嵌入式Linux下USB蓝牙设备驱动

嵌入式Linux下USB蓝牙设备驱动
嵌入式Linux下USB蓝牙设备驱动

随着无线技术的不断发展,蓝牙产品逐渐走入人们的生活。目前蓝牙在PC端支持良好,应用比较广泛。但在嵌入式系统中,由于蓝牙接口的兼容性问题,使其在嵌入式领域的应用大打折扣。因此,如何在嵌入式系统中支持蓝牙设备成为当前嵌入式领域的研究热点。

作为通用串行总线标准,USB接口以其连接方便、兼容性好和传输速度快等特点被更多的硬件系统支持。针对USB 蓝牙适配器在嵌入式Linux下的应用,开发其驱动程序,为蓝牙设备在嵌入式Linux下进一步应用提供前提条件。本文详细阐述USB蓝牙设备的HCI传输层,给出实现方案中关键的函数和数据结构,并在MP2530上实现。

1系统设计简介

该嵌入系统采用Linux-2.6.20内核版本,采用在X86架构的PC机端上交叉编译,在目标板MP2530上运行。目标板MP2530是专门为嵌入式多媒体处理器MMSP2+设计的开发平台,其内部集成有ARM926EJ和ARM946E的双核,带有2D和3D的图形加速器。此外,MP2530还提供丰富的外围数据接口,包含6路UART通道,USB主机、USB设备2.0、SD卡读写通道、以太网控制器等。MP2530支持基于通用串行总线1.1版本和开放式主机控制器1.0版本,支持高、低速USB设备。

2蓝牙协议栈

2.1蓝牙协议体系结构

按照蓝牙协议的逻辑功能,整个蓝牙协议栈分为3个部分

[1],如图1所示。

底层硬件实块包括射频RF(Rodio Fraquency)、基带BB

嵌入式Linux下USB蓝牙设备驱动

郑春芳,郑灵翔,石江宏

(厦门大学信息科学与技术学院ATR实验室,福建厦门361005)

摘要:随着无线技术的不断发展,蓝牙技术的应用逐渐深入嵌入式系统。但由于其接口的兼容性问题,使其在嵌入式领域的应用大打折扣。在分析蓝牙协议栈的体系结构、Linux蓝牙协议BlueZ的组织结构的基础上,详细阐述蓝牙USB传输层,给出蓝牙设备驱动实现的关键数据结构和函数,并在MP2530硬件平台下实现Linux下USB蓝牙设备驱动,从而有助于蓝牙设备在嵌入式领域广泛应用。

关键词:蓝牙驱动;USB设备;MP2530;嵌入式Linux

中图分类号:TP302文献标识码:A文章编号:1674-6236(2010)02-0053-03 USB bluetooth device driver based on embedded Linux system

ZHENG Chun-fang,ZHENG Ling-xiang,SHI Jiang-hong

(ATR Lab,School of Information Science and Technology,Xiamen University,Xiamen361005,China)

Abstract:With the development of wireless technology,the application of bluetooth technology spreads gradually into em-bedded systems.However,due to compatibility issues with their interface,their applications in the embedded system great-ly discount.On the basis of analysing the architecture of Linux bluetooth protocol and the organizational structure of BlueZ,this paper illustrates the details of transport layer for bluetooth USB device,and gives the key data structure and function for driver implementation.Finally,we develop and implement the device driver on MP2530,which makes it possi-ble that bluetooth device is widely used in the field of embedded.

Key words:bluetooth driver;USB deivice;MP2530;embedded Linux

收稿日期:2009-05-21稿件编号:200905056

基金项目:福建省科技重大专项(2007HZ0003)

作者简介:郑春芳(1984—),男,福建福州人,硕士研究生。研究方向:嵌入式技术,计算机应用技术。

图1蓝牙协议栈体系结构

(Base Band )和链路管理LMP (Link Manager Protocol );中间层协议包括逻辑链路控制和适应协议L2CAP (Logical Link

Control and Adaptation Layer protocol )、服务发现协议SDP

(Service Discovery Protocol )、串口仿真协议RFCOMM 和电话通信协议TCS -BIN ;高层应用包括拨号网络、耳机、局域网访问、文件传输等,分别对应一种应用模式。

在BB 与LMP 上和L2CAP 之间还有一个主机控制接口

HCI (Host Controller Interface )层,它提供对下层基带控制器、

链路管理器的命令接口,以及对硬件状态和控制注册成员的访问。该接口还提供对蓝牙基带的统一访问模式。

2.2BlueZ 组织结构[2]

Linux 蓝牙协议栈又称BlueZ ,是一个开放性的协议。BlueZ 采用模块化设计,其组织结构如图2所示。它包含内

核和用户态2大模块。其中内核模块是由设备驱动层、蓝牙核心及主机控制接口HCI (Host Control Interface )层、

Bluetooth 协议核心、逻辑链路控制和适配协议L2CAP

(Logical Link Control and Adaptation Protocol )、SCO 音频层、其他Bluetooth 服务组成。而用户态模块则包括BlueZ 工具集和蓝牙应用程序

3

USB 蓝牙设备的HCI 传输层[3-4]

对于USB 设备,其传输层即USB 传输子层是介于主机

和主控制器之间,负责主机与主控制器间的数据传输。

从蓝牙的协议层模型可以看出HCI 位于蓝牙系统的上层(L2CAP ,SDP 和RFCOMM )和链路管理层(LMP )及基带之间,它为这些上层提供进行LM 和BB 的统一接口方式。USB 蓝牙设备通过模块内的USB 设备控制器和总线与主机控制器相连,负责与主机的数据交换,它在USB 固件的控制下,将接收到的HCI 协议分组交给HCI 固件处理或将来自链路管理器和基带控制器的数据传送至主机。HCI 固件负责解释从主机接收到的HCI 分组并交给链路管理器和基带控制器处理,或采集蓝牙模块各部件的状态信息并递交给主机。主机与蓝牙USB 模块关系如图3所示。

1)HCI 终端要求USB 蓝牙设备可看作高速设备,其固

件配置由2个接口组成。接口0为固定设置,包含BULK 和中断终端;接口1提供可扩展的同步带宽占用方式。接口1提供4种设置,以提供基于同步带宽需求的占用方式。其缺省接口为空,可使设备支持非同步带宽。当通过选择接口呼叫调整同步带宽占用方式时,终端可自由选择2种接口,因此任何未处理的BULK 或中断事务都无需中止或重新提交。

2)控制终端要求任何USB 蓝牙设备都有一个用于配

置和控制该设备控制终端—终端0。终端0允许主机向主控制器发送HCI 指令。当USB 固件在具有蓝牙类别码的终端上接收一个分组时,它应将该分组视为一个HCI 指令分组。

