消声器标准分析解析

消声器标准分析解析
消声器标准分析解析

备案号:210221.KF.852

Q/DZH 大连兆和科技发展有限公司企业标准

Q/DZH.003-2003

代替 Q/DZH.J.002-2002

通风空调

消声器及静压箱

2003-08-10 发布 2003-08-10 实施

大连兆和科技发展有限公司发布

Q/DZH.003-2003

编制说明

本标准是大连兆和科技发展有限公司为本公司生产通风消声器(以下简称消声器)、静压箱而编制的。在编制过程中,参考了国家现行出版的手册、标准及规范,并结合公司几年来发展的实际状况及顾客提出的有关要求。

本标准是兆和科技有限公司指导性技术文件,凡本公司涉及消声器、静压箱制作的工艺及要求不得低于本标准,确保消声器、静压箱满足使用要求。

本标准实施之日后,随国家和行业新标准、规范的发布而修正。

当本标准与顾客要求不一致时,按照合同要求执行。

Q/DZH.003--2003

前言

本标准是大连兆和科技发展有限公司为本公司生产通风消声器及静压箱(以下简称消声器)而编制的。在编制过程中,依据国家现行出版的手册、标准及规范,并结合公司几年来发展的实际以及顾客提出的有关要求。

本标准是大连兆和科技发展有限公司指导性技术文件,凡本公司涉及消声器制作的工艺及要求不得低于本标准,确保消声器、静压箱满足使用要求。

本标准实施之日后,随国家和行业新标准、规范的发布而修正。

当本标准与顾客要求抵触时,执行顾客要求。

本标准属第一次修订。修订的原因是国家验收规范的换版和格式的修订。

本标准由大连兆和科技发展有限公司提出。

本标准由大连兆和科技发展有限公司起草。

本标准由大连兆和科技发展有限公司批准。

本标准主要起草人:才效辉

Q/DZH.003-2003 通风消声器及静压箱

1 范围

本标准规定了通风消声器、静压箱(以下简称消声器)的分类,基本规格,要求,试验方法,检验规则,标识,使用说明及包装,运输,贮存。

本标准适用于通风空调系统中的各类消声器、静压箱。

2 分类与命名

2.1 按消声特性分类:

2.1.1阻性消声器

2.1.2微孔板消声器

2.1.3复合消声器

2.1.4室式消声器(消声静压箱、静压箱)

2.2 基本规格

2.2.1 矩形基本规格用其法兰内边长A×B乘消声器L(总长度)表示,单位mm。

2.2.2 矩形弯头规格代号为弯面尺寸×侧面尺寸。

2.3 型号表示法

2.3.1 型号表示法

规格代号

(见表1)

分类代号表表1

Q/DZH.003--2003 2.3.2 型号示例

ZHXS.2WG150---500×250×1000L

表示消声器为双层微孔板管式,腔深150,规格为500×250×1000L.

ZHXS.ZB---300×200×1000L

表示消声器为阻性折板式,300×200×1000L。

3 基本要求

3.1 基本要求

3.1.1 消声器和静压箱产品应符合本标准要求,并按规定程序批准的图样和技术文件制

作。

3.1.2 消声器及法兰制作尺寸的允许偏差应符合表2规定。

消声器及法兰制作尺寸的允许偏差表2

3.2 消声器强度要求

3.2.1 由于消声器内填充多孔吸声材料并且尺寸较大,为保证内外板面平整,须设置龙

骨,龙骨间距450-550毫米,龙骨紧贴板壁,用φ5抽芯铝铆钉,铆钉间距150- 250

毫米。

3.2.2 消声器外壳厚度可按照矩形或圆形风管用料标准降低一级标准,内孔板采用厚度

0.6镀锌板。外壳厚度见表3:

消声器外壳厚度表3

注:静压箱外形尺寸的3个数值中,其中最大的2个数值在1250mm以上时,外壳材料采

用1.2mm镀锌板;在630~1000mm时采用1.0mm镀锌板;在500mm以下时,采用0.75mm

镀锌板。

3.3 洁净与密封要求

Q/DZH. 003—2003

消声器在制作过程中,应将孔板、镀锌板表面擦干净,无油污和灰尘;在板材拼接处及四角处用胶密封,防止漏风漏声;其共振腔的分隔应符合设计要求,隔板与壁板结合处紧密。

3.4 外观要求

3.4.1 消声器表面无严重划伤,折角平直,圆弧均匀,两端面平行,无扭翘,表面凹凸不大

于5mm。

3.4.2 消声器法兰铆接平整,铆接牢固。

3.4.3 管式消声器及消声弯头的内衬消声材料应均匀紧贴,不得有脱落,拼缝应严密,

表面应平整,吸声片间距均匀牢固。

3.4.4消声器合口严密,无明显锤痕和不严现象,孔板应平整无毛刺,其孔径和孔的排

列应符合设计要求。

3.4.5消声器充填的消声材料,应按规定的容重均匀铺放,并应有防止下沉的措施,消

声材料的覆面层不得有破损,搭接时应顺气流方向,且界面不得有毛边,消声器内直接迎风面的布置应有保护措施。

3.4.6 消声弯头的平面法兰边长>500时,应加设导流吸声片,吸声片表面应平滑,不得

有毛刺,圆弧均匀,与弯管连接紧密牢固,不得有松动现象。

3.5 材料要求

3.5.1消声器壳体材料,用于一般空调系统采用镀锌板,如用在有腐蚀性气体的厂所,应

采用不锈钢等防腐材料。

3.5.2消声器所用材料均应符合设计规定的防火,防腐,防潮和卫生要求.。

3.5.3有一定的力学性能,在使用和运输过程中,不易损坏,经久耐用,不易老化。

3.5.4在宽频带范围内,吸声系数要高,吸声性能要长期稳定可靠。

3.5.3 消声器法兰用料及规格按通风风管法兰用料及规格。

4 检验方法

4.1 尺寸测量

消声器的各种尺寸和偏差用钢卷尺、拉线检查

4.2 强度检查

消声器龙骨布置间距,铆钉间距,尺量检查.

