离散数学期末复习题

离散数学期末复习题
离散数学期末复习题

离散数学期末复习题

第一章集合论

一、判断题

(1)空集是任何集合的真子集. ( 错 ) (2){}φ是空集. ( 错 ) (3){}{}a a a },{∈ ( 对 ) (4)设集合{}{}{}{}A A 22,1,2,1,2,1?=则. ( 对 ) (5)如果B A a ??,则A a ?或B a ?. ( 错 ) 解 B A a ??则B A B A a ?=?∈,即A a ∈且B a ∈,所以A a ?且B a ? (6)如果A ∪.,B A B B ?=则 ( 对 ) (7)设集合},,{321a a a A =,},,{321b b b B =,则

},,,,,{332211><><><=?b a b a b a B A ( 错 )

(8)设集合}1,0{=A ,则}1},0{,0},0{,1,,0,{><><><><=φφρ是A

2到A 的关

系. ( 对 ) 解 A

2}},1{},0{,{A φ=,

=?A A 2}1,,0,,1},1{,0},1{,1},0{,0},0{,1,,0,{><><><><><><><>

(9)关系的复合运算满足交换律. ( 错 ) (10).条件具有传递性的充分必要上的关系是集合ρρρρA = ( 错 )

(11)设.~,上的传递关系也是则上的传递关系是集合A A ρρ ( 对 )

(12)集合A 上的对称关系必不是反对称的. ( 错 ) (13)设21,ρρ为集合A 上的等价关系, 则21ρρ?也是集合A 上的等价关系( 对 ) (14)设ρ是集合A 上的等价关系, 则当ρ>∈

(15)设21,ρρ为集合 A 上的等价关系, 则

( 错 )

二、单项选择题

(1)设R 为实数集合,下列集合中哪一个不是空集 ( A ) A. {

}R x x x ∈=-且,01|2

B .{

}

R x x x ∈=+且,09|2

C. {}R x x x x ∈+=且,1|

D. {}

R x x x ∈-=且,1|2

(2)设B A ,为集合,若φ=B A \,则一定有 ( C ) A. φ=B B .φ≠B C. B A ? D. B A ?

(3)下列各式中不正确的是 ( C ) A. φφ? B .{}φφ∈ C. φφ? D. {}}{,φφφ∈

(4)设{}}{,a a A =,则下列各式中错误的是 ( B ) A. {}A a 2∈ B .{}A a 2? C. {}A a 2}{∈ D. {}A a 2}{? (5)设{}2,1=A ,{}c b a B ,,=,{}d c C ,=,则)(C B A ?为 ( B ) A. {}><><><><2,,,1c c D. {}><><2,,1,c c

(6)设{}b A ,0=,{}3,,1b B =,则B A 的恒等关系为 ( A ) A. {}><><><><3,3,,,1,1,0,0b b B .{}><><><3,3,1,1,0,0 C. {}><><><3,3,,,0,0b b D. {}><><><><0,3,3,,,1,1,0b b (7)设{}c b a A ,,=上的二元关系如下,则具有传递性的为 ( D ) A. {}><><><><=a b b a a c c a ,,,,,,,1ρ B . {}><><=a c c a ,,,2ρ

C. {}><><><><=c b a b c c b a ,,,,,,,3ρ

D. {}><=a a ,4ρ

(8)设ρ为集合A 上的等价关系,对任意A a ∈,其等价类[]ρa 为 ( B ) A. 空集; B .非空集; C. 是否为空集不能确定; D. }|{A x x ∈. (9)映射的复合运算满足 ( B ) A. 交换律 B .结合律 C. 幂等律 D. 分配律 (10)设A ,B 是集合,则下列说法中( C )是正确的. A .A 到B 的关系都是A 到B 的映射 B .A 到B 的映射都是可逆的 C .A 到B 的双射都是可逆的

D .B A ?时必不存在A 到B 的双射

(11)设A 是集合,则( B )成立. A .A

A

#2

2#=

B .A X X A ??∈2

C .{}A 2∈φ

D .{}A A 2∈

(12)设A 是有限集(n A =#),则A 上既是≤又是~的关系共有( B ). A .0个 B .1个 C .2个 D .n 个 三、填空题

1. 设}}2,1{,2,1{=A ,则=A

2____________.

填}}},2,1{,2{}},2,1{,1{},2,1{}},2,1{{},2{},1{,{2A A φ=

2.设}}{,{φφ=A ,则A

2= . 填}}},{{},{,{2A A φφφ= 3.设集合B A ,中元素的个数分别为5#=A ,7#=B ,且9)(#=?B A , 则集合B A ?中元素的个数=?)(#B A .3 4.设集合}4,1001|{Z x x x x A ∈≤≤=的倍数,是,

}5,1001|{Z x x x x B ∈≤≤=的倍数,是,则B A 中元素的个数为 .40

5.设 },{b a A =, ρ 是 A

2 上的包含于关系,,则有

ρ= .

},,},{,}{},{,},{,}{},{,,,}{,,}{,,,{><><><><><><><><>

1~

2ρρ 7.集合A 上的二元关系ρ为传递的充分必要条件是 .ρρρ? 8. 设集合{}{}><><==0,2,2,02,1,01ρ上的关系A 及集合A 到集合{}4,2,0=B 的关系=2ρ{><><><>< 四、解答题

1. 设 A d c b a A },,,,{=上的关系

},,,,,,,,,,,,,,,{><><><><><><><><=c d d c a b b a d d c c b b a a ρ (1)写出ρ的关系矩阵;

(2)验证ρ是A 上的等价关系;

(3)求出A 的各元素的等价类。

解 (1)ρ的关系矩阵为

??????

?

?

?=11

0011000011

0011ρM (2)从ρ的关系矩阵可知:ρ是自反的和对称的。

又由于

ρρρM M M ≤????

??

?

??=??????? ????????? ??=11001

1000011001111001100001100111100110000110011 或ρρρ= 满足ρρρ? 所以ρ是传递的。

因为ρ是自反的、对称的和传递的,所以ρ是A 上的等价关系。 (3) },{][][b a b a ==,},{][][d c d c ==

2. 设集合}36,24,12,8,6,3,2,1{=A ,ρ是A 上的整除关系, (1) 写出ρ的关系矩阵ρM ; (2) 画出偏序集><ρ,A 的哈斯图;

(3) 求出A 的子集}6,3,2{=B 的最小上界和最大下界。

解:(1)???????

?????

?

?

?=10

00000001000000111000000101000011101000

111011001111101011111111ρM (2)

(3)lubB=6, glbB=1

五、证明题

1. 设21,ρρ为集合A 上的等价关系, 试证21ρρ?也是集合A 上的等价关系。 证明:由于21,ρρ是自反的,所以对任意A a ∈,21,,

,ρρ>∈<>∈

21,ρρ?>∈

若21,ρρ?>∈∈<>∈∈<>∈

1,,,ρρ?>∈<>∈<><>∈<>∈<>∈

第二章 代数系统

一、判断题

(1)集合A 上的任一运算对A 是封闭的. ( 对 ) (2)代数系统的零元是可逆元. ( 错 ) (3)设A 是集合,A A A →?: ,b b a = ,则 是可结合的. ( 对 ) (4)设b a ,是代数系统?? ,A 的元素,如果e e a b b a (== 是该代数系统的单位元),则

.1b a =- ( 对 )

(5)设.)

