增稠剂在食品中的作用

增稠剂在食品中的作用
增稠剂在食品中的作用

增稠剂在食品中的作用

稠剂在食品中的作用主要是为了提高食品的粘度或着形成凝胶、保持体系相对稳定性的亲水性物质,从而改变食品的物理性状、赋予食品粘润、适宜的口感,并兼有乳化、稳定或使呈悬浮状态作用的物质。

1、稳定作用

稳定作用指增稠剂加入到食品中,可使食品组织趋于稳定、不易变动、不易改变品质如:①在冰淇淋中有抑制冰晶生长②糖果中有防止糖结晶3在饮料、调味品和乳化香精中具乳化稳定作用;4在啤酒、汽酒中有泡沫稳定作用。

2、增稠作用

增稠剂在食品中主要是赋予食品所要求的流变特性:改变食品的质构和外观,将液体、浆状食品形成特定形态;并使其稳定、均匀,提高食品质量,以使食品具有黏滑适口的感觉。

3、凝胶作用

食品增稠剂是果冻、奶冻、果酱、软糖和人造营养食品等的胶凝剂和赋犁剂。作为食用凝胶的增稠剂,它们各具特长,彼此难以取代,琼脂是目前较好的胶凝形成剂,其凝胶坚实、硬度较高,但弹性较小。明胶凝胶坚韧而富有弹性,能承受一定的压力。海藻酸钠胶凝条件低,其热不可逆性特别适用于人造营养食品。果胶在胶凝时能释放出一种较好的香味,适用于果味食品。

4、保水作用

保水作用则指增稠剂有强亲水作用能吸收几十倍乃至上百倍于自身质量的水分,并有持水性,这个特性可改善面团的吸水量,使产品的质量增大。

5、成膜作用

在食品表面形成非常光润的薄膜,可以防止冰冻食品、固体粉末食品表面吸湿而导致的质量下降。作被膜用的有醇溶性蛋白、明胶、琼脂、海藻酸等当前,可食用包装膜是增稠剂发展的方向之一。

6、矫味作用

对不良气味有掩蔽作用。其中环糊精效果较好,可消除食品中的异味。例如, 在豆奶中加入

2-5%可显著减少豆腥味。

7、其它作用

除上述作用外,增稠剂还可作为果汁、酒和某些调味品的澄清剂,烘烤食品品质改良剂;在

食品加工中还可作起泡剂和脱膜剂等。

影响增稠剂作用效果的因素

增稠剂在食品加工中重要作用之一即为利用其粘度保持制品的稳定均一性,因此增稠剂的粘度是一个十分重要的指标。

1、结构及相对分子质量对黏度的影响

一般增稠剂是在溶液中容易形成网状结构或具有较多亲水基团的物质,具有较高的黏度。随着相对分子质量增加,形成网状结构的几率也增加,故增稠剂的分子质量越大,黏度也越大。

2、浓度对黏度的影响

增稠剂浓度增高,相互作用几率增加;附着的水分子增多,黏度增大。

3、PH值对黏度的影响

介质的PH值与增稠剂的黏度及其稳定性的关系极为密切;在酸度较高的汽水、酸奶等食品中,宜选用侧链较大或较多,而位阻较大,又不易发生水解的藻酸丙二醇酯和黄原胶等;而海藻酸钠和CMC(羧甲基纤维素钠)等则宜在豆奶等接近中性的食品中使用。

4、温度对黏度的影响

随着温度的升高,一般溶液的黏度降低;少量氯化钠存在时,黄原胶的黏度在-4~+93℃范围内变化很小;这是增稠剂中的特例。

5、切变力对增稠剂溶液黏度的影响

切变力的作用是降低分散相颗粒间的相互作用力;这种作用力大,结构黏度降低。

6、增稠剂的协同效应

增稠剂有较好增效作用的配合是:CMC(羧甲基纤维素钠)与明胶;卡拉胶、瓜尔豆胶和CMC(羧甲基纤维素纳);琼脂与刺槐豆胶;黄原胶与刺槐豆胶等。

长保课堂

柠檬酸在食品中的应用

柠檬酸在食品中的应用 陆英杰 摘要柠檬酸以其独特的性质在食品加工业中具有广泛应用,是一种用量相当大的食品添加剂,文章概述柠檬酸的性状及在食品工业中的主要用途。 关键词柠檬酸食品应用 一、前言 柠檬酸是水果、蔬菜中分布最广的有机酸,也是食品中应用最广泛的酸味剂。柠檬酸是一种重要的有机酸,又称枸橼酸,无色晶体,常含一分子结晶水,无臭,有很强的酸味,易溶于水。其钙盐在冷水中比热水中易溶解,此性质常用来鉴定和分离柠檬酸。结晶时控制适宜的温度可获得无水柠檬酸。柠檬酸分无水柠檬酸和一水柠檬酸。同时柠檬酸还有许多其他用途,如作为抗氧化剂增效剂、漂白剂增效剂、果酱凝结剂、水果护色剂、增香剂及鱼类、羊奶的除臭剂等。 自然界中柠檬酸广泛存在于柠檬、橙、桔子等水果中。工业生产主要采用合成法和发酵法,而工业上使用的柠檬酸多由黑曲霉发酵法生产。 二、性状特点 柠檬酸易溶于水、乙醇,溶于乙醚。无水柠檬酸在水中的溶解度溶解性好1. 很大,100℃为84%。25℃时政乙醇中的溶解度为58.9%。此外,柠檬酸和其衍生物的丙二醇溶液还可溶于油脂。由于水溶性和脂溶性较好,柠檬酸

易于均匀地分散于各类食品中。 温和芳香,在所有有机酸中是最可口的,并能与多种香料混合产酸味纯正2. 生清爽的酸味,故事用于许多食品。同时由于柠檬酸的弱酸性,在一定pH 范围内能抑制细菌繁殖,起到防腐作用。. 柠檬酸由于含有三个羧基故可形成三种形式的盐,但除碱金属盐螯合力强3. 外,其他盐大多不溶或难溶于水。它还有一种奇特的性质,就是在冷水中比在热水中易溶。 如与磷酸氢二钠以不同比例混合,可得到2~8的系能与碱或盐组成缓冲剂4. 列缓冲液。 在人体内柠檬酸为三羧酸循环的重要中间体,毒性小。毒性小5. 三、应用 广泛应用于各种饮料、果汁、罐头、糖果、果酱、果冻柠檬酸作为酸味剂1. 的生产,使产品的酸味清爽可口,并有果味的香甜。柠檬酸本身是果汁的天然成分之一,不仅赋予饮料水果风味,而且具有增溶、缓冲、抗氧化等作用,能使饮料中的糖、香精、色素等成分交融协调,形成适宜的口味和风味。 在蔗糖液中添加适量柠檬酸可使其转化为糖,以提高蔗柠檬酸作蔗糖转化剂2.