Q/DZH. 003—2003

4.3 外观检查

观察检查

4.4 材料检验

材料用游标卡尺和卷尺检查,表面情况通过观察确定

4.5 法兰平整度

观察和尺量检查

4.6消声量测量

采用国际ISO标准消声器动态测试系统,国家消声器测量标准。

5检验规则

5.1 检验分类和检验项目

5.1.1 消声器检验分出厂检验和形式检验

5.1.2检验项目

消声器检验项目表4

5.2.1每个消声器必须经质保部检验合格,并在消声器上贴盖章的产品合格证,方可出

5.2.2消声器出厂检验应按表7中1、2、3、4、5项的内容逐个逐项检验,合格后方可

入库

5.3形式检验

5.3.1消声器有下列情况之一时,应进行形式检验:

a.试制的新产品定型时

b.产品结构和制造工艺等更改时,对性能有影响时

c.产品转厂生产时

d.国家质量监督机构提出形式检验要求时

5.3.2消声器形式检验应包括5.2全部项目

5.3.3形式检验抽样方法应在合格品中抽取,抽取样品数量按表5

Q/DZH. 003—2003

抽检数量(个)表5

5.4判定规则,

在抽取样品中有一个检验不合格,则加倍抽取,如检验仍有一个不合格,则该

批判为不合格产品

6 标志、包装、运输、贮存

6.1 标志

在每个产品上贴规格标签,内容如下:

a.名称、型号、规格

b.公司名称

c.编号

d.生产日期

e.数量,

f.有要求时填写重量

6.2 使用说明书

使用说明书应规定下列内容:

a)概述

b)性能指标

c)基本规格

d)分类及代号

e)安装方法

f)使用注意事项

g)消声器检测报告

6.3包装

6.3.1法兰口两端用塑料布封死,防止灰尘进入

6.3.2外壳要用软性材料隔开,防止摩擦划伤

6.3.3随包装好的产品,携带两份交货单

6.4运输和贮存

6.4.1产品在运输过程中,不应受碰撞、挤压、抛投、雨雪淋袭

6.4.2产品贮存时要摆放整齐,同种规格放一起,大规格在下,小规格在上,并不宜堆放过

高。

排气系统消声器设计技术规范标准

排气消声系统设计技术规范 目录 一、主题与适用范围 1、主题 2 、适用范围 二、排气消声系统的总称说明及功用 三、设计应用 1 、设计规则和输入 2 、设计参数的设定 2.1 尺寸及重量 2.2 排气背压 2.3 功率损失比

2.4 净化效率 2.5 加速行驶车外噪声 2.6 插入损失及传递函数 2.6.1 插入损失 2.6.2 传递函数 2.7 尾管噪声 2.8 定置噪声 2.9 振动 3 、系统及零部件的设计

3.1 系统布置 3.1.1 布置原则 3.1.2 间隙要求 3.1.3 吊钩位置的选取 3.1.4 氧传感器孔的布置 3.2 消声器的容积确定 3.3 排气管径的选取 3.4 消声器 3.4.1 消声器的截面形状 3.4.2 消声器内部结构 3.5 补偿器 3.5.1 波纹管 3.5.2 球形连接 3.6 橡胶吊环 3.7 隔热部件 3.8 材料选择 3.8.1 排气管、消声器内组件 3.8.2 消声器外壳体四、参考文献列表

一、主题与适用范围 1、主题: 本指南规定了与汽车发动机相匹配的排气消声系统的系统匹配,零部件设计。 2、适用范围: 本指南适用于装汽油M1 、N1 类车的排气消声系统设计。 二、排气消声系统的总成说明及功用 排气系统包括排气歧管、排气管、排气净化装置、排气消声装置、隔热部件、弹性吊块等。一般地,排气系统具有以下一些功用: (1) 引导发动机排气,使各缸废气顺畅的排出; (2) 由于排气门的开闭与活塞往复运动的影响,排气气流呈脉动形式,排气门打开时存在一定的压力,具有一定的能量,气体排出时会产生强烈的排气噪声,气体和声波在管道中摩擦也会产生噪声,因此在排气系统装有排气消声器来降低

Hypermesh计算消声器模态

运用Hypermesh计算消声器模态 1 概述 目前许多CAE分析都采用HyperMesh进行网格划分,后期计算采用其它如Nastran,Ansys等分析软件,在多个软件之间的接口,需要设置不同的控制卡片,对于CAE分析来讲比较烦琐,过多的文件转换也容易造成信息遗漏。HyperWorks自带的求解器RADIOSS和后处理软件HyperView可以很好的解决这个问题。整个分析过程在同一个操作界面中可以实现。模态分析是汽车零部件常见的分析工况,本文通过对汽车消声器的计算实例,说明HyperWorks在模态计算方面的应用。 2 消声器结构分析 消声器是汽车上重要的降噪部件。目前消声气多注重声学方面的研究,针对其振动形式研究较少,缺少量化标准。对消声器支架以及消声器安装设计来讲,消声器的振动研究是必要的。本文通过对消声器进行数字化建模,计算其振动模态,并模拟在特定激励下消声器的响应,获取消声器的动力学参数。 2.1 消声器概况 利用CATIA V5R19软件中的钣金模块建立模型。消生器内部采用焊接的方式连接。中间的消声层采用高温耐热材料,将排气的声能转化为热能。为提高计算效率,对模型的一些细节进行了简化。去除焊接部位及边缘的折棱,取消外部的隔热板以及安装的支架。模型如图1所示。 图1 几何模型 2.2 网格的前处理 对将Catia装配模型导入HyperMesh10.0进行网格划分。消声器大部分是薄壁件,用Shell单元对消声器薄板进行划分。导入HyperMesh的零件模型为面元素,进行相应的几何清理,利用HyperMesh里面的midsuface面板进行中面抽取操作。对于体的部分也进行了抽取中面的操作。 分别在各个面上划分网格,为了控制网格的数量,进排气管上,以及共振腔壁面上的圆孔用小方孔近似替代见图2,内部的薄板是焊接在外层蒙皮上的,直接合并结点,将其连接为一体见图3。