(,,,111

---?=????b a b a G b a 则的元素是群 ( 错 )

(6)设>?<,G 是群.如果对于任意G b a ∈,,有 2

2

2

)(b a b a ?=?,则>?<,G 是阿贝尔群. ( 对 ) (7)设.,,,满足幂等律则运算是格∨∧?∨?L ( 对 ) (8)设集合},{b a A =,则>??<,},},{},{,{A b a φ是格. ( 对 ) (11)<{0,1,2,3,4},max ,min>是格. ( 对 )

(9)设>∧∨<,,,B 是布尔代数,则>∧∨<,,B 是格. ( 对 ) (10)设>∧∨<,,,B 是布尔代数,则对任意B b a ∈,,有

b a b a ∨=∧. ( 对 ) 二、单项选择题

(1)在整数集Z 上,下列哪种运算是可结合的 ( B )

A. b a b a -= B .},max{

b a b a = C. b a b a 2+= D. ||b a b a -=

(2)下列定义的实数集R 上的运算 * 中可结合的是. ( C )

A .b a a b a ?+=*

B .b a a b a ?+=*2

C .b b a =*

D .b a b a +=*

其中,+,·,︱ ︱分别为实数的加法、乘法和取绝对值运算.

(3)设集合{}10,,4,3,2,1 =A ,下面定义的哪种运算关于集合A 不是封闭的

( D )

A. },max{y x y x = B . },min{y x y x =

C. },{GCD y x y x = ,即y x ,的最大公约数

D. },{LCM y x y x = ,即y x ,的最小公倍数

(4)下列哪个集关于减法运算是封闭的 ( B ) A. N (自然数集); B .)}(|2{整数集Z x x ∈; C. }|12{Z x x ∈+; D. }|{是质数x x .

(5)设Q 是有理数集,在Q 定义运算*为ab b a b a -+=*,则*,Q 的单位元 为 ( D ) A. a ; B .b ; C. 1; D. 0

(6)设代数系统?A ,·?,则下面结论成立的是. ( C ) A .如果?A ,·?是群,则?A ,·?是阿贝尔群 B .如果?A ,·?是阿贝尔群,则?A ,·?是循环群 C .如果?A ,·?是循环群,则?A ,·?是阿贝尔群

D .如果?A ,·?是阿贝尔群,则?A ,·?必不是循环群

(7)循环群+,Z 的所有生成元为 ( D ) A. 1,0 B .-1,2 C. 1,2 D. 1,-1 三、填空题

1. 设A 为非空有限集,代数系统>< ,2A 中,A

2对运算 的单位元为 ,零元

为 .填A ,φ

2.代数系统>+<,Z 中(其中Z 为整数集合,+为普通加法),对任意的I x ∈,其

=-1x .填x -

3.在整数集合Z 上定义 运算为b a b a ++=2 ,则>< ,Z 的单位元为 . 解 设单位元为e ,a e a e a =++=2 ,所以2-=e ,

又a a a a a a =++-=-=-++=-2)2()2(,)2(2)2( ,所以单位元为2-=e

4.在整数集合Z 上定义 运算为ab b a b a -+= ,则>< ,Z 的单位元为 . 解设单位元为e ,a ae e a e a =-+= ,0)1(=-e a ,所以0=e

5.设?,G 是群,对任意G c b a ∈,,,如果,c a b a ?=?,则 .填c b =

6.设?,G 是群,e 为单位元,若G 元素a 满足a a =2

,则=a .填e 四、解答题

1.设 为实数集R 上的二元运算,其定义为

ab b a b a R R 2,:2++=→ ,对于任意R b a ∈,

求运算 的单位元和零元。

解:设单位元为e ,则对任意R a ∈,有a ae e a e a =++=2 , 即 0)21(=+a e ,由a 的任意性知 0=e ,

又对任意R a ∈,a a a =++=000 ;a a a =++=000

所以单位元为0 设零元为θ,则对任意R a ∈,有θθθθ=++=a a a 2 , 即 0)21(=+θa ,由a 的任意性知 2

1-=θ 又对任意R a ∈,2121)21(-=--=-a a a ,2

121)21(-=-+-=-a a a 所以零元为 2

1

-

2. 设 为集合}4,3,2,1,0{5=I 上的二元运算,其定义为

5mod )(,:52

5ab b a I I =→ ,对于任意5,I b a ∈

(1) 写出运算 的运算表;

(2) 说明运算 是否满足交换律、结合律,是否有单位元和零元、如果有请指出;

(3) 写出所有可逆元的逆元 解:(1)运算表为

(2)运算 满足交换律、结合律,有单位元,单位元为1,有零元,零元为0; (3)1的逆元为1,2的逆元为3,3的逆元为2,4的逆元4,0没有逆元

五、证明题

1. 设 >< ,G 是一个群,试证 G 是交换群 当且仅当对任意的G b a ∈, ,有 222)(b a b a = . 证明:充分性

若在群>< ,G 中,对任意的G b a ∈, ,有222)(b a b a = . 则 )()()()(b a b a b b a a = b a b a b b a a )()(=

a b b a = 从而 >< ,G 是一个交换群。 必要性

若>< ,G 是一个交换群,对任意的G b a ∈, ,有a b b a =,则 b a b a b b a a )()(= )()()()(b a b a b b a a = 即222)(b a b a =.

2. 证明代数系统>< ,Z 是群,其中二元运算 定义如下:

:Z Z →2

,3-+=y x y x (这里,+,-分别是整数的加法与减法运算.) 证明 (1)运算满足交换律 对任意∈z y x ,,Z ,由

,6)3()(-++=-+=z y x z y x z y x 6)3()(-++=-+=z y x z y x z y x

即得),()(z y x z y x =满足结合律;

(2)有单位元 3是单位元;

(3)任意元素有逆元 对任意∈x Z ,?-=-,.61

所以x x Z ,? 是群.

第三章 图论

一、判断题

(1)n 阶完全图的任意两个不同结点的距离都为1. ( 对 ) (2)图G 的两个不同结点j i v v ,连接时一定邻接. ( 错 ) (3)图G 中连接结点.,,之间的短程的初级通路为j i j i v v v v ( 错 ) (4)在有向图中,结点i v 到结点j v 的有向短程即为j v 到i v 的有向短程. ( 错 ) (5)强连通有向图一定是单向连通的. ( 对 ) (6)不论无向图或有向图,初级回路一定是简单回路. ( 对 ) (7)设图G 是连通的,则任意指定G 的各边方向后所得的有向图是弱连通的.

( 对 ) (8)设A 是某个无向图的邻接矩阵,则T

A A =(T

A 是A 的转置矩阵).

( 对 ) (9)设有向图D 的可达矩阵为

??????

?

?

?=10

0011001110

1111

P 则G 是单向连通的. ( 对 )

(10)有生成树的无向图是连通的. (对) (11)下图所示的图是欧拉图. ( 错 )

(12)下图所示的图有哈密尔顿回路. ( 对 )

二、单项选择题

(1)仅由孤立点组成的图称为 ( A ) A. 零图; B .平凡图; C. 完全图; D. 多重图.

(2)仅由一个孤立点组成的图称为 ( B ) A. 零图; B .平凡图; C.多重图; D. 子图.

(3)在任何图G 中必有偶数个 ( B ) A. 度数为偶数的结点; B .度数为奇数的结点; C. 入度为奇数的结点; D. 出度为奇数的结点.

(4)设G 为有n 个结点的无向完全图,则G 的边数为 ( C ) A. )1(-n n B .)1(+n n C. 2)1(-n n D. 2)1(-n

(5)在有n 个结点的连通图G 中,其边数 ( B ) A. 最多1-n 条; B .至少1-n 条; C. 最多n 条; D. 至少n 条.

(6)任何无向图G 中结点间的连通关系是 ( B ) A. 偏序关系; B .等价关系;

C. 既是偏序关系又是等价关系;

D. 既不是偏序关系也不是等价关系.

(7)对于无向图,下列说法中正确的是. ( B ) A .不含平行边及环的图称为完全图

B .任何两个不同结点都有边相连且无平行边及环的图称为完全图

C .具有经过每条边一次且仅一次回路的图称为哈密尔顿图

D .具有经过每个结点一次且仅一次回路的图称为欧拉图

(8)设D 是有向图,则D 强连通的充分必要条件为. ( C ) A .略去D 中各边方向后所得到的无向图是连通的

B .D 是单向连通图,且改变它的各边方向后所得到的有向图也是单向连通图

C .

