煤粉热分解特性及添加助燃剂的影响

煤粉热分解特性及添加助燃剂的影响
煤粉热分解特性及添加助燃剂的影响

第34卷 第6期1999年6月

钢 铁

I RON AND ST EEL

V o l.34,N o.6

June1999煤粉热分解特性及添加助燃剂的影响

徐万仁 杜鹤桂

(上海宝钢集团公司)(东北大学)

摘 要 研究了煤粉在氮气氛和空气气流中的热分解特性及添加助燃剂的影响。结果表明,煤粉在燃烧条件下挥发分的析出量超过在氮气氛下的产率,煤粉燃烧过程中挥发分的析出燃烧碳与残碳的燃烧并存。助燃剂的种类和加入量对煤粉热分解的催化作用有很大影响,浸渍6%左右的Fe(NO3)3可使双鸭山烟煤和阳泉无烟煤的挥发分产率分别增加1017%和512%。

关键词 高炉喷煤 热分解 挥发分产率 助燃剂 催化机理①

PY ROLY ST I C CHARACTER IST I CS OF PUL VER IZED COAL AND

EFFECT OF ADD IT I ONAL COM BUST I ON-SUPPORT ING AGENTS XU W an ren DU H egu i

(Shanghai B ao steel Group Co rp1)(N o rtheastern U n iversity)

ABSTRACT T he p yro lysis of pu lverized coal(PC)in n itrogen atm o sp here and ho t air flow and effect of additi onal chem ical com bu sti on2suppo rting agen ts w as investigated1T he resu lts show ed that the vo latile m atter yield of PC in com bu sti on is h igher than that in n itrogen,the devo latilizati on and char com bu sti on are p rocessed si m u ltaneou sly1T he effect of vari ou s ad2 diti on s on p yro lystic characteristics of PC is rem arkab le1T he additi on of Fe(NO3)3in6% increases vo latile m atter yield of b itum inou s by1017%and an th racite by512%1

KEY WOR D S pu lverized coal(PC)in jecti on in to B F,pyro lysis,vo latile m atter yield,com2 bu sti on2suppo rting agen ts,catalysis m echan is m

1 前言

尽管在喷煤过程中不要求煤粉在风口回旋区完全燃烧,未燃尽部分可在高炉内被消耗利用,但强化燃烧仍然是增大喷煤比的一个关键步骤。随喷煤量提高,必须采取强化燃烧的措施,才能保持风口前煤粉燃烧率不变或下降不多,炉芯区未燃尽煤粉不至严重恶化高炉死料柱的透气性和透液性,使炉缸活跃、煤气流分布合理(具有较强的中心气流)、高炉透气性良好、炉况稳定顺行。强化煤粉燃烧的手段应是促进煤粉热分解、着火和燃烧各过程措施的总和。

煤粉热分解对煤粉在高炉风口区着火及燃烧过程有重要影响,挥发分析出燃烧相对于煤粉在回旋区极短的停留时间(10~20m s)不可忽略。煤的挥发分越高,着火点越低,燃烧性越好。因此选择较高挥发分煤种或者通过物理和化学的预处理方法增强煤的反应活性,促进煤的热分解过程,将对提高煤粉燃烧率,增大高炉喷煤量起重要作用。

本文从煤的热分解与煤的大分子结构和煤岩组成的关系出发,研究不同变质程度煤的热分解特性,及外加化学添加剂对煤粉热分解的影响,以期为强化喷煤燃烧提供一种新的有效的工艺方法。

2 实验方法

取阳泉洗精无烟煤和双鸭山烟煤为实验用煤,原煤的化学成分、岩相组成分别见表1、2。煤粉热分解过程在煤枪喷入点开始,煤粉气流与高炉热风交叉混合后受热升温,发生热分解、着火及燃烧,因此热分解实际是在有氧条件下进行的,为研究空气环境(燃烧过程中)下煤粉的热分解特性,向立式空管炉内通热风(空气),风量为56m3 h,煤粉从炉顶喷入,实验时燃烧炉初始温度1320℃。为与在惰性气

①联系人:徐万仁,工程师,上海(200941)宝山钢铁(集团)公司炼铁部

氛下的热解特性相比较,在氮气流下做热解实验,氮气流量为4m3 h,气流温度800℃,管式炉初始温度1400℃,给煤量40g m in,小于74Λm煤粉约占80%。

取CaCO3、CaCO3+FeC l3、Ca(OH)2(石灰乳)、Fe(NO3)3四种添加剂,分别添加到粒度小于74Λm 的占78%~79%的两种实验用煤粉样中,加入量为4%~10%。研究氮气氛下添加剂对促进煤粉热分解的作用。通过分析热解产物的成分,计算煤粉挥发分产率。

表1 原煤成分分析

T able1 R aw coal compo siti on analysis%煤种

工业分析 元素分析

M ad A ad V ad FC ad C ad H ad O ad N ad S ad 阳泉21046121714984126861003125115201780120双鸭山1185101833418752145741585132612601900126

表2 原煤的煤岩分析

T able2 Petrograph ic analysis of raw coal%煤种镜质组半镜质组丝质组稳定组矿物组

阳泉 32102176214010219

双鸭山76161181214416415

氮气氛及燃烧条件下煤粉的挥发分产率

Γv=1 2(Γv1+Γv2)(1)其中Γv1=1-W h V h (W m V m)

Γv2=1-A m V h (A h V m)

式中,Γv1、Γv2分别为按定义和灰分平衡计算的挥发分产率,%;W m、W h分别为入炉原煤样及热解产物的重量,g;V m、V h分别为原煤及热解产物的挥发分工业分析值,%;A m、A h分别为原煤及热解产物的工业分析灰分,%。

含添加剂的煤粉的热解挥发分产率

Γxv=1 2(Γxv1+Γxv2)(2)其中

Γxv1=1-(W xa V xa-V j6K j W x) (W c V c)Γxv2=1-A x V xa (K c A xa V c)+V j6K j W x (W c V c)式中 Γxv1、Γxv2——按定义和灰分平衡计算的挥发

分产率,%;

W xa、V xa、A xa——热解产物总重量,g、工业分析总

挥发分值,%、工业分析总灰分

值,%;

W c、K c——混合煤样中煤的重量,g、含

量,%;

V c——原煤工业分析挥发分,%;

K j——混合煤样中j组分添加剂的含

量,%;

V j——单位质量j组分添加剂分解产生

的气体重量,%。

3 实验结果与讨论

311 煤粉在氮气氛和燃烧条件下的热解特性由图1可见,随炉温升高,煤粉挥发分产率增大,并超过两种煤的工业分析值。图2为燃烧条件下挥发分的析出规律。由图2可见,燃烧初期挥发分释放速度较快,随时间增加,速度减慢,且风温越高,挥发分析出速度和析出量越大

。燃烧条件下煤粉细度对挥发分产率的影响(图3(a))与在氮气氛下有相同规律,随煤粉细度增大,挥发分产率提高,但相同煤粉细度下挥发分析出量高于氮气氛下的值。燃烧条件下,给煤量的影响(图3(b))与在氮气氛下相反,氮气氛下随给煤量增加,挥发分产率下降,而燃

图1 温度对煤粉挥发分产率的影响(氮气氛)

F ig11 Effect of temperature on vo latile m atter

yield of PC(N2atmo sphere)

?

8

?1999年第6期

图2 温度对煤粉挥发分产率

的影响(空气气氛)

F ig12 Effect of temperature on vo latile m atter

yield of PC(air atmo sphere)烧条件下随给煤量增加挥发分产率提高。

煤的热分解是煤中与基本结构单元联结的羧基(—COOH)、羟基(—OH)等含氧官能团和甲基(—CH3—)、乙基(—CH2—)等烷基侧链裂解,及次甲基键(—CH2—)、醚键(—O—)等桥键断裂,释放出小分子气体化合物的过程。热解后期还可能发生二次反应[1]。各含氧官能团的稳定性和桥键的键能不同,温度越高,破坏的官能团、侧链和桥键的数量越多,析出的挥发分量就越大。所以,煤粉热分解与环境温度有很大关系,高风温对促进煤粉热分解和强化燃烧具有重要作用。在高温快速加热条件下,煤粉的热解过程受挥发分气体析出速度的影响,粗颗

图3 煤粉在氮气氛和在燃烧条件下的热分解特性

F ig13 Pyro lysis characteristics of PC in N2and com busti on

(a)煤粉细度的影响;(b)给煤量的影响

▲●—空气气氛;△○—氮气氛

粒煤升温速度和内部导热速度慢,裂解进行的深度浅,同时挥发分析出阻力较大,在煤粒中停留时间长,并可能发生二次热解,挥发分产率较低。

在空气气氛下,伴随着煤粉燃烧,炉膛温度不断升高,促进热裂解过程,挥发分产率比在氮气氛下高,这与Jenk in s[2]的实验结果一致。实验研究表明,氮气氛下喷煤,使炉膛温度降低,而空气气氛下(燃烧时),随喷煤量增大炉内燃气温度上升,所以两种气氛下给煤量对挥发分产率的影响有相反的规律。

图1~3表明,烟煤的挥发分产率高于无烟煤。这是因为随煤的变质程度提高,各含氧官能团和烷基侧链数量明显减少,脂肪簇C—H键减少而芳香簇C—C、C—H键增加[3]。变质程度高的无烟煤难于裂解,产生的挥发分量远低于烟煤。除变质程度外,煤的显微组分组成、结构和热性质对煤的热解挥发分产率也有重要影响。煤中稳定组及镜质组挥发分高,惰质组挥发分低[4]。随煤的变质程度提高,惰质组的成分和性质基本不变,而镜质组的性质逐渐惰化,到无烟煤阶段与惰质组的成分、性质趋向一致。显然,煤粉热分解特性与煤的岩相组成有直接关系。热解实验表明[5],煤岩显微组分的热解性能由高到低的一般顺序为:稳定组>镜质组>惰质组(丝质组)。所以煤的变质程度越低,稳定组和镜质组的含量越高,惰质组的含量越少,煤的挥发分产率就

?