食品乳化剂的特性及在油脂乳化中的应用

食品乳化剂的特性及在油脂乳化中的应用 一、前言 随着人们生活水平的提高及饮食结构的变化,在传统追求色、香、味的同时,更加重视食品的功能化、特性化和多样性,无论怎样更新,食品的营养性和安全性是保障和提高人类健康最重要的前提。所以要达到上述目标,正确和科学使用食品乳化剂尤为重要,基于此,我们技术工作者严格按照《中华人民共和国食品卫生法》和《食品添加剂卫生管理办法》研发、生产、推荐使用优质、规范的食品乳化剂,勇担食品安全之重任。 二、食品乳化剂的特性及乳化机理 食品乳化剂是一类能使两种或两种互不相容构成相(如:油和水)均匀地形成分散或乳状(乳浊)体的活性物质。其特性取决于乳化剂的HLB值(亲水亲油平衡值),而HLB值的大小取决于乳化剂的分子构成,乳化剂分子亲水基团数量多(如:-OH基),表现出强的亲水性,即HLB值偏高,形成水包油(O/W)型乳化剂;若乳化剂分子中碳氢链越长(如:CH3—CH2—CH2—……),亲油基团大,则亲油性强,HLB值偏低,形成油包水(W/O)型乳化剂,人们规定亲水性100%乳化剂,HLB值为20(以油酸钾为代表),亲油性100%,HLB 值为零(以石蜡为代表)期间分成20等分,如图一所示: HLB值1~6易形成W/O型乳化体系,其中1~3为消泡剂,3.5~6为油包水型乳化剂。6~20易形成O/W型乳化体系,其中7~8为润湿剂,8~18为油/水型乳化剂,13~15为洗涤剂,15~18为去污、加溶剂。截止2006年《中华人民共和国卫生部公告》我国已批准使用的食品乳化剂为36种,主要为阴离子和非离子,极少量两性离子,据相关资料报道,我国目前年用量4万吨左右,其中单甘酯2万吨左右。现将主要品种及特性列于表一。 表一乳化剂主要品种及特性 单甘酯(GMS DGMS)特性: 乳化、分散、抗淀粉老化 硬脂酰乳酸钠(SSL)特性: 增筋、乳化、防老化、保鲜、增大面包、馒头体积、改善组织结构 硬脂酰乳酸钙-钠(CSL-SSL) 特性: 增筋、乳化、防老化、保鲜、增大面包、馒头体积、改善组织结构. 三聚甘油单硬脂酸酯(PGFE)特性: 较强的乳化性,保湿、柔软性、防止淀粉回生老化 双乙酰酒石酸单(双)甘油酯(DATEM)特性: 乳化、增加面团弹性、韧性和持气性,增大面包、馒头体积,防止老化. 月桂酸/辛酸单甘酯(GML/GMC)特性: 乳化、分散、防腐、保鲜. 斯盘、吐温系列(S-60 、T-60等)特性: 良好乳化、稳定、分散、

乳化剂性质及应用

食品乳化剂的性质及应用 一、乳化剂的简介: 1. 乳化剂是一种双亲分子,是有一个亲油端及一个亲水端在体系中,分散 相称为不连续相,在食品中,亲油基常是食品级油或脂的长链脂肪酸,亲水 基可以是非离子型,如甘油,亲水基可以是阴离子型(带负电如乳酸盐),亲 水基可以是两性(如卵磷脂),亲水基可以是阳离子型,具有毒性,一般不 用。 2.乳化液: 常有O/W与W/O型分散液,总的说来,连续相是乳化剂的溶解度较大的一相。 3、HLB 亲水性与亲油性平衡值,理论上,HLB=(亲水性分子量/总分子量)×20=a/b ×20 由此可见,HLB在0~20 较小值代表乳化剂在油相中更易溶解,较大值则相反,常见乳化剂的HLB值:

两种乳化剂混合物的HLB=A×HLBa+B×HLBb 其中A、B表示质量百分数。 经研究: HLB在3~6范围内有利于形成W/O型乳化液 HLB在11~15范围内,有利于形成O/W型乳化液 HLB在6~11范围内,无良好乳化性,只有湿润性能 O/W型乳化液在HLB=12最稳定, W/O型乳化液在HLB=3.5最稳定。 二、乳化剂的作用: 1、乳化剂最重要的作用是使互不相溶的水、油两相得以乳化形成均匀、稳定的乳状液,保持油和水的两相稳定。 2、与淀粉作用: 淀粉在水中形成@螺旋结构,内部有疏水作用,乳化剂疏水基进入淀粉@螺旋结构,通过疏水键与之结合,形成复合物或络合物,降低淀粉分子的结晶程度,乳化剂进入淀粉颗粒内部会阻止支链淀粉的结晶程度,防止淀粉老化,使面包、糕点等淀粉类制品柔软,具有保鲜作用。 3、与蛋白络合,改善食品结构及流变特性增强面团强度。蛋白质因氨基酸极性不同具有亲水和疏水性,在面筋中,极性脂类分子以疏水键与麦谷蛋白结合,以氢键与

GB 2760-2014中可使用的食品增稠剂

中文名称英文名称CNS号INS号功能 丙二醇propylene glycol 18.004 1520 稳定剂和凝固剂、抗结剂、消泡剂、乳化剂、水分保持剂、增稠剂 刺云实胶tara gum 20.041 417 增稠剂醋酸酯淀粉starch acetate 20.039 1420 增稠剂 淀粉磷酸酯钠sodium starch phosphate 20.013 —增稠剂 D-甘露糖醇D-mannitol 19.017 421 甜味剂、乳化剂、膨松剂、稳定剂、增稠剂 瓜尔胶guar gum 20.025 412 增稠剂 果胶pectins 20.006 440 乳化剂、稳定剂、增稠剂 海萝胶funoran (gloiopeltis furcata) 20.040 —增稠剂 海藻酸丙二醇酯propylene glycol alginate 20.010 405 增稠剂、乳化 剂、稳定剂 海藻酸钠(又名褐藻 酸钠) sodium alginate 20.004 401 增稠剂 槐豆胶(又名刺槐豆 胶) carob bean gum 20.023 410 增稠剂β-环状糊精beta-cyclodextrin 20.024 459 增稠剂 黄原胶(又名汉生胶)xanthan gum 20.009 415 稳定剂、增稠 剂 甲壳素(又名几丁质)chitin 20.018 — 增稠剂、稳定 剂

聚甘油脂肪酸酯 polyglycerol esters of fatty acids (polyglycerol fatty acid esters) 10.022 475 乳化剂、稳定 剂、增稠剂、抗结 剂 聚葡萄糖polydextrose 20.022 1200 增稠剂、膨松剂、水分保持剂、 稳定剂 决明胶cassia gum 20.045 427 增稠剂 卡拉胶carrageenan 20.007 407 乳化剂、稳定剂、增稠剂 可得然胶curdlan 20.042 424 稳定剂和凝固剂、增稠剂 可溶性大豆多糖 soluble soybean polysaccharide 20.044 — 增稠剂、乳化 剂、被膜剂、抗结 剂 磷酸化二淀粉磷酸酯 phosphated distarch phosphate 20.017 1413 增稠剂 硫酸钙(又名石膏)calcium sulfate 18.001 516 稳定剂和凝固剂、增稠剂、酸度调节剂 氯化钙calcium chloride 18.002 509 稳定剂和凝固剂、增稠剂 罗望子多糖胶 tamarind polysaccharide gum 20.011 —增稠剂 麦芽糖醇和麦芽糖醇液maltitol and maltitol syrup 19.005, 19.022 965(i),965(ii) 甜味剂、稳定 剂、水分保持剂、 乳化剂、膨松剂、 增稠剂 普鲁兰多糖pullulan 14.011 1204 被膜剂、增稠剂 羟丙基二淀粉磷酸酯 hydroxypropyl distarch phosphate 20.016 1442 增稠剂

