用Euler方法数值方法的matlab的解法

用Euler方法数值方法的matlab的解法
用Euler方法数值方法的matlab的解法

1. Euler 方法

01012() (,) ,,,k k k k y y a y y hf x y k +=??=+=?

例10.30 取h =0.1, 用Euler 方法计算:

20101 ()x y y x y y ?=-≤≤??

?=?

%Euler 方法

%输入函数f(x,y)和求解区间[a,b] fun='y-2*x./y';

a=0;b=1;

h=0.1;

n=(b-a)/h;X=a:h:b;Y=zeros(1,n+1); %Euler 方法

X(1)=a;Y(1)=1;

for i=1:n

x=X(i);y=Y(i);

Y(i+1)=Y(i)+h*eval(fun) end

[X',Y']

运行结果:

ans =0 1.0000

0.1000 1.1000

0.2000 1.1918

0.3000 1.2774

0.4000 1.3582

0.5000 1.4351

0.6000 1.5090

0.7000 1.5803

0.8000 1.6498

0.9000 1.7178

1.0000 1.7848

10-10中用实线

精确解为

表示,数值解用小园圈表示.

MATLAB数据分析与多项式计算(M)

第7章 MATLAB数据分析与多项式计算 6.1 数据统计处理 6.2 数据插值 6.3 曲线拟合 6.4 离散傅立叶变换 6.5 多项式计算 6.1 数据统计处理 6.1.1 最大值和最小值 MATLAB提供的求数据序列的最大值和最小值的函数分别为max 和min,两个函数的调用格式和操作过程类似。 1.求向量的最大值和最小值 求一个向量X的最大值的函数有两种调用格式,分别是: (1) y=max(X):返回向量X的最大值存入y,如果X中包含复数元素,则按模取最大值。 (2) [y,I]=max(X):返回向量X的最大值存入y,最大值的序号存入I,如果X中包含复数元素,则按模取最大值。 求向量X的最小值的函数是min(X),用法和max(X)完全相同。 例6-1 求向量x的最大值。 命令如下: x=[-43,72,9,16,23,47]; y=max(x) %求向量x中的最大值 [y,l]=max(x) %求向量x中的最大值及其该元素的位置 2.求矩阵的最大值和最小值 求矩阵A的最大值的函数有3种调用格式,分别是: (1) max(A):返回一个行向量,向量的第i个元素是矩阵A的第i 列上的最大值。 (2) [Y,U]=max(A):返回行向量Y和U,Y向量记录A的每列的最大值,U向量记录每列最大值的行号。 (3) max(A,[],dim):dim取1或2。dim取1时,该函数和max(A)完全相同;dim取2时,该函数返回一个列向量,其第i个元素是A矩阵的第i行上的最大值。 求最小值的函数是min,其用法和max完全相同。

例6-2 分别求3×4矩阵x中各列和各行元素中的最大值,并求整个矩阵的最大值和最小值。 3.两个向量或矩阵对应元素的比较 函数max和min还能对两个同型的向量或矩阵进行比较,调用格式为: (1) U=max(A,B):A,B是两个同型的向量或矩阵,结果U是与A,B 同型的向量或矩阵,U的每个元素等于A,B对应元素的较大者。 (2) U=max(A,n):n是一个标量,结果U是与A同型的向量或矩阵,U的每个元素等于A对应元素和n中的较大者。 min函数的用法和max完全相同。 例6-3 求两个2×3矩阵x, y所有同一位置上的较大元素构成的新矩阵p。 6.1.2 求和与求积 数据序列求和与求积的函数是sum和prod,其使用方法类似。设X是一个向量,A是一个矩阵,函数的调用格式为: sum(X):返回向量X各元素的和。 prod(X):返回向量X各元素的乘积。 sum(A):返回一个行向量,其第i个元素是A的第i列的元素和。 prod(A):返回一个行向量,其第i个元素是A的第i列的元素乘积。 sum(A,dim):当dim为1时,该函数等同于sum(A);当dim为2时,返回一个列向量,其第i个元素是A的第i行的各元素之和。 prod(A,dim):当dim为1时,该函数等同于prod(A);当dim为2时,返回一个列向量,其第i个元素是A的第i行的各元素乘积。 例6-4 求矩阵A的每行元素的乘积和全部元素的乘积。 6.1.3 平均值和中值 求数据序列平均值的函数是mean,求数据序列中值的函数是median。两个函数的调用格式为: mean(X):返回向量X的算术平均值。 median(X):返回向量X的中值。

数值计算方法实验指导(Matlab版)

《数值计算方法》实验指导 (Matlab 版) 肇庆学院数学与统计学学院 计算方法课程组

1. 实验名称 实验1 算法设计原则验证(之相近数相减、大数吃小数和简化计算步骤) 2. 实验题目 有效数字的损失. 123 )与1000个较小的数(3 10 15)的和,验证 大数吃小数的现象. (3)分别用直接法和秦九韶算法计算多项式 P(x) a 0x n a 1x n 1 在x =1.00037 处的值?验证简化计算步骤能减少运算时间. n 1 对于第(3)题中的多项式P (x ),直接逐项计算需要n (n 1) 2 1 次乘法 和n 次加法,使用秦九韶算法 P(x) (((a °x ajx a 2)x a . 则只需要n 次乘法和n 次加法. 3. 实验目的 验证数值算法需遵循的若干规则. 4. 基础理论 设计数值算法时,应避免两个相近的数相减、防止大数吃小数、简化计算步骤减少运算 次数以减少运算时间并降低舍入误差的积累. 两相近的数相减会损失有效数字的个数, 用一 《数值计算方法》实验 1报告 班级: 20xx 级 XXXXx 班 学号: 20xx2409xxxx 姓名: XXX 成绩: ⑴取 z 1016,计算z 1 Z 和 1/(、z 1 Z),验证两个相近的数相减会造成 (2)按不同顺序求一个较大的数( a n 1 X a n