柴油机消声器的设计原理及测试方法

第一部分:柴油机消声器设计原理 一、阻性消声器的原理 阻性消声器是利用吸声材料的吸声作用,使沿管道传播截面积的改变或旁接共振腔等在声传播过程引起声阻抗的改变,产生声能的反射与消耗,从而达到消声目的的消声装置。 其主要原理是利用多孔吸声材料来降低噪声。把吸声材料固定在气流通道的内壁上或按照一定方式在管道中排列,就构成了阻性消音器。当声波进入阻性消声器时,一部分声能在多孔材料的孔隙中摩擦而转化成热能耗散掉,使通过消声器的声波减弱。阻性消音器器就好像电学上的纯电阻电路,吸声材料类似于电阻。因此,人们就把这种消声器称为阻性消声器。阻性消声器对中高频消声效果奸、对低频消声效果较差。 阻性消声器形式种类很多,目前用在机房低噪声工程上的主要由直管式消声器和片式消声器两种。其消声性能主要与通道形式、长度及吸声材料的性能有关。直管式消声器是阻性消声器中最简单的一种。 二、阻性消声器设计技术要点: 2.1、正确合理选择阻性消声器的结构形式 对大风量大尺寸进排风要求场合宜选用片式消声器,对消声量要求较高,风压余量较大的进排风场合宜选用折板式或多室式消声器,对确少安装空间的场合可选用百页式消声器。 2.2、正确选用阻性吸声材料 选择阻性消声器内的多孔吸声材料除了应满足吸声性能要求之外,还应注意防潮、耐湿、耐气流冲刷及净化等工艺要求。通常采用离心玻璃棉和矿棉作为吸声材料,如有净化及防纤维吹出要求,则可采用阻燃聚氨脂声学泡沫塑料,对某些地下工程砖砌风道消声,则可选用膨胀珍珠岩吸声砖作为阻性吸声材料。 2.2.1 合理确定阻性消声器内吸声层的厚度及密度 对于一般阻性直管式及片式消声器的吸声片厚度宜为50~100mm,对于低频噪声成分较多的管道消声,则消声片厚度可取150~200mm,而靠消声器外壳的吸声层厚度一般可取消声片厚度的一半;为减少阻塞比,增加气流通道面积,也可将片式消声器的消声片设计成一半为厚片,一半为薄片。消声片内的离心玻璃棉或矿棉的密度通常应选24~48kg/m3,密度大一些对低频消声有利。而阻燃聚氨脂声学泡沫塑料的密度宜为30~40kg/m3。 2.2.2 合理确定阻性消声器内气流通道的断面尺寸 阻性消声器的断面尺寸对消声器的消声性能及空气动力性能均有直接关系。下表为阻性消声器通道断面尺寸控制值,超过该控制值,消声器将呈高频失效状态。

消声器的安装要求

安装给排水、采暖预算知识点 1、给排水管道界线划分 (1)给水管道的室内外界限:以建筑物外墙皮外为分界点,若入口外设有阀门的以阀门为分界点。给水管道与市政管道的界限:给水管道以计量表为界,无计量表的与市政管道碰头点为界 (2)排水管道的室内外界限:以排水管出户第一个检查井为分界点,检查井与检查井之间的管道为室外排水管道。排水管道与市政管道的界限:排水管道以室外排水管道最后一个检查井为界,无检查井的以与市政管道碰头点为界 (3)采暖管道的室内外界限:以建筑物外墙皮为分界点,若入口处设有阀门的以阀门为分界点。室外采暖管道与市政管网的界限:由市政管网统一供热的按各供热站为界,由室外管网至供热站外墙皮处的主管为市政工程。由供热站往外送热的管道以外墙皮处为分界,分界点以外的为采暖工程 2、记取有关费用的规定: (1)设置在管道间(指高层建筑中专为安装管线设置的竖向通道,也称“管道井”)、管廊(指借用宾馆或饭店内封闭的天棚安装管道)内的管道施工的增加费:设置在管道间或管廊内的管道、阀门、法兰、支架,其定额人工乘以系数。(2)高层建筑增加费:指高度在六层或20m以上的工业与民用建筑的增加费,按各册定额规定的系数计取费用 (3)超高增加费:定额中操作物高度均以为界限,如超过时(指至操作物高度),其超过部分的定额人工乘以下列系数 (4)安装与生产同时进行增加费:按人工费的10%计取,全部为人工费 (5)在有害身体健康环境中施工增加费:按人工费的10%计取,全部为人工费(6)采暖工程系统调整费:按采暖工程人工费的15%计算,其中人工工资占20%。采用工程量清单计价模式的工程项目,采暖工程系统调整在分部分项工程量清单中单独列项,单价可参考采暖工程系统调试费 (7)脚手架搭拆费:按分部分项工程人工费的5%计算,其中人工工资占25%。采用工程量清单计价模式的项目,脚手架应列入措施项目清单,单价可参照脚手架搭拆费 3、配水附件:指装在给水支管末端,供给各类卫生器具和用水设备的配水龙头和生产、消防等用水设备 控制阀门:指控制水流方向,调节水量、水压以及关断水流,便于管道、仪表和设备检修和各类阀门 4、识读给排水平面图必须掌握的内容: (1)查明卫生器具、用水设备及升压设备的类型、数量、安装位置、定位尺寸。(2)弄清楚给水引入管和污水排出管的平面位置、走向、定位尺寸、管径、坡度以及与室外管网的连接方式等 (3)查明给水排水干管、立管、支管的平面位置、走向、管径及立管编号 5、识读给排水系统图必须掌握的内容:

消音器设计计算书样本

消音器设计计算书 由于中国当前对消音器的设计, 还没有统一的标准规范能够遵照执行, 大多数厂家均根据自己的经验来设计制作, 且技术又相对保密的。因此本消音器的设计, 经查阅大量资料, 采用科学院声学研究所马大猷教授等人提出的小孔喷注噪声极其控制理论, 采用节流降压与小孔消音的原理结合现场实际情况来设计解决环境噪声超标的难题。 消音器的工艺参数为: 蒸汽排放绝对压力: 40 kg/ cm2, 排汽温度: 390℃, 蒸汽比容ρ: 0.0721 m3/ kg, 排汽流量 Q: 8t/h; 噪声达到110dB以上, 要求消音器的噪声小于85dB 的环保要求。 一、设计原理。 复合式小孔喷注消音器是利用节流作用降低小孔喷注前的驻压, 预先消耗部分声能, 再dB与小孔降噪相结合, 达到较高的消声量; 其原理是利用节流降压与小孔喷注两种消声机理, 经过适当结构复合而成的。 1. 小孔喷注消音器 小孔喷注消音器的设计机理是根据科学院声学研究所马大猷教授等人提出的小孔喷注噪声极其控制理论, 从发声机理上使它的干扰噪声减少, 由于喷注噪声峰值频率与喷口直径成反比, 若喷口直径变小, 喷口辐射的噪声能量将丛低频移向高频, 于是低频噪声被降低, 高频噪声反而增高, 当孔径小到一定值