9

?

钢 铁

越高。可见,选择低变质度、高活性组分含量的煤,可获得较高的挥发分产率和燃烧率。阳泉无烟煤变质程度高,且含有高达6214%的丝质组分,而双鸭山煤变质程度很低,含有416%的稳定组和7616%的镜质组分,故阳泉煤的挥发分产率显著低于双鸭山烟煤

图4 挥发分燃烧率与固定碳燃烧率的关系

F ig 14 V o latile m atter com bustibility vs

char com bustibility

图4为煤粉燃烧过程中挥发分产率(即挥发分燃烧率)与残碳燃烧率的关系图。从图中看出,如将两曲线左延,即当残碳燃烧率为零时,挥发分燃烧率有一初始值,双鸭山煤为12%,阳泉煤为2%。表明煤焦着火前有部分挥发分析出燃烧,这部分挥发分对煤粉着火起了很大作用。燃烧初期,挥发分释放和燃烧速度很快,残碳也同时燃烧,但其消耗速度较慢;燃烧后期挥发分析出很少,绝大部分燃烧完毕,这一阶段主要是残碳的燃烧。显然,煤粉燃烧时挥发分和残碳的燃烧存在一段并行,阳泉煤由于挥发分较低,其燃烧过程相当于含少量挥发分的残碳燃烧,双鸭山煤则由其开始迅速析出的部分挥发分引发着火,整个燃烧过程可视为挥发分析出燃烧(同时伴有部分碳燃烧)和残碳燃烧的总和。由于残碳燃烧时间约占煤粉总燃尽时间的90%,故强化碳燃烧是提高煤粉燃烧率的关键。其中添加化学助燃剂,促进煤裂解和着火,提高残碳反应性,是一种有效的方法。312 添加助燃剂对煤粉热分解特性的影响

实验表明,与原煤热解时相比,添加助燃剂后炉温下降,说明助燃剂在煤粉热解时也发生分解,使吸热效应增加。图5为两种煤的挥发分产率与助燃剂加入量的关系。由图5看出,助燃剂的种类及加入量对煤粉热分解有很大影响。CaCO 3

对两种煤热解催

图5 煤粉挥发分产率与助燃剂种类和加入量的关系

F ig 15 V o latile m atter yield vs types and contents

of additi onal agents

化作用很小,且当加入量超过4%时表现为明显的抑制作用,复合加入少量FeC l 3后,CaCO 3的催化作用有所增强。同混入CaCO 3相比,浸渍CaO 即含少量Ca (OH )2的石灰乳后,挥发分产率明显提高,最多使无烟煤和烟煤的挥发分产率分别增加2%和5%左右,对应最佳加入量分别为6%和4%左右。Fe (NO 3)3对两种煤热解的催化作用最强,当无烟煤

中添加4%,烟煤中添加8%时,挥发分产率达最大,比原煤粉分别提高512%和1017%左右。比较可见,各添加剂对两种煤热解的催化作用大小次序为:Fe (NO 3)3>Ca (OH )2>(CaCO 3+FeC l 3)>Ca 2CO 3。各添加剂的加入量均存在最佳值。

如前所述,煤粉热分解是含氧官能团、烷基侧链裂解和桥键断裂的过程。当煤粉中浸入金属离子(盐)或氧化物时,这些活性物质可渗透到煤的结构单元内,与官能团发生作用,并削弱脂肪侧链间和桥键间的键能,因而煤的大分子结构易于破坏,结果使挥发分产率增加。许多研究[6]都表明,单独添加N a 2CO 3、K 2CO 3、CaCO 3、Ca (OH )2、KNO 3等快速热解时,H 2O 、CO 、CO 2、H 2、CH 4等气体析出量增加。添加剂对煤粉热分解的催化作用与添加剂的种类(成分、结构)和反应性(粒度、比表面积)、加入量、加

?01?1999年第6期

入方式(分散程度)及煤的种类、粒度等因素有关。通常对易溶盐、碱金属、碱土金属、过渡金属离子的催化活性依次降低,弱酸盐的催化作用高于强酸盐[7]。对于Ca、Fe等元素,由于其某些盐和氧化物是微溶或不溶的,所以不完全遵从这一规律,这主要是因为受其分散能力的影响。

本实验所用CaCO3、CaO均属难溶或不溶物,一般只能与煤粉机械混合,它们催化作用的大小主要与粉末粒度、活性、混合均匀性及其在煤表面上的分散性有关。由于本实验所用这些粉末粒度较粗(< 01105mm),催化活性较差,同时混合不甚均匀,分散性不好,故对煤粉催化作用很低,甚至起抑制作用。如细化其颗粒尺寸,并提高其反应活性,加强混均,预计效果会有所改观。复合加入少量易溶盐如FeC l3或CaC l2等是提高CaCO3、CaO催化活性的有效方法。浸渍加入Ca2Fe或Ca2Ca二元复合添加剂时,由于Ca2+、Fe3+对CaCO3、CaO存在助剂(活化)作用,其自身对煤热解也有催化作用,同时这些离子的浸入有助于改善CaCO3、CaO在煤表面的分散性和Ca2+的利用率,因而催化作用效果明显提高,使热解产率增加。此外,第二组元的加入还可能降低催化剂的熔点,使CaCO3或CaO在煤表面的润湿、分散性改善,对提高催化效果起一定的作用。可见,对CaCO3、CaO等化学稳定的催化剂,通过复合加入第二组元改善其催化作用很重要。当浸渍加入CaO时,因乳浊液中含有少量Ca(OH)2即活性Ca2+,其分散性和利用率较高,所以催化煤热解的作用明显高于机械混合加入的CaCO3或CaO。Fe(NO3)3属易溶盐,浸渍液中Fe3+浓度很高,这些离子能渗透到煤粒内部,具有很高的分散性; Fe(NO3)3本身是氧化剂,煤氧化后结构稳定性下降,易于裂解;Fe(NO3)3受热时分解放出活性氧或氧气,使热解环境气氛改善,促进热分解的进行,因此它的催化作用最强。

助燃剂的加入量对煤粉热分解催化作用的影响,可由助燃剂与煤中矿物质的相互作用和助燃剂对气相传质的影响来综合分析。外加添加剂在煤粉高温热解过程中会与煤中矿物质发生反应,生成玻璃相,从而被消耗一部分,因此加入量较少时催化作用不大。随加入量增加,煤表面活性位置增多,催化作用随之提高。但当加入量过多时,会有一部分助燃剂粒子聚集在煤表面和内部孔隙中,堵塞气孔,使挥发分析出产生阻碍。由于气孔的堵塞,积存在煤粒内的挥发分还会发生二次热解,而且助燃剂对挥发分裂解和聚合为非挥发组分有促进作用[8],故挥发分产率下降。因此各类助燃剂的加入量均存在最佳值。一般烟煤的孔隙度和所含矿物质量比无烟煤大,助燃剂的最佳加入量相应较高。助燃剂种类不同,这一最佳值也有所差异。对于煤粉热解、燃烧,助燃剂的加入量应尽可能少,所以改善添加剂的分散性更为重要。煤场定期喷水时喷洒易溶盐如CaC l2、Fe(NO3)3,或在配煤时由一个槽配入CaO(生石灰),经过在磨煤机内磨制和收粉、喷吹系统中混合、流化、搅动,二者可达到完全混均,且其粒度相近,对喷吹过程不会有明显影响。

同一助燃剂对不同煤种有不同的催化能力,即有选择性,这与煤的成分、结构有关。烟煤催化热解的效果高于无烟煤,可能与烟煤热解时表面发生熔融流动,有利于助燃剂的分散;无烟煤挥发分低,催化热解程度较弱有关。这一规律与Srivastava[6]的结果一致。