个大数依次加小数,小数会被大数吃掉,乘法运算次数太多会增加运算时间. 5.实验环境 操作系统:Win dows xp ;程序设计语言:Matlab 6.实验过程 (1)直接计算并比较; (2)法1 :大数逐个加1000个小数,法2 :先把1000个小数相加再与大数加; (3)将由高次项到低次项的系数保存到数组A[n]中,其中n为多项式次数. 7.结果与分析 (1)计算的~1V Z = _______________________________ ,1/( ~1 < z) ____________________ . 分析: (2)123逐次加1000个3 10 6的和是_________________________ ,先将1000个3 10 6相 加,再用这个和与123相加得_______________________ . 分析: (3)计算__________ 次的多项式: 直接计算的结果是___________________ ,用时___________________ ; 用秦九韶算法计算的结果是____________________ ,用时 ___________________ 分析:

线性代数方程组数值解法及MATLAB实现综述

线性代数方程组数值解法及MATLAB实现综述廖淑芳20122090 数计学院12计算机科学与技术1班(职教本科)一、分析课题 随着科学技术的发展,提出了大量复杂的数值计算问题,在建立电子计算机成为数值计算的主要工具以后,它以数字计算机求解数学问题的理论和方法为研究对象。其数值计算中线性代数方程的求解问题就广泛应用于各种工程技术方面。因此在各种数据处理中,线性代数方程组的求解是最常见的问题之一。关于线性代数方程组的数值解法一般分为两大类:直接法和迭代法。 直接法就是经过有限步算术运算,可求的线性方程组精确解的方法(若计算过程没有舍入误差),但实际犹如舍入误差的存在和影响,这种方法也只能求得近似解,这类方法是解低阶稠密矩阵方程组级某些大型稀疏矩阵方程组的有效方法。直接法包括高斯消元法,矩阵三角分解法、追赶法、平方根法。 迭代法就是利用某种极限过程去逐步逼近线性方程组精确解的方法。迭代法具有需要计算机的存储单元少,程序设计简单,原始系数矩阵在计算过程始终不变等优点,但存在收敛性级收敛速度问题。迭代法是解大型稀疏矩阵方程组(尤其是微分方程离散后得到的大型方程组)的重要方法。迭代法包括Jacobi法SOR法、SSOR法等多种方法。 二、研究课题-线性代数方程组数值解法 一、直接法 1、Gauss消元法 通过一系列的加减消元运算,也就是代数中的加减消去法,以使A对角线以下的元素化为零,将方程组化为上三角矩阵;然后,再逐一回代求解出x向量。

1.1消元过程 1. 高斯消元法(加减消元):首先将A 化为上三角阵,再回代求解。 11121121222212n n n n nn n a a a b a a a b a a a b ?? ? ? ? ??? (1)(1)(1)(1)(1)11 121311(2)(2)(2)(2)222322 (3)(3)(3)3333()()000 00 n n n n n nn n a a a a b a a a b a a b a b ?? ? ? ? ? ? ?? ? 步骤如下: 第一步:1 11 1,2,,i a i i n a -? +=第行第行 11121121222212 n n n n nn n a a a b a a a b a a a b ?? ? ? ? ??? 111211(2)(2)(2)2222 (2)(2)(2)2 00n n n nn n a a a b a a b a a b ?? ? ? ? ??? 第二步:(2)2 (2)222,3, ,i a i i n a -?+=第行第行 111211(2)(2)(2)2222 (2)(2)(2)2 00n n n nn n a a a b a a b a a b ?? ? ? ? ??? 11121311(2)(2)(2)(2)222322 (3)(3)(3)33 33(3)(3)(3)3 00000 n n n n nn n a a a a b a a a b a a b a a b ?? ? ? ? ? ? ?? ? 类似的做下去,我们有: 第k 步:() ()k ,1, ,k ik k kk a i i k n a -?+=+第行第行。 n -1步以后,我们可以得到变换后的矩阵为: 11121311(2)(2)(2)(2)222322 (3)(3)(3)3333()()00000 n n n n n nn n a a a a b a a a b a a b a b ?? ? ? ? ? ? ?? ?

