傅里叶变换

傅里叶变换
傅里叶变换

第一章引言

1.1 论文选题的意义及必要性

20世纪至今这些年以来,随着经济全球化的逐步发展,金融机构也进入了一体化的发展阶段。金融技术的进步、金融界的创新层出不穷,全球的金融市场发生了非常大的变化。主要表现在以下几个方面:结构性的改变、规模大小的改变、日益增加的波动性、日益提高的效率,在经济运作中金融市场的地位和作用日益增强,经济运作过程中虚拟程度的提高,更多的社会经济方面趋向于依赖金融市场。这些不同的变化让金融市场的风险逐步进入人们的视野,并受到重视,成为现代世界金融机构、工商企业部门面临的首要风险之一,与此同时,风险管理的理论也成为了现代金融产业机构必修的核心理论内容。

金融机构面临着许多风险,比如市场风险、操作风险、信用风险、流动性风险等等。其中的每一种风险都可在不同程度上处理为导致金融机构的资金直接损失的风险因素。而现如今,在一个崭新的全球的金融体系中,市场风险就显得尤为重要,理应受到人们的更多的重视。但事实上,实际生活中金融风险案例却不胜枚举,在一定程度上让我们的金融机构甚至国家遭受了巨大的经济损失:无论是巴林银行还是日本大和银行,无论是德国金属期货公司还是美国加州县级财政部门,甚至是最近的美国债务危机还是欧洲主权债务危机,都在一定程度上向世人表明:研究并合理的避免金融风险成为了所有金融机构的当务之急。为了更好的做好市场风险的评估与管理,我们就有必要利用各种科学技术和工具手段对风险进行分散、防范、控制和规避。目前主流的计算度量市场风险的方法有

Risk-Metrics方法、参数方法、历史模拟法、蒙特卡罗(Monte-Carlo)模拟方法等。但是上面所叙述的这些主流的风险价值计算方法都对收益的分布有着一些较特殊的要求,并且所计算出的VaR值多是一个基准值,同时当我们考虑到分布的尾的性质时,要计算最大的可能性损失(即相应的VaR)值时,以上所说的方法就显得很是力不从心了。分布的尾反映的正是潜在的灾难性事件会导致的金融机构的极其重大损失,而这些正是风险管理者以及金融机构的监管者特别注重和考量的地方。

本文介绍一种新的市场风险计算方法—基于傅里叶变换的算法来计算相应的风险价值,其中考虑到一种模型——稳定分布模型,且在只知道特征函数的前提下,以此为算例通过对特征函数进行Fourier变化得到相应的分布函数从而计算出相应的VaR值。随着我国经济的持续快速发展,与世界的联系也正变得更加

紧密与不可分割,如何防范市场风险,促进并保障我国经济的又快又好发展,理论的研究与探讨必将不可或许,而不断完善的金融风险度量评估体系必将为此作出不可磨灭的巨大的贡献。

1.2 课题的国内外研究现状

1.2.1 国外研究现状分析

正如一般人所了解的那样,金融风险指的是市场中由于经济活动的波动性或不确定性进而导致的资金在筹措和运作中遭受损失的可能性。金融机构面临的主要风险有以下几种:市场风险、信用风险、流动性风险、操作风险、法律风险等。从发生的可能性大小和对金融机构的影响程度的角度来看,又以前两者即市场风险、信用风险的影响程度最大。在上世纪八十年代以前,金融机构面临的风险主要还是信用风险。1988年的巴塞尔银行监管委员会所提出的规避、控制银行风险的那些措施就是主要针对当时银行的信用风险进而设计提出的。但是,近二十多年来我们的金融市场已经发生了重大的变化,全球化的证券市场如雨后春笋般迅猛发展,资产证券化的大体趋势越来越强烈,同时外汇交易、衍生产品的交易成为了金融市场交易的不可或缺的重要的组成部分。这样的现实状况就使得金融机构面临的主要风险悄然已从信用风险进而转向了市场风险。市场风险的评估与度量正是市场风险管理控制的基础。市场风险评估度量的方法有许多种,而这些方法中又以VaR(Value-at-Risk)方法被使用的最为普及和广泛。VaR所度量的是在某一定概率的保证下,一段确定的时间过程内由于市场的波动进而造成导致的一种金融投资工具或投资组合的市场价格潜在的可能的最大损失值。VaR方法可以得到多维风险的仅一个一维的近似值,从而VaR方法可以测量不同市场中的不同风险,并将此风险用一个确切的数值很直观的表示出来,因此该方法才具有广泛的便捷性和适用性。在1995年12月,十国集团的央行行长签署了《资本协议关于市场风险的补充规定》,也称作巴塞尔协议补充协议。该协议于1996年初正式公布,1997年底生效。该协议的核心内容正是要求银行必须实时量化市场风险及计算银行的资本充足性。目前业界计算衡量市场风险的方法主要有两种,即标准化法及内部模型方法法。内部模型方法建议金融机构应用成熟可靠的内部风险模型评估方法进行市场风险的度量和计算,VaR方法正属于的是这样类型的一种方法。VaR方法理论以概率理论作为讨论的基础,运用现代的统计计量的方法,摒弃了以前主观臆断的盲目性与任意性,比传统的市场风险度量方法,比如到期时间法、持续期法以及缺口分析法具有更强的适应性、科学性及普及性。因此VaR 的计量方法在当代的金融风险管理领域中被广泛的使用。

1.2.2 国内研究现状分析

我国的专家学者对VaR 理论技术的研究始于一九九七年郑文通的《金融风险管理的vaR 方法及应用》一文.此篇文章被称为是我国第一篇首次介绍风险价值定义及计算理论的文章,随后许多学者均对此产生了兴趣,纷纷投入到这个研究行列中,姚刚在一九九八年介绍了资产投资组合的VaR 值,对线性资产的定价模型和非线性资产的定价模型进行了区分。刘宇飞在一九九九年具体阐述了VaR 理论、方法在我国的金融监管领域中的作用以及运用前景,同时还具体说明了该如何使用国际上通行使用的“事后检验”法对具体的模型进行检验,而王春峰的著作《风险价值及金融风险管理》则对以上所探讨的理论、方法及具体的研究作了个总结。随后李刚在二零零一年提出了在投资银行领域中运用VaR 方法的思想。杜海涛在二零零二年《VaR 的理论研究及实证分析》一文中具体介绍了风险价值方法理论的混合正态模型,同时在他的文章中结合中国证券市场的主要指数做了具体的实证分析。