4 结论

(1)煤粉在燃烧条件下挥发分的析出量超过在氮气氛下的产率。煤粉燃烧过程中挥发分的析出、燃烧与残碳的燃烧并存。环境温度(如风温)、煤粉粒度、喷煤量等因素对煤粉热解都有很大影响。煤的变质程度越低,稳定组和镜质组含量越高,其挥发分产率越大。

(2)助燃剂对煤粉热分解的催化作用与其化学类型和加入量、分散程度有关。CaCO3、CaO对催化煤裂解作用很小,Fe(NO3)3或CaC l2的催化作用较强。浸渍6%左右的Fe(NO3)3可使双鸭山烟煤和阳泉无烟煤的挥发分产率分别增加1017%和512%。

参 考 文 献

1 朱之培,高晋生1煤化学1上海:上海科学技术版社,19841

2 Jenk ins R G,M o rgan M E1Pyro lysis of a L ignite in an Entrained F low R eacto r:31Pyro lysis in R eactive A tmo2 spheres of A ir,Carbon D i oxide and W et N itrogen1Fuel,1986,65(6):769~7711

3 Ko ike T1Chem ical Characterizati on of Coal1N i ppon Steel T echnical R epo rt,1988,38:551

(下转第31页)

图5 铸坯的冯米赛斯等效应力分布

F ig15 V on N lises equivalent stress distributi on of slab

形的重要手段,对液芯压下过程的顺利进行有重要意义。通过对连铸坯角部区域冷却条件的优化,可以使铸坯窄面附近区域的应力、变形分布均匀。采用提高铸坯窄面附近温度,使铸坯窄面中部温度接近甚至高于铸坯宽面温度的冷却方式,有利于铸坯窄面凝固坯壳的变形和减少铸坯中的应力。对厚约60 mm的普通钢连铸坯,在压下量为10~12mm时,可使该区域的等效应力保持在120~140Pa左右。

(2)连铸坯在液芯压下区域经过压下辊时,铸坯中的应力发生很大的变化:对即将进入压下辊的铸坯,其窄面附近区域承受较大的拉应力,并且在其角部附近形成两个眼形拉应力区,如果对这些区域的拉应力控制不当,容易形成微裂纹等缺陷;在铸坯进入压下辊之间时,其中的拉应力转化为压应力,其值随压下量发生较大的变化,当压下量由11mm减少为8125mm时,压应力减少25%~30%;当铸坯离开压下辊时,铸坯窄面及近角部区域再次形成拉应力区,但其值较小,仅为进入压下辊时的1 4~1 3。

参 考 文 献

1 T hom as B G1Issues in T her m al2M echanical M odeling of Casting P rocesses1IS I J Internati onal,1995,35(6): 737~7431

2 温祟哲,陈栋梁,许志强1连铸过程铸坯弹 粘塑性热应力的研究1力学与实践,1994,(5):48~521

3 陈栋梁1薄板坯连铸液芯压下仿真及工艺技术研究(博士学位论文)1北京:钢铁研究总院,19981

4 Zienk iew icz O C1P lastic F low in M etal Fo r m ing,A pp licati ons of N um erical M ethods to Fo r m ing P rocess1 SAM E,AM D,1978,28:1071

5 Chen W H1F inite E lem ent A nalysis of F inite D efo r m ati on Contact P roblem sW ith F ricti on1Computer&Struc2 tures,1938,29:423~4391

6 蔡开科1连续铸钢1北京:冶金工业出版社1

7 T hom as G O1M odeling the T h in2Slab Continuous Casting M o ld1M etal and M ater1T rans1,1994,25B:443~4571

(上接第11页)

4 周师庸1应用煤岩学1北京:冶金工业出版社,19851

5 H utny W P,L ee G K,P rice J T1Fundam entals of Coal Com busti on D uring Injecti on Into a B last Fur2 nace1P rog1Energy Com busti on Sci1,1991,67:373~3951

6 Srivastava S K,Saran T,Sinha J,et al1H ydrogen P roducti on F rom Coal—A lkali Interacti on:Influence of A lkali on Pyro lysis of Coals1Fuel,1988,67(12):1680~16841

7 Kop sel R,Zabaw sk i H1Catalytic Effects of A sh Components in L ow R ank Coal Gasificati on1Fuel,1990,69(3): 275~2881

8 M o rgen M E,Jenk ins R G1Pyro lysis of a L ignite in a Entrained F low R eacto r:11Effect of Cati ons on To tal W eigh t L o ss;21Effect of M etal Cati ons on D ecarboxylati on and T ar Y ield1Fuel,1986,65(6):757~7631

生物表面活性剂和高分子表面活性剂

生物表面活性剂和高分子表面活性剂 摘要:表面活性剂是由两种截然不同的粒子形成的分子,一种粒子具有极强的亲油性,另一种则具有极强的亲水性。溶解于水中以后,表面活性剂能降低水的表面张力,并提高有机化合物的可溶性。本文将就生物表面活性剂和高分子表面活性剂进行具体介绍,并且列举了部分它们在社会中的应用以及它们存在的问题和发展前景进行了简单的介绍。 关键词:表面活性剂;生物表面活性剂;高分子表面活性剂 Biological surfactant and polymer surfactant Abstract:Surfactant is composed of two distinct particles, a kind of particle has extremely strong lipophilicity, the other with strong hydrophilic. Dissolved in water, surfactants can reduce the surface tension of the water, and increase of soluble organic compounds. This article will discuss biosurfactant and polymeric surfactants are detailed introduction, and lists the part of their application in society and their existing problems and development prospects were simply introduced. Keyword:The surfactant; Biosurfactant; Polymer surfactant

食品添加剂现状和发展趋势doc3

食品添加剂现状和发展趋势食品添加剂是指在食品或食品加工中使用的各种微量的物质,通常其添加量不超过食品质量的2%。添加目的为:①改进和保持食品的营养价值;②延长食品的货架期;③方便食品的加工;④增强食品的风味,改变食品的色泽;⑤确保微生物的安全性;⑥保持食品品质的连续性和统一性。 l、食品添加剂市场 据统计,目前全球开发的食品添加剂总数已达1.4万多种,其中直接使用的品种有300o余种,常的有680余种。美国是世界上食品添加剂便用量最大、使用品种最多的国家.目前允许直接使用的有230o种以上,消费量已超过14o万吨(不包括淀粉及其衍生物、香精/香料和调味料);西欧消费量已近50075~,其中淀粉及其衍生物的数量高达40万吨。 食品添加剂已.成为医药、农用化学品及饲料添加剂之后的第四类倍受人们关注的精细化工行业。目前食品添加剂的世界市场价值为200亿美元,其中,调味品占30~,4、氢化胶体占17%、酸化剂占13%、调味增强剂占12%、甜味剂占6%、色素占5%、乳化剂占5%、维生素和矿物质占5%、酶占4%、化学防腐剂占2%、抗氧化剂占1%。j负计禾来5年内冥年增长率为2%-3%。全球调味品和香料的市场价值为12o亿美,其中调味品约占49%(59亿美元)。调味品市场中,饮料占31%、佐料占23%、奶制品占14%、其他占

32%。需求增长最强劲的食品添加剂将是维生素、矿物质、调味增强剂和脂肪代用品。 罗氏(R。h)和巴斯夫公司是世界上重要的食品添加剂和精细化学品生产商。维生素是罗氏公司维生素和精细化学品部最大的业务部门,几乎占全球销售额的50%,其次是精细化学品占30%、类胡萝卜素占20%。罗氏新上市的营养药品包括用于眼科保健的玉米黄质、番茄红素和叶黄素,以及供功能饮料用的水溶性维生素E制品等。罗氏公司也加快投资中国市场,与上海新亚药业公司合资兴建了1000吨/年维生素B工厂,还有罗氏泰山(上海)维生素A新厂,以及在无锡兴建4万吨/年柠檬酸工厂。巴斯夫公司在全球维生素市场上约占25%的份额,该公司在韩国Gunsan建成3000吨/年维生素B工厂和世界规模的维生素C及维生素B的工厂。 我国食品添加剂的生产随食品加工业的发展而不断发展壮大,目前已批准使用的添加剂共有21类1474种,产品门类齐全,基本可以满足食品工业的需要。我国各类食品添加剂的年产品量已超过200万吨,其中味精达60万吨以上,柠檬酸的产量近20万吨。表1列出我国主要的食品添加剂生产企业和产量。我国食品添加剂的总量已可以满足市场需求,但由于我国多数食品添加剂企业生产规模小,技术水平低,因此产品质量方面尚存在一些差距。因此少数用量少、档次高的食品添加剂仍依赖进El。一些合资的食品加工企业和引进的食品加工生产线为了保证其产品的质量,仍以较高的价格购买国外的同类产品。