数值计算方法大作业

目录 第一章非线性方程求根 (3) 1.1迭代法 (3) 1.2牛顿法 (4) 1.3弦截法 (5) 1.4二分法 (6) 第二章插值 (7) 2.1线性插值 (7) 2.2二次插值 (8) 2.3拉格朗日插值 (9) 2.4分段线性插值 (10) 2.5分段二次插值 (11) 第三章数值积分 (13) 3.1复化矩形积分法 (13) 3.2复化梯形积分法 (14) 3.3辛普森积分法 (15) 3.4变步长梯形积分法 (16) 第四章线性方程组数值法 (17) 4.1约当消去法 (17) 4.2高斯消去法 (18) 4.3三角分解法 (20)

4.4雅可比迭代法 (21) 4.5高斯—赛德尔迭代法 (23) 第五章常积分方程数值法 (25) 5.1显示欧拉公式法 (25) 5.2欧拉公式预测校正法 (26) 5.3改进欧拉公式法 (27) 5.4四阶龙格—库塔法 (28)

数值计算方法 第一章非线性方程求根 1.1迭代法 程序代码: Private Sub Command1_Click() x0 = Val(InputBox("请输入初始值x0")) ep = Val(InputBox(请输入误差限ep)) f = 0 While f = 0 X1 = (Exp(2 * x0) - x0) / 5 If Abs(X1 - x0) < ep Then Print X1 f = 1 Else x0 = X1 End If Wend End Sub 例:求f(x)=e2x-6x=0在x=0.5附近的根(ep=10-10)

1.2牛顿法 程序代码: Private Sub Command1_Click() b = Val(InputBox("请输入被开方数x0")) ep = Val(InputBox(请输入误差限ep)) f = 0 While f = 0 X1 = x0 - (x0 ^ 2 - b) / (2 * b) If Abs(X1 - x0) < ep Then Print X1 f = 1 Else x0 = X1 End If Wend End Sub 例:求56的值。(ep=10-10)

数值分析Matlab作业

数值分析编程作业

2012年12月 第二章 14.考虑梯形电阻电路的设计,电路如下: 电路中的各个电流{i1,i2,…,i8}须满足下列线性方程组: 12 123 234 345 456 567 678 78 22/ 2520 2520 2520 2520 2520 2520 250 i i V R i i i i i i i i i i i i i i i i i i i i -= -+-= -+-= -+-= -+-= -+-= -+-= -+= 这是一个三对角方程组。设V=220V,R=27Ω,运用追赶法,求各段电路的电流量。Matlab程序如下: function chase () %追赶法求梯形电路中各段的电流量 a=input('请输入下主对角线向量a='); b=input('请输入主对角线向量b='); c=input('请输入上主对角线向量c='); d=input('请输入右端向量d='); n=input('请输入系数矩阵维数n='); u(1)=b(1); for i=2:n l(i)=a(i)/u(i-1); u(i)=b(i)-c(i-1)*l(i); end y(1)=d(1); for i=2:n y(i)=d(i)-l(i)*y(i-1); end x(n)=y(n)/u(n); i=n-1; while i>0 x(i)=(y(i)-c(i)*x(i+1))/u(i); i=i-1; end x 输入如下:

请输入下主对角线向量a=[0,-2,-2,-2,-2,-2,-2,-2]; 请输入主对角线向量b=[2,5,5,5,5,5,5,5]; 请输入上主对角线向量c=[-2,-2,-2,-2,-2,-2,-2,0]; 请输入方程组右端向量d=[220/27,0,0,0,0,0,0,0]; 请输入系数矩阵阶数n=8 运行结果如下: x = 8.1478 4.0737 2.0365 1.0175 0.5073 0.2506 0.1194 0.0477 第三章 14.试分别用(1)Jacobi 迭代法;(2)Gauss-Seidel 迭代法解线性方程组 1234510123412191232721735143231211743511512x x x x x ?????? ??????---????????????=--?????? --?????? ??????---?????? 迭代初始向量 (0)(0,0,0,0,0)T x =。 (1)雅可比迭代法程序如下: function jacobi() %Jacobi 迭代法 a=input('请输入系数矩阵a='); b=input('请输入右端向量b='); x0=input('请输入初始向量x0='); n=input('请输入系数矩阵阶数n='); er=input('请输入允许误差er='); N=input('请输入最大迭代次数N='); for i=1:n for j=1:n if i==j d(i,j)=a(i,j); else d(i,j)=0; end end end m=eye(5)-d\a; %迭代矩阵 g=d\b; x=m*x0+g; k=1; while k<=N %进行迭代 for i=1:5 if max(abs(x(i)-x0(i))) >er x=m*x+g; k=k+1;

数值分析第1章习题

一 选择题(55分=25分) (A)1. 3.142和3.141分别作为π的近似数具有()和()为有效数字(有效数字) A. 4和3 B. 3和2 C. 3和4 D. 4和4 解,时,, m-n= -3,所以n=4,即有4位有效数字。当时,, ,m-n= -2,所以n=3,即有3位有效数字。 (A)2. 为了减少误差,在计算表达式时,应该改为计算,是属于()来避免误差。(避免误差危害原则) A.避免两相近数相减; B.化简步骤,减少运算次数; C.避免绝对值很小的数做除数; D.防止大数吃小数 解:由于和相近,两数相减会使误差大,因此化加法为减法,用的方法是避免误差危害原则。 (B)3.下列算式中哪一个没有违背避免误差危害原则(避免误差危害原则) A.计算 B.计算 C.计算 D.计算 解:A会有大数吃掉小数的情况C中两个相近的数相减,D中两个相近的数相减也会增大误差 (D)4.若误差限为,那么近似数0.003400有()位有效数字。(有效数字) A. 5 B. 4 C. 7 D. 3 解:即m-n= -5,,m= -2,所以n=3,即有3位有效数字 (A)5.设的近似数为,如果具有3位有效数字,则的相对误差限为()(有效数字与相对误差的关系) A. B. C. D. 解:因为所以,因为有3位有效数字,所以n=3,由相对误差和有效数字的关系可得a的相对误差限为 二 填空题:(75分=35分)