1.3 本文研究的内容及结构

伴随着金融市场的逐步变化与发展,越来越来的学者及专家更多的发现了具有实际意义的金融数据相对于传统的熟知的正态分布而言, 呈现出了更强的“尖峰厚尾”性。我们有理由也有具体的实证研究表明:稳定分布能够更好的表示这种特性。而众所周知,除了极个别的分布(如高斯分布、柯西分布、列维分布)外,稳定分布的概率密度函数是没有闭型表达式的。故对于大多数的稳定分布来说,密度和分布函数没法以封闭的形式给出,它们一般都是由其特征函数间接给出。这就产生了一个问题,要想得到我们想要的风险值,理论方法均是从收益率的分布函数入手,这样在分布函数与特征函数之间就极其需要一种连接工具、一种变换----傅里叶变换(这里指的是傅里叶逆变换)。

本文即是利用这一重要的变换,根据反演定理的内容:反演的算法是基于以下的特定形式的对累积分布函数(CDF )积分 ()x x f x dx -∞?

的反演理论: ?∞

∞---=≤=du iu u e x X P x F X iux x )(2121)()(φπ

这里其中逆变换得到的分布函数是通过特征函数的积分表示的。 本文具体的工作如下展开:

第一章:介绍课题的研究背景及已有的国内外研究现状。

第二章:系统的介绍VaR 的基本理论。具体包括:市场风险的介绍、度量市场风险的VaR 的发展历程、定义、三个基本要素及计算VaR 的一般方法和主流方法。

第三章:介绍稳定分布的的相关理论内容。具体包括稳定分布的概念,稳定分布随机变量的性质及特征,稳定分布随机变量参数估计及具体的模拟过程。随后介绍傅里叶变换的核心原理,主要介绍其中的反演定理,随后具体针对主流的

风险值算法:历史模拟法(historical simulation method)、方差—协方差法、蒙特卡罗模拟法(Monte Carlo simulation)推导在整个实现过程中这一理论的具体操作过程。

第四章:具体的实证:基于稳定分布的股票收益率的VaR实证探究。基于Fourier变换理论对沪深300指数的样本数据进行了风险度量及探讨。取2011年1月4日至2011年6月30日每日收盘价作为样本数据,并对样本数据进行分析与处理,得到收益率分布的直方图及数值分布情况,进而分别应用历史模拟方法、参数方法等计算在三种不同的置信水平下样本数据的VaR。最后对实证的结果进行分析、比较与评价。

第五章:对本文所做的工作进行了总结,指出需要继续努力解决的问题和今后的研究探讨方向。

傅里叶(Fourier)级数的指数形式与傅里叶变换

傅里叶(Fourier )级数的指数形式与傅里叶变换 专题摘要:根据欧拉(Euler )公式,将傅里叶级数三角表示转化为指数表示,进而得到傅里叶积分定理,在此基础上给出傅里叶变换的定义和数学表达式。 在通信与信息系统、交通信息与控制工程、信号与信息处理等学科中,都需要对各种信号与系统进行分析。通过对描述实际对象数学模型的数学分析、求解,对所得结果给以物理解释、赋予其物理意义,是解决实际问题的关键。这种数学分析方法主要针对确定性信号的时域和频域分析,线性时不变系统的描述以及信号通过线性时不变系统的时域分析与变换域分析。所有这些分析方法都离不开傅里叶变换、拉普拉斯变换和离散时间系统的z 变换。而傅里叶变换的理论基础是傅里叶积分定理。傅里叶积分定理的数学表达式就是傅里叶级数的指数形式。 不但傅里叶变换依赖于傅里叶级数,就是纯数学分支的调和分析也来源于函数的傅里叶级数。因此,傅里叶级数无论在理论研究还是在实际应用中都占有非常重要的地位。我们承认满足狄里克莱(Dirichlet )条件下傅里叶级数的收敛性结果,不去讨论和深究傅里叶展式的唯一性问题。 傅里叶级数的指数形式 一个以T 为周期的函数)(t f ,在]2 ,2[T T 上满足狄里克莱条件:1o

)(t f 连续或只有有限个第一类间断点;2o 只有有限个极值点。那么)(t f 在]2 ,2[T T - 上就可以展成傅里叶级数。在连续点处 ∑∞ =++=1 )sin cos (2)(n n n t n b t n a a t f ωω, (1) 其中 T πω2= , ),2,1,0(,cos )(2 22Λ==?-n dt t n t f T a T T n ω, (2) ),3,2,1(,sin )(2 22 Λ==?-n dt t n t f T b T T n ω, (3) 根据欧拉(Euler )公式:θθθsin cos j e j +=,(1)式化为 ∑∞=--?? ????-+++=10222)(n t jn t jn n t jn t jn n j e e b e e a a t f ωωωω ∑∞=-?? ? ???++-+=10222n t jn n n t jn n n e jb a e jb a a ωω, (4) 若令 dt t f T c T T ?-=22 0)(1 Λ,3,2,1,)(1 ]sin )[cos (1 sin )(1cos )(1222 2222 22==-=-=-=????-----n dt e t f T dt t n j t n t f T dt t n t f T j dt t n t f T jb a c T T t jn T T T T T T n n n ωωωωω Λ,3,2,1,)(1 22 ==?--n dt e t f T c T T t jn n ω 综合n n c c c -,,0,可合并成一个式子 Λ,2,1,0,)(1 22 ±±==?--n dt e t f T c T T t jn n ω, (5)