生物表面活性剂研究进展

生物表面活性剂研究进展 杨齐峰 (黄石理工学院,湖北,435000) 【摘要】:生物表面活性剂是由微生物分泌的天然产物,它无毒,可以生物降解,对环境影响很小,具有高效的表面活性,因此是合成表面活性剂的理想代替品。介绍了生物表面活性剂的特性及其生产制备方法,综述了近年生物表面活性剂在石油、洗涤、医药、食品等工业领域的应用与研究进展,主要介绍了利用生物表面活性剂在提高石油采收率等方面的应用,探讨了今后生物表面活性剂的主要发展方向。 【关键词】:生物表面活性剂;微生物;应用;发展趋势 Biosurfactant research progress Yangqifeng (Huangshi Institute of Technology School Hubei 435003)abstract:Biological surfactant is secreted by microbial natural products,it is avirulent,can biodegradation,a little influence and efficient surface activity,and is thus synthesis of surfactants ideal replacement. Introduces the characteristics and its biosurfactant production preparation methods,this paper reviews biosurfactant in petroleum,washing,pharmaceutical,food and other industrial areas of application and research progress,mainly introduced the use of biological surfactants in enhanced oil recovery of application,discusses the future biosurfactant the main development direction。 key words:biosurfactant;Microbial;application;development tendency 表面活性剂是一类能显著降低溶剂表面张力的物质,化学合成的表面活性剂都是以石油为原料化学合成而来的,在生产和使用过程中常常会给人类生存环境带来严重的污染,对人类的身体健康产生很大威胁。生物表面活性剂是从20世

食品中的添加剂

目前我国食品添加剂目录中有1960多种添加剂,共有22类。 分别是(1)防腐剂(2)抗氧化剂(3)发色剂(4)漂白剂(5)酸味剂(6)凝固剂(7)疏松剂(8)增稠剂(9)消泡剂(10)甜味剂(11)着色剂(12)乳化剂(13)品质改良剂(14)抗结剂(15)增味剂(16)酶制剂(17)被膜剂(18)发泡剂(19)保鲜剂(20)香料(21)营养强化剂(22)其他添加剂。 防腐剂——常用的有苯甲酸钠、山梨酸钾、二氧化硫、乳酸等。用于果酱、蜜饯等的食品加工中。 抗氧化剂——与防腐剂类似,可以延长食品的保质期。常用的有维C、异维C等。 着色剂——常用的合成色素有胭脂红、苋菜红、柠檬黄、靛蓝等。它可改变食品的外观,使其增强食欲。 增稠剂和稳定剂——可以改善或稳定冷饮食品的物理性状,使食品外观润滑细腻。他们使冰淇淋等冷冻食品长期保持柔软、疏松的组织结构。 营养强化剂——可增强和补充食品的某些营养成分如矿物质和微量元素(维生素、氨基酸、无机盐等)。各种婴幼儿配方奶粉就含有各种营养强化剂。 膨松剂——部分糖果和巧克力中添加膨松剂,可促使糖体产生二氧化碳,从而起到膨松的作用。常用的膨松剂有碳酸氢钠、碳酸氢铵、复合膨松剂等。 甜味剂——常用的人工合成的甜味剂有糖精钠、甜蜜素等。目的是增加甜味感。 酸味剂——部分饮料、糖果等常采用酸味剂来调节和改善香味效果。常用柠檬酸、酒石酸、苹果酸、乳酸等。 增白剂——过氧化苯甲酰是面粉增白剂的主要成分。我国食品在面粉中允许添加最大剂量为0.06g/kg。增白剂超标,会破坏面粉的营养,水解后产生的苯甲酸会对肝脏造成损害,过氧化苯甲酰在欧盟等发达国家已被禁止作为食品添加剂使用。 香料——香料有合成的,也有天然的,香型很多。消费者常吃的各种口味巧克力,生产过程中广泛使用各种香料,使其具有各种独特的风味。 酸奶 果胶(增稠剂) 副作用:有的增稠剂是淀粉水解产生的糊精、改性淀粉等,它们本身无毒无害,但容易升高血糖,甚至可能导致更剧烈的血糖反应。 标准:我国允许使用的有琼脂、明胶、卡拉胶等25种。 推荐:目前使用广泛的是卡拉胶、黄原胶以及改性淀粉、纤维素等自然界存在的高分子碳水化合物。 (酸奶含有防腐作用的乳酸和乳酸菌素,所以不需添加防腐剂。) 冰激凌、雪糕 着色剂:日落黄、柠檬黄、胭脂红、苋菜红、亮蓝等都是食用合成色素,也称食用合成染料。副作用:因对人体有害,不能用于糕点及肉制品。 标准:我国规定,任何婴幼儿食品中严禁使用任何人工合成色素。 冷藏肉品 山梨酸钾(防腐剂) 与水果的梨无关,山梨酸(钾)能有效地抑制霉菌,酵母菌和好氧性细菌的活性,还能防止肉毒杆菌、葡萄球菌、沙门氏菌等有害微生物的生长和繁殖。 推荐:山梨酸钾抗菌力强、毒性较小,可参与体内正常代谢,转化为二氧化碳和水,但价格较贵,不少国家已开始逐步用它取代苯甲酸钠。 亚硝酸钠(护色剂) 不仅可以使肉制品色泽红润,还可以抑菌保鲜和防腐,目前还没有其他更为理想的添加剂替

食品添加剂使用管理规定

食品添加剂使用管理规 定 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

食品添加剂使用管理制度 1、严格按照国家有关规定和食品安全标准采购食品添加剂。不采购食品添加剂以外的任何可能危害人体健康的物质,不采购标识不规范的、来源不明的食品添加剂。 2、采购使用的明矾、泡打粉、小苏打、臭粉等食品添加剂包装标签上应注明中文“食品添加剂”字样,食品添加剂的具体标签要求应符合《食品安全法》的规定。 3、购入食品添加剂时,按照《餐饮服务食品安全监督管理办法》和《餐饮服务食品采购索证索票管理规定》等规定,严格执行食品添加剂的采购查验、记录和索证索票制度。应索取生产许可证明和产品检验合格证明,并建立食品添加剂采购登记台账。 4、不得以掩盖食品腐败变质,不得以掩盖食品本身或加工过程中的质量缺陷,不得以掺杂、掺假、伪造为目的使用食品添加剂;不得由于使用食品添加剂而降低了食品安全要求或食品本身的营养价值。加工经营食品为现制现售模式,尽可能不用食品添加剂,确须使用的,应在限量范围内使用。 5、食品添加剂的使用必须符合GB2760-2011《食品添加剂使用标准》规定的品种及其使用范围、使用量,并尽可能降低在食品中的使用量。做好食品添加剂使用记录,建立食品添加剂使用台帐,对使用食品添加剂的品种名称、生产单位、用于加工制作的食品品种(用途)、使用量、使用时间、责任人进行登记。 6、对食品添加剂“五专”(专人采购、专人保管、专人领用、专人登记、专柜保存)管理,存放食品添加剂,必须做到专柜、专架,定位存放,标示“食品添加剂”字样,不得与非食用产品或有毒有害物品混放。 7、严禁使用硼酸、硼砂、罂粟壳、废弃食用油脂、工业用料等《食品中可能违法添加的非食用物质名单》中所列物质及其他非食用物质。 8、不购买、储存、使用亚硝酸盐。含柠檬黄、日落黄等合成色素的吉士粉、油性色素等不可用于面点、糕点、肉类加工。生、鲜肉等规定品种不添加食用香料、香精。 9、油条、油炸食品等常用的泡打粉等含铝膨松剂,应严格控制用量,以防止铝含量超标;应首选使用不含铝的酵母粉、塔塔粉等食品添加剂。糕点禁用苯甲酸、苯甲酸钠等防腐剂。 10、指定专人负责食品添加剂的管理,使用食品添加剂的人员需经过专业培训。使用食品添加剂应配备专用称量工具,严格按限量标准使用。

食品添加剂的现状和发展趋势

食品添加剂的现状和发展趋势 食品添加剂是指在食品或食品加工中使用的各种微量的物质,通常其添加量不超过食品质量的2%。添加目的为:①改进和保持食品的营养价值;②延长食品的货架期;③方便食品的加工;④增强食品的风味,改变食品的色泽;⑤确保微生物的安全性;⑥保持食品品质的连续性和统一性。 1、食品添加剂市场 据统计,目前全球开发的食品添加剂总数已达1.4万多种,其中直接使用的品种有300o余种,常的有680余种。美国是世界上食品添加剂便用量最大、使用品种最多的国家.目前允许直接使用的有230o种以上,消费量已超过14o万吨(不包括淀粉及其衍生物、香精/香料和调味料);西欧消费量已近50075~,其中淀粉及其衍生物的数量高达40万吨。 食品添加剂已.成为医药、农用化学品及饲料添加剂之后的第四类倍受人们关注的精细化工行业。目前食品添加剂的世界市场价值为200亿美元,其中,调味品占30~,4、氢化胶体占17%、酸化剂占13%、调味增强剂占12%、甜味剂占6%、色素占5%、乳化剂占5%、维生素和矿物质占5%、酶占4%、化学防腐剂占2%、抗氧化剂占1%。j负计禾来5年内冥年增长率为2%-3%。全球调味品和香料的市场价值为12o亿美,其中调味品约占49%(59亿美元)。调味品市场中,饮料占31%、佐料占23%、奶制品占14%、其他占32%。需求增长最强劲的食品添加剂将是维生素、矿物质、调味增强剂和脂肪代用品。