D 的任意两个不同的结点都可以相互到达 D .D 是完全图

(9)对于无向图G ,以下结论中不正确的是. ( A ) A .如果G 的两个不同结点是连接的,则这两个结点之间有初级回路 B .如果G 的两个不同结点是连接的,则这两个结点之间至少有一条短程 C .如果G 是树,则任何两个不同结点之间有且仅有一条初级通路 D .如果G 是欧拉图,则G 有欧拉回路

(10)设简单无向图G 的邻接矩阵为 ,2,1()(,)()

(===??l a A a A n n l ij l n n ij 记),则正确的是. ( C ) A .当的之间长度为为的两个不同结点时是l v v a G v v j i l ij j i ,,,)

(初级通路条数 B .当的之间长度为为的两个不同结点时是l v v a G v v j i l ij j i ,,,)(简单通路条数 C .当的之间长度为为的两个不同结点时是l v v a G v v j i l ij j i ,,,)

(的通路条数

D .当的初级回路条数的长度为为通过的结点时是l v a G v i l ii i )(,

(11) ()

m

n ij

m M ?=是无向图>=

则( A ) A. i v 对应的一行元素全为0; B .i v 对应的一行元素全为1;

C. i v 对应的一列元素全为0;

D. i v 对应的一列元素全为1.

三、填空题

1. 设树T 中有7片树叶,3个3度结点,其余都是4度结点,则T 中有 个4度结点. 解 用握手定理和树的性质列出方程求解,设有x 个4度结点,

)137(2497-++=++x x ,1=x

2.设>=

3.n 阶完全图的任意两个不同结点的距离都为 .1

4.图G 为n 阶无向完全图,则G 共有 条边。2/)1(-n n

5.设G 为),(m n 图,则图中结点度数的总和为 。m 2

6.设图G 有6结点,若各结点的度数分别为:1,4,4,3,5,5,则G 共有 条边。 用握手定理 m 222=,m=11

7. 图G 为欧拉图的充分必要条件是_____________________. G 为无奇度结点的连通图 四、解答题

1. 对下图所示的图G ,求 (1)G 的邻接矩阵A ;

(2)G 的结点31,v v 之间长度为3的通路; (3)G 的连接矩阵C ; (4)G 的关联矩阵M 。

解 (1) A =

.000011100

11101110101

011105432154321

???

??

?

?

?

??v v v v v v v v v v (2) 因为

A 2=,21

1211122111422

12231

21213

???

????? ?

? A 3

=,7???

???

?

?

????????????

?????

?????

????

所以,结点31,v v 之间长度为3的通路共有7条,它们是

.

,,,,,,3431323135313141312135213131v v v v v v v v v v v v v v v v v v v v v v v v v v v v

(3)由于图G 是连通的,所以

54

3

2

1

v v v v v

C =.11

1

1

1

1111111111

11111

11111

54321???????

? ??v v v v v (4) 76

5

4321

e e e e e e e

M =.11

000001100001101

101000

0110001

10154321???????

?

??v v v v v 2. 在下面的有向图D 中,回答下列问题

(1)写出图D 的邻接矩阵A ;

(2)写出结点1v 到结点3v 的长度为3的所有有向通路; (3)写出结点5v 到自身的长度为3的所有有向回路;

解:(1)???

???

?

?

??=010101000001100

00101

10000A

(2)???????? ??=101010101011100

11100010102

A ???

???

?

?

??=121101010

11211

0121101010

13A

所以结点1v 到结点3v 的长度为3的所有有向通路只有一条: 3251v v v v

(3)结点5v 到自身的长度为3的所有有向回路只有一条:5125v v v v

3.在下面的无向图G 中,回答下列问题

b

(1)写出d a ,之间的所有初级通路; (2)写出d a ,之间的所有短程,并求),(d a d ; (3)判断无向图G 是否为欧拉图并说明理由。 解(1)d a ,之间的所有初级通路共有7条,分别为

aed ,aecd ,aebcd ,abed ,abcd ,abecd ,abced (2)d a ,之间的长度最短的通路只有1条,即aed ,因而它是d a ,之间

唯一的短程,2),(=d a d (3)由于无向图G 中有两个奇度顶点3)deg(,3)deg(==c b ,所以无向图G 没有欧

拉回路,因而不是欧拉图。

第四章 数理逻辑

一、判断题 (1)“如果8+7>2,则三角形有四条边”是命题. ( 对 ) (2)设Q P ,都是命题公式,则Q P ?也是命题公式. ( 错 ) (3)命题公式Q P ,的真值分别为0,1,则Q P →的真值为0

(以上是在对Q P ,所包含的命题变元的某个赋值下). ( 错 )

(4)设:,1963:q p 年他生于

他生于1964年,则命题“他生于1963年或1964年”可以符号化为.q p ∨ ( 对 )

(5)设P ,Q 都是命题公式,则.1?→?Q P Q P 的充分必要条件为

( 对 ) (6)逻辑结论是正确结论. ( 错 ) (9)设C B A ,,都是命题公式,则

)()(C A C B A →→?∨∨

也是命题公式. ( 对 ) (10)命题公式Q P ,的真值分别为0,1,则Q P ?的真值为0

(以上是在对Q P ,所包含的命题变元的某个赋值下). ( 对 ) 二、单项选择题

(1)下面哪个联结词不可交换 ( B ) A. ∧; B .→; C.∨; D.? .

(2)命题公式q q p p →→∧))((是 ( C ) A. 永假式; B .非永真式的可满足式; C. 永真式; D. 等价式.

(3)记:p 他懂法律,:q 他犯法,则命题“他只有懂法律,才不会犯法”可符号化为( B ). A .q p ?→ B .p q →? C .p q ?→ D .q p →

(4)下列命题中假命题是( B ). A .如果雪不是白的,则太阳从西边出来 B .如果雪是白的,则太阳从西边出来 C .如果雪不是白的,则太阳从东边出来 D .只要雪不是白的,太阳就从西边出来

(5)设A ,B 都是命题公式,则A →B 为可满足式是B A ?的( B ). A .充分而非必要条件 B .必要而非充分条件 C .充分必要条件

D .既非充分又非必要条件 三、填空题

1.设:p 天气很冷,:q 老王还是来了,则命题“虽然天气很冷, 但老王还是来了”符号化为 .q p ∧

2.设:p 天下雨,:q 我骑自行车上班,则命题“如果天不下雨, 我就骑自行车上班”符号化为 .q p →?

3. 设q p ,的真值为0,s r ,的真值为1,则命题公式)()(s q r p ∨?∧?的真值为 .0

4.设q p ,的真值为0,r 的真值为1,则命题公式)(r q p ∧∨的真值为 .0

离散数学期末复习

离散数学期末复习 一、选择题 1、下列各选项错误的是 A、??? B、??? C、?∈{?} D、??{?} 2、命题公式(p∧q)→p是 A、矛盾式 B、重言式 C、可满足式 D、等值式 3、如果是R是A上的偏序关系,R-1是R的逆关系,则R∪R-1是 A、等价关系 B、偏序关系 C、全序关系 D、都不是 4、下列句子中那个是假命题? A、是无理数. B、2 + 5=8.