傅里叶变换光学系统

傅里叶变换光学系统 组号 4 09光信 王宏磊 (合作人: 刘浩明 杨纯川) 一、实验目的和内容 1、了解透镜对入射波前的相位调制原理。 2、加深对透镜复振幅、传递函数、透过率等参量的物理意义的认识。 3、观察透镜的傅氏变换(FT )图像,观察4f 系统的反傅氏变换(IFT )图像,并进行比较。 4、在4f 系统的变换平面(T )插入各种空间滤波器,观察各种试件相应的频谱处理图像。 二、实验原理 1、透镜的FT 性质及常用函数与图形的关学频谱分析 力。图1 在该点的厚度。设原复振幅分布为(,)L U x y 其复振幅分布受到透镜的位相调制,附加了一个位相因(,)x y ?后变为(,)L U x y ': 图1 (,)(,)exp[(,)]L L U x y U x y j x y ?'= (1) 若对于任意一点(x ,y )透镜的厚度为(,)D x y ,透镜的中心厚度为0D 。光线由该点通过透镜时在透镜中的距离为(,)D x y ,空气空的距离为0D -(,)D x y ,透镜折射率为n ,则该点的总的位相差为: 00(,)[(,)](,)(1)(,)x y k D D x y knD x y kD k n D x y ?=-+=+- (2) (2)中的k =2π/λ,为入射光波波数。 用位相延迟因子(,)t x y 来表示即为: 0(,)exp()exp[(1)(,)]t x y jkD jk n D x y =- (3) 由此可见只要知道透镜的厚度函数(,)D x y 就可得出其相位调制。在球面镜傍轴区域,用抛物面近似球面,可以得到球面透镜的厚度函数为:

22012 111(,)()()2D x y D x y R R =-+- (4) 其中1R 、2R 是构成透镜的两个球面的曲率半径。公式(4)对双凹、双凸、或凹凸透镜都成立。引入焦距f ,其定义为: 12 111(1)()n f R R =-- (5) 代入(3)得: 220(,)exp()exp[()]2k t x y jknD j x y f =-+ (6) 式(6)即是透镜位相调制的表达式,它表明复振幅(,)L U x y 通过透镜时,透镜各点都发生位相延迟。 从式(6)容易看出第一项位相因子0exp()jknD 仅表示入射光波的常量位相延迟,不影响位相的空间分布,即波面形状,所以在运算过程中可以略去。第二项22exp[()]2k j x y f -+是具有调制作用的因子,它表明光波通过透镜的位相延迟与该点到透镜中心的距离的平方成正比。而且与透镜的焦距有关。当考虑透镜孔径后,有: 22(,)exp[()](,)2k t x y j x y p x y f =-+ (7) 其中的(,)p x y 为透镜的光瞳函数,表达式为: 1(,)0p x y ?=?? 孔径内 其 它 (8) 2、透镜的傅里叶变换性质 在单色平面波垂直照射下,夫琅和斐衍射光场的复振幅分布正比于衍射屏透射系数的傅里叶变换。衍射图像的强度分布正比于衍射屏的功率谱分布。一般情况下,我们是将夫朗和斐衍射图像成像到透镜的像方焦平面出,这就是说,作为成像元件的透镜,就相当于傅里叶变换器。 如图2所示,设单位振幅的单色平面光垂直照射一透射系数为(,)t x y 的衍射屏,与衍射屏相距Z 处放置一焦距为f 的薄透镜L ,先观察其像方平面L 的光场分布。为了讨论方便,这里我们忽略透镜材料的吸收、散射、透镜表面的反射以及透镜孔径大小等因素的影响。

频谱分析中如何选择合适的窗函数

频谱分析中如何选择合适的窗函数 1、信号截断及能量泄漏效应 数字信号处理的主要数学工具是傅里叶变换。应注意到,傅里叶变换是研究整个时间域和频率域的关系。然而,当运用计算机实现工程测试信号处理时,不可能对无限长的信号进行测量和运算,而是取其有限的时间片段进行分析。做法是从信号中截取一个时间片段,然后用观察的信号时间片段进行周期延拓处理,得到虚拟的无限长的信号,然后就可以对信号进行傅里叶变换、相关分析等数学处理。 周期延拓后的信号与真实信号是不同的,下面从数学的角度来看这种处理带来的误差情况。设有余弦信号x(t)在时域分布为无限长(- ∞,∞),将截断信号的谱XT(ω)与原始信号的谱X(ω)相比,它已不是原来的两条谱线,而是两段振荡的连续谱。这表明原来的信号被截断以后,其频谱发生了畸变,原来集中在f0处的能量被分散到两个较宽的频带中去了,这种现象称之为频谱能量泄漏(Leakage)。 信号截断以后产生的能量泄漏现象是必然的,因为窗函数w(t)是一个频带无限的函数,所以即使原信号x(t)是限带宽信号,而在截断以后也必然成为无限带宽的函数,即信号在频域的能量与分布被扩展了。又从采样定理可知,无论采样频率多高,只要信号一经截断,就不可避免地引起混叠,因此信号截断必然导致一些误差,这是信号分析中不容忽视的问题。 如果增大截断长度T,即矩形窗口加宽,则窗谱W(ω)将被压缩变窄(π/T减小)。虽然理论上讲,其频谱范围仍为无限宽,但实际上中心频率以外的频率分量衰减较快,因而泄漏误差将减小。当窗口宽度T趋于无穷大时,则谱窗W(ω)将变为δ(ω)函数,而δ(ω)与X(ω)的卷积仍为H(ω),这说明,如果窗口无限宽,即不截断,就不存在泄漏误差。 为了减少频谱能量泄漏,可采用不同的截取函数对信号进行截断,截断函数称为窗函数,简称为窗。泄漏与窗函数频谱的两侧旁瓣有关,如果两侧p旁瓣的高度趋于零,而使能量相对集中在主瓣,就可以较为接近于真实的频谱,为此,在时间域中可采用不同的窗函数来截断信号。 2、常用窗函数 实际应用的窗函数,可分为以下主要类型: 幂窗:采用时间变量某种幂次的函数,如矩形、三角形、梯形或其它时间函数x(t)的高次幂;三角函数窗:应用三角函数,即正弦或余弦函数等组合成复合函数,例如汉宁窗、海明窗等;指数窗。:采用指数时间函数,如e-st形式,例如高斯窗等。