食品中常用乳化剂的优缺点及使用范围

食品中常见乳化剂的优缺点和适用范围 一、硬脂酰乳酸钠/钙(ssl/csl) 1.优点: 具有强筋的保鲜的作用。一方面与蛋白质发生强烈的相互作用,形成面筋蛋白复合物,使面筋网络更加细致而有弹性,改善酵母发酵面团持气性,使烘烤出来的面包体积增大;另一方面,与直链淀粉相互作用,形成不溶性复合物,从而抑直链淀粉的老化,保持烘烤面包的新鲜度。ssl/csl在增大面包体积的同时,能提高面包的柔软度。 2.缺点:与其他乳化剂复配使用,其优良作用效果会减弱。 3.适用范围:根据《食品添加剂使用卫生标准》GB2760-1996中规定:硬脂酰乳酸钠可用于面包、糕点,最大用量为2.0g/kg。 二、双乙酰酒石酸单甘油酯(datem) 1.优点: 能与蛋白质发生强烈的相互作用,改进发酵面团的持气性,从而增大面包的体积和弹性,这种作用在调制软质面粉时更为明显。如果单从增大面包体积的角度考虑,datem在众多的乳化剂当中的效果是最好的,也是溴酸钾替代物一种理想途径。 2.缺点:吸湿性大,细粉在夏季高温潮湿(或储存不当)时特别容易结块 3.适用范围: 用于植脂性粉末,5.0g/kg。氢化植物油、搅打过的奶油、面包、糕点,10g/kg。 三、蔗糖脂肪酸酯(se) 1.优点: 在面包品质改良剂中使用最多的是蔗糖单脂肪酸酯,它能提高面包的酥脆性,改善淀粉糊黏度以及面包体积和蜂窝结构,并有防止老化的作用。采用冷藏面团制作面包时,添加蔗糖酯可以有效防止面团冷藏变性。 2.缺点:

由于乳化剂的协同效应,单独使用蔗糖酯远不如与其他乳化剂合用,适当复配后乳化效果更佳。在酸性或碱性时加热可被皂化。 3.适用范围: 可用于肉制品、香肠、乳化香精、水果及鸡蛋保鲜、冰淇淋、糖果、面包, 1.5g/kg;乳化天然色素,10g/kg。 四、松香甘油酯 1.优点: 质脆,无臭或微有味。不溶于水、低分子醇,溶于芳香族溶剂、烃、萜烯、酯、酮、橘油及大多数精油。具有稳定饮料的作用。 2..适用范围: 可用于胶姆糖基础剂,最大量1.0g/kg。乳化香精,最大量100g/kg。可用作饮料的稳定剂,用量在成品中不超过0.05%,在口香糖基础剂用量不超过01% 五、改性大豆磷脂 1.优点: 用于人造黄油(氢化油),起乳化、防溅、分散等作用;用于油脂乳化剂,起油水乳化作用,乳化油可以代替纯油脂,有改进食品质量、节约食品加工用油的效果。在巧克力中起保形、润湿作用,能防止因糖分的再结晶而引起的发花现象。糖果中特别是对含有坚果及蜂蜜的糖果,能防止渗油及渗液作用,对口香糖能起留香作用。 2.缺点: 在水中很容易形成乳浊液,比一般的磷脂更容易分散和水合。极易吸潮,易溶于动植物油,部分溶于乙醇。 3.适用范围: 用于人造黄油、巧克力,0.2%~0.3%;糖果,0.5%;口香糖,0.2~0.3%、蛋制品等。 六、木糖醇酐单硬脂酸酯

食品添加剂 着色剂

1.什么是食品着色剂?着色剂有哪几种类型? 答:以给食品着色为主要目的的添加剂称着色剂,也称食用色素。食用色素使食品有悦目的色泽,对增加食品的嗜好性及刺激食欲有重要意义。 着色剂按来源可分为人工合成着色剂和天然着色剂。按结构,人工合成着色剂又可分类偶氮类、氧蒽类和二苯甲烷类等;天然着色剂又可分为吡咯类、多烯类、酮类、醌类和多酚类等。按着色剂的溶解性可分为脂溶性着色剂和水溶性着色剂。 2.简述着色剂显色的基本原理 答:自然光是由不同波长的电磁波组成的,波长在400~800nm之内为可见光,在该光区内不同波长的光显示不同的颜色。任何物体能形成一定的颜色,主要是因为其色素分子吸收了自然光中的部分波长的光,它呈现出来的颜色是由反射或透过未被吸收的光所组成的综合色,也称为被吸收光波组成颜色的互补色。例如,如果物体吸收了绝大部分可见光,那么物体反射的可见光非常少,物体就呈现出黑色或接近黑色;如某种物质选择吸收了波长为510nto的绿色光,而人们看见它呈现的颜色是紫色,因为紫色是绿色光的互补色。 3.常用的合成着色剂有哪些?各有何特点? 答:常用的合成着色剂有以下十种: (1)苋菜红(Amaranth)又称杨梅红、鸡冠紫红、蓝光酸性红、食用红色2号。 化学名称为1一(47一磺基一17一萘偶氮)一2一萘酚一3,6一二磺酸三钠盐,为水溶性偶氮类着色剂。其为红褐色或紫色均匀粉末或颗粒,无臭。易溶于水,可溶于甘油及丙二醇,微溶于乙醇,不溶于油脂等其他有机溶剂。水溶液带紫色,耐光、耐热性强,耐细菌性差,对氧化还原敏感,对柠檬酸、酒石酸稳定,而遇碱则变为暗红色。其与铜、铁等金属接触易褪色,易被细菌分解,耐氧化、还原性差,不适用于发酵食品及含还原性物质的食品。着色性能着色力较弱,在浓硫酸中呈紫色,在浓硝酸中呈亮红色,在盐酸中为黑色沉淀,而色素粉末有带黑的倾向。由于对氧化一还原作用敏感,故不适合于发酵食品中使用。 (2)胭脂红(Ponceau)又称丽春红4R、大红、亮猩红、食用红色102号。 化学名称为1一(4,_磺基一1,_萘偶氮)一2一萘酚-6,8一二磺酸三钠盐,为水溶性偶氮类着色素。其为红色至深红色均匀粉末或颗粒,无臭。易溶于水,水溶液呈红色;溶于甘油,微溶于乙醇,不溶于油脂。胭脂红稀释性强,耐光、耐酸性、耐盐性较好,耐热性强,但耐还原性差,耐细菌性也较弱,遇碱变为褐色。对柠檬酸、酒石酸稳定。着色性能因胭脂红耐还原性差,不适合在发酵食品中使用,其着色力较弱。0.1%的胭脂红水溶液为呈红色的澄清液,在盐酸中呈棕色,并会发生黑色沉淀。 (3)赤藓红(Erythrosine)又称樱桃红、四碘荧光素、新品酸性红、食用色素红3号。 化学名称为9一(邻羧苯基)-6一羧基一2,4,5,7一四碘一3一异氧杂蒽酮二钠盐,为水溶性非偶氮类着色剂。其为红至红褐色均匀粉末或颗粒,无臭。吸湿性强,易溶于水,可溶于乙醇、甘油和丙二醇,不溶于油脂。0.1%水溶液呈微蓝的红色,酸性时生成黄棕色沉淀,碱性时产生红色沉淀,耐热、耐还原性强,但耐光、耐酸性差。着色性能具有良好的染色性,尤其对蛋白质的染色。根

