驶的需求。

汽车发动机构造原理图解

汽车发动机构造原理图解 发动机是一种由许多机构和系统组成的复杂机器。无论是汽油机,还是柴油机;无论是四行程发动机,还是二行程发动机;无论是单缸发动机,还是多缸发动机。要完成能量转换,实现工作循环,保证长时间连续正常工作,都必须具备以下一些机构和系统。 (1) 曲柄连杆机构 曲柄连杆机构是发动机实现工作循环,完成能量转换的主要运动零件。它由机体组、活塞连杆组和曲轴飞轮组等组成。在作功行程中,活塞承受燃气压力在气缸内作直线运动,通过连杆转换成曲轴的旋转运动,并从曲轴对外输出动力。而在进气、压缩和排气行程中,飞轮释放能量又把曲轴的旋转运动转化成活塞的直线运动。

(2) 配气机构 配气机构的功用是根据发动机的工作顺序和工作过程,定时开启和关闭进气门和排气门,使可燃混合气或空气进入气缸,并使废气从气缸内排出,实现换气过程。配气机构大多采用顶置气门式配气机构,一般由气门组、气门传动组和气门驱动组组成。 (3) 燃料供给系统 汽油机燃料供给系的功用是根据发动机的要求,配制出一定数量和浓度的混合气,供入气缸,并将燃烧后的废气从气缸内排出到大气中去;柴油机燃料供给系的功用是把柴油和空气分别供入气缸,在燃烧室内形成混合气并燃烧,最后将燃烧后的废气排出。

(4) 润滑系统 润滑系的功用是向作相对运动的零件表面输送定量的清洁润滑油,以实现液体摩擦,减小摩擦阻力,减轻机件的磨损。并对零件表面进行清洗和冷却。润滑系通常由润滑油道、机油泵、机油滤清器和一些阀门等组成。 (5) 冷却系统 冷却系的功用是将受热零件吸收的部分热量及时散发出去,保证发动机在最适宜的温度状态下工作。水冷

汽车发动机原理(题库及答案)

一、发动机的性能 一、解释术语 1、指示热效率:是发动机实际循环指示功与消耗燃料的热量的比值. 2、压缩比:气功容积与燃烧室容积之比 3、燃油消耗率:发动机每发出1KW有效功率,在1h内所消耗的燃油质量 4、平均有效压力:单位气缸工作容积所做的有效功 5、有效燃料消耗率:是发动机发出单位有效功率时的耗油量 6、升功率:在标定工况下,发动机每升气缸工作容积所发出的有效功率 7、有效扭矩:曲轴的输出转矩 8、平均指示压力:单位气缸容积所做的指示功 2、示功图:发动机实际循环常用气缸内工质压力P随气缸容积V(或曲轴转角)而变化的曲线 二、选择题 1、通常认为,汽油机的理论循环为( A ) A、定容加热循环 B、等压加热循环 C、混合加热循环 D、多变加热循环 6、实际发动机的膨胀过程是一个多变过程。在膨胀过程中,工质( B ) A、不吸热不放热 B、先吸热后放热 C、先放热后吸热 D、又吸热又放热 2、发动机的整机性能用有效指标表示,因为有效指标以( D ) A、燃料放出的热量为基础 B、气体膨胀的功为基础 C、活塞输出的功率为基础 D、曲轴输出的功率为基础 5、通常认为,高速柴油机的理论循环为( C ) A、定容加热循环 B、定压加热循环 C、混合加热循环 D、多变加热循环 6、实际发动机的压缩过程是一个多变过程。在压缩过程中,工质( B ) A、不吸热不放热 B、先吸热后放热 C、先放热后吸热 D、又吸热又放热 2、发动机工作循环的完善程度用指示指标表示,因为指示指标以( C ) A、燃料具有的热量为基础 B、燃料放出的热量为基础 C、气体对活塞的做功为基础 D、曲轴输出的功率为基础 2、表示循环热效率的参数有( C )。 A、有效热效率 B、混合热效率 C、指示热效率 D、实际热效率 3、发动机理论循环的假定中,假设燃烧是( B )。 A、定容过程 B、加热过程 C、定压过程 D、绝热过程 4、实际发动机的压缩过程是一个( D )。 A、绝热过程 B、吸热过程

汽车发动机构造与原理

22 第1篇 汽车发动机构造与原理 第1章 发动机基本结构与工作原理 发动机:将其 它形式的能量转化为机械能的机器。 内燃机:将燃料在气缸内部燃烧产生的热能直接转化为机械能的动力机械。有活塞式和旋转式两大类。本书所提汽车发动机,如无特殊说明,都是指往复活塞式内燃机。 内燃机特点:单机功率范围大(0.6-16860kW )、热效率高(汽油机略高于0.3,柴油机达0.4左右)、体积小、质量轻、操作简单,便于移动和起动性能好等优点。被广泛应用于汽车、火车、工程机械、拖拉机、发电机、船舶、坦克、排灌机械和众多其它机械的动力。 1.1 四冲程发动机基本结构及工作原理 1.1.1 四冲程汽油机基本结构及工作原理 1.四冲程汽油机基本结构(图1-2) 2.四冲程汽油机基本工作原理(图1-2) 表1-1 四冲程汽油机工作过 程 内容提要 1.四冲程汽油机基本结构与工作原理 2.四冲程柴油机基本结构与工作原理 3.二冲程汽油机基本结构与工作原理 4.发动机的分类 5.发动机的主要性能指标 图1-2 四冲程汽油机基本结构简图 1-气缸 2-活塞 3-连杆 4-曲轴 5-气缸盖 6-进气门 7-进气道 8-电控喷油器 9-火花塞 10-排气门

23 (1)四冲程发动机:活塞在上、下止点间往复移动四个行程(相当于曲轴旋转了两周),完成进气、压缩、作功、排气一个工作循环的发动机就称为四冲程发动机。 四个行程中,只有一个行程作功,造成曲轴转速不均匀,工作振动大。所以在曲轴后端安装了一个质量较大的飞轮,作功时飞轮吸收储存能量,其余三个行程则依靠飞轮惯性维持转动。 (2)冲程与活塞行程: 冲程:指发动机的类型; 行程S :指活塞在上、下两个止点之间距离; 气缸工作容积V s :一个活塞在一个行程中所扫过的容积。 S D V s 10 6 2 4?=π 式中 V s ——工作容积(m 3); D ——气缸直径(mm ); S ——活塞行程(mm )。 发动机的排量V st :一台发动机所有气缸工作容积之和。 i V V s st = 式中 V st ——发动机的排量(L ); i ——气缸数。 (3)压缩行程的作用 一是提高进入气缸内混合气的压力和温度(压缩终了的气缸内气体压力可达0.6~1.2MPa ,温度达600K~700K ),为混合气迅速着火燃烧创造条件; 二是可以有效提高发动机的燃烧热效率η。由热力学第一定律 1 2 1T T - =η 当混合气被压缩程度提高时,发动机混合气燃烧所达到的最高温度(T 1)升高,而排气的温度(T 2)降低,导致热效率提高。 1860年,法国人Lenoir (勒努瓦)研制成功的世界第一台内燃机,没有压缩行程,热效率仅4.5%;1876年,德国人奥托(Otto )制造出第一台四冲程内燃机,采用压缩 行程名称 曲轴转角 活塞行向 进气门 排气门 进气 0o~180o ↓ 开 关 压缩 180o~360o ↑ 关 关 作功 360o~540o ↓ 关 关 排气 540o~720o ↑ 关 开

相关文档
最新文档