希尔伯特变换与傅立叶变换

在数学与信号处理的领域中,一个实数值函数的希尔伯特转换(Hilbert transform)——在此标示为——是将信号与做卷积,以得到。因此,希尔伯特转换结果可以被解读为输入是的线性非时变系统(linear time invariant system)的输出,而此一系统的脉冲响应为。这是一项有用的数学, 用在描述一个以实数值载波做调制的信号之复数包络(complex envelope),出现在通讯理论(应用方面的详述请见下文。) 希尔伯特转换是以著名数学家大卫·希尔伯特(David Hilbert)来命名。 希尔伯特转换定义如下: 其中 并考虑此积分为柯西主值(Cauchy principal value),其避免掉在以及 等处的奇点。 另外要指出的是: 若,则可被定义,且属于;其中。频率响应 希尔伯特转换之频率响应由傅立叶变换给出: , 其中 ?是傅立叶变换, ?i (有时写作j )是虚数单位, ?是角频率,以及

? 即为符号函数。 既然: , 希尔伯特转换会将负频率成分偏移+90°,而正频率成分偏移?90°。 反(逆)希尔伯特转换 我们也注意到:。因此将上面方程式乘上,可得到: 从中,可以看出反(逆)希尔伯特转换 傅里叶变换(Fourier变换)是一种线性的积分变换。因其基本思想首先由法国学者约瑟夫·傅里叶系统地提出,所以以其名字来命名以示纪念。 傅里叶变换在物理学、声学、光学、结构动力学、量子力学、数论、组合数学、概率论、统计学、信号处理、密码学、海洋学、通讯、金融等领域都有着广泛的应用。例如在信号处理中,傅里叶变换的典型用途是将信号分解成振幅分量和频率分量。 ?傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。最初傅里叶分析是作为热过程的解析分析的工具被提出的[1]。 ?傅里叶变换属于谐波分析。 ?傅里叶变换的逆变换容易求出,而且形式与正变换非常类似。 ?正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解。在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取。

一、傅立叶变换的由来

写在最前面:本文是我阅读了多篇相关文章后对它们进行分析重组整合而得,绝大部分内容非我所原创。在此向多位原创作者致敬!!! 为什么要进行傅立叶变换?傅立叶变换究竟有何意义?如何用Matlab实现快速傅立叶变换?来源:张宗帅.docx的日志 一、傅立叶变换的由来 关于傅立叶变换,无论是书本还是在网上可以很容易找到关于傅立叶变换的描述,但是大都是些故弄玄虚的文章,太过抽象,尽是一些让人看了就望而生畏的公式的罗列,让人很难能够从感性上得到理解,最近,我偶尔从网上看到一个关于数字信号处理的电子书籍,是一个叫Steven W. Smith, Ph.D.外国人写的,写得非常浅显,里面有七章由浅入深地专门讲述关于离散信号的傅立叶变换,虽然是英文文档,我还是硬着头皮看完了有关傅立叶变换的有关内容,看了有茅塞顿开的感觉,在此把我从中得到的理解拿出来跟大家分享,希望很多被傅立叶变换迷惑的朋友能够得到一点启发,这电子书籍是免费的,有兴趣的朋友也可以从网上下载下来看一下,URL地址是: https://www.360docs.net/doc/a47730579.html,/pdfbook.htm 要理解傅立叶变换,确实需要一定的耐心,别一下子想着傅立叶变换是怎么变换的,当然,也需要一定的高等数学基础,最基本的是级数变换,其中傅立叶级数变换是傅立叶变换的基础公式。 二、傅立叶变换的提出 让我们先看看为什么会有傅立叶变换?傅立叶是一位法国数学家和物理学家的名字,英语原名是Jean Baptiste Joseph Fourier(1768-1830), Fourier对热传递很感兴趣,于1807年在法国科学学会上发表了一篇论文,运用正弦曲线来描述温度分布,论文里有个在当时具有争议性的决断:任何连续周期信号可以由一组适当的正弦曲线组合而成。当时审查这个论文的人,其中有两位是历史上著名的数学家拉格朗日(Joseph Louis Lagrange, 1736-1813)和拉普拉斯(Pierre Simon de Laplace, 1749-1827),当拉普拉斯和其它审查者投票通过并要发表这个论文时,拉格朗日坚决反对,在近50年的时间里,拉格朗日坚持认为傅立叶的方法无法表示带有棱角的信号,如在方波中出现非连续变化斜率。法国科学学会屈服于拉格朗日的威望,拒绝了傅立叶的工作,幸运的是,傅立叶还有其它事情可忙,他参加了政治运动,随拿破仑远征埃及,法国大革命后因会被推上断头台而一直在逃避。直到拉格朗日死后15年这个论文才被发表出来。 谁是对的呢?拉格朗日是对的:正弦曲线无法组合成一个带有棱角的信号。但是,我们可以用正弦曲线来非常逼近地表示它,逼近到两种表示方法不存在能量差别,基于此,傅立叶是对的。 为什么我们要用正弦曲线来代替原来的曲线呢?如我们也还可以用方波或三角波来代替呀,分解信号的方法是无穷的,但分解信号的目的是为了更加简单地处理原来的信号。用正余弦来表示原信号会更加简单,因为正余弦拥有原信号所不具有的性质:正弦曲线保真度。一个正弦曲线信号输入后,输出的仍是正弦曲线,只有幅度和相位可能发生变化,但是频率和波的形状仍是一样的。且只有正弦曲线才拥有这样的性质,正因如此我们才不用方波或三角波来表示。

傅里叶变换定律-傅里叶变换定义定律

第2章信号分析 本章提要 信号分类 周期信号分析--傅里叶级数 非周期信号分析--傅里叶变换 脉冲函数及其性质 信号:反映研究对象状态和运动特征的物理量信号分析:从信号中提取有用信息的方法 和手段 §2-1 信号的分类 两大类:确定性信号,非确定性信号 确定性信号:给定条件下取值是确定的。 进一步分为:周期信号, 非周期信号。