3)BULK 终端要求BULK 终端用来传输ACL 数据,由于

数据完整性及带宽请求,因此需用到BULK 终端。BULK 具有检错和纠错能力。Linux 下的蓝牙设备允许连接多个ACL 链路,因此经过此通道的数据流可能来自或发往1个或多个设备数据。为避免阻塞,主控制器采用类似于共享终端模型的流控制模型。默认状态下,BULK 最大分组尺寸为64字节,因此BULK 通过总线1ms 传输1个或多个64字节的分组帧。

4)中断终端要求中断终端能够保证事件以可预测并及

时的方式传递。事件分组可在一定允许延时条件下通过USB 发送。对于蓝牙设备,中断终端的时间间隔为1ms 。USB 软件和固件无需对传送到主控制器的事件充分了解。

5)同步终端要求同步终端用于传递SCO 数据,主要是

音视频数据。时间是该数据类型的重要因素。它允许数据损

坏或丢失,但必须保证有恒定的数据流。USB 固件以固定速率将数据内容传递到主控制器的SCO 先进先出队列(FIFO )。如果FIFO 满,则新数据将覆盖原有数据。蓝牙设备可以支持

3个64kb/s 语音信道,可以接收不同编码方式的数据―8bit

或16bit 的线性音频编码。默认状态下,同步终端的最大分组尺寸为64字节。如果无需支持3条16bit 编码的语音信道,最大分组尺寸为32字节。

4Linux 下蓝牙USB 设备驱动实现

4.1重要数据结构[5-6]4.1.1结构体hci_dev

在嵌入式Linux 系统中,任何一种设备在HCI 层都被抽象为hci_dev 结构体。当蓝牙设备接入系统时,不论以何种方式接入,都要向HCI 层或蓝牙核心层注册为一个hci_dev 设备。hci_dev 结构体主要包含:

1)设备名称(name )、设备地址(bdaddr )、设备标志(flags )、

设备类型(type )等设备属性;

2)分组类型(pkt_type )、链接策略(link_policy )、链接模式

(link_mode );

3)3种类型任务队列:CMD 任务、发送任务、接收任务;4)7种设备操作,包括open ,close ,flush ,send ,destruct ,notify 和ioctl 。

图2

BlueZ 组织结构

图3主机与蓝牙USB 模块关系

郑春芳,等嵌入式Linux 下USB 蓝牙设备驱动

另外还有设备查询状态、查询返回结果、设备锁等。

4.1.2结构体hci_usb

hci_usb 结构体定义了指向hci_dev 和usb_device 的2个

指针。usb_device 定义蓝牙usb 设备,这样通过这2个指针可将HCI 层与蓝牙设备联系起来。hci_usb 还定义HCI 操作

USB 设备时所用到的其他数据,诸如数据缓存大小、USB 接

口、主机端的端点描述符和队列等。

4.1.3结构体bt_usb_data

结构体bt_usb_data 描述USB 接口蓝牙模块的数据结构,包含传送数据的缓冲区、I /O 端点、消息队列以及缓冲区的消息串和消息串读写位置索引、传送缓冲区的指针以及表示设备是否被激活、是否存在、是否打开等状态标志位。

4.2驱动程序的注册

在嵌入式Linux 系统中,所有设备驱动程序,都必须向内核注册其设备驱动。对于蓝牙USB 设备驱动注册,该过程首先创建一个指向usb_dirvier 类型的结构体hci_usb_driver ,具体内容包括指定驱动程序的名字(hci_usb )、探测函数(hci_usb_probe )、断开函数(hci_usb_disconnect )、中断函数(hci_usb_suspend )、恢复函数(hci_usb_resume )、所支持蓝牙设备列表(bluetooth_ids )。并由函数

module_init 、hci_usb_init 、usb_register 依

次执行,usb_register 最终调用

usb_register_driver 完成驱动向内核注册。4.3驱动程序的注销

当卸载驱动程序时,要在内核中注销驱动程序,释放其占有的资源。该

过程与驱动注册类似,由module_exit 、hci_usb_exit 、

usb_deregister 依次执行,最终usb_deregister 调用

usb_deregister_driver 完成驱动注销。

4.4hci_usb_probe 过程

当USB 设备插入主机时,主机控制器HCI 使用控制通道枚举,并给其分配唯一设备地址(1~127),同时读取该设备的class,subclass 和protocol 等设备描述符。

如果读取到的设备描述符信息与hci_usb 驱动程序注册到USB 核心的信息相匹配,则将设备与相应的驱动程序进行绑定。调用hci_usb_driver 中指定的探测函数hci_usb_probe ,初始化结构体hci_usb 中部分数据,并注册HCI 设备。蓝牙设

备探测函数

hci_usb_probe 具体探测过程如图4所示。

4.5设备的断开

当蓝牙设备断开连接时,通过调用hci_usb_driver 中指

定的断开函数hci_usb_disconnect 完成。其过程主要包括清空设备的驱动数据,关闭设备,释放与设备相关的资源,并注销内核中相应的HCI 设备及释放所占用的资源。

4.6设备中断与恢复

如果要中断蓝牙设备连接(只是暂时中断,未释放资源),则通过调用中断函数hci_usb_suspend 来完成。其过程是保存hci_dev 数据信息,中断HCI 与设备连接,互斥访问设备等待队列并把数据信息加入设备等待队列的尾部。如果要恢复被中断过的蓝牙设备的连接,可通过调用恢复函数

hci_usb_resume 来完成。其过程是互斥访问设备等待队列,取

出队列头的hci_dev 数据,恢复HCI 与设备的连接。若错误,则返回I/O error 。

5实验结果

把交叉编译过的蓝牙USB 设备驱动程序以及必要的程

序和库移到根文件系统中,启动开发板,在板上USB 接口处插上USB 蓝牙设备。

加载USB 蓝牙驱动,执行hciconfig ,可以看到当然蓝牙

USB 设备使用状态,如图5所示。

6结束语

本文在硬件平台MP2530上开发实现嵌入式Linux 下蓝

牙USB 设备驱动程序。实验结果显示,基于该驱动的USB 蓝牙设备可与其他蓝牙设备正常通讯,其速度比以K 单位计算的串口要快得多。USB 蓝牙设备驱动程序的开发,为蓝牙设备与其他硬件设备的连接提供了一种高效便捷的途径,同时大大拓展了蓝牙设备的应用。参考文献:

[1]金纯,许光辰,孙睿.蓝牙技术[M].北京:电子工业出版社,

2001.

[2]梁军学,郁滨.Linux 蓝牙协议栈的USB 设备驱动[J].计算

机工程,2008(5):274-275.

[3]钱志鸿,杨帆,周求湛.蓝牙技术原理、开发与应用[M].北

京:北京航空航天大学出版社,2006.

[4]吴艳玮,任长明.蓝牙HCI USB 传输层规范[J].计算机工

程,2002(2):235-236.

[5]梁正平,毋国庆,肖敬.Linux 中USB 设备驱动程序研究

[J].计算机应用研究,2004,21(6):70-72.