1.设则有2位有效数字,若则a有3位有效数字。(有效数字) 解:,时,,,m-n= -4,所以n=2,即有2位有效数字。当时, ,m-n= -5,所以n=3,即有3位有效数字。 2.设 =2.3149541...,取5位有效数字,则所得的近似值x=2.3150(有效数字)解:一般四舍五入后得到的近似数,从第一位非零数开始直到最末位,有几位就称该近似数有几位有效数字,所以要取5位有效数字有效数字的话,第6位是5,所以要进位,得到近似数为2.3150. 3.设数据的绝对误差分别为0.0005和0.0002,那么的绝对误差约为 0.0007 。(误差的四则运算) 解:因为,, 4.算法的计算代价是由 时间复杂度 和 空间复杂度 来衡量的。(算法的复杂度) 5.设的相对误差为2%,则的相对误差为 2n% 。(函数的相对误差) 解:, 6.设>0,的相对误差为δ,则的绝对误差为 δ 。(函数的绝对误差) 解:,, 7.设,则=2时的条件数为 3/2 。(条件数) 解:, 三 计算题(220分=40分) 1.要使的近似值的相对误差限小于0.1%,要取几位有效数字?(有效数字和相对误差的关系) 解:设取n位有效数字,由定理由于知=4所以要使相对误差限小于0.1%,则,只要取n-1=3即n=4。所以的近似值取4位有效数字,其相对误差限小于0.1%。 2.已测得某场地长的值为,宽d的值为,已知试求面积的绝对误差限和

数值分析的matlab实现

第2章牛顿插值法实现 参考文献:[1]岑宝俊. 牛顿插值法在凸轮曲线修正设计中的应用[J]. 机械工程师,2009,10:54-55. 求牛顿插值多项式和差商的MA TLAB 主程序: function[A,C,L,wcgs,Cw]=newpoly(X,Y) n=length(X);A=zeros(n,n);A(:,1) =Y'; s=0.0;p=1.0;q=1.0;c1=1.0; for j=2:n for i=j:n A(i,j)=(A(i,j-1)-A(i-1,j-1))/(X(i)-X(i-j+1)); end b=poly(X(j-1));q1=conv(q,b);c1=c1*j;q=q1; end C=A(n,n);b=poly(X(n));q1=conv(q1,b); for k=(n-1):-1:1 C=conv(C,poly(X(k)));d=length(C);C(d)=C(d)+A(k,k); end L(k,:)=poly2sym(C);Q=poly2sym(q1); syms M wcgs=M*Q/c1;Cw=q1/c1; (1)保存名为newpoly.m 的M 文件 (2)输入MA TLAB 程序 >> X=[242,243,249,250]; >> Y=[13.681,13.526,13.098,13.095]; >> [A,C,L,wcgs,Cw]=newpoly(X,Y) 输出3阶牛顿插值多项式L 及其系数向量C 差商的矩阵A ,插值余项wcgs 及其 ) ()()1(ξ+n n f x R 的系数向量Cw 。 A = 13.6810 0 0 0 13.5260 -0.1550 0 0 13.0980 -0.0713 0.0120 0 13.0950 -0.0030 0.0098 -0.0003 C = 1.0e+003 *

第2讲 matlab的数值分析

第二讲MATLAB的数值分析 2-1矩阵运算与数组运算 矩阵运算和数组运算是MATLAB数值运算的两大类型,矩阵运算是按矩阵的运算规则进行的,而数组运算则是按数组元素逐一进行的。因此,在进行某些运算(如乘、除)时,矩阵运算和数组运算有着较大的差别。在MATLAB中,可以对矩阵进行数组运算,这时是把矩阵视为数组,运算按数组的运算规则。也可以对数组进行矩阵运算,这时是把数组视为矩阵,运算按矩阵的运算规则进行。 1、矩阵加减与数组加减 矩阵加减与数组加减运算效果一致,运算符也相同,可分为两种情况: (1)若参与运算的两矩阵(数组)的维数相同,则加减运算的结果是将两矩阵的对应元素进行加减,如 A=[1 1 1;2 2 2;3 3 3]; B=A; A+B ans= 2 2 2 4 4 4 6 6 6 (2)若参与运算的两矩阵之一为标量(1*1的矩阵),则加减运算的结果是将矩阵(数组)的每一元素与该标量逐一相加减,如 A=[1 1 1;2 2 2;3 3 3]; A+2 ans= 3 3 3 4 4 4 5 5 5 2、矩阵乘与数组乘 (1)矩阵乘 矩阵乘与数组乘有着较大差别,运算结果也完全不同。矩阵乘的运算符为“*”,运算是按矩阵的乘法规则进行,即参与乘运算的两矩阵的内维必须相同。设A、B为参与乘运算的 =A m×k B k×n。因此,参与运两矩阵,C为A和B的矩阵乘的结果,则它们必须满足关系C m ×n 算的两矩阵的顺序不能任意调换,因为A*B和B*A计算结果很可能是完全不一样的。如:A=[1 1 1;2 2 2;3 3 3]; B=A;