C、x+ 5>3 D、请不要讲话! 5、下列各选项错误的是? A、??? B、??{?} C、?∈{?} D、{?}?? 6、命题公式p→(p∨q∨r)是? A、重言式 B、矛盾式 C、可满足式 D、等值式 7、函数f : N→N, f(x)=x+5,函数f是 A、单射 B、满射 C、双射 D、都不是 8、设D=,则 V={a,b,c,d,e,f},R={ ,,,,},有向图D为 A、强连通 B、单向连通 C、弱连通

D、不连通的 9、关系R1和R2具有反自反性,下面运算后,不能保持自反性的是 A、R1?R2 B、R1-1 C、R1?R2 D、R1-R2 10、连通平面图G有4个结点,3个面,则G有()条边。 A、7 B、6 C、5 D、4 二、填空题 1、将下面命题符号化。设p:天冷,q:小王穿羽绒服。只要天冷,小王就穿羽绒服.符号化为 2、将下面命题符号化,设p:天冷,q:小王穿羽绒服。因为天冷,所以小王穿羽绒服.符号化为 3、将下面命题符号化,设p:天冷,q:小王穿羽绒服。若小王不穿羽绒服,则天不冷.符号化为 4、将下面命题符号化,设p:天冷,q:小王穿羽绒服。只有天冷,小王才穿羽绒服.符号化为

离散数学期末试题

离散数学考试试题(A 卷及答案) 一、(10分)求(P ↓Q )→(P ∧?(Q ∨?R ))的主析取范式 解:(P ↓Q )→(P ∧?(Q ∨?R ))??(?( P ∨Q ))∨(P ∧?Q ∧R )) ?(P ∨Q )∨(P ∧?Q ∧R )) ?(P ∨Q ∨P )∧(P ∨Q ∨?Q )∧(P ∨Q ∨R ) ?(P ∨Q )∧(P ∨Q ∨R ) ?(P ∨Q ∨(R ∧?R ))∧(P ∨Q ∨R ) ?(P ∨Q ∨R )∧(P ∨Q ∨?R )∧(P ∨Q ∨R ) ?0M ∧1M ?2m ∨3m ∨4m ∨5m ∨6m ∨7m 二、(10分)在某次研讨会的休息时间,3名与会者根据王教授的口音分别作出下述判断: 甲说:王教授不是苏州人,是上海人。 乙说:王教授不是上海人,是苏州人。 丙说:王教授既不是上海人,也不是杭州人。 王教授听后说:你们3人中有一个全说对了,有一人全说错了,还有一个人对错各一半。试判断王教授是哪里人? 解 设设P :王教授是苏州人;Q :王教授是上海人;R :王教授是杭州人。则根据题意应有: 甲:?P ∧Q 乙:?Q ∧P 丙:?Q ∧?R 王教授只可能是其中一个城市的人或者3个城市都不是。所以,丙至少说对了一半。因此,可得甲或乙必有一人全错了。又因为,若甲全错了,则有?Q ∧P ,因此,乙全对。同理,乙全错则甲全对。所以丙必是一对一错。故王教授的话符号化为: ((?P ∧Q )∧((Q ∧?R )∨(?Q ∧R )))∨((?Q ∧P )∧(?Q ∧R )) ?(?P ∧Q ∧Q ∧?R )∨(?P ∧Q ∧?Q ∧R )∨(?Q ∧P ∧?Q ∧R ) ?(?P ∧Q ∧?R )∨(P ∧?Q ∧R ) ??P ∧Q ∧?R ?T 因此,王教授是上海人。 三、(10分)证明tsr (R )是包含R 的且具有自反性、对称性和传递性的最小关系。 证明 设R 是非空集合A 上的二元关系,则tsr (R )是包含R 的且具有自反性、对称性和传递性的关系。 若'R 是包含R 的且具有自反性、对称性和传递性的任意关系,则由闭包的定义知r (R )?' R 。则sr (R )?s ('R )='R ,进而有tsr (R )?t ('R )='R 。

离散数学期末试题及答案

326《离散数学》期末考试题(B ) 一、填空题(每小题3分,共15分) 1.设,,},,{{b a b a A =?},则-A ? = ( ),-A {?} = ( ),)(A P 中的元素个数=|)(|A P ( ). 2.设集合A 中有3个元素,则A 上的二元关系有( )个,其中有( )个是A 到A 的函数. 3.谓词公式))()(())()((y P y Q y x Q x P x ?∧?∧→?中量词x ?的辖域为( ), 量词y ?的辖域为( ). 4.设}24,12,8,6,4,3,2,1{24=D ,对于其上的整除关系“|”,元素( )不存在补元. 5.当n ( )时,n 阶完全无向图n K 是平面图,当当n 为( )时,n K 是欧拉图. 二.1. 若n B m A ==||,||,则=?||B A ( ),A 到B 的2元关系共有( )个,A 上的2元关系共有( )个. 2. 设A = {1, 2, 3}, f = {(1,1), (2,1), (3, 1)}, g = {(1, 1), (2, 3), (3, 2)}和h = {(1, 3), (2, 1), (3, 1)},则( )是单射,( )是满射,( )是双射. 3. 下列5个命题公式中,是永真式的有( )(选择正确答案的番号). (1)q q p p →→∧)(; (2))(q p p ∨→; (3))(q p p ∧→; (4)q q p p →∨∧?)(; (5)q q p →→)(. 4. 设D 24是24的所有正因数组成的集合,“|”是其上的整除关系,则3的补元( ),4的补元( ),6的补元( ). 5. 设G 是(7, 15)简单平面图,则G 一定是( )图,且其每个面恰由( )条边围成,G 的面数为( ).

离散数学期末试题及答案完整版

离散数学期末试题及答 案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

326《离散数学》期末考试题(B ) 一、填空题(每小题3分,共15分) 1.设,,},,{{b a b a A =?},则-A ? = ( ),-A {?} = ( ), )(A P 中的元素个数=|)(|A P ( ). 2.设集合A 中有3个元素,则A 上的二元关系有( )个,其中有( )个是A 到A 的函数. 3.谓词公式))()(())()((y P y Q y x Q x P x ?∧?∧→?中量词x ?的辖域为( ), 量词y ?的辖域为( ). 4.设}24,12,8,6,4,3,2,1{24=D ,对于其上的整除关系“|”,元素( )不存在补元. 5.当n ( )时,n 阶完全无向图n K 是平面图,当当n 为( )时,n K 是欧拉图. 二.1. 若n B m A ==||,||,则=?||B A ( ),A 到B 的2元关系共有( )个,A 上的2元关系共有( )个. 2. 设A = {1, 2, 3}, f = {(1,1), (2,1), (3, 1)}, g = {(1, 1), (2, 3), (3, 2)}和h = {(1, 3), (2, 1), (3, 1)},则( )是单射,( )是满射,( )是双射. 3. 下列5个命题公式中,是永真式的有( )(选择正确答案的番号). (1)q q p p →→∧)(; (2))(q p p ∨→; (3))(q p p ∧→; (4)q q p p →∨∧?)(; (5)q q p →→)(. 4. 设D 24是24的所有正因数组成的集合,“|”是其上的整除关系,则3的补元( ),4的补元( ),6的补元( ).

【浙江工商大学】《离散数学》期末考试题(B)

《离散数学》期末考试题(B) 一、填空题(每小题3分,共15分) 1.设,,},,{{b a b a A =?},则-A ? = ( ),-A {?} = ( ),)(A P 中的元素个数=|)(|A P ( ). 2.设集合A 中有3个元素,则A 上的二元关系有( )个,其中有( )个是A 到A 的函数. 3.谓词公式))()(())()((y P y Q y x Q x P x ?∧?∧→?中量词x ?的辖域为 ( ), 量词y ?的辖域为( ). 4.设}24,12,8,6,4,3,2,1{24=D ,对于其上的整除关系“|”,元素( )不存在补元. 5.当n ( )时,n 阶完全无向图n K 是平面图,当当n 为( )时,n K 是欧拉图. 二、单选题(每小题3分,共15分) 1.设R 是集合A 上的偏序关系,1-R 是R 的逆关系,则1 -?R R 是A 上的 (A)偏序关系 (B)等价关系 (C)相容关系 (D)以上结论都不成立 2.由2个命题变元p 和q 组成的不等值的命题公式的个数有 (A)2 (B)4 (C)8 (D)16 3.设p 是素数且n 是正整数,则任意有限域的元素个数为 (A)n p + (B)pn (C)n p (D)p n 4.设R 是实数集合,≤是其上的小于等于关系,则(R, ≤)是 (A)有界格 (B)分配格 (C)有补格 (D)布尔格 5.3阶完全无向图3K 的不同构的生成子图有 (A)2 (B)3 (C)4 (D)5 三、判断题(每小题3分,共15分): 正确打“√”,错误打“×”. 1.若一个元素a 既存在左逆元l a ,又存在右逆元r a ,则r l a a =. ( ) 2.命题联结词→不满足结合律. ( ) 3.在Z 8 = {0,1,2,3,4,5,6,7}中,2关于“?8”的逆元为 4. ( ) 4.整环不一定是域. ( )