[6]巍骛,张焕强,方贵明.基于Linux 的USB 驱动程序实现

[J].计算机应用,2002,22(8):17-19.

图4探测函数hci_usb_probe 过程

图5加载后USB 蓝牙设备状态

55--

嵌入式Linux应用软件开发流程

从软件工程的角度来说,嵌入式应用软件也有一定的生命周期,如要进行需求分析、系统设计、代码编写、调试和维护等工作,软件工程的许多理论对它也是适用的。 但和其他通用软件相比,它的开发有许多独特之处: ·在需求分析时,必须考虑硬件性能的影响,具体功能必须考虑由何种硬件实现。 ·在系统设计阶段,重点考虑的是任务的划分及其接口,而不是模块的划分。模块划分则放在了任务的设计阶段。 ·在调试时采用交叉调试方式。 ·软件调试完毕固化到嵌入式系统中后,它的后期维护工作较少。 下面主要介绍分析和设计阶段的步骤与原则: 1、需求分析 对需求加以分析产生需求说明,需求说明过程给出系统功能需求,它包括:·系统所有实现的功能 ·系统的输入、输出 ·系统的外部接口需求(如用户界面) ·它的性能以及诸如文件/数据库安全等其他要求 在实时系统中,常用状态变迁图来描述系统。在设计状态图时,应对系统运行过程进行详细考虑,尽量在状态图中列出所有系统状态,包括许多用户无需知道的内部状态,对许多异常也应有相应处理。 此外,应清楚地说明人机接口,即操作员与系统间地相互作用。对于比较复杂地系统,形成一本操作手册是必要的,为用户提供使用该系统的操作步骤。为使系统说明更清楚,可以将状态变迁图与操作手册脚本结合起来。

在对需求进行分析,了解系统所要实现的功能的基础上,系统开发选用何种硬件、软件平台就可以确定了。 对于硬件平台,要考虑的是微处理器的处理速度、内存空间的大小、外部扩展设备是否满足功能要求等。如微处理器对外部事件的响应速度是否满足系统的实时性要求,它的稳定性如何,内存空间是否满足操作系统及应用软件的运行要求,对于要求网络功能的系统,是否扩展有以太网接口等。 对于软件平台而言,操作系统是否支持实时性及支持的程度、对多任务的管理能力是否支持前面选中的微处理器、网络功能是否满足系统要求以及开发环境是否完善等都是必须考虑的。 当然,不管选用何种软硬件平台,成本因素都是要考虑的,嵌入式Linux 正是在这方面具有突出的优势。 2、任务和模块划分 在进行需求分析和明确系统功能后,就可以对系统进行任务划分。任务是代码运行的一个映象,是无限循环的一段代码。从系统的角度来看,任务是嵌入式系统中竞争系统资源的最小运行单元,任务可以使用或等待CPU、I/O设备和内存空间等系统资源。 在设计一个较为复杂的多任务应用系统时,进行合理的任务划分对系统的运行效率、实时性和吞吐量影响都极大。任务分解过细会不断地在各任务之间切换,而任务之间的通信量也会很大,这样将会大大地增加系统的开销,影响系统的效率。而任务分解过粗、不够彻底又会造成原本可以并行的操作只能按顺序串行执行,从而影响系统的吞吐量。为了达到系统效率和吞吐量之间的平衡折中,在划分任务时应在数据流图的基础上,遵循下列步骤和原则:

Linux网络设备驱动开发实验

实验三:Linux网络设备驱动开发实验 一、实验目的 读懂linux网络设备驱动程序例子,并且实际加载驱动程序,加载进操作系统以后,会随着上层应用程序的触发而执行相应动作,具体执行的动作可以通过代码进行改变。 ●读懂源码及makefile ●编译驱动程序 ●加载 ●多种形式触发动作 二、预备知识 熟悉linux驱动基本原理,能读懂简单的makefile。 三、实验预计时间 80-120分钟左右 四、驱动程序部分具体步骤 要求读懂一个最简单的驱动程序,在驱动程序的诸如“xxx_open”、“xxx_read”等标准接口里面加入打印语句。可参考多模式教学网上的驱动样例。 五、用于触发驱动动作的应用程序及命令 驱动程序就是以静态的标准接口库函数形式存在,网络设备驱动会受到两大类情况的触发,一种是linux里面的控制台里面的命令,另一种是套接口应用程序,首先要搞清都有哪些具体的命令和应用程序流程,应用程序参考多模式教学网的例子。 六、运行测试 提示:需要将驱动程序以dll加载进系统中,并且触发应用程序调用各种文件操作的接口函数,使得驱动有所动作,打印出相关信息。 1.编译驱动: cd /某某目录/vnetdev/ make clean make 2.加载驱动与打开网卡: insmod netdrv.ko

ifconfig vnet0 up 3.运行应用程序 ../raw 4.通过命令“修改网卡MTU”触发驱动执行动作: ifconfig vnet0 mtu 1222 5.显示内核打印: cat /var/log/messages 6.卸载: ifconfig vnet0 down rmmod netdrv.ko 7.修改代码中的某些函数中的打印信息,重新试验上述流程。 至此大家都应该真正理解和掌握了驱动程序-操作系统-应用程序的三者联动机制。 七、实验结果 由图可知能正常加载网卡驱动,并且能够打印调试信息。

嵌入式linux基本操作实验一的实验报告

实验一linux基本操作实验的实验报告 一实验目的 1、熟悉嵌入式开发平台部件,了解宿主机/目标机开发模式; 2、熟悉和掌握常用Linux的命令和工具。 二实验步骤 1、连接主机和目标板;(三根线,网线直接连接实验箱和PC机,实验箱UART2连接主机的UART口)。 2、Linux命令的熟悉与操作 PC端:在PC机的桌面上打开虚拟机,并启动Linux系统,打开命令终端,操作Linux基本命令,如:查看:ls,进入目录:cd,创建文件:mkdir,删除文件:rmdir,配置网络:ifconfig,挂载:mount,设置权限:chmod,编辑器:vi,拷贝:cp等命令,要求能熟练操作。 使用方法: 1.查看:ls Ls列出文件和目录 Ls–a 显示隐藏文件 Ls–l 显示长列格式ls–al 其中:蓝:目录;绿:可执行文件;红:压缩文件;浅蓝:链接文件;灰:其他文件;红底白字:错误的链接文件 2.进入目录:cd 改变当前目录:cd 目录名(进入用户home目录:cd ~;进入上一级目录:cd -) 3.创建文件:mkdir 建立文件/目录:touch 文件名/mkdir目录名 4.删除文件:rmdir 删除空目录:rmdir目录名 5.配置网络:ifconfig 网络- (以太网和WIFI无线) ifconfig eth0 显示一个以太网卡的配置 6.挂载:mount mount /dev/hda2 /mnt/hda2 挂载一个叫做hda2的盘- 确定目录'/ mnt/hda2' 已经存在 umount /dev/hda2 卸载一个叫做hda2的盘- 先从挂载点'/ mnt/hda2' 退出fuser -km /mnt/hda2 当设备繁忙时强制卸载 umount -n /mnt/hda2 运行卸载操作而不写入/etc/mtab文件- 当文件为只读或当磁盘写满时非常有用 mount /dev/fd0 /mnt/floppy 挂载一个软盘 mount /dev/cdrom /mnt/cdrom挂载一个cdrom或dvdrom mount /dev/hdc /mnt/cdrecorder挂载一个cdrw或dvdrom mount /dev/hdb /mnt/cdrecorder挂载一个cdrw或dvdrom mount -o loop file.iso /mnt/cdrom挂载一个文件或ISO镜像文件