( 达到mm级) , 实验表明, 当孔径≤4mm时具有移频作用, 喷注噪声将移到人耳不敏感的频率范围( 听觉最敏感的区域250~5000赫兹) ; 根据这一机理将一个大的喷口改为许多小孔来代替, 便能达到降低可听声的目的。从实用角度考虑, 孔径不能选得过小, 因为过小的孔径不但难于加工, 同时易于堵塞, 影响排汽。一般选用直径1~3mm的小孔为宜。 2.节流降压消音器 节流降压消音器是利用节流降压原理而制成的。根据排汽流量的大小, 适当设计通流截面, 使高压气体经过节流孔板时, 压力都能最大限度地降低到临界值。这样经过多级节流孔板串联, 就能把排空的一次压降分散到若干个小的压降。由于排汽噪声功率与压力降的高次方成正比例, 因此把压力突变排空改为压力在消音器内就逐渐降下来再排空, 这样能使消音器内流速控制在临界流速下, 不致产生激波噪声, 压力在最大限度地降到临界值, 使消音器获得较好的消声效果。同时节流降压后小孔喷注层的驻压大大变小, 小孔喷注层强度设计所需的壁厚也大为减薄, 这样给小孔喷注层的钻孔加工减小难度。 消音器入口处的压力一般是给定的, 当排放压力较高时, 为了取得所需的消声值, 经过几次节流降压, 使汽体进入小孔喷注前的压力由消音器入口处的压力P1按比例降低设计; 一般情况下, 节流降压消音器的各级压力选择为等比级数下降, 设节流孔板级数为n, 临界压力比为q (q<1) , 可得:

消声设备技术要求

风口末端的消声器技术要求1. 各类房间允许噪声值(dB) 2.噪声级对谈话干扰的程度

3.室内平均吸声系数

4.吸声材料的吸声系数 5.消声器性能参数(1节,900长)

消声器分类: 1.阻性片式消声器 2.阻性折板消声器 3.管式消声器 4.微穿孔板消声器 5.消声弯头 6.消声静压箱 设计选用原则 1.选用消声器时,除考虑消声量之外,还应考虑系统允许的阻力损失、安装地点和空间大小、造价的高低以及消声器的防火、防尘、防霉、防蛀性能等。 2.消声器应设于风管系统中气流平稳的管段上。当风管内气流速度小于8m/s时,宜放在接近风机的主管上。当风管内气流速度大于8m/s时,宜分装在各支风管上。在风机出风口出,为使风管内气流平稳和消除一部分噪声,宜安装消声静压箱。 3.消声器不宜设置在空调机房内,也不宜设置在室外,防止噪声穿透进入消声器后的管道。必要时,应采用外壁隔声措施。 4.当一根风管输送多个房间时,可采用增加消声弯头、消声静压箱等措施。 5.由于建筑物空间限制,消声器数量应控制在合理范围内。当消声器数量不能满足要求时,尽可能采用增加消声静压箱等措施。 6.引用标准:HJ/J16-1996 《通风消声器》

GB4760-84 《消声器引用标准》 ZBJ72039-90 《通风机铆焊件技术要求》 GB3096-93 《城市区域环境噪声标准》 GB0019-2003 《采暖通风与空气调节设计规范》 7.技术指标性能要求 7.1选用的材料应符合设计的规定,如防火、防腐、防潮、耐高温和卫生要求。 7.2 外壳应牢固、严密,其漏风量应符合以下规定,并附测试报告:消声器外壳的强度应满足在1.5倍工作压力下接缝处无开裂: 0.01176P0.65 高压系统风管Q H≤ 0.1056P0.65 低压系统风管Q H≤ 中压系统风管Q H≤0.03256P0.65 7.3消声器与风管连接采用法兰连接, 法兰规格(长边尺寸b,单位mm) b≤630 法兰宽度25mm 630

消音器设计计算书

消音器设计计算书 由于我国目前对消音器的设计,还没有统一的标准规范可以遵照执行,大多数厂家均根据自己的经验来设计制作,且技术又相对保密的。因此本消音器的设计,经查阅大量资料,采用科学院声学研究所马大猷教授等人提出的小孔喷注噪声极其控制理论,采用节流降压与小孔消音的原理结合现场实际情况来设计解决环境噪声超标的难题。 消音器的工艺参数为:蒸汽排放绝对压力:40 kg/ cm2,排汽温度:390℃,蒸汽比容ρ:0.0721 m3/ kg,排汽流量Q:8t/h; 噪声达到110dB以上,要求消音器的噪声小于85dB的环保要求。 一、设计原理。 复合式小孔喷注消音器是利用节流作用降低小孔喷注前的驻压,预先消耗部分声能,再dB与小孔降噪相结合,达到较高的消声量;其原理是利用节流降压与小孔喷注两种消声机理,通过适当结构复合而成的。 1. 小孔喷注消音器 小孔喷注消音器的设计机理是根据科学院声学研究所马大猷教授等人提出的小孔喷注噪声极其控制理论,从发声机理上使它的干扰噪声减少,由于喷注噪声峰值频率与喷口直径成反比,若喷口直径变小,喷口辐射的噪声能量将丛低频移向高频,于是低频噪声被降低,高频噪声反而增高,当孔径小到一定值(达到mm 级),实验表明,当孔径≤4mm时具有移频作用,喷注噪声将移

到人耳不敏感的频率范围(听觉最敏感的区域250~5000赫兹); 根据这一机理将一个大的喷口改为许多小孔来代替,便能达到降低可听声的目的。从实用角度考虑,孔径不能选得过小,因为过小的孔径不仅难于加工,同时易于堵塞,影响排汽。一般选用直径1~3mm的小孔为宜。 2.节流降压消音器 节流降压消音器是利用节流降压原理而制成的。根据排汽流量的大小,适当设计通流截面,使高压气体通过节流孔板时,压力都能最大限度地降低到临界值。这样通过多级节流孔板串联,就能把排空的一次压降分散到若干个小的压降。由于排汽噪声功率与压力降的高次方成正比例,所以把压力突变排空改为压力在消音器内就逐渐降下来再排空,这样能使消音器内流速控制在临界流速下,不致产生激波噪声,压力在最大限度地降到临界值,使消音器获得较好的消声效果。同时节流降压后小孔喷注层的驻压大大变小,小孔喷注层强度设计所需的壁厚也大为减薄,这样给小孔喷注层的钻孔加工减小难度。 消音器入口处的压力通常是给定的,当排放压力较高时,为了取得所需的消声值,经过几次节流降压,使汽体进入小孔喷注前的压力由消音器入口处的压力P1按比例降低设计;通常情况下,节流降压消音器的各级压力选择为等比级数下降,设节流孔板级数为n,临界压力比为q (q<1) ,可得: n g P P q (1)后前 根据气体状态方程、连续性方程和临界流速公式,由资料可