乳化剂在食品中的应用

亲水性单甘酯在冰淇淋中的应用 亲水性单甘酯系列产品是一种复合乳化剂,以饱和脂肪酸单、双甘油酯作为原料,经特殊工艺添加亲水基团合成的,具有较强的热稳定性,在含水体系中具有优良的水解稳定性,具有很强的胶束形成能力,具有较高的HLB值(5~17),能够大大降低油/水界面体系的活性,无色,无味并具有良好生物降解性,无毒副作用,可以与其他乳化剂以任意比例配伍,对食品的色、香、味无任何影响,现已广泛应用在冰淇淋、乳制品、速冻食品等领域中。 冰淇淋属水包油(O/W)型乳液,应选用亲水性水包油型乳化剂,亲水性单甘酯在冰淇淋生产中的作用,主要表现在凝冻工序中脂肪粒子发生附聚而形成三维网络结构作为冰淇淋骨架,使气泡保持稳定,形成保型性和贮藏稳定性以及口融性均良好的组织,口感细腻。 因此选择亲水性单甘酯系列产品做乳化剂能通过控制冰淇淋料中脂肪球的附聚与凝聚而使冰淇淋具有较好的干性度、保型性、适宜的膨胀率、细腻的组织结构和口感、抗融化性好等特征。 此外,灌模产品中在适度提高膨胀率的情况下能很好地改善料液的流动性,利于灌模,同时也能改善口感。在水冰类产品中使产品口感更酥脆,透度提高。 亲水性单甘酯用量一般为脂肪百分含量的2~3% 脂肪含量% 亲水性单甘酯用量% 4~6 0.1~0.2 6~8 0.2~0.3 8~12 0.3~0.4

以上只是经验值,生产中通过高剪切或均质等适当手段,可减少乳化剂用量,最适宜用量须经试验来确定。 在冰淇淋生产中最为常用的乳化剂为蒸馏单甘酯,因为它价格低、乳化能力强、使用方便、有适宜的膨胀率(80~100%),但试验中我们发现若单纯使用蒸馏单甘酯作乳化剂做出的产品表面粗糙,口感不细腻,而当蒸馏单甘酯与亲水性单甘酯系列产品复配使用,乳化效果更好,料液粘稠度适中,搅打起泡性好,在相同膨胀率下表面光滑,光泽度好,组织细腻,有咬劲,口感好。 亲水性单甘酯在液态奶制品的应用 随着人们生活水 平的提高,牛乳作为营养全价食品倍受 消费者的青睐和喜爱,但牛奶在贮运过 程中常会出现脂肪上浮而影响产品质 量。这就需要加入乳化剂来改善这种情 况,减少脂肪上浮。 牛乳在均质过程 中,脂肪球破裂为小的脂肪球,脂肪球 表面积增大6-10倍,原奶中的乳化剂(磷 脂、酪蛋白)远不能满足脂肪界面膜的 需要,这就需要加入较多的乳化剂与脂 肪形成完整的界面膜,在水包油体系中, 乳化剂与水的相互作用主要取决于亲水 基团,当乳化剂的亲水基团大,亲油基 团小即HLB值高的乳化剂是水溶性的, 所以在均质过程中HLB值高的乳化剂迅

乳化剂在食品中的作用原理

○食品添加剂○ 乳化剂在食品中的作用原理 张佳程 周浩 摘要:本文简要介绍了乳化剂在食品中的三方面作用:降低界面张力;与淀粉和蛋白质相互作用;改进脂肪和油的结晶。阐述了乳剂与食品中各成分的相互作用的基本原理。 关键词:乳化剂作用原理 一、引言 早在1921年,在人造黄油工业中,就应用了单双甘油酯,不过直到15—20年后,食品乳化剂的生产才有较大的工业规模。随着食品生产的工业化发展,对食品乳化剂提出了新的要求。 食品乳化剂的世界总需求量约25万吨,其中单甘油酯约占总消费量的2 3,其次是蔗糖酯。我国单甘油酯产量约2200吨,也已开发了乳化能力强的高纯度(90%以上)的分子蒸馏单甘酯。蔗糖酯我国从80年代开始开发,近来发展很快。大豆磷酯是使用很普遍的乳化剂,兼有一定的营养价值。但目前由于纯度不够,利用价值不高,有较大应用潜力。 二、食品乳化剂的概念 乳化剂一词,仅仅指凭借界面作用,能够促进乳状液或泡沫的乳化作用或稳定作用。不过,表面活性剂一词也常用在这些产品上。在食品中,乳化剂一词有时易产生误解,因为有些产品中所谓乳化剂的实际功能,只能与淀粉蛋白质等成分相互作用,完全与乳化作用无关。但是根据传统习惯,我们仍称它们为乳化剂。 通常食品乳化剂必须具有两种性质:表面活性和可食性。因而,通常食品乳化剂定义为能改善乳化体中各种构成相互之间的表面张力,使之形成均匀的分散体或乳化体,从而改进食品组织结构、口感、外观,以提高食品保存性的一类可食性的具有亲水和亲油双重性的化学物质。乳化剂一般分为油包水型和水包油型两类,以亲水亲油平衡值(H ydroph ilty and L i poph ilyty Balance,简称HLB)表示其特性。规定100%亲油性的乳化剂HLB为0,100%亲水性的HLB为20,其间分20等分,以表示其亲水亲油性的强弱情况和不同的作用(如图1)。在食品乳化剂中,一般亲油性占上风,但根据化学成分的不同,HLB值有相当大的变化。按Griffin 提出的公式可以计算出HLB值。 HLB 值 各乳化剂的适用性 各主要单酯的适用范围图1、HLB值与乳化剂的关系 HLB=20(1-S A) S=酯的皂化值 A=脂肪酸的酸值 三、食品乳化剂的作用 食品乳化剂的作用主要分三方面: 11乳化剂降低油—水界面的张力,促进乳化作用,在油—水、乳化剂界面上形成相平衡稳定乳状液。 油水两相之所以不相容,是由于两相间存在界面张力(或称表面张力),即油和水的接触面上有相互排斥和各自尽量缩小彼此接触面积的两种作用力。只有当油浮于水面分为两层时,其接触面积最小,最稳定。 牛奶是奶油及水的乳化体系,一般奶油表现为细微的小滴分散于水中,但长期静置后由于界面张力关系,奶油小滴便聚集成小球,并长大成凝聚团块,浮于水面,若加入乳化剂,其亲油基与奶油结合,在奶油微滴表面形成一层物理膜,可以防止油滴相互聚集。此时