质量M 弹簧 刚度K t x (t ) o x 0 质量-弹簧系统的力学模型 x (t ) ? ?? ? ??+=0cos )(?t m k A t x 非确定性信号(随机信号):给定条件下取值是不确定的 按取值情况分类:模拟信号,离散信号 数字信号:属于离散信号,幅值离散,并用二进制表示。 信号描述方法 时域描述 如简谐信号

频域描述 以信号的频率结构来描述信号的方法:将信号看成许多谐波(简谐信号)之和,每一个谐波称作该信号的一个频率成分,考察信号含有那些频率的谐波,以及各谐波的幅值和相角。

§2-2 周期信号与离散频谱 一、 周期信号傅里叶级数的三角函数形式 周期信号时域表达式 ) 21() ()2()()( ,,±±=+==+=+=n nT t x T t x T t x t x T :周期。注意n 的取值:周期信号“无始无终” # 傅里叶级数的三角函数展开式 ) sin cos ()(01 00t n b t n a a t x n n n ωω∑∞ =++= (n =1, 2, 3,…) 傅立叶系数:

?- = 2 2 0)(1T T dt t x T a ?- = 2 2 0cos )(2T T n tdt n t x T a ω ? - = 2 2 0sin )(2T T n tdt n t x T b ω 式中 T--周期;0--基频, 0=2 /T 。 三角函数展开式的另一种形式: ) cos()(1 00∑∞ =++=n n n t n A a t x ?ωN 次谐波 N 次谐波的相角 N 次谐波的频率 N 次谐波的幅值 信号的均值,直流分量

傅立叶变换的原理、意义和应用

傅立叶变换的原理、意义和应用 1概念:编辑 傅里叶变换是一种分析信号的方法,它可分析信号的成分,也可用这些成分合成信号。许多波形可作为信号的成分,比如正弦波、方波、锯齿波等,傅里叶变换用正弦波作为信号的成分。 参考《数字信号处理》杨毅明著,机械工业出版社2012年发行。 定义 f(t)是t的周期函数,如果t满足狄里赫莱条件:在一个周期内具有有限个间断点,且在这些间断点上,函数是有限值;在一个周期内具有有限个极值点;绝对可积。则有下图①式成立。称为积分运算f(t)的傅里叶变换, ②式的积分运算叫做F(ω)的傅里叶逆变换。F(ω)叫做f(t)的像函数,f(t)叫做 F(ω)的像原函数。F(ω)是f(t)的像。f(t)是F(ω)原像。 ①傅里叶变换 ②傅里叶逆变换 中文译名 Fourier transform或Transformée de Fourier有多个中文译

名,常见的有“傅里叶变换”、“付立叶变换”、“傅立叶转换”、“傅氏转换”、“傅氏变换”、等等。为方便起见,本文统一写作“傅里叶变换”。 应用 傅里叶变换在物理学、电子类学科、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用(例如在信号处理中,傅里叶变换的典型用途是将信号分解成幅值谱——显示与频率对应的幅值大小)。 相关 * 傅里叶变换属于谐波分析。 * 傅里叶变换的逆变换容易求出,而且形式与正变换非常类似; * 正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取; *卷积定理指出:傅里叶变换可以化复杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段; * 离散形式的傅立叶变换可以利用数字计算机快速地算出(其算法称为快速傅里叶变换算法(FFT)).[1] 2性质编辑 线性性质 傅里叶变换的线性,是指两函数的线性组合的傅里叶变换,等于

傅里叶变换性质证明

傅里叶变换性质证明 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

傅里叶变换的性质 2.6.1线性 若信号和的傅里叶变换分别为和, 则对于任意的常数a和b,有 将其推广,若,则 其中为常数,n为正整数。

由傅里叶变换的定义式很容易证明线性性质. 显然傅里叶变换也是一种线性运算,在第一章我们已经知道了,线性有两个含义:均匀性和叠加性。均匀性表明,若信号乘以常数a,则信号的傅里叶变换也乘以相同的常数a,即 叠加性表明,几个信号之和的傅里叶变换等于各个信号的傅里叶变换之和 ? 2.6.2 反褶与共轭性 设f(t)的傅里叶变换为,下面我们来讨论信号反褶、共轭以及既反褶又共轭后,新信号的傅里叶变换。

(1)反褶 f(-t)是f(t)的反褶,其傅里叶变换为 (2)共轭 (3)既反褶又共轭 本性质还可利用前两条性质来证明: 设g(t)=f(-t),h(t)=g*(t),则 在上面三条性质的证明中,并没有特别指明f(t)是实函数还是复函数,因此,无论f(t)为实信号还是复信号,其傅里叶变换都满足下面三条性质2.6.3 奇偶虚实性 已知f(t)的傅里叶变换为。在一般情况下,是复函数,因此可以把它表示成模与相位或者实部与虚部两部分,即 ? 根据定义,上式还可以写成 下面根据f(t)的虚实性来讨论F()的虚实性。 (1) f(t)为实函数对比式(2-33)与(2-34),由FT的唯一性可得 ()f(t)是实的偶函数,即f(t)=f(-t)

X()的积分项是奇函数,而奇函数在对称区间内的积分为零,故 这时X()=0,于是 可见,若f(t)是实偶函数,则F()也是实偶函数,即 左边反褶,右边共轭 ()f(t)是实的奇函数,即-f(t)=f(-t) R()的积分项是奇函数,而奇函数在对称区间内的积分为零,故 这时R()=0,于是 可见,若f(t)是实奇函数,则F()是虚奇函数,即 左边反褶,右边共轭 有了上面这两条性质,下面我们来看看一般实信号(即可能既不是偶信号,又不是奇信号,反正不清楚,或者说是没有必要关心信号的奇偶特性)的FT频谱特点。 2.6.4对称性