嵌入式Linux系统中音频驱动的设计与实现

第31卷 第2期 2008年4月 电子器件 Ch in es e Jo u rnal Of Electro n Devi ces Vol.31 No.2Apr.2008 Design and Implementation of Audio Driver for Embedded Linux System YU Yue,YA O G uo -liang * (N ational A S I C S ystem Eng ine ering Center ,S outhe ast Unive rsity ,N anj ing 210096,China) Abstract:This paper intro duces the fundam ental principle and architecture of the audio system w hich con -sists of the CODEC UCB1400and the 805puls,and describes the design of audio dev ice dr iv er based on Audio Codec .97for Embedded Linux System.The paper focuses o n the implementatio n of the DM A trans -port and ioctl interface.T he audio dr iv e is running w ell in actual Embedded Linux system equipments.Key words:805plus;embedded Linux;Audio A C .97driver;DM A;ioctl interface EEACC :1130B 嵌入式Linux 系统中音频驱动的设计与实现 虞 跃,姚国良 * (东南大学国家专用集成电路系统工程中心,南京210096) 收稿日期:2007-07-09 作者简介:虞 跃(1982-),男,东南大学电子工程系国家专用集成电路工程技术研究中心硕士研究生,研究方向为嵌入式系统设计; 姚国良(1979-),男,东南大学电子工程系博士研究生,yuyueo@https://www.360docs.net/doc/a45117659.html,. 摘 要:介绍了由805puls 处理器和U CB1400编解码芯片构成的音频系统体系结构及工作原理,接着阐述了嵌入式Linux 操作系统下基于A C .97协议标准的音频设备驱动程序的设计与实现。其中着重讲述了采用循环缓冲区进行音频数据的DM A 传输流程以及ioctl 接口的实现。此设计方案已在嵌入式L inux 系统中得到使用,运行效果良好。 关键词:805plus;嵌入式L inux ;AC .97音频驱动;DM A;ioctl 接口中图分类号:TP391 文献标识码:A 文章编号:1005-9490(2008)02-0709-03 嵌入式音频系统广泛应用于GPS 自动导航、PDA,3G 手机等移动信息终端,具备播放、录音功能的音频系统的应用使得移动信息终端上视听娱乐IP 电话、音频录制等成为可能,并推动了移动信息终端设备的发展。 在软件上,嵌入式操作系统的新兴力量Linux 的开源性,内核可定制等优点吸引了许多的开发者与开发商。它是个和U nix 相似、以核心为基础的、完全内存保护、多任务多进程的操作系统。支持广泛的计算机硬件,包括X86,A lpha,Sparc,M IPS,PPC,ARM ,NEC,MOT OROLA 等现有的大部分芯片[1]。 本文针对805puls 微处理器选用Philips 公司的编解码芯片(CODEC)U CB1400,构建了基于Au -dio Codec .97(AC .97)标准的音频系统。并介绍了该音频系统在Linux 操作系统2.4.19内核下驱动 程序的实现技术。 1 音频系统构架 1.1 微处理器805plus 805plus 是东南大学ASIC 系统工程技术研究中心和北京大学微处理器研究开发中心共同设计和开发的32bit 嵌入式微处理器,是采用H ar vard 结构的RISC 处理器。内部采用五级流水线结构,兼容16bit 和32bit 的指令系统805plus 嵌入式微处理器集成了存储接口EMI,时钟和功耗管理PM C,中断控制器INTC,通用定时器T IM ER,脉宽调制器PWM,实时时钟RT C,通用串口UA RT,LCD 控制器LCDC,AC .97控制器,同步外设接口SPI 。1.2 AC .97协议标准[2] AC'97协议标准是一套关于A C'97数字音频处理(AC'97Digital Controller)、AC '97数字串口(AC

CAN总线在嵌入式Linux下驱动程序的实现

CAN总线在嵌入式Linux下驱动程序的实现 时间:2009-11-05 09:41:22 来源:微计算机信息作者:黄捷峰蔡启仲郭毅锋田小刚 1 引言 基于嵌入式系统设计的工业控制装置,在工业控制现场受到各种干扰,如电磁、粉尘、天气等对系统的正常运行造成很大的影响。在工业控制现场各个设备之间要经常交换、传输数据,需要一种抗干扰性强、稳定、传输速率快的现场总线进行通信。文章采用CAN总线,基于嵌入式系统32位的S3C44B0X微处理器,通过其SPI接口,MCP2510 CAN控制器扩展CAN总线;将嵌入式操作系统嵌入到S3C44B0X微处理器中,能实现多任务、友好图形用户界面;针对S3C44B0X微处理器没有内存管理单元MMU,采用uClinux嵌入式操作系统。这样在嵌入式系统中扩展CAN设备关键技术就是CAN设备在嵌入式操作系统下驱动程序的实现。文章重点解决了CAN总线在嵌入式操作系统下驱动程序实现的问题。对于用户来说,CAN设备在嵌入式操作系统驱动的实现为用户屏蔽了硬件的细节,用户不用关心硬件就可以编出自己的用户程序。实验结果表明驱动程序的正确性,能提高整个系统的抗干扰能力,稳定性好,最大传输速率达到1Mb/s;硬件的错误检定特性也增强了CAN的抗电磁干扰能力。 2 系统硬件设计 系统采用S3C44B0X微处理器,需要扩展CAN控制器。常用的CAN控制器有SJA1000和MCP2510,这两种芯片都支持CAN2.0B标准。SJA1000采用的总线是地址线和数据线复用的方式,但是嵌入式处理器外部总线大多是地址线和数据线分开的结构,这样每次对SJA1000操作时需要先后写入地址和数据2次数据,而且SJA1000使用5V逻辑电平。所以应用MCP2510控制器进行扩展,收发器采用82C250。MCP2510控制器特点:1.支持标准格式和扩展格式的CAN数据帧结构(CAN2.0B);2.0~8字节的有效数据长度,支持远程帧;3.最大1Mb/s的可编程波特率;4.2个支持过滤器的接受缓冲区,3个发送缓冲区; 5.SPI高速串行总线,最大5MHz; 6.3~5.5V宽电压范围供电。MCP2510工作电压为3.3V,能够直接与S3C44B0X微处理器I/O口相连。为了进一步提高系统抗干扰性,可在CAN控制器和收发器之间加一个光隔6N137。其结构原理框图如图1: 图1.S3C44B0X扩展CAN结构框图图2.字符设备注册表 3 CAN设备驱动程序的设计 Linux把设备看成特殊的文件进行管理,添加一种设备,首先要注册该设备,增加它的驱动。设备驱动程序是操作系统内核与设备硬件之间的接口,并为应用程序屏蔽了硬件细节。在linux中用户进程不能直接对物理设备进行操作,必须通过系统调用向内核提出请求,