表面活性剂作用机理

表面活性剂作用机理 表面活性剂具有湿润、乳化、去污、分散等作用,主要是因为: 1、表面活性剂能降低接触界面的表面张力 纯液体的表面张力在恒温下是定值,而溶液的表面张力则随溶液的组成不同而不同。通过实验人们发现,各种物质的水溶液的表面张力与浓度的关系主要有以下三种情况: 1、稍有上升,无机盐(氯化钠、硫酸钠)及多羟基有机物(蔗糖、甘露醇) 2、逐渐降低,低分子极性有机物(醇、醛、酮、脂、醚等) 3、低浓度时,显著降低,后变化不大(含有8个碳以上的碳氢链的羧酸盐、磺酸盐等) 通常把2、3类物质称为表面活性物质,而把第1类物质称为非表面活性物质。而第3类称为表面活性剂,即加入少量即能大幅降低溶液的表面张力,而随着浓度继续增大表面张力降低不再明显的物质。 表面活性剂能够降低溶液的表面张力主要是由其结构的特殊性决定的。它具有两性基团:亲水性基团和亲脂性基团,它能显著降低接触界面的表面张力,增加污染物特别是憎水性有机污染物在水相的溶解性。 2、表面活性剂能形成胶束 当表面活性剂达到一定浓度时,其单体急剧 聚集,形成球状、棒状或层状的“胶束”,该浓 度称为临界胶束浓度(critical micelle concentration,CMC),胶束是由水溶性基团包裹 憎水性基团核心构成的集合体,当胶束溶液达 到热力学稳定时可以形成微乳溶液。 根据“相似相容”原理,憎水性有机物有进 入与它极性相同胶束内部的趋势,因此将表面 活性剂达到或超过CMC时,污染物分配进入 胶束核心,大量胶束的形成,增加了污染物的溶解性,同时NAPLs从含水层介质上大量解析,溶解于表面活性剂胶束内,表面活性剂对NAPLs溶解性增加的程度可以由胶束——水分配系数和摩尔增溶比(MSR)来表示。

增稠剂介绍

第20章增稠剂(Thickening agents) 20.1 概述 20.1.1 食品增稠剂的定义 食品增稠剂通常指能溶解于水中,并在一定条件下充分水化形成黏稠、滑腻溶液的大分子物质,又称食品胶。它是在食品工业中有广泛用途的一类重要的食品添加剂,被用于充当胶凝剂,增稠剂,乳化剂,成膜剂,泡沫稳定剂,润滑剂等。增稠剂在食品中添加量通常为千分之几,但却能有效地改善食品的品质和性能。其化学成分除明胶、酪朊酸钠等为蛋白质外,其它大多是天然多糖及其衍生物,广泛分布于自然界。 20.1.2食品增稠剂的分类 迄今世界上用于食品工业的食品增稠剂已有40余种,根据其来源,可分为五大类。 (1)由海藻制取的增稠剂海藻胶是从海藻中提取的一类食品胶,.地球上各海域水温变化及盐含量不同。海洋中藻品种多达15000多种,分为红藻、褐藻、蓝藻和绿藻四大类。重要的商品海藻胶主要来自褐藻。不同的海藻品种所含的亲水胶体其结构,成分各不相同,功能、性质及用途也不尽相同。 (2)由植物种子、植物溶出液制取的增稠剂由植物及其种子制取的增稠剂,在许多情况下,其中的水溶性多糖类似于植物受到刺激后的渗出液。它们是经过精细的专门技术而制得的,包括选择、种植和布局。种子收集和处理都具有一套科学方法。正如动植物渗出液一样,这样增稠剂都是多糖酸的盐。其分子结构复杂,常用的这类增稠剂有瓜尔胶、卡拉胶、海藻胶等。 (3)由微生物代谢生成的增稠剂真菌或细菌与淀粉类物质作用产生的另一类用途广泛的食品增稠剂,如黄原胶等,这是将淀粉全部分解成单糖,紧接着这些单糖又发生缩聚反应再缩合成新的分子。这种新分子的大分子链具有以下的特点:每一个葡萄糖残基除了四个碳原子仍保留原有的结构之外,部分或全部地发生羧基部位的部分氧化,大分子或链的交联,羟基上的氧原子被新的化学基取代等反应。由不同植物表皮损伤的渗出液制得的增稠剂的功能是人工合成产品所达不到的,其成分是一种由葡萄糖和其他单糖缩合的多糖衍生物,在它们的多羟基分子中,穿插一定数量对其性质有一定影响的氧化基团,这些氧化基团,在许多情况下,羟基占很大的比例。这些羟基常以钙、镁或钾盐的形式存在,而不以自由羟基的形式存在。阿拉伯胶、黄原胶均属于此类增稠剂。 (4)由动物性原料制取的增稠剂这类增稠剂是从动物的皮、骨、筋、乳等提取的。其主要成分是蛋白质。品种有明胶、酪蛋白等。 (5)以纤维素、淀粉等天然物质制成的糖类衍生物这类增稠剂按其加工工艺可以分为两类:以纤维素、淀粉等为原料,在酸、碱、盐等化学原料作用下经过水解、缩合、化学修饰等工艺制得。其代表的品种有羧甲基纤维素钠、变性淀粉、藻酸丙二醇酯等。 20.2 海藻胶 由于海藻胶在增稠性、稳定性、胶凝性、保形性、薄膜成形性等方面具有显著的优点,加上其独特的保健功能,使之在食品工业中得到了广泛的应用,成为产销量最大的增稠剂之一。本节重点介绍海藻酸及其盐、琼脂、卡拉胶的组成结构、理化性质及其在食品工业中的应用。 20.2.1海藻酸钠(Sodium Algimate ) 别名:褐藻酸钠、藻胶。化学结构:海藻酸和海藻酸盐是直链糖醛酸聚糖。由两种分子