傅里叶变换与傅里叶级数

重温傅里叶—笔记篇 本文记录的大多是基础的公式,还有一些我认为比较重要的有参考价值的说明。(如果对这些公式已经很熟悉,可以直接看第三部分:总结性说明) 重温傅里叶—笔记篇 一、傅里叶级数 $关于三角函数系的正交性: 三角函数系包括: 1,cos x,sinx,cos2x,sin 2x,……cos nx,sinnx,…… “正交性”是说,三角函数系中的任何一项与另一项的乘积,在(-π, π) 区间内的积分为0。(任何两相的积总可以展成两个频率为整数倍基频的正余弦函数之和或差,而这两个展开后的正余弦在(-π, π)上积分都为0)。 不同频率(但都是整数倍基频)的两个正弦函数之积,在(-π, π)上积分恒为0。 同频率的两个正弦函数之积,只有在这两个正弦的相位正交时,其在(-π, π)上积分才是0。 三角函数系中除“1”以外的任何一项的平方,在(-π, π)上的积分恒为π,“1”在这个区间上的积分为2π。

$ 上公式! ①当周期为2π时: 式(1): 上式成立的条件是f(x)满足狄立克雷充分条件: 1.在任意有限区间内连续,或只有有限多个第一类间断点; 2.任意的有限区间,都可被分成有限多个单调区间(另一种说法是:任意有限区间内只有有限多个极值点,其实是一样的)

式(1)第一行中的a0/2 就是f(x)的周期平均值,而且第一行的式子只对f(x)是连续函数的情况成立;如果f(x)不连续,则应表示成“(1/2) ×[f(x-0)+f(x+0)]”,即f(x)左右极限的算术平均。下面的类似情况都是这样,之后就不再专门说明,这些大家应该都懂。 第三、四行中,n的取值都是:1,2,3,4,……n,……(都为正,且不包含0)。 ②当周期为2L时(这也是最一般的情形): 式(2): 第一行中的a0/2 就是f(x)的周期平均值; 第三、四行中,n的取值都是:1,2,3,4,……n,……(都为正,且不包含0)。

离散傅里叶变换(DFT)试题

第一章 离散傅里叶变换(DFT ) 填空题 (1) 某序列的DFT 表达式为 ∑-==1 )()(N n kn M W n x k X ,由此可以看出,该序列时域 的长 度为 ,变换后数字频域上相邻两个频率样点之间的间隔是 。 解:N ; M π 2 (2)某序列DFT 的表达式是 ∑-==1 0)()(N k kl M W k x l X ,由此可看出,该序列的时域长度 是 ,变换后数字频域上相邻两个频率样点之间隔是 。 解: N M π 2 (3)如果希望某信号序列的离散谱是实偶的,那么该时域序列应满足条件 。 解:纯实数、偶对称 (4)线性时不变系统离散时间因果系统的系统函数为2 52) 1(8)(22++--=z z z z z H ,则系统 的极点为 ;系统的稳定性为 。系统单位冲激响应)(n h 的初值为 ;终值 )(∞h 。 解: 2,2 1 21-=- =z z ;不稳定 ;4)0(=h ;不存在 (5) 采样频率为Hz F s 的数字系统中,系统函数表达式中1 -z 代表的物理意义是 ,其中时域 数字序列)(n x 的序号 n 代表的样值实际位置是 ;)(n x 的N 点DFT )k X (中,序号k 代表的样值 实际位置又是 。 解:延时一个采样周期F T 1=,F n nT =,k N k πω2= (6)已知 }{}{4,3,2,1,0;0,1,1,0,1][,4,3,2,1,0;1,2,3,2,1][=-===k n h k n x ,则][n x 和 ][n h 的5点循环卷积为 。 解:{}]3[]2[][][][][---+?=?k k k k x k h k x δδδ {}4,3,2,1,0;2,3,3,1,0])3[(])2[(][55==---+=k k x k x k x (7)已知}{}{3,2,1,0;1,1,2,4][,3,2,1,0;2,0,2,3][=--=== k n h k n x 则][][n h n x 和的 4点循环卷积为 。

用傅里叶变换计算衍射的光强分布

龙岩学院学年论文(设计) 论文题目用傅里叶变换计算衍射的光强分布 学院物理与机电工程学院 专业物理学(光电子技术方向) 年级 2011级 姓名徐武童 学号 2011042526 指导教师兑自强 二0一三年四月十二日

用傅里叶变换计算衍射的光强分布 物理与机电工程学院 11物本 2011042526徐武童指导老师:兑自强 【摘要】:利用傅里叶变换式计算光的单缝和圆孔衍射的光强分布,根据计算结果利用MATLAB软件仿真模拟单缝和圆孔衍射及光强分布,分析计算和模拟结果得知衍射图样取决于缝宽或孔径的大小 【关键词】:傅里叶变换;单缝;圆孔;衍射;光强分布

目录 前言1 1.傅里叶变换式 1 1.1一维变换式 2 1.2二维变换式 3 1.3三维傅里叶变换式 3 2. 用傅里叶变换计算衍射的光强分布 4 2.1计算圆孔衍射的光强分布 6 2.2计算单缝衍射的光强分布 7 3.光强分布曲线 8 3.1单缝衍射的光强分布曲线 8 3.2圆孔衍射的光强分布曲线 9 4.讨论10 4.1单缝衍射 10 4.2圆孔衍射 10 总结11 致谢11

0 前言 衍射现象是波动光学中的重要知识,光的衍射的定义从广义上说是光在传播过程中,遇到障碍物时产生的偏离几何光学规律从而引起光强重新分布的现象,也称为绕射。该定义指出光的衍射是一种区别于几何光学规律的光的传播现象。当所选光学元件的尺度与波长相当时,光的传播现象明显不同于几何光学所描述的。它也明确给出了产生衍射现象的条件“光波遇到障碍物”,对于任何一束光都会因在空间传播过程中遇到障碍物而使自由波面受损,从而改变波前后振幅,使光表现出衍射行为。 而傅里叶变换是一种特殊的积分变换,它能将满足一定条件的某个函数表示成正弦基函数的线性组合或者积分。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。在数学领域,尽管最初傅立叶分析是作为热过程的解析分析的工具,但是其思想方法仍然具有典型的还原论和分析主义的特征。从纯粹的数学意义上看,傅立叶变换是将一个函数转换为一系列周期函数来处理的。从物理效果看,傅立叶变换是将图像从空间域转换到频率域,其逆变换是将图像从频率域转换到空间域。 在现代光学发展的今天,如何运用傅里叶方法解决干涉、衍射和成像等问题成了至关重要的部分。