离散数学期末考试试题及答案

离散数学试题(B卷答案1) 一、证明题(10分) 1)(P∧(Q∧R))∨(Q∧R)∨(P∧R)R 证明: 左端(P∧Q∧R)∨((Q∨P)∧R) ((P∧Q)∧R))∨((Q∨P)∧R) ((P∨Q)∧R)∨((Q∨P)∧R) ((P∨Q)∨(Q∨P))∧R ((P∨Q)∨(P∨Q))∧R T∧R(置换)R 2) x (A(x)B(x))xA(x)xB(x) 证明:x(A(x)B(x))x(A(x)∨B(x)) x A(x)∨xB(x) xA(x)∨xB(x) xA(x)xB(x) 二、求命题公式(P∨(Q∧R))(P∧Q∧R)的主析取范式和主合取范式(10分)。 证明:(P∨(Q∧R))(P∧Q∧R)(P∨(Q∧R))∨(P∧Q∧R)) (P∧(Q∨R))∨(P∧Q∧R) (P∧Q)∨(P∧R))∨(P∧Q∧R) (P∧Q∧R)∨(P∧Q∧R)∨(P∧Q∧R))∨(P∧Q∧R))∨(P∧Q∧R) m0∨m1∨m2∨m7 M3∨M4∨M5∨M6 三、推理证明题(10分) 1)C∨D,(C∨D)E, E(A∧B),(A∧B)(R∨S)R∨S证明:(1) (C∨D) E ?P (2) E(A∧B) ??P (3) (C∨D)(A∧B) T(1)(2),I (4) (A∧B)(R∨S)??P (5) (C∨D)(R∨S) ? T(3)(4),I (6) C∨D P (7) R∨S T(5),I 2) x(P(x)Q(y)∧R(x)),xP(x)Q(y)∧x(P(x)∧R(x)) 证明(1)xP(x) P

(2)P(a) T(1),ES (3)x(P(x)Q(y)∧R(x)) P (4)P(a)Q(y)∧R(a) T(3),US (5)Q(y)∧R(a) T(2)(4),I (6)Q(y) T(5),I (7)R(a) T(5),I (8)P(a)∧R(a) T(2)(7),I (9)x(P(x)∧R(x)) T(8),EG (10)Q(y)∧x(P(x)∧R(x)) T(6)(9),I 四、某班有25名学生,其中14人会打篮球,12人会打排球,6人会打篮球和排球,5人会打篮球和网球,还有2人会打这三种球。而6个会打网球的人都会打另外一种球,求不会打这三种球的人数(10分)。 解:A,B,C分别表示会打排球、网球和篮球的学生集合。则|A|=12,|B|=6,|C|=14,|A∩C|=6,|B∩C|=5,|A∩B∩C|=2。 先求|A∩B|。 ∵6=|(A∪C)∩B|=|(A∩B)∪(B∩C)|=|(A∩B)|+|(B∩C)|-|A∩B∩C|=|(A∩B)|+5-2,∴|(A∩B)|=3。 于是|A∪B∪C|=12+6+14-6-5-3+2=20。不会打这三种球的人数25-20=5。五、已知A、B、C是三个集合,证明A-(B∪C)=(A-B)∩(A-C)(10分)。 证明:∵x A-(B∪C) x A∧x(B∪C) xA∧(xB∧x C) (x A∧x B)∧(x A∧xC) x(A-B)∧x(A-C) x(A-B)∩(A-C) ∴A-(B∪C)=(A-B)∩(A-C) 六、已知R、S是N上的关系,其定义如下:R={| x,yN∧y=x2} R*S={| x,y N∧y=x2+1} S*R={<x,y>| x,yN∧y=(x+1)2},R{1,2}={<1,1>,<2,4>},S[{1,2}]={1,4}。 七、设R={<a,b>,,<c,a>},求r(R)、s(R)和t(R) (15分)。 解:r(R)={,,,<b,b>,

离散数学期末试卷A卷及答案

《离散数学》试卷(A 卷) 一、 选择题(共5 小题,每题 3 分,共15 分) 1、设A={1,2,3},B={2,3,4,5},C={2,3},则C B A ⊕?)(为(C )。 A 、{1,2} B 、{2,3} C 、{1,4,5} D 、{1,2,3} 2、下列语句中哪个是真命题 ( A ) A 、如果1+2=3,则4+5=9; B 、1+2=3当且仅当4+5≠9。 C 、如果1+2=3,则4+5≠9; D 、1+2=3仅当4+5≠9。 3、个体域为整数集合时,下列公式( C )不是命题。 A 、)*(y y x y x =?? B 、)4*(=??y x y x C 、)*(x y x x =? D 、)2*(=??y x y x 4、全域关系A E 不具有下列哪个性质( B )。 A 、自反性 B 、反自反性 C 、对称性 D 、传递性 5、函数612)(,:+-=→x x f R R f 是( D )。 A 、单射函数 B 、满射函数 C 、既不单射也不满射 D 、双射函数 二、填充题(共 5 小题,每题 3 分,共15 分) 1、设|A|=4,|P(B)|=32,|P(A ?B)|=128,则|A ?B|=??2???.

2、公式)(Q P Q ?∨∧的主合取范式为 。 3、对于公式))()((x Q x P x ∨?,其中)(x P :x=1, )(x Q :x=2,当论域为{0,1,2}时,其真值为???1???。 4、设A ={1,2,3,4},则A 上共有???15????个等价关系。 5、设A ={a ,b ,c },B={1,2},则|B A |= 8 。 三、判断题(对的填T ,错的填F ,共 10 小题,每题 1 分,共计10 分) 1、“这个语句是真的”是真命题。 ( F ) 2、“张刚和小强是同桌。”是复合命题。 ( F ) 3、))(()(r q q p p ∧?∧→?∨是矛盾式。 ( T ) 4、)(T S R T R S R ??????。 ( F ) 5、恒等关系具有自反性,对称性,反对称性,传递性。 ( T ) 6、若f 、g 分别是单射,则g f ?是单射。 ( T ) 7、若g f ?是满射,则g 是满射。 ( F ) 8、若A B ?,则)()(A P B P ?。 ( T ) 9、若R 具有自反性,则1-R 也具有自反性。 ( T ) 10、B A ∈并且B A ?不可以同时成立。 (F ) 四、计算题(共 3 小题,每题 10 分,共30 分) 1、调查260个大学生,获得如下数据:64人选修数学课程,94人选修计算机课程,58人选修商贸课程,28人同时选修数学课程和商贸课程,26人同时选修数学课程和计算机课程,22人同时选修计算机课程和商贸课程,14人同时选修三门课程。问 (1)三门课程都不选的学生有多少? (2)只选修计算机课程的学生有多少?

离散数学期末测验试题(有几套带答案1)

离散数学期末测验试题(有几套带答案1)

————————————————————————————————作者: ————————————————————————————————日期: ?