沥青乳化剂乳化原理

沥青乳化剂乳化原理 武城县博斯特筑路机械有限公司 沥青乳化剂定义:沥青乳化剂是表面活性剂的一种类型。它是能吸附在沥青颗粒与水界面,从而显著降低沥青与水界面的自由能,使其构成均匀而稳定的乳浊液的一种表面活性剂。 在水中加入沥青乳化剂以后,乳化剂的亲水基与水分子之间有很强的吸引力,乳化剂分子在液体表面上基本是无一定方向的,多处于平躺状态。由于溶液中乳化剂的浓度由小变大,亲油基的烃基部分,因憎水性排斥于水体系之外,产生疏水效应。这样就使乳化剂产生了一个方向性,水面上溶解的是亲水基,水面最远方向为亲油基,形成了乳化剂定向排列于界面上,使自由能趋于最小,保持了最稳定位置。这样乳化剂与空气界面上形成了一层单分子膜。这种有规则的分子排列现象称作分子定向排列或配位。这种单分子定向排列现象称为单分子吸附膜。 沥青乳化剂分子在水溶液中定向排列的吸附现象,不仅在空气和水相之间,也可发生在空气以外的沥青相中。这种吸附现象有物理吸附和化学吸附,以化学吸附为主,随着亲油基碳链长度增加吸附速度加快,分子定向排列的吸附速度加快,最后水的表面形成单分子层,使水的表面张力下降。 在乳化剂水溶液中加入过量的乳化剂,不仅可以形成单分子定向的吸附膜,而且能形成复杂的多层吸附膜和乳化剂分子集束,以尽量保持最小的自由能。如果沥青液经高速剪切成细小微粒(0.01mm-0.001mm)而均匀的分散在水中,溶入水中的乳化液分子会立即在沥青微粒界面被吸附,从而产生新的吸附排列,亲油基一段吸附于沥青内部,亲水基一端吸附于水中,以钳形固定于界面上,从而降低了沥

青与水的界面张力。当吸附的乳化剂分子达到饱和状态时,在沥青微粒表面形成一层被乳化剂分子包封的有一定机械强度的坚固的分子薄膜,使沥青微粒具有亲水性,而均匀稳定地分散在水中,形成乳化沥青。 沥青乳液是一个多相分相体系,沥青是以微粒形式均匀分散于水中的稳定乳状液,其稳定度因乳化剂大大加强。其中沥青为分散相,为不连续相或称内相;水为分散介质,为连续相或称外相,为水包油(O/W)型乳化沥青。也就是我们平时使用的乳化沥青。 阴离子乳化剂 阴离子乳化剂在水中溶解后,其活性部分倾向离解成负电离子的表面活性物质,其特征表现为具有一个大的有机阴离子,能与碱作用生成盐。根据带负电离子部分的结构不同,可分为羧酸盐型、磺酸盐型及硫酸盐型三大类。 阴离子乳化剂的缺点是抗硬水能力较差;优点是来源广、种类多、价格便宜。可用于碱性矿物集料。 一、羧酸盐型乳化剂,它是由大分子链的羧酸与碱作用而生成的阴离子沥青乳化剂。常用的有脂肪酸盐和环烷酸盐。其化学结构为:RCOOM R为憎水烃基,为长烃脂肪烃或环烷烃基,碳原子个数为9-21. M为金属离子,包括K+Na+ 在羧酸盐型沥青乳化剂中应用最多的为油酸钠、松香酸钠、月桂酸钠、环烷酸钠等。脂肪酸的碳链越长,亲油性越强,凝固点越高,制成的脂肪酸皂越硬,在水中的溶解性越差。脂肪酸的碳链越短在水中的溶解性越好,亲油性越差,对沥青的乳化效果越差。选择脂肪酸盐乳化剂一般选择碳数为12-20之间,其中应用最多的碳原子为12-18. 环烷酸存在于很多沥青中,可以从沥青中提取。用作沥青乳化剂的环烷酸的酸值应在75-175之间,沥青酸值在0.75KOH/g左右或更高的环烷酸沥青,可简单的用碱性乳化剂所乳化,可获得较满意的环烷皂乳化沥青。 (一)油酸皂 油酸皂是用天然油脂与氢氧化钠进行化学反应而生成的一种阴离子型乳化剂,学名为顺-9-十八碳烯酸盐,是含一个双键的不饱和脂肪皂。其化学式为:CH3(CH2)7-CH=CH-(CH2)7COONa 油酸是橄榄油、牛脂的主要成分,碳数均为18,由于分子中含有双键,增加了亲水性,在水中溶解性增强,具有极强的表面活性,是乳化沥青中常用的沥青乳化剂。但在硬水中与铝、镁等离子形成不溶性的铝皂、镁皂,影响乳化效果。 (二)硬脂酸钠 硬脂酸钠是由硬脂酸和碱作用而生成的硬脂酸皂。其化学式为CH3(CH2)16Na 硬脂酸钠多数是含有十八碳的饱和脂肪酸皂。其碳链越长,憎水性越强,亲水性羧酸基仅为一个,亲水性不足,顾在冷水中溶解性较差,易溶于热水。

增稠剂在食品中的应用之欧阳光明创编

增稠剂在食品中的应用 欧阳光明(2021.03.07) 摘要:增稠剂在食品加工中应用广泛,本文介绍了增稠剂特性、食品增稠剂的来源、添加到食品中的作用、在食品中的应用以今后的发展前景。 1增稠剂 增稠剂又称胶凝是一种流变助剂,在日常工作和生活经常接触的到,广泛用于食品、涂料、胶黏剂、化妆品、洗涤剂、印染、橡胶、医药等领域。其中用于食品时又称糊料或食品胶。增稠剂大多属于亲水性高分子化合物,一般都采用物理吸水膨胀化学反应两种原理起到增稠增粘的效果。增稠剂分子中含有许多亲水基团,例如羟基、羧基、氨基和羧酸根等,能与水分子发生水化作用。通常,食品增稠剂都是高分子亲水的胶体物质,大部分是从天然动植物中提取或加工而成。 追溯增稠剂的历史,最早的渊源就在食品。在很早以前,我国便有人在烹调菜肴时用淀粉来勾芡,使得菜肴的汤汁更为浓厚、黏稠,这其实就是最早的“增稠剂”。现代,仍然有些国家,把淀粉划归为食品添加剂中的增稠剂。GB 2760- 2011食品添加剂使用卫生标准明确规定了39种允许限量使用的增稠剂,允许添加增稠剂的食品种类大致有乳与乳制品、脂肪、油和乳化脂肪制品、冷冻饮品、水果制品、糖果类、淀粉制品、糕点类、肉与肉制品、水产品

制品、糖浆类、调味品、特殊膳食用食品、饮料类、酒类等16大类。可见增稠剂在食品工艺中地位斐然。 2食品增稠剂的来源 增稠剂在食品工程中添加量很微小,通常只占到制品总重的千分之几,但却能既有效又科学健康地改善食品体系的稳定性。食品增稠剂的化学成分大多是天然多糖或者其衍生物,在自然界分布广泛。现今可查到的用于食品工业的增稠剂来源大致可分为两类即天然增稠剂级、人工合成增稠剂。 2.1 天然增稠剂 由天然动植物提取而成的增稠剂。海藻类产生的胶及其盐类,如海藻酸、琼脂、卡拉胶等;树木渗出液形成的胶,如阿拉伯胶;植物种子制成的胶,如瓜尔胶、槐豆胶等;植物某些组织制成的胶,如淀粉、果胶、魔芋胶等;动物分泌或其组织制成的胶,如明胶、酪蛋白;微生物繁殖分泌的胶,如黄原胶、结冷胶等。 2.2 人工合成增稠剂 人工采用化学方法合成的食品增稠剂。以天然增稠剂进行改性制得的物质及纯人工合成增稠剂。如:海藻酸丙二醇酯、羟甲基纤维素钙、羟甲基纤维素钠、磷酸淀粉钠、乙醇酸淀粉钠。纯化学合成:聚丙烯酸钠、羧甲基纤维素钠等。 3增稠剂在食品中的作用 增稠剂在食品中的作用主要是为了提高食品的粘度或着形成凝胶、保持体系相对稳定性的亲水性物质,从而改变食品的物理性状、赋予食品粘润、适宜的口感,并兼有乳化、稳定或使呈悬浮状