罗氏(R.h)和巴斯夫公司是世界上重要的食品添加剂和精细化学品生产商。维生素是罗氏公司维生素和精细化学品部最大的业务部门,几乎占全球销售额的50%,其次是精细化学品占30%、类胡萝卜素占20%。罗氏新上市的营养药品包括用于眼科保健的玉米黄质、番茄红素和叶黄素,以及供功能饮料用的水溶性维生素E制品等。罗氏公司也加快投资中国市场,与上海新亚药业公司合资兴建了1000吨/年维生素B工厂,还有罗氏泰山(上海)维生素A新厂,以及在无锡兴建4万吨/年柠檬酸工厂。巴斯夫公司在全球维生素市场上约占25%的份额,该公司在韩国Gunsan建成3000吨/年维生素B 工厂和世界规模的维生素C及维生素B的工厂。 我国食品添加剂的生产随食品加工业的发展而不断发展壮大,目前已批准使用的添加剂共有21类1474种,产品门类齐全,基本可以满足食品工业的需要。我国各类食品添加剂的年产品量已超过200万吨,其中味精达60万吨以上,柠檬酸的产量近20万吨。表1列出我国主要的食品添加剂生产企业和产量。我国食品添加剂的总量已可以满足市场需求,但由于我国多数食品添加剂企业生产规模小,技术水平低,因此产品质量方面尚存在一些差距。因此少数用量少、档次高的食品添加剂仍依赖进El。一些合资的食品加工企业和引进的食品加工生产线为了保证其产品的质量,仍以较高的价格购买国外的同类产品。 2、营养添加剂 牛磺酸近年来,国内外研究表明,牛磺酸是一种具有多种生理功

生物表面活性剂

生物表面活性剂及其应用 谈到学科知识应用,我第一反应是把其与人或自然界中实际存在的生物联系在一起,进而得出既有意义又有趣的结论和现象。在学习完物理化学表面化学部分后我们知道,表面活性剂(surfactant)是指加入少量能使其溶液体系的界面状态发生明显变化的物质。具有固定的亲水亲油基团,在溶液的表面能定向排列。表面活性剂的分子结构具有两亲性。表面活性剂分为离子型表面活性剂(包括阳离子表面活性剂与阴离子表面活性剂)、非离子型表面活性剂、两性表面活性剂、复配表面活性剂、其他表面活性剂等。但是目前大多数表面活性剂主要以石油为原料经化学合成而来,由于受化工原料、产品的理化特性及其在生产和使用过程对环境造成严重污染等原因,使表面活性剂的应用前景受到极大的挑战。因此寻找一种新型高效低污染的表面活性剂是一个尤为重要的举措。 生物表面活性剂就是一类性能较为优异的表面活性剂。查阅文献可知他们是指利用酶或微生物通过生物催化和生物合成法得到的具有一定表面活性的代谢产物。它们在结构上与一般表面活性剂分子类似,即在分子中不仅有脂肪烃链构成的非极性憎水基,而且含有极性的亲水基,如磷酸根或多烃基基团,是集亲水基和憎水基结构于一身的两亲化合物。它们不仅具有化学表面活性剂具有的各种表面性能,而且还拥有下列优点:①选择性广,对环境友好;②庞大而复杂的化学结构使得表面活性和乳化能力更强;③分子结构类型多样,具有许多特殊的官能团,专一性强;④原料在自然界广泛存在且价廉;⑤发酵生产是典型的“绿色”工艺等。 生物产生的生物表面活性剂包括许多不同的种类。依据他们的化学组成和微生物来源可分为糖脂、脂肽和脂蛋白、脂肪酸和磷脂、聚合物和全胞表面本身等五大类。于是我们可以明显知道这些生物表面活性剂是对生物和环境极其友好,相较与普通的化学表面活性剂有更广阔的应用范围。 微生物强化采油(MEOR技术)是生物表面活性剂最为重要的应用领域。在油田中注入一些微生物和其生长所必须的营养物质,微生物在生长的同时,可以产生生物表面活性剂,这些生物表面活性剂能降低原油和水两相界面的张力,从而提高原油的开采量。与化学合成生物表面活性剂相比,生物表面活性剂可被微生物降解,不会对环境造成污染。微生物驱油和化学驱油最大的不同是微生物不但可沿注水压差方向运移,还可在油层中纵深迁移,大大提高了水驱或化学驱的效率。 利用生物表面活性剂能够增强水性化合物的亲水性和生物利用度,还可以使环境污染物不断降解,该技术称为生物修复。我觉得在不远的未来这个技术能有更大的应用和发展前景。 针铁矿(Fe(OH)3) 是一种非常重要的矿产资源,可以吸附土壤和工业废水中有毒的金属离子。用针铁矿吸附、共沉淀金属离子,再用生物表面活性剂作为絮凝剂载体,可将金属离子分离出来。资源问题一直是当今世界重视的难题,利用生物表面活性剂将环境保护和资源采集率两个方面同时兼顾,这将是我们对抗环境恶化的重要手段。 资源的紧缺以及人类环保意识的加强,将进一步推动绿色表面活性剂工业的发展。当前,世界表面活性剂市场呈稳定而缓慢的增长趋势,更多新型、性能优良、易生物降解、高效、安全的表面活性剂出现,会给人们的生活和工业生产注入新的活力。根据国外一些大公司及专家预测,未来表面活性剂工业发展趋向主

烘焙常用食品添加剂

烘焙常用食品添加剂 食品添加剂能改善面点的加工性能、质地、色泽和风味。介绍几种常用食品添加剂。(一)生物蓬松剂 1.酵母:酵母是工厂化生产纯菌提纯,不含或含少量杂菌,发酵力强时间短,不会产生酸味所以不需加碱中和,是首选的发酵原料。酵母有液体鲜酵母(酵水)、压榨鲜酵母、活性干酵母三种。液体酵母含水90%,效力强但易酸败变质。压榨鲜酵母含水75%,效力强也易变质,须冷藏。活性干酵母(即发酵母)是由鲜酵母脱水干燥处理面成,约含10%的水分,不易变质更容易保存,但发酵力差。 2.面肥(老面、面种、糟头):含酵母,同时也含有较多的醋酸等杂菌,在面团发酵过程中,杂菌繁殖产生酸味须加碱中和。(二)化学蓬松剂1.发粉(1)碳酸氢钠:(食粉、苏打、小起子)在热空气中缓缓分解出二氧化碳气体,使制品膨胀暄软、疏松。(凉水溶解)(2)碳酸氢氨:(氨粉、大起子、臭粉、食用化肥)水温35℃以上产生氨气(挥发)和二氧化碳气体。(凉水溶解,禁用温热水。)(3)泡打:(发粉、发酵粉、焙粉、灸粉)是由碱剂(苏打)、酸剂、添加剂配合而成的复合蓬松剂,需加入干面粉中拌匀。 2.碱矾盐:三种配合加在温水中溶解而产生化学反应,使制品

蓬松。(三)水调节面团稠稀,便于淀粉膨胀糊化,促进面筋生成,促进酶对蛋白质、淀粉的水解,生成利于人体吸收的多种氨基酸和单糖;溶解原料传热介质;制品含水可使其柔软湿润。(四)盐 1.调味,用于制馅。 2.增强面团的筋力,“碱是 骨头盐是筋”盐能促进面筋吸水,增强弹性与强度、 质地紧密,使面团延升、膨胀时不易断裂。 3.改善色泽。面团加入盐后,组织会变得更细密,光线照射制品时暗影小,显得颜色白而有光泽。 4.调节发酵速度。发酵面加盐比例约占面粉的3‰以下,盐能提高面团 的保气能力,从而促进酵母生长,强快发酵速度,如果用量多,盐的渗透力就会加强,又会抑制酵母生长,使发酵速度变慢。(五)调节剂 1.碱:与酸性中和,改变酸性。 2.白醋、矾:与碱性中和,改变碱性。3.塔塔粉:与酸碱中和。(六)防腐剂 1. 丙酸钙:广泛用于点心的制作。 2.山梨酸钾:主要用于肉类制品。 3.苹果酸:用于点心制品、饮料、糖浆的制作。 4.柠檬酸:用于点心制品、饮料、糖浆的制作。(七)面团改良剂面团改良剂又称面包改良剂,主要用于面包面团的调制时使用,以增强面团的搅拌耐力,加快面团成熟,改善制品的组织结构,其中包含氧化剂(于氧化钠用于面包类),还原剂(焦亚硫酸