离散数学试题(A卷及答案) 一、证明题(10分) 1)(?P∧(?Q∧R))∨(Q∧R)∨(P∧R)?R 证明:左端?(?P∧?Q∧R)∨((Q∨P)∧R)?((?P∧?Q)∧R))∨((Q∨P)∧R) ?(?(P∨Q)∧R)∨((Q∨P)∧R)?(?(P∨Q)∨(Q∨P))∧R ?(?(P∨Q)∨(P∨Q))∧R?T∧R(置换)?R 2)?x(A(x)→B(x))??xA(x)→?xB(x) 证明:?x(A(x)→B(x))??x(?A(x)∨B(x))??x?A(x)∨?xB(x)???xA(x)∨?xB(x)??xA(x)→?xB(x) 二、求命题公式(P∨(Q∧R))→(P∧Q∧R)的主析取范式和主合取范式(10分) 证明:(P∨(Q∧R))→(P∧Q∧R)??(P∨(Q∧R))∨(P∧Q∧R)) ?(?P∧(?Q∨?R))∨(P∧Q∧R) ?(?P∧?Q)∨(?P∧?R))∨(P∧Q∧R) ?(?P∧?Q∧R)∨(?P∧?Q∧?R)∨(?P∧Q∧?R))∨(?P∧?Q∧?R))∨(P∧Q∧R) ?m0∨m1∨m2∨m7 ?M3∨M4∨M5∨M6 三、推理证明题(10分) 1)C∨D, (C∨D)→?E, ?E→(A∧?B), (A∧?B)→(R ∨S)?R∨S 证明:(1) (C∨D)→?E (2) ?E→(A∧?B) ?? (3)(C∨D)→(A∧?B) (4) (A∧?B)→(R∨S) ?? (5) (C∨D)→(R∨S) ? (6) C∨D?? (7) R∨S 2) ?x(P(x)→Q(y)∧R(x)),?xP(x)?Q(y)∧?x(P(x)∧R(x)) 证明(1)?xP(x) (2)P(a) (3)?x(P(x)→Q(y)∧R(x)) (4)P(a)→Q(y)∧R(a) (5)Q(y)∧R(a) (6)Q(y) (7)R(a) (8)P(a) (9)P(a)∧R(a) (10)?x(P(x)∧R(x)) (11)Q(y)∧?x(P(x)∧R(x)) 五、已知A、B、C是三个集合,证明A-(B∪C)=(A-B)∩(A-C) (15分) 证明∵x∈A-(B∪C)?x∈A∧x?(B∪C)?x∈A∧(x?B∧x?C)?(x∈A∧x?B)∧(x∈A∧x?C)?x∈(A-B)∧x∈(A-C)?x∈(A-B)∩(A-C)∴A-(B∪C)=(A-B)∩(A-C) 六、已知R、S是N上的关系,其定义如下:R={<x,y>| x,y∈N∧y=x2},S={| x,y∈N∧y=x2},R*S={|x,y∈N∧y=x2+1},S*R={| x,y∈N∧y=(x+1)2}, 七、若f:A→B和g:B→C是双射,则(gf)-1=f-1g-1(10分)。 证明:因为f、g是双射,所以gf:A→C是双射,所以gf有逆函数(gf)-1:C→A。同理可推f-1g-1:C→A是双射。 因为∈f-1g-1?存在z(∈g-1∧∈f∧<z,x>∈g)?∈gf?<x,y>∈(gf)-1,所以(gf)-1=f-1g-1。 R{1,2}={<1,1>,<2,4>},S[{1,2}]={1,4}。

离散数学期末考试试题及答案

离散数学试题(B卷答案1) 一、证明题(10分) 1)(?P∧(?Q∧R))∨(Q∧R)∨(P∧R)?R 证明: 左端?(?P∧?Q∧R)∨((Q∨P)∧R) ?((?P∧?Q)∧R))∨((Q∨P)∧R) ?(?(P∨Q)∧R)∨((Q∨P)∧R) ?(?(P∨Q)∨(Q∨P))∧R ?(?(P∨Q)∨(P∨Q))∧R ?T∧R(置换)?R 2) ?x (A(x)→B(x))??xA(x)→?xB(x) 证明:?x(A(x)→B(x))??x(?A(x)∨B(x)) ??x?A(x)∨?xB(x) ???xA(x)∨?xB(x) ??xA(x)→?xB(x) 二、求命题公式(P∨(Q∧R))→(P∧Q∧R)的主析取范式和主合取范式(10分)。 证明:(P∨(Q∧R))→(P∧Q∧R)??(P∨(Q∧R))∨(P∧Q∧R)) ?(?P∧(?Q∨?R))∨(P∧Q∧R) ?(?P∧?Q)∨(?P∧?R))∨(P∧Q∧R) ?(?P∧?Q∧R)∨(?P∧?Q∧?R)∨(?P∧Q∧?R))∨(?P∧?Q∧?R))∨(P∧Q∧R) ?m0∨m1∨m2∨m7 ?M3∨M4∨M5∨M6 三、推理证明题(10分) 1)C∨D, (C∨D)→?E,?E→(A∧?B), (A∧?B)→(R∨S)?R∨S 证明:(1) (C∨D)→?E P (2) ?E→(A∧?B) P (3) (C∨D)→(A∧?B) T(1)(2),I (4) (A∧?B)→(R∨S) P (5) (C∨D)→(R∨S) T(3)(4), I (6) C∨D P (7) R∨S T(5),I 2) ?x(P(x)→Q(y)∧R(x)),?xP(x)?Q(y)∧?x(P(x)∧R(x)) 证明(1)?xP(x) P

离散数学本科期末复习题

1. 计算:2400 mod 319、2340 mod 11。 2. 设整数a 和b 不全为0,且a 和b 互素。请证明:ab 和a+b 互素。 3. 设n!的标准素因数分解式是 k k p p p εεεΛ2121 请证明: ∑∞=???? ? ?????=1s s i p n i ε,i=1,2,…,k 4. 300!末尾0的个数是?。 5. 解同余方程组:x≡3(mod 8),x≡11(mod 20),x≡1(mod 15)。 6. 求p →(p ∧(q →p))的主析取范式和主合取范式。(真值表法和等值演算法) 7. 求谓词公式?x ?y(P(x,y)?Q(x,y))→?x ?yR(x,y)的前束范式。 8. 证明下面的推理: “每个科研工作者都是努力工作的。每个努力工作而又聪明的人都取得事业的成功。某个人是科研工作者并且聪明。所以,某人事业取得成功。” 9. 设R={(1,2),(1,4),(3,3),(4,1)}是集合A={1,2,3,4}上的关系。 (1) R 是自反的吗?是对称的吗?是传递的吗? (2) R 的自反对称闭包存在吗? (3) R 的自反传递闭包存在吗? (4) R 的对称传递闭包存在吗? (5) R 的自反对称传递闭包存在吗? (6) R 的反自反闭包存在吗? (7) R 的反对称闭包存在吗? 10. 设A={x|x ∈N ,且x|54},R={(x,y)|x,y ∈A ,且x|y }。 (1) 列出集合A 和R 中的元素; (2) 给出R 的矩阵表示; (3) 证明(A,R)是偏序集,画出哈斯图; (4) 指出(A,R)中的最大元、最小元、极大元、极小元。 11. 设X={(x,y) | x 和y 是不为零的实数},E 是X 上的关系:

离散数学期末试卷及答案

一.判断题(共10小题,每题1分,共10分) 在各题末尾的括号内画 表示正确,画 表示错误: 1.设p、q为任意命题公式,则(p∧q)∨p ? p ( ) 2.?x(F(y)→G(x)) ? F(y)→?xG(x)。( ) 3.初级回路一定是简单回路。( ) 4.自然映射是双射。( ) 5.对于给定的集合及其上的二元运算,可逆元素的逆元是唯一的。( ) 6.群的运算是可交换的。( ) 7.自然数集关于数的加法和乘法构成环。( ) 8.若无向连通图G中有桥,则G的点连通度和边连通度皆为1。( ) 9.设A={a,b,c},则A上的关系R={,}是传递的。( ) 10.设A、B、C为任意集合,则A?(B?C)=(A?B)?C。( ) 二、填空题(共10题,每题3分,共30分) 11.设p:天气热。q:他去游泳。则命题“只有天气热,他才去游泳”可符号 化为。 12.设M(x):x是人。S(x):x到过月球。则命题“有人到过月球”可符号 化为。 13.p?q的主合取范式是。 14.完全二部图K r,s(r < s)的边连通度等于。 15.设A={a,b},,则A上共有个不同的偏序关系。 16.模6加群中,4是阶元。 17.设A={1,2,3,4,5}上的关系R={<1,3>,<1,5>,<2,5>,<3,3>,<4,5>},则R的传递闭包t(R) = 。. 18.已知有向图D的度数列为(2,3,2,3),出度列为(1,2,1,1),则有向图D的入度