乳化剂的作用机理

乳化剂的作用机理 牛乳饮品一般是由蛋白质、脂肪、糖类、食用纤维(水溶性或水不溶性)、淀粉类、维生素类(水溶性或油 溶性)、矿物质类等物质组成的营养性饮料,是一种客观不稳定分散体系,既有蛋白质及果汁微粒形成的悬 浮液、脂肪的乳浊液,又有以糖类、盐类形成的真溶液。这一复杂体系即使采用最先进的加工机械和加工工艺,也很难达到饮料的质量要求,会发生油层上浮、蛋白质沉淀、色素凝聚等产品质量问题。要解决这一问题,需要加入适量的乳化剂、增稠剂、品质改良剂等食品添加剂,以使饮料保持稳定。 1乳化剂的作用机理 食品乳化剂的基本物理化学性质是表面活性和乳化增溶性。因为乳化剂的分子内具有亲水基和亲油基,易在水和油的界面形成吸附层,属于表面活性剂的一种。其余油基如烷基(碳氢化合物长链)与油脂中的烷烃结构相似,因此与油脂能互溶。其亲水基一般是溶于水或能被水所润湿的原子团,如羟基。牛乳饮品中主要的不稳定物质是油脂(易上浮)和蛋白质(易沉淀),我们主要从这两方面来探讨乳化剂在牛乳饮品中 的作用机理。 1.1乳化剂对牛乳饮品中油脂的作用机理 牛乳中的油脂和其它部分经机械搅拌混合均匀后,放置一段时间,油脂又会重新析岀,在牛牛乳饮品表面形成一层乳白色油层。在该体系中加入一种乳化剂后,它就在两种物质间的界面发生吸附,形成界面膜。 在这种界面膜中,乳化剂分子按其分子内极性发生定向排列。即亲油部分伸向油,而亲水部分朝水定向排列。其结果是油分子和乳化剂的亲油部分为一方,与水分子和乳化剂的亲水部分为另一方的相互作用。这种相互作用使界面张力发生变化。界面张力的变化可以使一种液体以液滴形式分散于另一种液体中,即形成乳状液。界面膜具有一定的强度,对分散相液滴起保护作用,使液滴在相互碰撞中不易聚结。 1 . 2乳化剂对牛乳饮品中蛋白质的作用机理 蛋白质是一种表面具有极性结构基团的亲水粒子,经水分子的加成后形成水合物层,从而防止这些悬浮粒子聚结。在这种体系中加入乳化剂时,亲水的固体表面与乳化剂的亲水部分相互作用,而乳化剂的疏水部分朝着水定向排队列。从热力学的观点来看,这种状态是不稳定的因此会发生絮凝作用。乳化剂分子连续嵌入,形成具有外亲水结构的固体-乳化剂双层,生成可再溶剂化的粒子,从而使悬浮液稳定性增强。 但由于蛋白质的颗粒较大,同时牛乳中所含的蛋白质较高,因此牛乳饮品中的蛋白质单*乳化剂的乳化作用 还不足以完全稳定,一般还需与具悬浮作用的物质(主要是各种食用胶体)配合使用,方能达到完全稳定的效果。 2影响牛乳饮品乳状液稳定的因素 (1)乳化剂的结构 溶剂化形成的势垒对乳状液的稳定性有很大影响。例如,w-o型乳状液体系,当水粒子相接触时,水通过 界面层中乳化剂的亲油基而结合起来。因此,乳化剂碳氢链为水润湿所需的能量成为聚合势垒。而在o-w 型乳状液体系中,乳化剂为非离子表面活性剂,油润湿水和聚氧乙烯链的能量构成聚合势垒。因此,以采用长链的乳化剂为宜。 一般地说,为使w-o型乳状液稳定,应采用亲油基和亲水基均大的乳化剂。为得到低温下稳定的w-o型乳状液,应采用易溶于油的乳化剂。为此,最好选用含支链烃基和双链的乳化剂。对于o-w型乳状液来说, 宜选用分子大的乳化剂。当以甘油脂肪酸酯做乳化剂制备w-o型乳状液时,添加降低相转变温度的物质, 如山梨醇、氨基酸及盐等,可提高稳定性。 (2 )乳化剂的添加量 为使乳化剂在界面上饱和吸附,需要的乳化剂量应大于临界胶束浓度。在w-o型乳状液的情况下,油相中 形成胶束时临界胶束浓度圈较大,并且随温度升高,其增大的幅度也大。因此,为使w-o乳液稳定,必须 加入较多的乳化剂。当油为极性的时,其加入量还要更大些。 由于非离子乳化剂在水相中的临界胶束浓度非常小,所以不必担心乳化剂的链长和温度的变化是否会影响覆盖o-w型乳状液粒子表面所需的乳化剂的充足性。

增稠剂在食品中的作用

增稠剂在食品中的作用 稠剂在食品中的作用主要是为了提高食品的粘度或着形成凝胶、保持体系相对稳定性的亲水性物质,从而改变食品的物理性状、赋予食品粘润、适宜的口感,并兼有乳化、稳定或使呈悬浮状态作用的物质。 1、稳定作用 稳定作用指增稠剂加入到食品中,可使食品组织趋于稳定、不易变动、不易改变品质如:①在冰淇淋中有抑制冰晶生长②糖果中有防止糖结晶3在饮料、调味品和乳化香精中具乳化稳定作用;4在啤酒、汽酒中有泡沫稳定作用。 2、增稠作用 增稠剂在食品中主要是赋予食品所要求的流变特性:改变食品的质构和外观,将液体、浆状食品形成特定形态;并使其稳定、均匀,提高食品质量,以使食品具有黏滑适口的感觉。 3、凝胶作用 食品增稠剂是果冻、奶冻、果酱、软糖和人造营养食品等的胶凝剂和赋犁剂。作为食用凝胶的增稠剂,它们各具特长,彼此难以取代,琼脂是目前较好的胶凝形成剂,其凝胶坚实、硬度较高,但弹性较小。明胶凝胶坚韧而富有弹性,能承受一定的压力。海藻酸钠胶凝条件低,其热不可逆性特别适用于人造营养食品。果胶在胶凝时能释放出一种较好的香味,