《嵌入式系统与开发》构建嵌入式Linux系统-实验报告

《嵌入式数据库sqlite移植及使用》 实验报告 学生姓名:陈彤 学号:13004405 专业班级:130044 指导教师:孙国梓 完成时间:2016.5.31 实验3 嵌入式数据库sqlite移植及使用 一.实验目的 理解嵌入式软件移植的基本方法,掌握sqlite数据库软件移植的步骤,掌握sqlite开发的两种方式—命令模式和C代码开发模式的使用方法,并编程实现简单通讯录查询实验。 二.实验内容 实验3.1 移植嵌入式数据库sqlite 实验3.2 简单通讯录查询实例设计和测试 三.预备知识 Linux使用、数据库相关知识等 四.实验设备及工具(包括软件调试工具) 硬件:ARM 嵌入式开发平台、PC 机Pentium100 以上、串口线。 软件:WinXP或UBUNTU开发环境。 五.实验步骤 5.1 移植嵌入式数据库sqlite 步骤【参看教材103页】: 第一步,解压缩sqlite源码,命令tar zxvf sqlite-autoconf-3080900.tar.gz,在解压后的文件夹下,可以看到源码文件有shell.c 和sqlite3.c文件,生成Makefile的配置脚本文件configure.ac ,并检查当前文件夹下__A__(A.存在 B.不存在)Makefile文件。 第二步利用configure脚本文件生成基于ARM实验台的Makefile,具体命令为./configure CC=arm-linux-gcc –prefix=/opt/sqlite –host=arm-linux(假设安装目录为/opt/sqlite),并检查当前文件夹下___A__(A.存在 B.不存在)Makefile文件。 第三步,编译sqlite,命令为_make_,编译过程中使用的编译器为_ arm-linux-gcc _。 第四步,安装sqlit,命令为_make install_。安装完成后到_/opt/sqlite_文件夹下去查看相关文件,可以看到该文件夹下有_bin_、_include_、__lib__和share文件夹,其中可执行文件sqlite3位于_./bin_文件夹,库位于_./lib_文件夹。 第五步,将sqlite3拷贝到开发板bin目录下,将库下的文件拷贝到开发板的lib目录下【注意链接文件的创建】 第六步,数据库的使用 方式1:命令操纵数据库 在超级终端环境下创建数据库stucomm.db,命令为_sqlite3 stucomm.db_; 创建数据表stutable,字段包括id 整型,name 字符型,phoneNum 字符型,具体命令为_sqlite> create table stutable (id int(20),name char(20),phoneNum char(20));_; 插入2条记录,记录信息如下 001,zhangsan,10086 002,lisi,10000

南邮嵌入式系统B实验报告2016年度-2017年度-2

_* 南京邮电大学通信学院 实验报告 实验名称:基于ADS开发环境的程序设计 嵌入式Linux交叉开发环境的建立 嵌入式Linux环境下的程序设计 多线程程序设计 课程名称嵌入式系统B 班级学号 姓名 开课学期2016/2017学年第2学期

实验一基于ADS开发环境的程序设计 一、实验目的 1、学习ADS开发环境的使用; 2、学习和掌握ADS环境下的汇编语言及C语言程序设计; 3、学习和掌握汇编语言及C语言的混合编程方法。 二、实验内容 1、编写和调试汇编语言程序; 2、编写和调试C语言程序; 3、编写和调试汇编语言及C语言的混合程序; 三、实验过程与结果 1、寄存器R0和R1中有两个正整数,求这两个数的最大公约数,结果保存在R3中。 代码1:使用C内嵌汇编 #include int find_gcd(int x,int y) { int gcdnum; __asm { MOV r0, x MOV r1, y LOOP: CMP r0, r1 SUBLT r1, r1, r0 SUBGT r0, r0, r1 BNE LOOP MOV r3, r0 MOV gcdnum,r3 //stop // B stop // END } return gcdnum; } int main() { int a; a = find_gcd(18,9);

printf("gcdnum:%d\n",a); return 0; } 代码2:使用纯汇编语言 AREA example1,CODE,readonly ENTRY MOV r0, #4 MOV r1, #9 start CMP r0, r1 SUBLT r1, r1, r0 SUBGT r0, r0, r1 BNE start MOV r3, r0 stop B stop END 2、寄存器R0 、R1和R2中有三个正整数,求出其中最大的数,并将其保存在R3中。 代码1:使用纯汇编语言 AREA examp,CODE,READONL Y ENTRY MOV R0,#10 MOV R1,#30 MOV R2,#20 Start CMP R0,R1 BLE lbl_a CMP R0,R2 MOVGT R3,R0 MOVLE R3,R2 B lbl_b lbl_a CMP R1,R2 MOVGT R3,R1 MOVLE R3,R2 lbl_b B . END 代码2:使用C内嵌汇编语言 #include int find_maxnum(int a,int b,int c)

linux字符设备驱动课程设计报告

一、课程设计目的 Linux 系统的开源性使其在嵌入式系统的开发中得到了越来越广泛的应用,但其本身并没有对种类繁多的硬件设备都提供现成的驱动程序,特别是由于工程应用中的灵活性,其驱动程序更是难以统一,这时就需开发一套适合于自己产品的设备驱动。对用户而言,设备驱动程序隐藏了设备的具体细节,对各种不同设备提供了一致的接口,一般来说是把设备映射为一个特殊的设备文件,用户程序可以像对其它文件一样对此设备文件进行操作。 通过这次课程设计可以了解linux的模块机制,懂得如何加载模块和卸载模块,进一步熟悉模块的相关操作。加深对驱动程序定义和设计的了解,了解linux驱动的编写过程,提高自己的动手能力。 二、课程设计内容与要求 字符设备驱动程序 1、设计目的:掌握设备驱动程序的编写、编译和装载、卸载方法,了解设备文件的创建,并知道如何编写测试程序测试自己的驱动程序是否能够正常工作 2、设计要求: 1) 编写一个简单的字符设备驱动程序,该字符设备包括打开、读、写、I\O控制与释放五个基本操作。 2) 编写一个测试程序,测试字符设备驱动程序的正确性。 3) 要求在实验报告中列出Linux内核的版本与内核模块加载过程。 三、系统分析与设计 1、系统分析 系统调用是操作系统内核和应用程序之间的接口,设备驱动程序是操作系统内核和机器硬件之间的接口。设备驱动程序为应用程序屏蔽了硬件的细节,这样在应用程序看来,硬件设备只是一个设备文件,应用程序可以象操作普通文件一样对硬件设备进行操作。设备驱动程序是内核的一部分,它完成以下的功能: 1、对设备初始化和释放; 2、把数据从内核传送到硬件和从硬件读取数据; 3、读取应用程序传送给设备文件的数据和回送应用程序请求的数据; 4、检测和处理设备出现的错误。 字符设备提供给应用程序的是一个流控制接口,主要包括op e n、clo s e(或r ele as e)、r e ad、w r i t e、i o c t l、p o l l和m m a p等。在系统中添加一个字符设备驱动程序,实际上就是给上述操作添加对应的代码。对于字符设备和块设备,L i n u x内核对这些操作进行了统一的抽象,把它们定义在结构体fi le_operations中。 2、系统设计: 、模块设计:

linux驱动程序的编写

linux驱动程序的编写 一、实验目的 1.掌握linux驱动程序的编写方法 2.掌握驱动程序动态模块的调试方法 3.掌握驱动程序填加到内核的方法 二、实验内容 1. 学习linux驱动程序的编写流程 2. 学习驱动程序动态模块的调试方法 3. 学习驱动程序填加到内核的流程 三、实验设备 PentiumII以上的PC机,LINUX操作系统,EL-ARM860实验箱 四、linux的驱动程序的编写 嵌入式应用对成本和实时性比较敏感,而对linux的应用主要体现在对硬件的驱动程序的编写和上层应用程序的开发上。 嵌入式linux驱动程序的基本结构和标准Linux的结构基本一致,也支持模块化模式,所以,大部分驱动程序编成模块化形式,而且,要求可以在不同的体系结构上安装。linux是可以支持模块化模式的,但由于嵌入式应用是针对具体的应用,所以,一般不采用该模式,而是把驱动程序直接编译进内核之中。但是这种模式是调试驱动模块的极佳方法。 系统调用是操作系统内核和应用程序之间的接口,设备驱动程序是操作系统内核和机器硬件之间的接口。设备驱动程序为应用程序屏蔽了硬件的细节,这样在应用程序看来,硬件设备只是一个设备文件,应用程序可以像操作普通文件一样对硬件设备进行操作。同时,设备驱动程序是内核的一部分,它完成以下的功能:对设备初始化和释放;把数据从内核传送到硬件和从硬件读取数据;读取应用程序传送给设备文件的数据和回送应用程序请求的数据;检测和处理设备出现的错误。在linux操作系统下有字符设备和块设备,网络设备三类主要的设备文件类型。 字符设备和块设备的主要区别是:在对字符设备发出读写请求时,实际的硬件I/O一般就紧接着发生了;块设备利用一块系统内存作为缓冲区,当用户进程对设备请求满足用户要求时,就返回请求的数据。块设备是主要针对磁盘等慢速设备设计的,以免耗费过多的CPU时间来等待。 1 字符设备驱动结构 Linux字符设备驱动的关键数据结构是cdev和file_operations结构体。

linux应用程序开发实验报告3

实验报告 学生姓名:白迪学生学号:222014********* 日期:2016年11月15日与11月29日 院(系):计算机与信息科学学院软件学院专业(班级):网络工程实验题目:终端驱动属性编程及利用属性特性的应用程序编程 一. 实验目的 掌握终端驱动属性的特殊功能,掌握终端驱动属性的显示与修改方法编程,掌握利用终端驱动属性的特属性编写需要特殊功能的应用程序技巧。 二. 实验原理 三. 实验器材 安装有Windows操作系统PC机一台,实验环境为LINUX虚拟机(包含gcc 与gdb). 四. 实验分析与设计 补全终端设备属性位与控制字符的信息输出: Main函数

Flags的补充 显示flags函数

Setecho函数,设置echo的状态位Echostate函数。显示echo状态 Setecho函数

忽略特殊的一些按键,CTRL+C、CTRL+\,不能一直阻塞等待键盘输入,设置等待一定的时间的非阻塞。 预处理 Main函数 Tty—mode set_nodelay_mode()//没阻塞 set_nobuf_noecho_mode()//没回显,没缓冲

Getresponse() 中断处理函数 五. 实验结果 属性位与控制字符的信息输出

stty控制字符的修改功能,setecho 忽略特殊的一些按键,CTRL+C、CTRL+\,不能一直阻塞等待键盘输入,设置等待一定的时间的非阻塞。当按下的键不是y或者n就显示f。 六. 实验心得 通过本次试验中对终端文件更加的了解了,还学会了对中断文件的一些基本的设置,前面的实验做起来就是一些验证比较简单,但是收获很大,最后一个做的时候先看过书后,自己编写的,调试过程中总是出错,做到最后跟书上的代码比较发现自己的代码跟书上比差了好远,修改了很多,自己用的是Redhat5,cc—

嵌入式linux android驱动工程师 面试题总汇

嵌入式linux android驱动工程师面试题总汇 1.嵌入式系统中断服务子程序(ISR)收藏中断是嵌入式系统中重要的组成部分,这导致了很多编译开发商提供一种扩展—让标准C支持中断。具代表事实是,产生了一个新的关键字__interrupt。下面的代码就使用了__interrupt关键字去定义了一个中断服务子程序(ISR),请评论一下这段代码的。 2.C语言中对位的操作,比如对a的第三位清0,第四位置1.本来应该会的,一犯晕写反了,以后注意! #define BIT3 (1<<3) #define BIT4 (1<<4) a &= ~BIT3;a |= BIT4; 3.考到volatile含义并举例: 理解出错,举了很具体的例子,连程序都搬上去了,有些理解不深的没举出来…… volatile表示这个变量会被意想不到的改变,每次用他的时候都会小心的重新读取一遍,不适用寄存器保存的副本。 volatile表示直接存取原始地址 例: 并行设备的硬件寄存器(状态寄存器) 在多线程运行的时候共享变量也要时时更新 一个中断服务子程序中访问到的的非自动变量(不太清楚,正在查找资料ing……) 4.要求设置一绝对地址为0x67a9的整型变量的值为0xaa66

当时我的写法: #define AA *(volatile unsigned long *)0xaa66AA = 0x67a9; 答案: int *ptr =(int *)0xaa66; *ptr = 0x67a9; 我感觉自己写的应该不算错吧(自我感觉,还请达人指正),我写的适合裸机下用,当做寄存器用,而答案就是适合在操作系统下的写法。 1. linux内核里面,内存申请有哪几个函数,各自的区别? 2. IRQ和FIQ有什么区别,在CPU里面是是怎么做的? 3. int *a; char *b; a 和b本身是什么类型? a、b里面本身存放的只是一个地址,难道是这两个地址有不同么? 4.xx的上半部分和下半部分的问题: 讲下分成上半部分和下半部分的原因,为何要分?讲下如何实现? 5.内核函数mmap的实现原理,机制? 6.驱动里面为什么要有并发、互斥的控制?如何实现?讲个例子? 7. spinlock自旋锁是如何实现的? 8.任务调度的机制? 【二、本人碰到】