A*B ans= 6 6 6 12 12 12 18 18 18 F=ones(1,3); G=ones(3,1); F*G ans 3 G*F ans= 1 1 1 1 1 1 1 1 1 (2)数组乘 数组乘的运算符为“.*”,运算符中的点号不能遗漏,也不能随意加空格符。参加数组乘运算的两数组的大小必须相等(即同维数组)。数组乘的结果是将两同维数组(矩阵)的对应元素逐一相乘,因此,A.*B和B.*A的计算结果是完全相同的,如: A=[1 1 1 1 1;2 2 2 2 2;3 3 3 3 3]; B=A; A.*B ans= 1 1 1 1 1 4 4 4 4 4 9 9 9 9 9 B.*A ans= 1 1 1 1 1 4 4 4 4 4 9 9 9 9 9 由于矩阵运算和数组运算的差异,能进行数组乘运算的两矩阵,不一定能进行矩阵乘运算。如 A=ones(1,3); B=A; A.*B ans= 1 1 1 A*A ???Error using= =>

数值分析的MATLAB程序

列主元法 function lianzhuyuan(A,b) n=input('请输入n:') %选择阶数A=zeros(n,n); %系数矩阵A b=zeros(n,1); %矩阵b X=zeros(n,1); %解X for i=1:n for j=1:n A(i,j)=(1/(i+j-1)); %生成hilbert矩阵A end b(i,1)=sum(A(i,:)); %生成矩阵b end for i=1:n-1 j=i; top=max(abs(A(i:n,j))); %列主元 k=j; while abs(A(k,j))~=top %列主元所在行 k=k+1; end for z=1:n %交换主元所在行a1=A(i,z); A(i,z)=A(k,z); A(k,z)=a1; end a2=b(i,1); b(i,1)=b(k,1); b(k,1)=a2; for s=i+1:n %消去算法开始m=A(s,j)/A(i,j); %化简为上三角矩阵 A(s,j)=0; for p=i+1:n A(s,p)=A(s,p)-m*A(i,p); end b(s,1)=b(s,1)-m*b(i,1); end end X(n,1)=b(n,1)/A(n,n); %回代开始 for i=n-1:-1:1 s=0; %初始化s for j=i+1:n s=s+A(i,j)*X(j,1);

end X(i,1)=(b(i,1)-s)/A(i,i); end X 欧拉法 clc clear % 欧拉法 p=10; %贝塔的取值 T=10; %t取值的上限 y1=1; %y1的初值 r1=1; %y2的初值 %输入步长h的值 h=input('欧拉法please input number(h=1 0.5 0.25 0.125 0.0625):h=') ; if h>1 or h<0 break end S1=0:T/h; S2=0:T/h; S3=0:T/h; S4=0:T/h; i=1; % 迭代过程 for t=0:h:T Y=(exp(-t)); R=(1/(p-1))*exp(-t)+((p-2)/(p-1))*exp(-p*t); y=y1+h*(-y1); y1=y; r=r1+h*(y1-p*r1); r1=r; S1(i)=Y; S2(i)=R; S3(i)=y; S4(i)=r; i=i+1; end t=[0:h:T]; % 红线为解析解,'x'为数值解 plot(t,S1,'r',t,S3,'x')

matlab数值计算(命令与示例)

MATLAB数值计算 MATLAB数值计算 (1) 1创建矩阵 (3) 1.1直接输入 (3) 1.2向量 (3) 1.2.1linspace:线性分布 (3) 1.2.2冒号法 (3) 1.3函数创建 (4) 1.3.1eye:单位矩阵 (4) 1.3.2rand:随机矩阵 (4)

1.3.3zeros:全0矩阵 (4) 1.3.4ones:全1矩阵 (5) 2矩阵运算 (5) 2.1加减 (5) 2.1.1[M×N]±[M×N] (5) 2.2乘 (6) 2.2.1[M×N]*a (6) 2.2.2[M×N]*[N×M] (6) 2.3乘方 (7) 2.3.1[M×M]^a (7) 2.3.2a^[M×M] (7) 2.4特殊运算 (8) 2.4.1求逆inv (8) 2.4.2行列式det (8) 2.4.3特征值eig (8) 2.4.4转置'和.' (9) 2.4.5变形reshape (10) 2.4.6翻转rot90,fliplr,flipud (11) 2.4.7抽取diag,tril,triu (12) 2.5数组运算 (12) 2.5.1乘 (12) [M×N].*[M×N] (12) 2.5.2除 (13) [M×N]./[M×N] (14) [M×N].\[M×N] (14) 2.5.3乘方 (14) [M×N].^[M×N] (15) a.^[M×N] (15) 2.6除法 (15) 2.6.1求解线性方程组 (15) 3多项式 (16) 3.1系数表示法poly (16) 3.2求根roots (16) 3.3乘法conv (16) 3.4除法deconv (17) 3.5求值polyval (17) 3.6微分polyder (18)