消声器选型计算

燃气发电机组消声器选型书 燃气发电机组配置465Q-1发动机,发动机相关参数如下: 型式:四冲程、水冷、自然吸气式 发动机排量:0.97L 额定转速:3000r/min 气缸数:4 一、消声器主要结构形式 1.抗性消声器:通常对低、中频带消声效果好,高频消声效果差。 2.阻性消声器:对中、高频消声效果好,通常与抗性消声器组合起来使用 3.阻抗性符合型消声器:对低、中、高频噪声都有很好的消声效果 二、消声器性能要求 1.插入损失 D=L1-L2 式中:D-插入损失,dB; L1-安装消声器前在某点测量的排气声压级,dB;取 111 dB; L2-安装消声器后在某点测量的排气声压级,dB;取91.5 dB; D= 19.5 Db 2.消声器功率损失 R=(P1-P2)/P1×100% 式中:R-发动机额定功率点的功率损失比,%; P1-不带消声器而带空管时的发动机功率,kW; P2-带消声器后发动机功率,kW; 我国汽车消声器行业对不同车型的功率损失要求为:重型汽车R≤3%;中型汽车R≤5%;轻型汽车R≤6%,轿车R≤8%。 功率损失<5% 三、消声器的消声量 首先要确定降低排气噪声的目标值,即由发动机排气噪声大小,频谱特性和消声器所匹配车辆的噪声标准限制来决定消声器消声量大小。根据整车噪声限制来计算消声器出口噪声限制,假设声源特性属线性声源,声衰减量L为: L=10lg(R2/R1) (dB)(A) 式中:R1-消声器出口处噪声限制点到声源点距离;取1m(按试验测试收归返要求); R2-整车噪声限制测点到声源点距离。取7m(按试验测试要求) L=8.45dB 消声量Lm按以下公式计算: Lm=L1-( La+Lb) 式中:La-整机噪声限制,取68bB; Lb-机柜降低的噪声,91.5-72=19.5,取19.5 dB; Lm=111-(68+19.5)=23.5 dB 国华配YH465Q:>25 dB ,可满足要求。 7m处噪声限定值为:

直通穿孔管消声器声学性能计算及分析

直通穿孔管消声器声学性能计算及分析 季振林 (哈尔滨工程大学动力与核能工程学院,黑龙江哈尔滨150001) 摘 要:一维解析法和三维子结构边界元法被用于预测直通穿孔管消声器的消声性能.单腔直通穿孔管消声器传递 损失的预测结果与实验测量结果比较表明:一维解析法只适合于消声器的低频声学分析;对于高频声学性能的精确预测需要使用三维处理方法.进而边界元法被应用于研究穿孔率和几何参数对直通穿孔管消声器消声性能的影响.增加穿孔率能够拓宽消声器的有效消声频率范围.中心管部分穿孔时,消声器的传递损失在平面波域内呈现出拱形衰减和轴向共振的叠加,合理选择穿孔段长度和位置以匹配共振和通过频率能够获得理想的宽带消声效果.使用双级膨胀腔能够大大改善直通穿孔管消声器的中频消声性能.关键词:穿孔管消声器;消声性能;边界元法中图分类号:T B 535.2 文献标识码:A 文章编号:1006-7043(2005)03-0302-05 Acoustic attenuati on p erf or m ance calcul ati on and anal y sis of strai g ht -t hrou g h p erf orated t ube silencers JI Zhen-li n (S choo l o f Pow er and n uclear Ener gy En g i neeri n g ,H arb i n En g i neeri n g U n ivers it y ,H arb i n 150001,Ch i na ) Abstract :A one-di m ensional anal y tical a pp roach and a t hree-di m ensional substruct ure boundar y ele m ent m et hod (BEM )are develo p ed to p redict t he acoustic attenuation p erf or m ance o f strai g ht-t hrou g h p erf orated t ube silenc-ers.C om p arisons o f trans m ission loss p redictions w it h ex p eri m ental results f or si n g le cha m ber strai g ht-t hrou g h p erf orated t ube silencers ill ustrated t hat t he t hree-di m ensional a pp roach is needed f or accurate p rediction at hi g h-er fre C uencies , while t he one-di m ensional anal y tical a pp roach p rovi des a reasonable accurac y at low er fre C uencies onl y .T he BEM w as t hen used to i nvesti g ate t he eff ects o f p orosit y and g eom etrical p ara m eters on t he acoustic attenuation p erf or m ance o f strai g ht-t hrou g h p erf orated t ube silencers.I ncreasi n g t he p orosit y m a y ex p and t he eff ecti ve acoustic attenuation to hi g her fre C uenc y .T he trans m ission loss o f silencer w it h p artiall y -p erf orated t ube exhi bits a su p er p osition o f dom e attenuation and ax ial resonance i n t he p lane w ave re g ion.B y choosi n g t he len g t h and location o f p erf orated section to m atch t he resonances w it h t he trou g hs o f t he silencer ,a desirable broadband acoustic attenuation m a y be obtai ned.T he double ex p ansion cha m ber m a y g reatl y i m p rove t he no ise attenuation p erf or m ance o f strai g ht t hrou g h p erf orated t ube silencers i n t he m i ddle fre C uenc y ran g e. K e y words :p erf orated t ube silencer ; acoustic attenuation p erf or m ance ;boundar y ele m ent m et hod (BEM )收稿日期:2004-06-29. 基金项目:哈尔滨市科学研究基金资助项目(2004A FLX J010).作者简介:季振林(1965-),男,教授,博士生导师. 由于直通穿孔管消声器具有极低的流动阻力损失和良好的消声性能,已被广泛应用于内燃机进排气噪声控制.一维频域和时域方法虽已被应用于预 测直通穿孔管消声器的消声性能[1-3] ,但只适用于 消声器的低频声学分析.为精确预测消声器的高频 消声性能,需要使用三维数值方法.w an g 等[4] 应用 边界元法计算了同轴穿孔管共振器的传递损失.他们分别使用边界元法来模拟由穿孔结构分开的2个声学域,然后使用速度连续性和穿孔阻抗边界条件获得整个系统节点上声压和质点振速形成的方程组.Ji 和S ela m et [5]提出了一种多域边界元法预测三通穿孔管消声器的消声特性,数值预测结果与实验测量结果吻合良好.尽管一维解析法和三维数值法 第26卷第3期哈尔滨工程大学学报V o l .26N.32005年6月 Journal o f H arbi n En g i neeri n g U ni versit y Jun.2005