适用于果味食品。 4、保水作用 保水作用则指增稠剂有强亲水作用能吸收几十倍乃至上百倍于自身质量的水分,并有持水性,这个特性可改善面团的吸水量,使产品的质量增大。 5、成膜作用 在食品表面形成非常光润的薄膜,可以防止冰冻食品、固体粉末食品表面吸湿而导致的质量下降。作被膜用的有醇溶性蛋白、明胶、琼脂、海藻酸等当前,可食用包装膜是增稠剂发展的方向之一。 6、矫味作用 对不良气味有掩蔽作用。其中环糊精效果较好,可消除食品中的异味。例如, 在豆奶中加入2-5%可显著减少豆腥味。 7、其它作用 除上述作用外,增稠剂还可作为果汁、酒和某些调味品的澄清剂,烘烤食品品质改良剂;在食品加工中还可作起泡剂和脱膜剂等。

护色剂在食品中的应用

护色剂在食品加工中的影响 摘要:本文综述了护色剂在肉制品中的作用及其应用现状。除此以为还为大家阐述了护色剂在现在工业领域的应用,以及它在未来食品工业中的前景和存在的经济价值。 关键词:护色剂食品;应用;工业。 Color protection agent in meat products application Ding Liping ) Abstract:This article reviews the color protecting agent application in meat products and its application. In addition to this thought also to the color protecting agent in industrial applications, as well as in the future it's food industry and the prospects for the existence of economic value. Key words: color fixative food; industrial application 目录 前言、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、1 1、护色剂价值与机理、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、1 1、1护色剂的价值、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、1 护色剂的护色机理、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、1 2、护色剂的作用、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、2 3、护色剂的分类、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、3 3、1一般与护色助剂共同使用、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、..、、、、、、、、、、、、、、、、3 3、2护色剂的种类、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、..、、、、、、、、4 4护色剂的应用、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、4 4、1护色剂在肉制品中的应用、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、5 4、2护色剂在果蔬中应用、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、.、、、、、、、、、、、、、、、、、、、、5 5、护色剂的毒副性、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、6 6、护色剂的安全使用、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、7 6、1 控制用量、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、……..…………、、、、、、、、、、、、、8 6、2使用条件、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、.、、、、、、、、、、8 6、3新产品的研究、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、.、、、、、、、、、、、9

表面活性剂在食品中得应用

第十章表面活性剂在食品工业中的应用 第一节概述 表面活性剂作为食品添加剂或加工助剂,广泛用于各类食品生产,对提髙食品质量、开发食品新品种、改进生产工艺、延长食品储藏保鲜期,提髙生产效率等有显著效果。表面活性剂在食品工业屮主要用作乳化剂、增稠剂、稳定剂、消泡剂.、起泡剂、糖助剂、润滑抗粘剂、清洗剂、水果剥皮剂、涂膜保鲜剂等,应用最广泛的是食品乳化剂。联合国粮农组织(FAO)、世界卫生组织(WHO)以及世界各国对食品添加剂和加工助剂的使用都制定了相应的法规或标准,规定了允许使用的食品添加剂品种、使用范围和最大用量。一些常用的表面活性剂类食品添加剂和加工助剂列于表10-1中。

第二节在食品中的作用 一、乳化剂及其与食品成分的相互作用 食品乳化剂种类繁多,按亲水亲油平衡值(BHL值)可分为水包油型和油包水型两类;根据亲水基在水中所带的电荷可分为阴离子型、非离子型、阳离子型和两性离子型四类。口前,允许使用的食品乳化剂约65种,常用的有甘油脂肪酸酯(主要为甘油单脂肪酸酯)、蔗糖脂肪酸酯、失水山梨醇脂肪酸酯,聚氧乙烯失水山梨醇脂肪酸酯、丙二醇脂肪酸指、大豆磷脂、硬脂酰乳酸钙(钠)、酪蛋白酸钠等(见表10-2),食品乳化剂的世界总需求量约为2.5×109,其中需求量最大的是甘油单脂肪酸酯,约占总需求量的2/3,其次是蔗糖脂肪酸酯。目前,食品乳化剂正向系列化、复配化、多功能、高效率、便于使用等方面发展。

乳化剂除具有乳化、增溶、分散、润湿、悬浮、消泡、起泡等表面活性外,还能与碳水化合物、类脂化合物和蛋白质等食品成分发生特殊的相互作用,这在

食品加工中对改进和提高食品质量起着重要的作用。 (一)乳化剂与类脂化合物的作用 类脂化合物中的油脂在食品中占有很大比例。在有水情况卜,油脂与乳化列相互作用形成稳定的乳状液,这是食品加工中所常利用的乳化作用。无水时油脂会产生多晶现象,这与其预处理有关(见图10-1)。 α-晶形的熔点最低,α-品形到次α-品形是可逆的,α-晶形到β-晶形是不可逆的,β-晶形具有较高的熔点。一般温度下,。α-晶形到β-晶形的过渡是缓慢的。 油脂的不同晶形赋予食品不同的感官特性。许多情况中,油脂的晶形处于不稳定的α-晶形或β-初级晶形,并趋于过渡到熔点最高、能量最低的β-晶形,因此,在食品加工中需加入具有变晶性的物质,以长时间内阻碍或延缓晶形变化,形成有利于食品感官性能和食用性能所需的晶形。某些趋向α-晶形的亲油性乳化剂与油脂相互作用和结合,就有调节结晶形成的作用。例如,蔗糖脂肪酸酯、斯潘60、潘65、甘油单(双)乳酸酯、聚甘油脂肪酸酯都可作为结晶调整剂,用于食品加工过程。熔化的油脂中加入斯潘60或斯潘65,冷却时形成介初级晶形,由于共结晶作用使这种晶形结构保持稳定。 (二)乳化剂与蛋白质的作用 蛋白质是具有一定结构特征的络合、聚合物分子,也是食品的基本成分。它的结构特征影响与乳化剂的相互作用和结合程度。蛋白质肽链中的肽键不能与乳化剂发生作用,而固定在多肽链上的氨基酸侧链能与乳化剂作用。结合方式与侧链的极性、乳化剂种类以及是否带有电荷和体系pH值等因素有关,主要有疏水结合、氢键结合及静电结合三种。 非极性蛋白质侧链基团与乳化剂的烃链相互作用产生疏水结合,条件是有水存在。溶剂水经非极性氨基酸扣互排斥,这是产生疏水结合的基础。疏水结合中乳化剂烃链固定于蛋白质上,而乳化剂的极性基结合在粒子表面,形成脂肪。 极性侧链不带电荷的蛋白质与乳化剂的亲水分子部分以氢键发生作用,此时乳化剂的烃链结合在粒子表面。侧链带电荷的蛋白质与带相反电荷的乳化剂产生静电相互作用。带正电荷的氨基酸侧链与带负电荷的乳化剂相互作用的方式在生物体系较为常见。 乳化剂与蛋白质相互作用形成的化合物属于脂肪,不同的脂肪及作用条件对结合程度影响很大。各种乳化剂与蛋白质的作用程度列于表10-3。在食品加工中,特别是在烘烤食品中大量利用蛋白质与乳化剂的相互作用和结合来改善食品

相关文档
最新文档