第6章matlab数据分析与多项式计算_习题答案

第6章 MATLAB数据分析与多项式计算 习题6 一、选择题 1.设A=[1,2,3,4,5;3,4,5,6,7],则min(max(A))的值是()。B A.1 B.3 C.5 D.7 2.已知a为3×3矩阵,则运行mean(a)命令是()。B A.计算a每行的平均值 B.计算a每列的平均值 C.a增加一行平均值 D.a增加一列平均值 3.在MATLAB命令行窗口输入下列命令: >> x=[1,2,3,4]; >> y=polyval(x,1); 则y的值为()。 D A.5 B.8 C.24 D.10 4.设P是多项式系数向量,A为方阵,则函数polyval(P,A)与函数polyvalm(P,A)的值()。D A.一个是标量,一个是方阵 B.都是标量 C.值相等 D.值不相等 5.在MATLAB命令行窗口输入下列命令: >> A=[1,0,-2]; >> x=roots(A); 则x(1)的值为()。 C A.1 B.-2 C. D. 6.关于数据插值与曲线拟合,下列说法不正确的是()。A A.3次样条方法的插值结果肯定比线性插值方法精度高。 B.插值函数是必须满足原始数据点坐标,而拟合函数则是整体最接近原始数据点,而不一定要必须经过原始数据点。 C.曲线拟合常常采用最小二乘原理,即要求拟合函数与原始数据的均方误差达到极小。 D.插值和拟合都是通过已知数据集来求取未知点的函数值。 二、填空题 1.设A=[1,2,3;10 20 30;4 5 6],则sum(A)= ,median(A)= 。 [15 27 39],[4 5 6[ 2.向量[2,0,-1]所代表的多项式是。2x2-1 3.为了求ax2+bx+c=0的根,相应的命令是(假定a、b、c已经赋值)。为了

同济大学数值分析matlab编程题汇编

MATLAB 编程题库 1.下面的数据表近似地满足函数2 1cx b ax y ++=,请适当变换成为线性最小二乘问题,编程求最好的系数c b a ,,,并在同一个图上画出所有数据和函数图像. 625 .0718.0801.0823.0802.0687.0606.0356.0995 .0628.0544.0008.0213.0362.0586.0931.0i i y x ---- 解: x=[-0.931 -0.586 -0.362 -0.213 0.008 0.544 0.628 0.995]'; y=[0.356 0.606 0.687 0.802 0.823 0.801 0.718 0.625]'; A=[x ones(8,1) -x.^2.*y]; z=A\y; a=z(1); b=z(2); c=z(3); xh=-1:0.1:1; yh=(a.*xh+b)./(1+c.*xh.^2); plot(x,y,'r+',xh,yh,'b*')

2.若在Matlab工作目录下已经有如下两个函数文件,写一个割线法程序,求出这两个函数 10 的近似根,并写出调用方式: 精度为10 解: >> edit gexianfa.m function [x iter]=gexianfa(f,x0,x1,tol) iter=0; while(norm(x1-x0)>tol) iter=iter+1; x=x1-feval(f,x1).*(x1-x0)./(feval(f,x1)-feval(f,x0)); x0=x1;x1=x; end >> edit f.m function v=f(x) v=x.*log(x)-1; >> edit g.m function z=g(y) z=y.^5+y-1; >> [x1 iter1]=gexianfa('f',1,3,1e-10) x1 = 1.7632 iter1 = 6 >> [x2 iter2]=gexianfa('g',0,1,1e-10) x2 = 0.7549 iter2 = 8

实验一数据处理方法MATLAB实现

实验一数据处理方法的MATLAB实现 一、实验目的 学会在MATLAB环境下对已知的数据进行处理。 二、实验方法 1. 求取数据的最大值或最小值。 2. 求取向量的均值、标准方差和中间值。 3.在MATLAB环境下,对已知的数据分别进行曲线拟合和插值。 三、实验设备 1.586以上微机,16M以上内存,400M硬盘空间,2X CD-ROM 2.MATLAB5.3以上含CONTROL SYSTEM TOOLBOX。 四、实验内容 1.在MATLAB环境下,利用MATLAB控制系统工具箱中的函数直接求取数据的最大值或最小值,以及向量的均值、标准方差和中间值。 2.在MATLAB环境下,选择合适的曲线拟合和插值方法,编写程序,对已知的数据分别进行曲线拟合和插值。 五、实验步骤 1. 在MATLAB环境下,将已知的数据存到数据文件mydat.mat中。 双击打开Matlab,在命令窗口(command window)中,输入一组数据:实验一数据处理方法的MATLAB实现 一、实验目的 学会在MATLAB环境下对已知的数据进行处理。 二、实验方法 1. 求取数据的最大值或最小值。 2. 求取向量的均值、标准方差和中间值。 3.在MATLAB环境下,对已知的数据分别进行曲线拟合和插值。 三、实验设备 1.586以上微机,16M以上内存,400M硬盘空间,2X CD-ROM 2.MATLAB5.3以上含CONTROL SYSTEM TOOLBOX。 四、实验内容