排气系统消声器设计技术规范标准

排气消声系统设计技术规范

目录一、主题与适用范围 1、主题 2、适用范围 二、排气消声系统的总称说明及功用 三、设计应用 1、设计规则和输入 2、设计参数的设定 2.1 尺寸及重量 2.2 排气背压 2.3 功率损失比 2.4 净化效率 2.5 加速行驶车外噪声 2.6 插入损失及传递函数 2.6.1 插入损失 2.6.2 传递函数 2.7 尾管噪声 2.8 定置噪声 2.9 振动 3、系统及零部件的设计

3.1 系统布置 3.1.1 布置原则 3.1.2 间隙要求 3.1.3 吊钩位置的选取 3.1.4 氧传感器孔的布置3.2 消声器的容积确定 3.3 排气管径的选取 3.4 消声器 3.4.1 消声器的截面形状 3.4.2 消声器内部结构3.5 补偿器 3.5.1 波纹管 3.5.2 球形连接 3.6 橡胶吊环 3.7 隔热部件 3.8 材料选择 3.8.1 排气管、消声器内组件 3.8.2 消声器外壳体 四、参考文献列表

一、主题与适用范围 1、主题: 本指南规定了与汽车发动机相匹配的排气消声系统的系统匹配,零部件设计。 2、适用范围: 本指南适用于装汽油M1、N1类车的排气消声系统设计。 二、排气消声系统的总成说明及功用 排气系统包括排气歧管、排气管、排气净化装置、排气消声装置、隔热部件、弹性吊块等。一般地,排气系统具有以下一些功用: (1) 引导发动机排气,使各缸废气顺畅的排出; (2) 由于排气门的开闭与活塞往复运动的影响,排气气流呈脉动形式,排气门打开时存在一定的压力,具有一定的能量,气体排出时会产生强烈的排气噪声,气体和声波在管道中摩擦也会产生噪声,因此在排气系统装有排气消声器来降低

消声器设计计算

计算并设计一消声器,用于频率为100Hz的发动机排气消声器,消声量不小于30dB,需选定已知内壁管壁厚,开孔个数,每个孔直径,扩张室直径,排气管道直径为5cm,用三维软件画出设计图。 消声器类型消声原理主要应用 阻性消声器(中高频)多孔性吸声材料的吸收 风机、通风空调、燃气轮机 等设备的进、排气噪声 抗性消声器(低频好)管道阻抗变化所产生的声反 射和耗损 空压机的进气噪声、内燃 机、汽车的排气噪声等 阻抗复合型消声器联合阻性消声器和抗性消声 器的消声机理 采用阻性消声器、抗性消声 器的场所 扩散消声器改变喷注结构、降低喷口的压 力和流速 高温、高压、高速气流等高 声强噪音 噪声按声音的频率可分为:<400Hz的低频噪声、400~1000Hz的中频噪声及>1000Hz的高频噪声。根据设计要求及各种消声器的适用范围,选用抗性消声器进行设计改进。 抗性消声器 消声原理:通过控制声抗的大小来进行消声的。与阻性消声器不同,它不使用吸声材料而是在管道上接截面积突变的管段或旁接共振腔,声波在管道截面的突然扩张(或收缩),造成通道内声阻抗突变,使声波传播方向发生改变,某些频率的声波在声阻抗突变的界面发生反射、干涉等现象,从而在消声器的外测,达到了消声的目的。

消声的频率特性:具有中、低频消声性能。 适用范围:消除空压机、内燃机、汽车排气噪声(气体流速较高气速的情况) 抗性消声器具有的特点: (1)不需要使用多孔吸声材料 (2)耐高温、抗潮 (3)流速较大,洁净 (4)对低频、窄带噪声有较好的效果。 常用抗性消声器的类型: (1)扩张室式消声器 (2)共振腔消声器 (3)干涉式消声器 按共振腔消声器进行设计: (1)倍频带消声量不小于30dB,由式: K L+ 102 ? = lg 20 ) 1( 302 K + 10 = lg 20 ) 1( 查表 不同频带下的消声量△L 与K值的关系 频带 0.2 0.4 0.6 0.8 1.0 1.5 2 3 4 5 6 8 10 15 类别 倍频 1.1 1.2 2.4 3.6 4.8 7.5 9.5 12.8 1 5.2 17 18.6 20 23 27 带 1/3倍 2.5 6.2 9.0 11.2 1 3.0 16.4 19 22.6 25.1 27 28.5 31 33 36.5 频带 2 / 4

消声器设计

` 噪声污染控制工程设计说明 1.0原始资料 1.1 环境噪声的基本情况 某厂一大型离心风机位于工业厂场附近、距风机出口左侧100m 处有一座办公楼,右侧及前方为菜地。由于出气口噪声很高,影响工程技术人员及人们的工作效率;另外,风机房内噪声也很高,但操作者经常呆在隔声间内,故机壳和电机的噪声危害不大,可以不予考虑。鉴于上述情况,可对排气噪声采取控制措施。风机、办公楼的平面布置图如图1-0。 图1-0:风机、办公楼的平面布置图 在办公楼窗前1m 处测得的环境噪声如下表所示: 1.2 离心风机的基本情况 大型离心风机K2-73-02No32F 风机的性能参数:功率为2500 kw ,风量为9500 m 3 /h ,风机叶片数=12,转数n 为600 r/min 。出风口为直角扩散弯头,出口呈3 m × 3 m 的正方形。在风机排风口左侧45°方向1m 处,测得A 声级为109 dB ,其倍频带声压级如下表所示。 1.3 有关标准和设计规范说明

本设计重所参考的标准同设计规范均以《工业企业噪声设计规范》GBJ87-85、《城市区域环境噪声标准》GB3069-2008为基准。 1.4 设计任务 1)设计一消声器使得风机排风口左侧45°方向1m 处的A 声级降为75dB 。 2)根据环境标准的要求,检验在办公楼窗前1m 处,根据所采用的消声器能否满足该功能区的声环境要求。 ; 2.0 消声器的设计计算 2.1 消声器的选择 阻性消声器是利用气流管道内的不同结构形式的多孔吸声材料吸收声能来降低噪声的消声器。片式消声器适用风量大,结构简单,中高频消声性能优良,气流阻力也小。从本设计的风量Q=9500m 3 /h 、频率来看,可选定片式的阻性消声器。 2. 2 消声量的计算 根据ISO 提出的用A 声级作为噪声评价标准,当A 声级Lp 大于75dB (A )时: 5 575570Lp NR NR Lp dB =+=-=-=因为 所以 根据NR =70查NR 曲线,找各倍频处的声压级,将结果写于噪声设计表的第二行 / 2.3 消声器的面积与通道结构的确定 根据设计数据气流速度宜小于8m/s,所以本设计选取V=6m/s 消声器的总面积:m V Q S 44.06 36009500 =?== 设计选用3个通道,则单个气流通道面积S 1: m 147.03 44.0n S S 1=== 2 根据经验片式消声器的片距宜取100~200mm ,片厚宜取100~150mm,在本设计中设片距b 1=110mm 、片厚b 2=150mm 。计算气流通道的结构参数如下:

阻性消声器的设计与消声量计算方式

阻性消声器的设计 (1)确定消声量 根据法规、标准及声源确定消声器所需的消声量。在大多数情况下,消声量是以A计权声级计算。参照相应的NR曲线,确定各倍频带或1/3倍频带需要的消声量。 (2)选定消声器的结构形式 根据消声器的流量和允许的流速大小(一般情况下,流速控制决定于阻力要求和消声器消声量要求),确定所需要的通流面积,然后根据通流面积的大小来选定消声器的结构形式。按照一般的常规设计,通道的当量直径小于300mm 时,可选用单通道直管式;当通道当量直径大于300mm而小于500mm时,应在通道中加设吸声层或吸声芯,消声器的有效通流面积要扣除吸声层或吸声芯所占面积,以避免由于流速增加而引起的不良影响;当直径大于500mm时,当考虑采用片式、蜂窝式等其他形式的消声器。 (3)选用吸声材料 吸声材料声学性能的好坏是决定消声器声学性能的重要因素。除首先考虑其声学性能外,还需考虑消声器的实际使用条件。在高温、潮湿、有腐蚀气体等特殊环境中使用的消声器,应考虑吸声材料的耐热、防潮、抗腐蚀性能。 (4)决定消声器长度 在通道截面确定后,增加消声器的长度可以提高消声量。消声器的长度主要根据声源强度和具体的降噪要求决定,还应注意现场有限空间所允许的安装尺寸。 (5)选择吸声材料的护面结构 由于消声器中一般要通过具有一定流速的气流,所以必须采用护面结构固定

和保护吸声材料。 XW-Ⅲ型.Ⅳ型微穿孔板消声器 XW-Ⅲ型.Ⅳ型微穿孔板消声器为圆形。其中XW-Ⅲ型是单空腔结构,XW-Ⅳ型是双空腔结构。 XW-Ⅲ型消声量为 15-20dB(A), XW-Ⅳ型消声量为20-25dB(A)。XW-Ⅲ型.Ⅳ型消声器压力损失10-40Pa(风速5-15m/s)。有效长度L=2m,安装长度L1=2.16m。 XW-Ⅲ型微穿孔板消声器结构外形图 XW-Ⅳ型微穿孔板消声器结构外形图 2 150 350 450 540 3 200 400 500 890 4 250 450 550 1400 5 300 540 640 1850 6 350 620 720 2880 7 400 700 800 3590 8 450 750 850 4550 9 500 820 920 5620 10 550 870 970 7110 11 600 1000 1100 8100 12 650 1080 1180 9000

消声器的安装要求

1、给排水管道界线划分 (1)给水管道的室内外界限:以建筑物外墙皮1.5m外为分界点,若入口外设有阀门的以阀门为分界点。给水管道与市政管道的界限:给水管道以计量表为界,无计量表的与市政管道碰头点为界 (2)排水管道的室内外界限:以排水管出户第一个检查井为分界点,检查井与检查井之间的管道为室外排水管道。排水管道与市政管道的界限:排水管道以室外排水管道最后一个检查井为界,无检查井的以与市政管道碰头点为界 (3)采暖管道的室内外界限:以建筑物外墙皮1.5m为分界点,若入口处设有阀门的以阀门为分界点。室外采暖管道与市政管网的界限:由市政管网统一供热的按各供热站为界,由室外管网至供热站外墙皮1.5m处的主管为市政工程。由供热站往外送热的管道以外墙皮1.5m处为分界,分界点以外的为采暖工程2、记取有关费用的规定: (1)设置在管道间(指高层建筑中专为安装管线设置的竖向通道,也称“管道井”)、管廊(指借用宾馆或饭店内封闭的天棚安装管道)内的管道施工的增加费:设置在管道间或管廊内的管道、阀门、法兰、支架,其定额人工乘以系数1.3。 (2)高层建筑增加费:指高度在六层或20m以上的工业与民用建筑的增加费,按各册定额规定的系数计取费用 (3)超高增加费:定额中操作物高度均以3.6m为界限,如超过3.6m时(指3.6m 至操作物高度),其超过部分的定额人工乘以下列系数 (4)安装与生产同时进行增加费:按人工费的10%计取,全部为人工费

(5)在有害身体健康环境中施工增加费:按人工费的10%计取,全部为人工费(6)采暖工程系统调整费:按采暖工程人工费的15%计算,其中人工工资占20%。采用工程量清单计价模式的工程项目,采暖工程系统调整在分部分项工程量清单中单独列项,单价可参考采暖工程系统调试费 (7)脚手架搭拆费:按分部分项工程人工费的5%计算,其中人工工资占25%。采用工程量清单计价模式的项目,脚手架应列入措施项目清单,单价可参照脚手架搭拆费 3、配水附件:指装在给水支管末端,供给各类卫生器具和用水设备的配水龙头和生产、消防等用水设备 控制阀门:指控制水流方向,调节水量、水压以及关断水流,便于管道、仪表和设备检修和各类阀门 4、识读给排水平面图必须掌握的内容: (1)查明卫生器具、用水设备及升压设备的类型、数量、安装位置、定位尺寸。(2)弄清楚给水引入管和污水排出管的平面位置、走向、定位尺寸、管径、坡度以及与室外管网的连接方式等 (3)查明给水排水干管、立管、支管的平面位置、走向、管径及立管编号5、识读给排水系统图必须掌握的内容: (1)查明给水管道系统的具体走向;干管的敷设方式、管径及其变径情况;阀门的位置;引入管、干管和各支管的标高 (2)查明排水管道的具体走向、管路分支情况、管径、水平管道坡度和标高、存水弯形式等。结合平面图,弄清卫生器具的种类、型号、位置等