食品添加剂应用现状及调查分

食品添加剂应用现状及调查分析 天津农学院 机电与信息工程系 09级食品加工技术

商立颖 指导教师:赵晓山 目录 绪论 (1) 一、食品添加剂简介 (1) 1.1食品添加剂的起源 (1) 1.2食品添加剂的定义 (1) 1.3食品添加剂的种类 (1) 二、食品添加剂的使用原则 (2) 三、食品添加剂与食品工业的关系及利弊 (2) 3.1食品添加剂与食品工业的关系 (2) 3.2使用食品添加剂的利与弊 (2)

四、食品添加剂的应用现状及分析 (4) 4.1我国食品添加剂的应用现状 (4) 4.2案例分析及监管 (5) 一、瘦肉精事件影响全国猪肉市场 (5) 二、监管责任 (5) 五、食品添加剂未来发展趋势 (6) 六、小结 (6) 食品添加剂应用现状及调查分析 绪论 工业的飞速发展,人们对食品的色、香、味、品种、新鲜度等方面提出了更高的要求,必须开发更多更好的新产品来满足人们的需求,食品添加剂在这方面发挥重要作用。因此从某种意义上讲,食品添加剂在食品工业的发展中起了决定性作用,没有食品添加剂,就没有现代食品工业。食品添加剂对于改善食品的色、香、味、形,调整食品营养结构,提高食品质量和档次,改善食品加工条件,延长食品保存期,发挥着极其重要的作用。 然而我国近年来的“食品事件”层出不穷,使得我们对食品添加剂有了或多或少的认识:三鹿奶粉中的三聚氰胺、面粉中的增白剂、大米里中掺的石蜡……这些食品安全隐患使得我们现在想到“剂”就不寒而栗,其实“剂”本身没有那么可怕,可能消费者在认识中存在误区。到底何为食品添加剂,它与我们的生活有多密切。

一、食品添加剂简介 1.1 食品添加剂的标准定义 世界各国对食品添加剂的定义不尽相同,联合国粮农组织(FAO)和世界卫生组织(WHO)联合食品法规委员会对食品添加剂定义为:食品添加剂是有意识地一般以少量添加于食品,以改善食品的外观、风味和组织结构或贮存性质的非营养物质。按照这一定义,以增强食品营养成分为目的的食品强化剂不应该包括在食品添加剂范围内!按照《中华人民共和国食品安全法》第九十九条,中国对食品添加剂定义为:食品添加剂,指为改善食品品质和色、香和味以及为防腐、保鲜和加工工艺的需要而加入食品中的人工合成或者天然物质。 1.2 食品添加剂的定义 为改善食品品质及色、香、味,以及为防腐和加工工艺的需要而加入食品中的化学合成或者天然物质。营养强化剂、食品用香料、胶基糖果中基础剂物质、食品工业用加工助剂也包括在内 1.3 食品添加剂的种类 我国商品分类中的食品添加剂种类共有35类,包括增味剂、消泡剂、膨松剂、着色剂、防腐剂等,含添加剂的食品达万种以上。其中,《食品添加剂使用标准》和卫生部公告允许使用的食品添加剂分为23类,共2400多种,制定了国家或行业质量标准的有364种。主要有酸度调节剂、抗结剂、消泡剂、抗氧化剂、漂白剂、膨松剂、胶基糖果中基础剂物质、着色剂、护色剂、乳化剂、酶制剂、增味剂、面粉处理剂、被膜剂、水分保持剂、营养强化剂、防腐剂、稳定剂和凝固剂、甜味剂、增稠剂、食品用香料、食品工业用加工助剂、其他等23类。[2] 二、食品添加剂的使用原则 日常生活中,人们食用的食品品种越来越多,追求的色、香、形、营养等品质越来越高,随食品进入人体的食品添加剂数量和种类也越来越多。普通人每天常摄入几十种食品添加剂,因此食品添加剂的安全使用极为重要。根据《食品添加剂使用卫生标准》(GB 2760—2007),食品添加剂使用时应符合以下基本原则:(1)不应对人体产生任何健康危害; (2)不应掩盖食品腐败变质; (3)不应掩盖食品本身或加工过程中的质量缺陷或以掺杂、掺假、伪造为目的而使用食品添加剂; (4)不应降低食品本身的营养价值; (5)在达到预期的效果下尽可能减少在食品中的用量; (6)食品工业用加工助剂一般应在制成最后成品之前除去,有规定食品中残留量的除外; 在下列情况下可使用食品添加剂: (1)保持或提高食品本身的营养价值; (2)作为某些特殊膳食用食品的必要配料或成分;

最新各种外加剂复配技术资料

各种外加剂复配技术 (2011-09-13 09:26:23) 转载▼ 泵送剂 混凝土的泵送技术目前使用已十分普遍,尤其是商品泵送混凝土。因为商品混凝土的质量控制比施工现场搅拌混凝土的质量控制要好得多。目前国内的泵送水平也较高,垂直泵送已可达到一泵高度130m(上海东方明珠电视塔)。 泵送混凝土与普通混凝土是不一样的,它属于流态化混凝土。流态化混凝土首先是德国提出来的,是为了改善混凝土的施工性能而提出的。1974年原联邦德国制定了流态化混凝土施工指南,接着美国、英国、日本等均提出有关的报告书,有的称为超塑性混凝土。 流态混凝土特点为: 对坍落度较小的基准混凝土(3.5—9厘米坍落度),在浇筑以前加入流化剂(高效减水剂的复合剂),拌制成坍落度达到20cm以上流动度的混凝土。即在不改变原配合比和用水量的情况下,用加外加剂的办法来调整混凝土的工作度,使其流动性更好。这种混凝土粘性好、容易流动、不离析、不泌水。 泵送混凝土是流态化混凝土的一种,由于它有泵送的要求,它所掺的外加剂还必须满足泵送的特殊要求。泵送混凝土占流态混凝土和商品混凝土中很大的一部分,泵送剂也就成为了外加剂中重要的品种之一。 泵送剂的组成及机理 泵送剂常常不是一种外加剂就能满足性能要求,而是根据泵送剂的特点由不同作用的外加剂复合而成。 具体的复配比例应根据不同的使用目的、不同的使用温度、不同的混凝土标号、不同的泵送工艺来确定。 主要由以下几种组分组合而成: 1、减水组分 2、缓凝组分 3、引气组分 4、保水组分 5、矿物超细掺合料 6、膨胀组分 减水组分 1)普通减水剂 有减水作用,可在保持泵送混凝土所需要的流动度条件下,降低水灰比,以提高后期强度。 木质磺酸钙与木质磺酸钠是最常用的减水剂。除了减水作用外,还有些缓凝和引气性。有些标号较低,坍落度要求又不太高的泵送混凝土甚至只加木质磺酸盐类减水

食品添加剂有哪些

食品添加剂有哪些?常见的食品添加剂介绍 1漂白剂 常见种类:亚硫酸盐类、过氧化氢。可用于薯片、葡萄酒、干菜、凉果、白糖等,使用范围非常广,媒体相继曝光过一些黑作坊使用工业用品双氧水掩盖肉类、海鲜的腐败变质外观,消除臭味。 2抗氧化剂 常见种类:抗坏血酸(维他命C)、柠檬酸异丙酯、特丁基对苯二酚。可用于食用油或饼干、蛋糕等,防食物变坏,延长保质期。 3增稠剂 常见种类:卡拉胶、海藻酸钠、羧甲基纤维素钠(CMC)。可用于果冻、糖果、面条、牛奶等。可提高食品的黏稠度或形成凝胶,改变食品物理性状。健康饮食网 https://www.360docs.net/doc/a47215467.html, 4代糖(甜味剂) 常见种类:阿斯巴甜、三氯蔗糖。可用于低糖可乐、香口胶、糖尿病人食品、餐桌用糖包。不法商家过量使用糖精钠的现象很普遍,特别在一些劣质的饮料、蜜饯中。 5香精香料 常见种类:各种口味的天然香精、同天然香精和合成香精。可用于汽水、饼干、糖果、果冻、糕饼、鸡精等,改变其口味。有些食品已经过了保质期,但一些小贩又想把它们卖出去,就会添加香精、香料,意图掩盖变质的味道。 6发色剂 常见种类:亚硝酸盐。可用于腌肉、火腿、午餐肉、腊肠等肉类腊味食品,新鲜肉不可添加。 7防腐剂 常见种类:苯甲酸钠、山梨酸钾、二氧化硫等。可用于果酱、蜜饯,碳酸饮料、果汁等饮料,酱油、酱料等调味品,火腿肠等。为了防止各种加工食品、水果和蔬菜等腐败变质,也有不法商人用甲醛和福尔马林等非食品级的工业原料来杀菌。 8着色剂(色素)