1.在MATLAB环境下,利用MATLAB控制系统工具箱中的函数直接求取数据的最大值或最小值,以及向量的均值、标准方差和中间值。 2.在MATLAB环境下,选择合适的曲线拟合和插值方法,编写程序,对已知的数据分别进行曲线拟合和插值。 五、实验步骤 1. 在MATLAB环境下,将已知的数据存到数据文件mydat.mat中。 双击打开Matlab,在命令窗口(command window)中,输入一组数据: x=[1,4,2,81,23,45] x = 1 4 2 81 2 3 45 单击保存按钮,保存在Matlab指定目录(C:\Program Files\MATLAB71)下,文件名为“mydat.mat”。 2. 在MATLAB环境下,利用MATLAB控制系统工具箱中的函数直接求取数据的最大值或最小值,以及向量的均值、标准方差和中间值。 继续在命令窗口中输入命令: (1)求取最大值“max(a)”; >> max(x) ans = 81 (2)求取最小值“min(a)”; >> min(x) ans = 1 (3)求取均值“mean(a)”; >> mean(x) ans =

数值计算方法与Matlab样卷答案

腹有诗书气自华 《数值计算方法与Matlab 》 样卷答案 一.填空题:(每空3分,共42分) 1. 8,6105.0-? 。 2.)(3)1(2)1(1)(3)1(2)1(1)(3)1(3)(3)(2)1(1)(3)(2)1(1)(2)1(2)(3)(2)(1)(3)(2)(1)(1)1(1)1(22)22()1()1(222)1()222(k k k k k k k k k k k k k k k k k k k k k k k k x x x x x x x x x x x x x x x x x x x x x x x x ωωωωωωωωωω ωωωω-+--=---?+=+--+-=---?+=++--=+--?+=+++++++++, )2,1(∈ω。 3.],[1b a C S m -∈。4. 1e 2e ---x ,???==-=?--? ,3,2,1,0;0,e 1d )(e 110k k x x g k x ,正交投影。 5. 2阶,6阶。 6.10.6658,10.9521,10.9501。 7. 4002.2)00.1(=ε,4030.2)01.1(=ε。 二.解下列各题:(每题9分,共36分) 1.解:令)1(2 3+=t x , (2分) 则??-+++=+1123 02 dt )1(25.21)1(49d 1t t x x x ???++++???++-+-≈22)6.01(25.21)6.01(9525.219 8)6.01(25.21)6.01(9549 (8分) 210631.10≈ (9分) 2.解:记系数矩阵为A, 对增广矩阵[]b A |作初等行运算, ??????????--401533933112??????????--==5.55.115 .35.405.75.401125.1,5.11,31,2l l ??????????---=45.114005.75.4011212,3l , 所以13-=x ,2)5.75.1(5.4112=-=x x ,1)1(2 1321=-+-=x x x ,即方程组的解为 [1,2,-1]T . (4分) 故系数矩阵A 的LU 分解为???? ??????--???????????---=4005.75.40112115.1015.1001A 。 (6分)

数理方程基于matlab的数值解法

数理方程数值解法与其在matlab软件上的实现张体强1026222 廖荣发1026226 [摘要] 数学物理方程的数值解在实际生活中越来越使用,首先基于偏微分数值解的思想上,通过matlab软件的功能,研究其数学物理方程的数值解,并通过对精确解和数值解进行对比,追究其数值解的可行性,在此,给出相关例子和程序代码,利于以后的再次研究和直接使用。 [关键字] 偏微分方程数值解matlab 数学物理方程的可视化 一:研究意义 在我们解数学物理方程,理论上求数学物理方程的定解有着多种解法,但是有许多定解问题却不能严格求解,只能用数值方法求出满足实际需要的近似解。而且实际问题往往很复杂,这时即便要解出精确解就很困难,有时甚至不可能,另一方面,在建立数学模型时,我们已作了很多近似,所以求出的精确解也知识推导出的数学问题的精确解,并非真正实际问题的精确解。因此,我们有必要研究近似解法,只要使所求得的近似解与精确解之间的误差在规定的范围内,则仍能满足实际的需要,有限差分法和有限元法是两种最常用的

求解数学物理方程的数值解法,而MATLAB 在这一方面具有超强的数学功能,可以用来求其解。 二:数值解法思想和步骤 2.1:网格剖分 为了用差分方法求解上述问题,将求解区域 {}(,)|01,01x t x t Ω=≤≤≤≤作剖分。将空间区间[0,1]作m 等分,将时 间[0,1]区间作n 等分,并记 1/,1/,,0,,0j k h m n x jh j m t k k n ττ===≤≤=≤≤。分别称h 和τ 为空间和 时间步长。用两簇平行直线,0,,0j k x x j m t t k n =≤≤=≤≤将Ω分割成矩形网格。 2.2:差分格式的建立 0u u t x ??-=??………………………………(1) 设G 是,x t 平面任一有界域,据Green 公式(参考数学物理方程第五章): ( )()G u u dxdt udt udx t x Γ??-=--??? ? 其中G Γ=?。于是可将(1)式写成积分守恒形式: ()0udt udx Γ --=? (2) 我们先从(2)式出发构造熟知的Lax 格式设网格如下图所示