嵌入式linux实验指导书

目录 实验一 linux常用指令练习 (3) 1、在线帮助指令 (3) 2、linux开关机及注销指令。 (3) 重启指令: (3) 1)、reboot命令 (3) 2)、init 6命令 (3) 关机指令: (3) 1)、halt命令 (3) 2)、poweroff命令 (4) 3)、init 0命令 (4) 4)、shutdown命令 (4) 注销指令: (4) 3、用户管理命令 (4) 1)、用户切换su命令 (4) 2)、添加用户命令adduser/useradd (5) 3)、删除用户及更改用户属性 (5) 4)、设置用户密码 (6) 5)、查看用户信息 (6) 4、文件目录操作指令 (7) 1)、改变当前工作目录命令(cd) (7) 2)、显示当前路径pwd (7) 3)、查看当前目录下的文件命令ls (7) 4)、新建目录指令mkdir (8) 5)、删除目录命令rmdir (8) 6)、新建文件命令touch (8) 7)、删除文件指令rm (8) 8)、文件和目录的复制命令cp (8) 9)、文件和目录的移动命令mv (9) 10)、更改文件或目录的使用权限chmod (9) 11)、查看文件的命令cat (9) 12)、文件链接命令ln (9) 13)、文件压缩解压命令 (10) 5、网络相关命令 (11) 6、磁盘管理命令 (11) 7、挂载文件命令mount (12) 8、其他系统命令 (12) 练习1: (13) 练习2: (15) 练习3: (16) 练习4: (21) 实验二 VI文本编辑器的使用 (24) 1、练习使用VI指令 (24) 2、利用VI编写一个hello.c文件 (24)

嵌入式LINUX四按键驱动

对一个具有四个按键的按键驱动的分析 源代码: /*Headers-------------------------------------------------*/ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_DEVFS_FS #include #endif /*V ars----------------------------------------------------*/ #define DEVICE_NAME "buttons" #define EXTINT_OFF (IRQ_EINT4 - 4) unsigned int buttons_major=0; unsigned int buttons_minor=0; unsigned int type = IRQT_FALLING; struct button_info { unsigned int irq_no; unsigned int gpio_port; unsigned int IN; int button_no; }; struct button_info realarm_button_info[4] = { { IRQ_EINT19, S3C2410_GPG11, S3C2410_GPG11_INP, 1 }, { IRQ_EINT8, S3C2410_GPG0, S3C2410_GPG0_INP, 2 },

linux基础实验报告含代码

Linux基础实验

目录 实验一 (3) 实验二 (4) 实验三 (6) 实验四 (9) 实验五 (11) 实验六 (14) 实验七 (16)

实验一螺旋矩阵 一、实验目的 1.熟悉linux下c程序编写。 2.掌握Makefile编写方法。 二、实验环境和工具 Red Hat Linux 三、实验流程 1.编写螺旋矩阵程序 2.编写Makefile文件 四、实验结果 五、实验心得 通过这次实验,我熟悉了linux下c语言程序的编写,掌握了vi的一些常用操作,学会了使用gcc命令和makefile文件两种方法编译程序。同时也使我熟悉了linux里常用命令的使 用,还有,学会了挂载U盘的方法,可以很方便的往linux里传送文件。 六、关键代码 Makefile 文件 CC=gcc EXEC=juzhen OBJS=juzhen.o all:$(EXEC) $(EXEC):$(OBJS) $(CC) -o $@ $(OBJS) clean: -rm -f $(EXEC) $(OBJS)

实验二添加、删除用户 一、实验目的 1.设计一个shell程序,分组批量添加用户。 2.再设计一个批量删除用户的shell程序。 二、实验环境和工具 Red Hat Linux 三、实验流程 1.编写shell程序 2.修改文件权限 chmod +x addusers 3.运行脚本 四、实验结果 添加用户: 删除用户:

五、实验心得 通过本次实验,我了解了shell脚本编程的方法和其语法规则。掌握了使用shell脚本程序添加、删除用户的方法。需要注意的是:shell脚本直接用vi编写,要特别注意空格。 六、关键代码 添加用户: 删除用户:

嵌入式Linux系统开发教程实验报告

嵌入式实验报告 : 学号: 学院: 日期:

实验一熟悉嵌入式系统开发环境 一、实验目的 熟悉Linux 开发环境,学会基于S3C2410 的Linux 开发环境的配置和使用。使用Linux的armv4l-unknown-linux-gcc 编译,使用基于NFS 方式的下载调试,了解嵌入式开发的基本过程。 二、实验容 本次实验使用Redhat Linux 9.0 操作系统环境,安装ARM-Linux 的开发库及编译器。创建一个新目录,并在其中编写hello.c 和Makefile 文件。学习在Linux 下的编程和编译过程,以及ARM 开发板的使用和开发环境的设置。下载已经编译好的文件到目标开发板上运行。 三、实验设备及工具 硬件::UP-TECH S2410/P270 DVP 嵌入式实验平台、PC 机Pentium 500 以上, 硬盘10G 以上。 软件:PC 机操作系统REDHAT LINUX 9.0+超级终端(或X-shell)+AMR-LINUX 开发环境。 四、实验步骤 1、建立工作目录 [rootlocalhost root]# mkdir hello [rootlocalhost root]# cd hello 2、编写程序源代码 我们可以是用下面的命令来编写hello.c的源代码,进入hello目录使用vi命令来编辑代码: [rootlocalhost hello]# vi hello.c 按“i”或者“a”进入编辑模式,将上面的代码录入进去,完成后按Esc 键进入

命令状态,再用命令“:wq!”保存并退出。这样我们便在当前目录下建立了一个名为hello.c的文件。 hello.c源程序: #include int main() { char name[20]; scanf(“%s”,name); printf(“hello %s”,name); return 0; } 3、编写Makefile 要使上面的hello.c程序能够运行,我们必须要编写一个Makefile文件,Makefile文件定义了一系列的规则,它指明了哪些文件需要编译,哪些文件需要先编译,哪些文件需要重新编译等等更为复杂的命令。使用它带来的好处就是自动编译,你只需要敲一个“make”命令整个工程就可以实现自动编译。Makefile源程序: CC= armv4l-unknown-linux-gcc EXEC = hello OBJS = hello.o CFLAGS += LDFLAGS+= –static all: $(EXEC) $(EXEC): $(OBJS) $(CC) $(LDFLAGS) -o $ $(OBJS) clean: -rm -f $(EXEC) *.elf *.gdb *.o 下面我们来简单介绍这个Makefile 文件的几个主要部分: CC 指明编译器 EXEC 表示编译后生成的执行文件名称 OBJS 目标文件列表