常见种类:人工合成色素柠檬黄、胭脂红、天然色素辣椒红、焦糖色素等。可用于火锅飘香剂、辣椒酱、可乐等。今年5月,北京停售了多种存在超量添加了胭脂红等着色剂现象的调味面制食品。今年4月,媒体曝光上海华联超市销售染色“玉米馒头”。

我国食品添加剂发展的现状存在的问题及对策

我国食品添加剂发展的现状存在的问题及对策 食品添加剂是为改善食品品质、防腐以及加工工艺的需要而加入食品中的化学合成或者天然物质。按来源不同可分为天然食品添加剂和化学合成食品添加剂两大类[1-2]。食品添加剂由于能改善食品品质和档次,产生较好的经济效益和社会效益,在食品行业中得到越来越广泛的应用。但是,近年来随着“苏丹红”、“三聚氰胺”等事件的频频发生,食品添加剂的安全性问题越来越受到人们的关注。 据统计,目前全球开发的食品添加剂总数已达1.4万多种,其中直接使用的品种有300o 余种,常的有680余种。美国是世界上食品添加剂便用量最大、使用品种最多的国家.目前允许直接使用的有230o种以上,消费量已超过14o万吨(不包括淀粉及其衍生物、香精/香料和调味料);西欧消费量已近50075~,其中淀粉及其衍生物的数量高达40万吨。 食品添加剂已.成为医药、农用化学品及饲料添加剂之后的第四类倍受人们关注的精细化工行业。目前食品添加剂的世界市场价值为200亿美元,其中,调味品占30~,4、氢化胶体占17%、酸化剂占13%、调味增强剂占12%、甜味剂占6%、色素占5%、乳化剂占5%、维生素和矿物质占5%、酶占4%、化学防腐剂占2%、抗氧化剂占1%。j负计禾来5年内冥年增长率为2%-3%。全球调味品和香料的市场价值为12o亿美,其中调味品约占49%(59亿美元)。调味品市场中,饮料占31%、佐料占23%、奶制品占14%、其他占32%。需求增长最强劲的食品添加剂将是维生素、矿物质、调味增强剂和脂肪代用品 1存在的问题 1.1用量不规范 食品添加剂在食品加工过程中不按国家规定标准而随意使用的现象较为突出,比较突出的是超量使用现象。一方面,某些厂家缺乏食品安全意识,不顾食品添加剂的用量问题;有些厂家设备简单陈旧,缺乏精确的计量设备,缺乏生产技术人员;对有预包装产品中食品添加剂的用量标示不准确甚至不标。另一方面,在饮食行业,非包装食品添加剂标准缺失[3]。自2010年6月起颁布实施的《食品添加剂生产监督管理规定》中对于现场制作、产量较小的产品并没有做出用量的的规范。像面包店中预包装好的牛角包、酥皮包、方包上都有配料表一栏,除了标了小麦粉、白砂糖、牛油、鸡蛋等原料外,还标了“面包改良剂”,后面往往用括号表明了成分“淀粉、双乙酰酒石酸单甘油酯、维生素C、酶制剂”,但对于用量没有明确。 1.2超范围使用 在食品安全法草案中,明确了食品生产者应当按照食品安全标准关于食品添加剂的品种、使用范围、用量的规定使用食品添加剂,不得在食品生产中使用食品添加剂以外的化学物质或者其他危害人体健康的物质。但实际上,如吊白块、孔雀石绿、苏丹红等被广泛应用于食品生产。 1.3使用过期、劣质的食品添加剂 过保质期的食品添加剂,其功效会大打折扣,而且长期存放可能发生化学反应,产生有毒有害物质,影响添加食品的安全性;劣质食品添加剂,不仅产品不纯,而且含有汞、铅等重金属有害物质添加到食品中,会严重影响食品的安全。 1.4重复、多环节使用食品添加剂 一般有2种情况,一种是在某一食品中添加了单一的添加剂后,又因其他功用添加了复合食品添加剂,而复合添加剂由于配方保密不便公开,可能会出现重复添加的情况[4]。比如某种食品防腐剂应用在酱油中,目的是为了保证酱油防腐,但酱油被用于某种罐头食品中,这种防腐剂就带入到罐头食品中,这种罐头食品可能未被批准用这种食品防腐剂,或者这种食品防腐剂限量低,罐头食品生产厂家不知道原料酱油里使用了防腐剂,再添加就超标了。另一种是多

常用各种外加剂原理及特性

常用外加剂之减水剂原理及特性 减水剂是当前外加剂中品种最多、应用最广的一种,根据其功能分为:普通减水剂(在混凝土坍落度基本相同的条件下,能减少拌合用水量的外加剂);高效减水剂 (在保持混凝土坍落度基本相同的条件下,能大幅度减少用水量的外加剂);引气减水剂(兼有引气和减水功能的外加剂);缓凝减水剂(兼有缓凝和减水功能的外加剂);早强减水剂(兼有早强和减水功能的外加剂)。 减水剂按其主要化学成分为:木质素磺酸盐系;多环芳香族磺酸盐系;水溶性树脂磺酸盐系;糖钙等。 1.常用减水剂 (1)木质素磺酸盐系减水剂。这类减水剂根据其所带阳离子的不同,有木质素磺酸钙(木钙)、木质素磺酸钠(木钠)、木质素磺酸镁(木镁)等。其中木钙减水剂(又称M型减水剂)使用较多。木钙减水剂是由生产纸浆或纤维浆的废液,经生物发酵提取酒精后的残渣,再用石灰乳中和、过滤、喷雾干燥而制得的棕黄色粉末。木钙减水剂的掺量,一般为水泥质量的0.2%~O.3%,当保持水泥用量和混凝土坍落度不变时,其减水率为10%~15%,混凝土28d抗压强度提高 10%~20%;若保持混凝土的抗压强度和坍落度不变,则可节省水泥用量10%左右;若保持混凝土的配合比不变,则可提高混凝土坍落度80~100mm。木钙减水剂对混凝土有缓凝作用,掺量过多或在低温下缓凝作用更为显著,而且还可能使混凝土强度降低,使用时应注意。木钙减水剂是引气型减水剂,掺用后可改善混凝土的抗渗性、抗冻性、降低泌水性。木钙减水剂可用于一般混凝土工程,尤其适用于大模板、大体积浇注、滑模施工、泵送混凝土及夏季施工等。木钙减水剂不宜单独用于冬季施工,在日最低气温低于5℃时,应与早强剂或早强剂、防冻剂等复合使用。木钙减水剂也不宜单独用于蒸养混凝土及预应力混凝土。

生物表面活性剂

98-25:脂肽 H:环脂肽 【内容】 所有的生物都是由细胞所构成,细胞中70%的是水分,蛋白质、核酸、糖类、脂类等各种物质通过细胞内的精细结构进行着有序的活动。表面活性剂作为控制细胞界面秩序而不可缺少的物质起着重要作用。 由于生物体内的表面活性剂是在极其复杂的生物物质群中微量地存在,因此大量提取纯制品非常困难。近来发现微生物在其菌体外较大量地产生、积蓄微生物表面活性剂。这已在石油三次回收剂、石油环境污染的无公害处理剂及功能性表面活性剂等许多领域得到应用和开发。 生物表面活性剂具有合成表面活性剂所没有的结构特征,大多有着发掘新表面活性功能的可能性,人们正希望开发出生物降解性和安全性及生理活性都好的生物表面活性剂。 1.生物表面活性剂分类 生物表面活性剂根据其亲水基的类别,分为以下五种类型:①以糖为亲水基的糖脂系生物表面活性剂;②以低缩氨酸为亲水基的酰基缩氨酸系生物表面活性剂;③以磷酸基为亲水基的磷脂系生物表面活性剂;④以羧酸基为亲水基的脂肪酸系生物表面活性剂;⑤结合多糖、蛋白质及脂的高分子生物表面活性剂(生物聚合体)。 (1)糖脂系生物表面活性剂糖脂与磷脂形成复合脂成为连接脂和糖的桥梁,从化学结构来看,它们是由脂肪醇或脂肪酸形成的复杂脂。根据这种糖脂的结构和分布可分为四类:鞘氨糖脂,植物糖脂,甘油糖脂,结构单元中无鞘氨醇和甘油的其他糖脂。 鞘氨糖脂是动物糖脂的代表性物质,存在于动物组织,特别是动物的脑神经组织中。植物糖脂主要存在于植物中。 甘油糖脂广泛存在于高等植物、藻类和能进行光合作用的细菌中,既有植物性又有微生物性糖脂的特性。 属于结构单元中无鞘氨醇和甘油的糖脂有来自高好碱性菌的硫糖脂,及源于植物的有代表性的皂草苷生物表面活性剂。以前,人们常用皂草苷作洗涤用品,从结构上看,它是由以甾族化合物或三萜系化合物为非糖部分(皂草配基)与低聚配糖体构成的。皂草苷具有生物活性,如具有溶血、强心和免疫等作用。 (2)酰基缩氨酸系生物表面活性剂大致分为硫放线菌素类和脂氨基酸类,这类物质以氨基酸或低聚缩氨酸作亲水基。它广泛存在于各种微生物、植物、无脊椎动物的消化液、鸡的卵管、人的皮肤等中。虽然对脂氨基酸的生理意义还不了解,但作为生物膜的存在,它与维持膜结构及膜机能有关,而且存在于皮肤的角质层中,也与保湿作用有关。硫放线菌素类是微生物的产物,有高表面活性。 (3)磷脂系生物表面活性剂这是磷脂与糖脂在复合脂中形成的一大领域。大致分为甘油磷脂和鞘氨磷脂。 甘油磷脂是以磷脂酰酸作基本骨架,由具有羟基的各种化合物构成,结构式如下:

食品添加剂习题--06()

食品添加剂 习 题 生命科学与工程学院食品科学与工程教研室

一、名词解释 食品添加剂、食品营养强化剂、半致死量、最大无作用量、人体每日允许摄入量、食品加工助剂、着色剂、食用天然色素、食用合成色素、坚牢度、护色剂、漂白剂、香料、着香剂、增香剂、香精、食用香精、乳化香精、调味剂、酸味剂、缓冲剂、增味剂、乳化剂、亲水亲油平衡值、.临界胶束浓度、食品增稠剂、防腐剂、食品腐败、食品霉变、食品发酵、.食品保藏、分配系数、油脂酸败、抗氧化剂及增效剂 二、填空三、选择题四、判断题 1.根据安全性将食品添加剂分为三类,每类又分为(1)、(2)亚类。 2.目前对食品添加剂的分类方法主要有:按分类、按分类、按分类、按分类等。 3.根据我国的《食品添加剂使用卫生标准》(GB2760-2014)的规定,食品添加剂共分为22类。包括: 4.我国的《食品添加剂分类和代码》[(GB12493—90),适用于食品添加剂的信息处理和情报交换工作]将食品添加剂分为类,不包括。 5.食品添加剂属于精细化学工业和食品工业交叉的一个领域,具有本身的特性:性、性、性、技术、等特点。 6.食品添加剂的发展总趋势是:型、型和型。 7.“吊白块”化学名称是,120℃以下分解为,二氧化碳和等有毒气体。 8.按我国《食品安全性毒理学评价程序》规定,食品安全性毒理学评价程序分四个阶段,其第—阶段试验为毒性试验,第二阶段为毒性试验、传统致畸试验及短期喂养试验,第三阶段为毒性试验,第四阶段毒性试验。 9.食品添加剂进行动物毒性试验时,通常要做毒性试验、毒性试验和毒性试验。 10.半致死量(50%LethalDose;LD50),是判断食品添加剂安全性的第种常用指标,它表明了食品添加剂急性毒性的大小,也是任何食品添加剂都必须进行的毒理学评价中第阶段急性毒性试验的指标。 11.毒理学通常用大鼠经口测定的LD50将受试物毒性分为、剧毒、、低毒、、无毒六类。

常用外加剂之引气剂原理及特性

常用外加剂之引气剂原理及特性 引气剂是在搅拌混凝土过程中能引入大量均匀分布、稳定而封闭的微小气泡的外加剂。引气剂的主要种类有:松香树脂类,如松香热聚物、松香皂等;烷基苯磺酸盐类,如烷基苯磺酸钠、烷基磺酸钠等;脂肪醇类,如脂肪醇硫酸钠、高级脂肪醇衍生物等;非离子型表面活性剂,如烷基酚环氧乙烷缩合物等;木质素磺酸盐类,如木质素磺酸钙等。 1.常用引气剂 我国应用较多的引气剂为松香热聚物、松香皂、烷基苯磺酸盐、木质素磺酸盐类等。 松香热聚物是松香与石碳酸、硫酸、氢氧化钠以一定配比经加热缩聚面成。松香皂是由松香经氢氧化钠皂化而成。松香热聚物的适宜掺量为水泥质量的 O.005%~0.02%。混凝土含气量为3%~5%,减水率为8 %左右。松香皂引气减水剂掺量为水泥质量的0.005%~O.01%,减水率为10%以上。引气剂的掺量虽然极微,但引气剂对混凝土性能影响却很大。其主要作用有:

(1)改善混凝土拌合物的和易性。引气剂的掺入使混凝土拌合物内形成大量微小的封闭球状气泡,这些微气泡如同滚珠一样,减少骨料颗粒间的摩擦阻力,使混凝土拌合物的流动性增加。若保持流动性不变,就可减少用水量。同时由于水分均匀分布在大量气泡的表面,这就使能自由移动的水量减少,混凝土拌合物的泌水量因此减少,而保水性、粘聚性相应随之提高。 (2)降低混凝土的强度。由于大量气泡的存在,减少了混凝土的有效受力面积,使混凝土强度有所降低。但引气剂有一定的减水作用(尤其象引气减水剂,减水作用更为显著),水灰比的降低,使强度得到一定补偿。当水灰比固定时,空气量每增加1%体积时,混凝土的抗压强度要降低4%~5%,抗折强度降低2%~3 %。因此,引气剂的掺量应严格控制,一般引气量以3%~6%为宜。此外,由于大量气泡的存在,使混凝土的弹性变形增大,弹性模量有所降低,这对提高混凝土的抗裂性是有利的。 (3)提高混凝土的抗渗性、抗冻性。 引气剂使混凝土拌合物泌水性减小(一般泌水量可减少30%~40%)。因此泌水通道的毛细管也相应减少。同时,大量封闭的微气泡的存在,堵塞或隔断了混凝土中毛细管渗水通道,改变了混凝土的孔结构,使混凝土抗渗性显著提高。气泡有较大的弹性变形能力,对

生物表面活性剂的分离提纯及其应用前景

生物表面活性剂的制备、提纯及其应用 摘要:生物表面活性剂是由微生物产生的天然产物,具有表面活性高、对环境无污染、生物可降解性及良好的抑菌作用等优于化学合成的表面活性剂的独特性质。本文对生物表面活性剂的合成方法进行了介绍,对生物表面活性剂在石油工业、环境工业、医药、食品、农业和化妆品工业等领域的应用进行了总结,展望了生物表面活性剂的良好应用前景。 关键词:生物表面活性剂制备提纯应用 生物表面活性剂主要是由微生物在好氧或厌氧条件下在碳源培养基中生长时产生的。这些碳源可以是碳水化合物、烃类、油、脂肪或者是它们的混合物。生物表面活性剂可分为非离子型和阴离子型, 阳离子型较为少见。像其它表面活性物质一样, 生物表面活性剂由一个或多个亲水性和憎水性基团组成, 亲水基可以是酯、羟基、磷酸盐、或羧酸盐基团、或者是糖基, 憎水基可以是蛋白质或者是含有憎水性支链的缩氨酸。根据生物表面活性剂的结构特点, 可将其分为5 类:糖脂、脂肽、多糖蛋白质络合物、磷脂和脂肪酸或中性脂。 和传统的化学合成的表面活性剂相比, 生物表面活性剂有许多明显的优势:(1)更强的表面和界面活性;(2)对热的稳定性;(3)对离子强度的稳定性;(4)生物可降解性;(5) 破乳性。 由于这些显著特点, 使生物表面活性剂在一些方面可以逐渐代替化学合成的表面活性 剂, 而且应用也越来越广泛。 1 生物表面活性剂的性质、分类及制备 1. 1 生物表面活性剂的特性 生物表面活性剂分子结构包含极性基团和非极性基团,是一种具有亲水、疏水两性特点的生物大分子化合物。生物表面活性剂分子的亲水基和疏水基可以由不同的分子成分组成。 生物表面活性剂与其他表面活性剂比较,主要特性就是无毒性、稳定性好、耐酸耐盐性好、可以被生物降解、对环境无污染及抗菌性。 1. 2 生物表面活性剂的分类 生物表面活性剂根据其化学结构的不同,可以分为酰基缩氨酸系、糖脂系、磷脂系、高分子聚合物和脂肪酸系表面活性剂五类,如表1 所示。 表1 生物表面活性剂的分类 分类典型产物 酰基缩氨酸系脂蛋白、脂肽、脂氨基酸 糖脂海藻糖脂、鼠李糖脂、槐糖脂 磷脂磷脂酰乙醇胺 中性脂/脂肪酸甘油脂、脂肪酸、脂肪醇、蜡 聚合物脂杂多糖、脂多糖复合物、蛋白质-多糖复合物 1. 3 生物表面活性剂的制备方法 1.3.1 微生物发酵法

相关文档
最新文档