傅里叶变换

研究生课程论文(作业)封面 ( 2014 至 2015 学年度第 1 学期) 课程名称:__________________ 课程编号:__________________ 学生姓名:__________________ 学号:__________________ 年级:__________________ 提交日期:年月日 成绩:__________________ 教师签字:__________________ 开课---结课:第周---第周 评阅日期:年月日 东北农业大学研究生部制

积分变换在工程上的应用 摘要:在现代数学中,傅里叶变换是一种非常重要的积分变换,且在数字信号处理中有着广泛的应用。本文首先介绍了傅里叶变换的基本概念、性质及发展情况;其次,详细介绍了分离变数法及积分变换法在解数学物理方程中的应用,并在分离变数法中对齐次方程及非齐次方程进行了区分。傅里叶变换在不同的领域有不同的形式,诸如现代声学,语音通讯,声纳,地震,核科学,乃至生物医学工程等信号的研究发挥着重要的作用。 关键词:傅里叶变换;偏微分方程;数字信号处理 1 概要介绍 积分变换无论在数学理论或其应用中都是一种非常有用的工具。最重要的积分变换有傅里叶变换、拉普拉斯变换。由于不同应用的需要,还有其他一些积分变换,其中应用较为广泛的有梅林变换和汉克尔变换,它们都可通过傅里叶变换或拉普拉斯变换转化而来。傅里叶变换的典型用途是将信号分解成幅值分量和频率分量。傅里叶变换将原来难以处理的时域信号转换成了易于分析的频域信号(信号的频谱),可以利用一些工具对这些频域信号进行处理、加工。最后还可以利用傅里叶反变换将这些频域信号转换成时域信号。要知道傅立叶变换算法的意义,首先要了解傅立叶原理的意义。傅立叶原理表明:任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的无限叠加。而根据该原理创立的傅立叶变换算法利用直接测量到的原始信号,以累加方式来计算该信号中不同正弦波信号的频率、振幅和相位。傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。最初傅里叶分析是作为热过程的解析分析的工具被提出的。 1.傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。最初傅里叶分析是作为热过程的解析分析的工具被提出的。——(1) 2.傅里叶变换的逆变换容易求出,而且形式与正变换非常类似。 3.正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解。在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取。 ()()()()()()?? ? ??-++=-? ? ∞ +∞ +∞ -.,200,]cos [1 其它连续点处, 在t f t f t f t f d d t f ωττωτπ 当()t f 满足一定条件时,在()t f 的连续点处有:

傅里叶变换光学

中山大学光信息专业实验报告:傅里叶光学变换系统 一、实验目的和内容 1、了解透镜对入射波前的相位调制原理。 2、加深对透镜复振幅、传递函数、透过率等参量的物理意义的认识。 3、观察透镜的傅氏变换(FT )图像,观察4f 系统的反傅氏变换(IFT )图像,并进行比较。 4、在4f 系统的变换平面(T )插入各种空间滤波器,观察各种试件相应的频谱处理图像。 二、实验原理 1、透镜的FT 性质及常用函数与图形的关学频谱分析 透镜由于本身厚度的不同,使得入射光在通过透镜时, 图1 点的厚度。设原复振幅分布为(,)L U x y 的光通过透镜后,幅分布受到透镜的位相调制,附加了一个位相因子(,)x y ?为(,)L U x y ': 图1 (,)(,)exp[(,)]L L U x y U x y j x y ?'= (1) 若对于任意一点(x ,y )透镜的厚度为(,)D x y ,透镜的中心厚度为0D 。光线由该点通过透镜时在透镜中的距离为(,)D x y ,空气空的距离为0D -(,)D x y ,透镜折射率为n ,则该点的总的位相差为: 00(,)[(,)](,)(1)(,)x y k D D x y knD x y kD k n D x y ?=-+=+- (2) (2)中的k =2π/λ,为入射光波波数。 用位相延迟因子(,)t x y 来表示即为: 0(,)exp()exp[(1)(,)]t x y jkD jk n D x y =- (3) 由此可见只要知道透镜的厚度函数(,)D x y 就可得出其相位调制。在球面镜傍轴区域,用抛物面近似球面,可以得到球面透镜的厚度函数为:

选择题

云平台”,http://https://www.360docs.net/doc/a47730579.html, 花样流水灯 #include void delay() { unsigned char m,n; for(m=0;m<200;m++) for(n=0;n<200;n++) ; } void main(void) { unsigned char i; while(1) { i=0; while(i<0xff) { P1=i; delay(); i++; } } } 离散时间信号与系统 一、单项选择题 1、下列哪一个单位抽样响应所表示的系统不是因果稳定系统( ) (分数:2分) A. h(n)=δ(n) B. h(n)=u(n) C. h(n)= R5(n) D. h(n)=e^(-2n)u(n) 正确答案:B 2、若一线性移不变系统当输入为x(n)=δ(n)时输出为y(n)= δ(n) +2δ(n-1),则当输入为u(n)-u(n-1)时输出为( ) (分数:2分) A. u(n)+u(n-1) B. u(n)+2u(n-1) C. u(n)+u(n-1)+2u(n-2) D. u(n)+u(n-1)-2u(n-2)

3、序列x(n)=sin(2πn/5+π/4)的周期是() (分数:2分) A. 2 B. 5 C. 2/5 D. 无周期 正确答案:B 4、若信号频率上限为fc,要想对其抽样后由抽样信号恢复出原信号,则抽样率fs应 满足()(分数:2分) A. fs>fc B. fs C. fs>2fc D. fs<2fc 正确答案:C 5、若采用8kHz的抽样频率对某连续信号进行无失真的数字信号处理,则连续信号的最高频率为()(分数:2分) A. 2K Hz B. 4K Hz C. 8K Hz D. 16 Hz 正确答案:B 6、系统y(n)=x(2n)是()(分数:2分) A. 线性、时不变系统 B. 线性、时变系统 C. 非线性、时不变系统 D. 非线性、时变系统 正确答案:B 7、信号x(n)=4δ(n)- 3δ(n-1) +6δ(n-2)的直流分量是()(分数:2分) A. 4 B. 5 C. 6 D. 7 正确答案:D 8、序列x(n)和h(n)的长度分别是11和20, 则y(n)=x(n)*h(n) 的长度为()(分数:2分) A. 11 B. 20 C. 30 D. 31