列为。 19.n阶无向简单连通图G的生成树有条边。 20.7阶圈的点色数是。 三、运算题(共5小题,每小题8分,共40分) 21.求?xF(x)→?yG(x,y)的前束范式。 22.已知无向图G有11条边,2度和3度顶点各两个,其余为4度顶点,求G 的顶点数。 23.设A={a,b,c,d,e,f},R=I A?{,},则R是A上的等价关系。求等价类[a]R、[c]R及商集A/R。 24.求图示带权图中的最小生成树,并计算最小生成树的权。 25.设R*为正实数集,代数系统< R*,+>、< R*,·>、< R*,/>中的运算依次为普通加法、乘法和除法运算。试确定这三个代数系统是否为群?是群者,求其单位元及每个元素的逆元。 四、证明题(共3小题,共20分) 26 (8分)在自然推理系统P中构造下述推理的证明: 前题:p→(q∨r),?s→?q,p∧?s 结论:r 27 (6分)设是群,H={a| a∈G∧?g∈G,a*g=g*a},则是G的子群 28.(6分)设G是n(≥3)阶m条边、r个面的极大平面图,则r=2n-4。

最新离散数学期末考试试题配答案

精品文档院术师范学广东技模拟试题 科目:离散数学 120 分钟考试时间: 考试形式:闭卷 姓名:学号:系别、班级: 2分,共10分)一.填空题(每小题__________。?x?y?P(x)∨Q(y) 1. 谓词公式的前束范式是 __)xxQ(?xP(x)????????____,,2. 设全集A?_{4,5}B =__则A∩ {2}__,,?E?1,2,3,4,55,A?21,,32,B_____ __ {1,3,4,5}??BA????b,c}} __________,则3. 设__ , b?,c,b,a,A?Ba???B(A)?)(_____Φ_______。???)(AB()?4. 在代数系统(N,+)中,其单位元是0,仅有_1___ 有逆元。 ne条边,则G有___e+2-n____个面。5.如果连通平面图G有个顶点,二.选择题(每小题2分,共10分) P?(Q?R)等价的公式是(1. 与命题公式) (A)(B)(C)(D)R?P?Q)()?R)R?(QPP?(Q?R?Q)(P??????b?b,?a,aA??a,b,cR?,不具备关系( 2. 设集合上的二元关系,A)性质 (A)(A)传递性(B)反对称性(C)对称性(D)自反性 G??V,E?中,结点总度数与边数的关系是3. 在图( ) ??E?Edeg(v)deg(v)?2deg(v)?Evdeg()?2E(A)(C)(B) (D) iiiiVv?Vv?4. 设D是有n个结点的有向完全图,则图D的边数为( ) n(n?1)n(n?1)n(n?1)/2n(n?1)/2(A)(B)(D)(C) 5. 无向图G是欧拉图,当且仅当( ) (A)G的所有结点的度数都是偶数(B)G的所有结点的度数都是奇数 精品文档. 精品文档 (C)G连通且所有结点的度数都是偶数(D) G连通且G的所有结点度数都是奇数。 三.计算题(共43分) p?q?r的主合取范式与主析取范式。(1. 求命题公式6分) 解:主合取方式:p∧q∨r?(p∨q∨r)∧(p∨?q∨r)∧(?p∨q∨r)= ∏0.2.4 主析取范式:p∧q∨r?(p∧q∧r) ∨(p∧q∧?r)∨(?p∧q∧r) ∨(?p∧?q∧r) ∨(p∧?q∧r)=∑1.3.5.6.7 1000????0111?????Md,A?a,b,c,的上的二元关集2. 设合系R关系矩阵为求 ??R0000????1000??)tR(),(RsRr()(),(),(rRsRtR),的关系图。R的关系矩阵,并画出分)10(,

《离散数学》期末考试试题

《离散数学》期末考试试题 一、 填空题(每空2分,合计20分) 1. 设个体域为{2,3,6}D =-, ():3F x x ≤,():0G x x >。则在此解释下公式 ()(()())x F x G x ?∧的真值为______。 2. 设:p 我是大学生,:q 我喜欢数学。命题“我是喜欢数学的大学生”为可符合化 为 。 3. 设{1,2,3,4}A =,{2,4,6}B =,则A B -=________,A B ⊕=________。 4. 合式公式()Q P P ?→∧是永______式。 5. 给定集合{1,2,3,4,5}A =,在集合A 上定义两种关系: {1,3,3,4,2,2}R =<><><>, {4,2,3,1,2,3}S =<><><>, 则_______________S R =ο,_______________R S =ο。 6. 设e 是群G 上的幺元,若a G ∈且2a e =,则1a -=____ , 2a -=__________。 7. 公式))(()(S Q P Q P ?∧?∨∧∨?的对偶公式为 。 8. 设{2,3,6,12}A =, p 是A 上的整除关系,则偏序集,A <>p 的最大元是________,极小元是_ _。 9. 一棵有6个叶结点的完全二叉树,有_____个内点;而若一棵树有2个结点度数为2,一 个结点度数为3,3个结点度数为4,其余是叶结点,则该树有_____个叶结点。 10. 设图,G V E =<>, 1234{v ,v ,v ,v }V =,若G 的邻接矩阵????????????=0001001111011010A ,则1()deg v -=________, 4()deg v +=____________。 二、选择题(每题2分,合计20分) 1.下列各式中哪个不成立( )。 A 、)()())()((x xQ x xP x Q x P x ?∨??∨? ; B 、)()())()((x xQ x xP x Q x P x ?∨??∨?; C 、)()())()((x xQ x xP x Q x P x ?∧??∧?; D 、Q x xP Q x P x ∧??∧?)())((。

离散数学--期末复习

v1.0 可编辑可修改 离散数学知识要点总结 第1章命题逻辑 1、会判断一个语句是否为命题(如P31-习题题) 练习:判断下列语句是否为命题。 (1).3+8=13; (2).离散数学是计算机系的一门必修课; (3).太阳系以外的星球上有生物; (4).你打算考硕士研究生吗 (5).9+5≤12 ; (6). 天上有三个月亮。 (7).x+5 > 6; (8).一定要努力学习!(9).2是素数; (10).x+5 > 6; (11).我正在说谎; (12).x=13. (13).这朵花多好看呀! (14).7能被2整除. (15).我用的计算机CPU主频是 1G吗 (16).蓝色和黄色可以调成绿 色; (17). 雪是黑色的. (18). 明天会下雨吗; (19).我能进来吗 (20).这个男孩真勇敢呀! (21).蓝色和黄色可以调成绿 色; (22).x≤3; (23)地球饶着太阳转. (24)青年人多么朝气蓬发呀! (25).5能被2整除. (26).嫦娥一号太棒了! (27).台湾是中国的一部分; (29) 你下午有会吗若无会,请 到我这儿来! (30).请不要讲话! (31) 5是奇数; (32). 3 2> + x 2、注意五个命题联结词的使用,会将命题进行符号化(如,,题的题型)或在判断体现逻辑联结词的逻辑有关系等。练习:将以下命题符号化 (1)如果你不去逛街,那么我也不去逛街。 (2)小李边吃饭边看电视。 (3)林芳学过英语或日语。 (4)张辉与王丽都是三好生. (5)小王住在101室或102室。 (6).2+2≠4当且仅当王红没努力学习离散数学。 (7)4或6是素数. (8).王晓聪明,但是他不用功. (9)如果今天是1号,则明天是5号。(10).小潘不能既跳舞又唱歌。 (11)如果你来了,他就唱歌而且陪你跳舞。 (12).或者雪是黑色的,或者太阳从东方升起。 (13).王晓既用功又聪明。 (14)2 + 2 ≠ 4 当且仅当美国位于非洲。 (15)小李学过英语或法语。 (16)如果石头会说话,那么月亮上就会出现海洋。(17).如果天气寒冷,小梅就不去游泳。 (18)小红喜欢看书和画画。