Matlab关于数值计算的实现

Matlab关于数值计算的实现 摘要:数值计算(numerical computation computation),主要研究更好的利用计算机更好的进行数值计算,解决各种数学问题。数值分析包括离散傅里叶变换,考虑截断误差,计算误差,函数的敛散性与稳定性等。在数学方面,数值计算的主要研究数值微分与积分,数据的处理与多项式计算,最优化问题,线性方程与非线性方程的求解,常微分方程的数值求解等。同时,数值计算在物理,化学,经济等方面也有研究,本文暂且不表。M atlab软件历经二十多年来的发展,已成为风靡世界的数学三大软件(matlb,Mathematica l,Maple)之一,在数学类科技应用软件中在数值计算方面首屈一指。Matlab以矩阵为数据操作的基本单位,使得矩阵运算十分便捷快速,同时Matlab还提供了海量的计算函数,而且使用可靠地算法进行计算,能使用户在繁复的数学运算中解脱,Matlab还具有方便且完善的图形处理功能,方便绘制二维和三维图形并修饰。

目录 1.数值分析(离散傅里叶变换,考虑截断误差,计算误差,函数 的敛散性与稳定性) 2.数值计算(数值微分与积分,数据的处理与多项式计算, 最优化问题,线性方程与非线性方程的求解,常微分方程的数值求解) 3.图形处理功能(方便绘制二维和三维图形并修饰) 4.总结

1.数据统计与分析 Matlab 可以进行求矩阵的最大最小元素,平均值与中值,关于矩阵元素的求和与求积,累加和与累乘积,标准方程,相关系数,元素排序。现在以求标准方差举例说明Matlab 的实现。 在Matlab 中,实现标准方差计算的函数为std 。对于向量(Y ),std (Y )实现返回一个标准方差,而对于矩阵(A ),std (A )返回一个行向量,该行向量的每个元素对应着矩阵A 各行或各列的标准方差。一般调用std 函数的格式为std (A ,flag ,dim ) Dim 取1或者2分别对应求各列或各行的标准方差,flag 取1时,按照标准方差的计算公式 ∑-=-=N i x x S i N 1 2 1)(11来计算。若flag 取2,则用公式 ∑-==N i x x S i N 1 2 2) (1 进行计算。默认的flag 取值为0,dim 取值为1。课本page143 2. 离散傅里叶变换 离散傅里叶变换广泛应用于信号的分析,光谱和声谱分析、全息技术等各个领域。但直接计算dft 的运算量与变化的长度N 的平方成正比,当N 较大时,计算量太大。随着计算机技术的迅速发展,在计算机上进行离散傅里叶变换计算成为可能。特别是快速傅里叶变换算法的出现,为傅里叶变换的应创造了条件。 (1):傅里叶变换算法的简述。 傅立叶变换是一种分析信号的方法,它可分析信号的成分,也可用这些成分合成信号。许多波形可作为信号的成分,比如正弦波、方波、锯齿波等,傅立叶变换用正弦波作为信号的成分. f(t)是t 的周期函数,如果t 满足狄里赫莱条件:在一个以2T 为周期内f(X)连续或只有有限个第一类间断点,附f (x )单调或可划分成有限个单调区间,则F (x )以2T 为周期的傅里叶级数收敛,和函数S (x )也是以2T 为周期的周期函数,且在这些间断点上,函数是有限值;在一个周期内具有有限个极值点;绝对可积。则有下图①式成立。称为积分运算f(t)的傅立叶变换, ②式的积分运算叫做F(ω)的傅立叶逆变换。F(ω)叫做f(t)的像函数,f(t)叫做 F(ω)的像原函数。F(ω)是f(t)的像。f(t)是F(ω)原像。 ①傅立叶变换 ②傅立叶逆变换

数值计算方法第一章

第一章 绪 论 本章以误差为主线,介绍了计算方法课程的特点,并概略描述了与算法相关的基本概念,如收敛性、稳定性,其次给出了误差的度量方法以及误差的传播规律,最后,结合数值实验指出了算法设计时应注意的问题. §1.1 引 言 计算方法以科学与工程等领域所建立的数学模型为求解对象,目的是在有限的时间段内利用有限的计算工具计算出模型的有效解答。 由于科学与工程问题的多样性和复杂性,所建立的数学模型也是各种各样的、复杂的. 复杂性表现在如下几个方面:求解系统的规模很大,多种因素之间的非线性耦合,海量的数据处理等等,这样就使得在其它课程中学到的分析求解方法因计算量庞大而不能得到计算结果,且更多的复杂数学模型没有分析求解方法. 这门课程则是针对从各种各样的数学模型中抽象出或转化出的典型问题,介绍有效的串行求解算法,它们包括 (1) 非线性方程的近似求解方法; (2) 线性代数方程组的求解方法; (3) 函数的插值近似和数据的拟合近似; (4) 积分和微分的近似计算方法; (5) 常微分方程初值问题的数值解法; (6) 优化问题的近似解法;等等 从如上内容可以看出,计算方法的显著特点之一是“近似”. 之所以要进行近似计算,这与我们使用的工具、追求的目标、以及参与计算的数据来源等因素有关. 计算机只能处理有限数据,只能区分、存储有限信息,而实数包含有无穷多个数据,这样,当把原始数据、中间数据、以及最终计算结果用机器数表示时就不可避免的引入了误差,称之为舍入误差. 我们需要在有限的时间段内得到运算结果,就需要将无穷的计算过程截断, 从而产生截断误差. 如 +++=! 21 !111e 的计算是无穷过程,当用 ! 1 !21!111n e n ++++= 作为e 的近似时,则需要进行有限过程的计算,但产生了 截断误差e e n -.

相关文档
最新文档