部分傅里叶变换在信号处理中的研究发展中英翻译

毕业设计(论文)外文资料翻译 系别:电子信息系 专业:通信工程 班级:B090310 姓名:孙春甫 学号:B09031015 外文出处:知网 附件: 1. 原文; 2. 译文 2013年05月

Research Progress of the Fractional Fourier Transform in Signal Processing ABSTRACT The fractional Fourier transform is a generalization of the classical Fourier transform, which is introduced from the mathematic aspect by Namias at first and has many applications in optics quickly. Whereas its potential appears to have remained largely unknown to the signal processing community until 1990s. The fractional Fourier transform can be viewed as the chirp-basis expansion directly from its definition, but essentially it can be interpreted as a rotation in the time-frequency plane, i.e. the unified time-frequency transform. With the order from 0 increasing to 1, the fractional Fourier transform can show the characteristics of the signal changing from the time domain to the frequency domain. In this research paper, the fractional Fourier transform has been comprehensively and systematically treated from the signal processing point of view. Our aim is to provide a course from the definition to the applications of the fractional Fourier transform, especially as a reference and an introduction for researchers and interested readers. While solving a heat conduction problem in 1807, a French scientist Jean Baptiste Joseph Fourier, suggested the usage of the Fourier theorem. Thereafter, the Fourier transform (FT) has been applied widely in many scientific disciplines, and has played important role in almost all the science and technology domains. However, with the extension of research objects and scope, the FT has been discovered to have shortcomings. Since the FT is a kind of holistic transform, i.e., through which the whole spectrum is obtained, it cannot obtain the local time-frequency character that is essential and pivotal for processing nonstationary signals. So a series of novel signal analysis theories have been put forward to process nonstationary signals, such as: the fractional Fourier transform, the short-time Fourier transform, Wigner-Ville distribution, Gabor transform, wavelet transform, cyclic statistics, AM/FM signal analysis and so on. Hereinto the fractional Fourier transform (FRFT), as a generalization of the classical FT, has caught more and more attention for its inherent

常用傅立叶变换表

时域信号 弧频率表示的 傅里叶变换 注释 1 线性 2 时域平移 3 频域平移, 变换2的频域对应4 如果值较大,则会收缩 到原点附近,而会扩 散并变得扁平. 当 | a | 趋向 无穷时,成为 Delta函数。 5 傅里叶变换的二元性性质。通过 交换时域变量和频域变量 得到. 6 傅里叶变换的微分性质 7 变换6的频域对应 8 表示和的卷积—这

9 矩形脉冲和归一化的sinc 函数 10 变换10的频域对应。矩形函数是理想的低通滤波器,sinc 函数是这类滤波器对反因果冲击的响应。 11 tri 是三角形函数 12 变换12的频域对应 13 高斯函数 exp( ? αt 2) 的傅里叶变换是他本身. 只有当 Re(α) > 0时,这是可积的。 14 15 16 a>0 17 变换本身就是一个公式

18 δ(ω) 代表狄拉克δ函数分布. 这 个变换展示了狄拉克δ函数的重要 性:该函数是常函数的傅立叶变换 19 变换23的频域对应 20 由变换3和24得到. 21 由变换1和25得到,应用了欧拉公 式: cos(at) = (e iat + e?iat) / 2. 22 由变换1和25得到 23 这里, n是一个自然数. δ(n)(ω) 是狄拉克δ函数分布的n阶微分。这 个变换是根据变换7和24得到的。 将此变换与1结合使用,我们可以变 换所有多项式。 24 此处sgn(ω)为符号函数;注意此变 换与变换7和24是一致的. 25 变换29的推广. 26 变换29的频域对应. 27 此处u(t)是单位阶跃函数; 此变换 根据变换1和31得到.

傅里叶变换及应用

傅里叶变换在MATLZB里的应用 摘要:在现代数学中,傅里叶变换是一种非常重要的变换,且在数字信号处理中有着广泛的应用。本文首先介绍了傅里叶变换的基本概念、性质及发展情况;其次,详细介绍了分离变数法及积分变换法在解数学物理方程中的应用。傅立叶变换将原来难以处理的时域信号转换成了易于分析的频域信号,再利用傅立叶反变换将这些频域信号转换成时域信号。应用MATLAB实现信号的谱分析和对信号消噪。 关键词:傅里叶变换;MA TLAB软件;信号消噪 Abstract: In modern mathematics,Fourier transform is a transform is very important ,And has been widely used in digital signal processing.This paper first introduces the basic concepts, properties and development situation of Fourier transform ;Secondly, introduces in detail the method of separation of variables and integral transform method in solving equations in Mathematical Physics.Fourier transformation makes the original time domain signal whose analysis is difficult easy, by transforming it into frequency domain signal that can be transformed into time domain signal by inverse transformation of Fourier. Using Mat lab realizes signal spectral analysis and signal denoising. Key word: Fourier transformation, software of mat lab ,signal denoising 1、傅里叶变换的提出及发展 在自然科学和工程技术中为了把较复杂的运算转化为较简单的运算,人们常常采用所谓变换的方法来达到目的"例如在初等数学中,数量的乘积和商可以通过对数变换化为较简单的加法和减法运算。在工程数学里积分变换能够将分析运算(如微分,积分)转化为代数运算,正是积分变换这一特性,使得它在微分方程和其它方程的求解中成为重要方法之一。 1804年,法国科学家J-.B.-J.傅里叶由于当时工业上处理金属的需要,开始从事热流动的研究"他在题为<<热的解析理论>>一文中,发展了热流动方程,并且指出如何求解"在求解过程中,他提出了任意周期函数都可以用三角级数来表示的想法。他的这种

相关文档
最新文档