嵌入式Linux下3G模块的驱动和应用

嵌入式Linux下3G模块的驱动和应用 1、开发资源 1.1、硬件资源: ZTE-mf637u(中国联通) ZTE-mu351(中国移动) 1.2、软件资源: 1.2.1、usb-modeswitch-1.1.3 libusb-0.1.12.tar.gz usb-modeswitch-1.1.3.tar.bz2 1.2.2、ppp-2.4.4 libpcap-0.9.8.tar.gz ppp-2.4.4.tar.gz 1.2.3、wvdial 1.2.3.1、wvdial-1.54.0(arm-linux-gcc 3.4.1) zlib-1.2.5.tar.bz2 openssl-0.9.7g.tar.gz openssl-0.9.7g-fix_manpages-1.patch wvstreams-4.0.1.tar.bz2

wvstreams-4.0.1-tcl84-1.patch wvdial-1.54.0.tar.gz 1.2.3.2、wvdial_1.60.4(arm-linux-gcc 4.2.2) zlib-1.2.5.tar.bz2 openssl-0.9.8n.tar.gz openssl-0.9.8n-fix_manpages-1.patch wvstreams-4.6.1.tar.gz wvdial_1.60.4.tar.gz 2、Linux开发环境 2.1、主机环境 2.1.1、主机linux系统 Fedora Core 6 2.1.2、主机编译环境 2.1.2.1、gcc -v Using built-in specs. Target: i386-redhat-linux Configured with: ../configure --prefix=/usr --mandir=/usr/share/man --infodir=/usr/share/info --enable-shared --enable-threads=posix --enable-checking=release --with-system-zlib --enable-__cxa_atexit --disable-libunwind-exceptions --enable-libgcj-multifile

编写嵌入式Linux设备驱动程序的实例教程

编写嵌入式Linux设备驱动程序的实例教程 一、Linux device driver 的概念 系统调用是操作系统内核和应用程序之间的接口,设备驱动程序是操作系统内核和机器硬件之间的接口。设备驱动程序为应用程序屏蔽了硬件的细节,这样在应用程序看来,硬件设备只是一个设备文件,应用程序可以象操作普通文件一样对硬件设备进行操作。设备驱动程序是内核的一部分,它完成以下的功能: 1、对设备初始化和释放; 2、把数据从内核传送到硬件和从硬件读取数据; 3、读取应用程序传送给设备文件的数据和回送应用程序请求的数据; 4、检测和处理设备出现的错误。 在linux操作系统下有三类主要的设备文件类型,一是字符设备,二是块设备,三是网络设备。字符设备和块设备的主要区别是:在对字符设备发出读/写请求时,实际的硬件I/O一般就紧接着发生了,块设备则不然,它利用一块系统内存作缓冲区,当用户进程对设备请求能满足用户的要求,就返回请求的数据,如

果不能,就调用请求函数来进行实际的I/O操作。块设备是主要针对磁盘等慢速设备设计的,以免耗费过多的CPU时间来等待。 已经提到,用户进程是通过设备文件来与实际的硬件打交道。每个设备文件都都有其文件属性(c/b),表示是字符设备还是块设备?另外每个文件都有两个设备号,第一个是主设备号,标识驱动程序,第二个是从设备号,标识使用同一个设备驱动程序的不同的硬件设备,比如有两个软盘,就可以用从设备号来区分他们。设备文件的的主设备号必须与设备驱动程序在登记时申请的主设备号一致,否则用户进程将无法访问到驱动程序。 最后必须提到的是,在用户进程调用驱动程序时,系统进入核心态,这时不再是抢先式调度。也就是说,系统必须在你的驱动程序的子函数返回后才能进行其他的工作。如果你的驱动程序陷入死循环,不幸的是你只有重新启动机器了,然后就是漫长的fsck。 二、实例剖析 我们来写一个最简单的字符设备驱动程序。虽然它什么也不做,但是通过它可以了解Linux的设备驱动程序的工作原理。把

实验七Linux块设备驱动

实验七:Linux块设备驱动块设备是与字符设备并列的概念,这两类设备在Linux中驱动的结构有较大差异,总体而言,块设备驱动比字符设备驱动要复杂得多,在I/O操作上表现出极大的不同,缓冲、I/O调度、请求队列等都是与块设备驱动相关的概念。本章将详细讲解Linux块设备驱动的编程方法。 1.块设备的I/O操作特点 字符设备与块设备I/O操作的不同如下: (1)块设备只能以块为单位接受输入和返回输出,而字符设备则以字节为单位。大多数设备是字符设备,因为它们不需要缓冲而且不以固定块大小进行操作。 (2)块设备对于I/O请求有对应的缓冲区,因此它们可以选择以什么顺序进行响应,字符设备无须缓冲且被直接读写。对于存储设备而言调整读写的顺序作用巨大,因为在读写连续的扇区比分离的扇区更快。 (3)字符设备只能被顺序读写,而块设备可以随机访问。虽然块设备可随机访问,但是对于磁盘这类机械设备而言,顺序地组织块设备的访问可以提高性能。而对SD卡、RamDisk(RamDisk 是通过使用软件将RAM模拟当做硬盘来使用的一种技术)等块设备而言,不存在机械上的原因,进行这样的调整没有必要。 2.Linux块设备驱动结构 2.1.block_device_operations结构体 在块设备驱动中,有一个类似于字符设备驱动中file_operations结构体的 block_device_operations结构体,它是对块设备操作的集合,定义如代码清单1所示。 代码清单1 block_device_operations结构体

下面对其主要的成员函数进行分析。 与字符设备驱动类似,当设备被打开和关闭时将调用它们。 2.IO控制 上述函数是ioctl()系统调用的实现,块设备包含大量的标准请求,这些标准请求由Linux 块设备层处理,因此大部分块设备驱动的ioctl()函数相当短。 被内核调用来检查是否驱动器中的介质已经改变,如果是,则返回一个非0值,否则返回0。这个函数仅适用于支持可移动介质的驱动器,通常需要在驱动中增加一个表示介质状态是否改变的标志变量,非可移动设备的驱动不需要实现这个方法。 4.使介质有效 revalidate_disk()被调用来响应一个介质改变,它给驱动一个机会来进行必要的工作以使新介质准备好。 5.获得驱动器信息 根据驱动器的几何信息填充一个hd_geometry结构体,hd_geometry结构体包含磁头、扇区、柱面等信息。 6.模块指针 一个指向拥有这个结构体的模块的指针,它通常被初始化为THIS_MODULE。 2.2.gendisk结构体 在Linux内核中,使用gendisk(通用磁盘)结构体来表示1个独立的磁盘设备(或分区),这个结构体的定义如代码清单2所示。 代码清单2 gendisk结构体

相关文档
最新文档