消声器设计

噪声污染控制工程设计说明 1.0原始资料 1.1 环境噪声的基本情况 某厂一大型离心风机位于工业厂场附近、距风机出口左侧100m 处有一座办公楼,右侧及前方为菜地。由于出气口噪声很高,影响工程技术人员及人们的工作效率;另外,风机房内噪声也很高,但操作者经常呆在隔声间内,故机壳和电机的噪声危害不大,可以不予考虑。鉴于上述情况,可对排气噪声采取控制措施。风机、办公楼的平面布置图如图1-0。 图1-0:风机、办公楼的平面布置图 在办公楼窗前1m 处测得的环境噪声如下表所示: 1 .2 离心风机的基本情况 大型离心风机K2-73-02No32F 风机的性能参数:功率为2500 kw ,风量为9500 m 3 /h ,风机叶片数=12,转数n 为600 r/min 。出风口为直角扩散弯头,出口呈3 m × 3 m 的正方形。在风机排风口左侧45°方向1m 处,测得A 声级为109 dB ,其倍频带声压级如下表所示。

1.3 有关标准和设计规范说明 本设计重所参考的标准同设计规范均以《工业企业噪声设计规范》GBJ87-85、《城市区域环境噪声标准》GB3069-2008为基准。 1.4 设计任务 1)设计一消声器使得风机排风口左侧45°方向1m 处的A 声级降为75dB 。 2)根据环境标准的要求,检验在办公楼窗前1m 处,根据所采用的消声器能否满足该功能区的声环境要求。 2.0 消声器的设计计算 2.1 消声器的选择 阻性消声器是利用气流管道内的不同结构形式的多孔吸声材料吸收声能来降低噪声的消声器。片式消声器适用风量大,结构简单,中高频消声性能优良,气流阻力也小。从本设计的风量Q=9500m 3 /h 、频率来看,可选定片式的阻性消声器。 2. 2 消声量的计算 根据ISO 提出的用A 声级作为噪声评价标准,当A 声级Lp 大于75dB (A )时: 5 575570Lp NR NR Lp dB =+=-=-=因为 所以 根据NR =70查NR 曲线,找各倍频处的声压级,将结果写于噪声设计表的第二行 2.3 消声器的面积与通道结构的确定 根据设计数据气流速度宜小于8m/s,所以本设计选取V=6m/s 消声器的总面积:m V Q S 44.06 36009500 =?== 设计选用3个通道,则单个气流通道面积S 1:

2017消声器技术规格表

2014年消音器消声器规格参数行业标准表 【适用范围】 ‖压缩机放空、放散‖各类风机排风‖锅炉蒸汽对空排放‖安全阀起跳排放‖ 【各类动力流体机械排气系统】 规格型号工作压力 Mpa 外形尺寸接管规格 DN 重量 kg 总高L 直径Φ F—25/0.4 ≤0.4 300 108 25 8 F—32/0.4 440 108 32 10 F—50/0.4 530 180 50 20 F—65/0.4 530 230 65 25 F—80/0.4 670 250 80 31 F—100/0.4 810 300 100 51 F—125/0.4 920 380 125 71 F—150/0.4 1130 430 150 98 F—200/0.4 1580 600 200 190 F—250/0.4 1970 780 250 302 F—25/0.8 ≤0.8 450 133 25 10 F—32/0.8 590 159 32 19 F—50/0.8 690 200 50 28 F—65/0.8 700 280 65 38 F—80/0.8 800 320 80 47 F—100/0.8 970 380 100 71 F—125/0.8 1150 450 125 104 F—150/0.8 1330 560 150 148 F—200/0.8 1760 730 200 258 F—250/0.8 2400 1000 250 500 F—25/1.2 ≤1.2 490 159 25 17 F—32/1.2 640 180 32 21 F—50/1.2 800 230 50 34 F—65/1.2 800 320 65 48 F—80/1.2 970 400 80 88 F—100/1.2 1050 450 100 92 F—125/1.2 1490 600 125 197 F—150/1.2 1520 670 150 220 F—200/1.2 2000 900 200 412 F—250/1.2 F—25/1.6 ≤1.6 480 200 23 F—32/1.6 500 200 20 F—50/1.6 640 280 41 F—65/1.6 910 360 75 F—80/1.6 1010 450 102 F—100/1.6 1240 520 145 F—125/1.6 1560 640 225 F—150/1.6 1880 760 322 F—200/1.6 2500 1000 561 F—250/1.6 2850 1300 863

汽车消声器性能分析与设计_毕业论文

毕业设计论文 汽车消声器性能分析与设计 摘要 消声器作为控制排气噪声的一种简单而有效的方法,在汽车发动机排气系统中得到了广泛的应用。设计高消声性能、低压力损失的排气消声器是目前汽车噪声控制中的重要课题。本文针对某典型发动机排气系统设计了一款消声器,并对其进行了分析和改进。 本文利用声场有限元方法和流场有限容积方法分析了简单扩张腔的声场、流场分布规律,探讨了气流对消声器性能的影响,结果表明:随着温度的升高,传声损失频谱往高频移动,使得高频消声效果变好,中低频变差;。可见对排气消声器进行设计、分析和改进时不能忽视这些外在因素的影响。 根据发动机排气直管噪声频谱特性,设计了一款排气消声器,在此基础上建立实体模型和有限元模型,仿真分析了内部多物理场分布,总结了该消声器的声学特性和空气动力性。结果表明:该消声器在20~100Hz、800~1200Hz 及600~2000Hz低、中频段的传声损失偏低,高速气流可能导致再生噪声较大,压力损失较大,各腔温度差异大。 关键词:排气消声器;有限元;空气动力性;声学特性

Performance Analysis and Design of Car Muffler ABSTRACT As a effective method of controlling vehicles noise, muffler has been widely applied in exhaust system of engine. It is an important topic to exhaust mufflers that have good attenuation performance and low pressure loss in the field of automobile’s noise control. A muffler for a typical exhaust system is designed. The finite element method is applied to simulate it characteristic and to predict it performance so as to have an improved design. The finite element method is applied to analyze the rules of the flow field, and acoustic field inside expansion chambers which is basing on that the influence of temperature and velocity is taken into account. The results indicate that: When temperature rises, the spectrum moves toward higher frequency, which makes the attenuation performance in high frequencies better and that in middle frequencies worse. When the temperature and heat transfer, the velocity of turbulence is rise,and pressure loss is reduced .As a result, these outside factors can’t be ignored when designing, analyzing and redesigning an exhaust muffler. An exhaust muffler is designed basing on analyzing the sound of the engine. By building a model of it, different grid meshes are formed based on the calculation characteristic of acoustic field and the flow field. The acoustics and aerodynamics performance of the muffler are analyzed. The result suggests that the sound attenuation pat 20~100Hz,800~1200Hz and 1600~2000Hz frequency isn’t good , the high-speed flow may bring the air flow regeneration noise ,the pressure loss is little of high and the difference between every chamber is large. Key words:Exhaust Muffler, Finite Element Method, aerodynamics

相关文档
最新文档