离散数学-期末考试卷-A卷

离散数学-期末考试卷-A卷

东莞理工学院城市学院(本科)试卷(A卷) 2013-2014学年第一学期 开课单位:计算机与信息科学系,考试形式:闭卷,允许带入场 科目:离散数学,班级:软工本2012-1、2、3 姓名:学号: 题序一二三四总分 得分 A评 卷人 一、单项选择题(每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,错选、多选或未选均无分。 1. 下述不是命题的是( ) A. 做人真难啊! B. 后天是阴天。 C. 2是偶数。 D. 地球是方的。 2. 命题公式P→(P∨Q∨R)是( ) A. 永假的 B. 永真的 C. 可满足的

D. 析取范式 3. 命题公式﹁B→﹁A等价于( ) A. ﹁A∨﹁ B B. ﹁(A∨B) C. ﹁A∧﹁ B D. A→B 4.设P:他聪明,Q:他用功,命题“他虽聪明但不用功”的符号化正确的是()A.?P∧Q B.P∧?Q C.P→?Q D.P∨?Q 5.设A(x):x是人,B(x):x犯错误,命题“没有不犯错误的人”符号化为()A.?x(A(x))∧B(x) B.??x( A(x)→?B(x) ) C.??x( A(x)∧B(X)) D.??x( A(x)∧?B(x) ) 6. 设有A={a,b,c}上的关系R={,,,},则R具有( ) A. 自反性 B. 反自反性 C. 传递性 D. 反对称性

7. 设A={1,2,3,4,5,6},B={a,b,c,d,e},以下哪一个关系是从A到B的满射函数( ) A. f={<1,a>,<2,b>,<3,c>,<4,d>,<5,e>} B. f={<1,e>,<2,d>,<3,c>,<4,b>,<5,a>,<6,e>} C. f={<1,a>,<2,b>,<3,c>,<4,a>,<5,b>,<6,c>} D. f={<1,a>,<2,b>,<3,c>,<4,d>,<5,e>,<1,b>} 8.设简单图G所有结点的度数之和为10,则G一定有() A.3条边B.4条边C.5条边 D.6条边 9.下列不.一定是树的是() A.每对结点之间都有通路的图 B.有n个结点,n-1条边的连通图 C.无回路的连通图D.连通但删去一条边则不连通的图 10.下列各图中既是欧拉图,又是哈密顿图的是()

离散数学期末考试题

《离散数学》复习题 一、单项选择题(每小题2分,共20分) 1、下列命题中是命题的是( ) A 、 7>+y x B 、雪是黑色的 C 、严禁吸烟 D 、我正在说谎 2下列命题联结词集合中,哪个不是极小全功能集( )。 A 、{,}刭 B 、{,}刳 C 、{}- D 、{,}佼 3、下列公式中哪个不是简单析取式( )。 A 、p B 、p q ∨ C 、()p q ?∨ D 、p q ?∨? 4、设个体域{,}A c d =,公式()()x P x x S x ?∧?在A 中消去量词后应为( ) A ()()P x S x ∧ B (()())(()( P c P d S c S d ∧∧∨ C ()()P c S d ∧ D ()() () (P c P d S c S d ∧ ∧∨ 5、下列是命题公式p ∧(q ∨┓r)的成真指派的是( ) A.110,111,100 B.110,101,011 C.所有指派 D.无 6、下列命题中( )是正确的。 A. 若图G 有n 个顶点,则G 的各顶点的度和为2n; B. 无向树中任意两点之间均相互可达; C. 若有向图G 是弱连通的,则它必定也是单向连通; D. 若无向带权图G 是连通的,则其最小生成树存在且唯一。

7、正整数集合Z +的以下四个划分中,划分块最多的是( ) A .1π={{x }︱x ∈Z + } B .2π= {Z + } C. 3π={12,S S },1S 为素数集,21S Z S + =- D .3π={12,S S ,3S },i S 为Z +中元素除以3的余数 8、给定下列各图: ⑴G 1=,其中V 1=(a ,b ,c ,d ,e), E 1={(a 、b ),(b 、c ),(c 、d ),(a 、e )} ⑵G 2=,其中V 2=V 1, E 2={(a 、b ),(b 、e ),(e 、b ),(d 、e )} ⑶G 3=,其中V 3=V 1, E 3={(a 、b ),(b 、e ),(e 、d ),(c 、c ), (e 、d )} ⑷D 4=,其中V 4=V 1, E 4={} 在以上4个图中A ( )为简单图,B ( )为多重图。 供选答案:A : a: ⑴⑶ b :⑶⑷ c :⑴⑷ B : a :⑵⑶ b :⑴⑵ c :⑴⑷ 9、设X={1, 2, 3, 4},Y={a, b, c, d},则下列关系中为函数的是( )。 A 、{<1, a><1, b><2, c>} B 、{<1, a><2, d><3, c><4, b>} C 、 {<1, a><2, a><3, b>} D 、{<1, a><1, b><2, b><4, b>} 10、设,G V E =<>为无向图,u,v ?V ,u ≠v ,若u,v 连通,则( )。 A 、(,)0d u v > B 、(,)0d u v = C 、(,)0d u v < D 、(,)0d u v 3 二、填空题(每空3分,共30分) 1、设P :我有钱,Q :我去看电影。命题“虽然我有钱,但我不去看电影”符号化为 。

离散数学期末考试试题(配答案)

广东技术师范学院 模拟试题 科 目:离散数学 考试形式:闭卷 考试时间: 120 分钟 系别、班级: 姓名: 学号: 一.填空题(每小题2分,共10分) 1. 谓词公式)()(x xQ x xP ?→?的前束范式是__ ?x ?y?P(x)∨Q(y) __________。 2. 设全集{}{}{},5,2,3,2,1,5,4,3,2,1===B A E 则A ∩B =__{2}__,=A _{4,5}____, =B A __ {1,3,4,5} _____ 3. 设{}{}b a B c b a A ,,,,==,则=-)()(B A ρρ__ {{c},{a,c},{b,c},{a,b,c}} __________, =-)()(A B ρρ_____Φ_______。 4. 在代数系统(N ,+)中,其单位元是0,仅有 _1___ 有逆元。 5.如果连通平面图G 有n 个顶点,e 条边,则G 有___e+2-n ____个面。 二.选择题(每小题2分,共10分) 1. 与命题公式)(R Q P →→等价的公式是( ) (A )R Q P →∨)( (B )R Q P →∧)( (C ))(R Q P ∧→ (D ))(R Q P ∨→ 2. 设集合{}c b a A ,,=,A 上的二元关系{}><><=b b a a R ,,,不具备关系( )性质 (A ) (A)传递性 (B)反对称性 (C)对称性 (D)自反性 3. 在图>=

离散数学期末练习题-(带答案)复习进程

离散数学复习注意事项: 1、第一遍复习一定要认真按考试大纲要求将本学期所学习内容系统复习一遍。 2、第二遍复习按照考试大纲的要求对第一遍复习进行总结。把大纲中指定的例题及书后习题认真做一做。检验一下主要内容的掌握情况。 3、第三遍复习把随后发去的练习题认真做一做,检验一下第一遍与第二遍复习情况,要认真理解,注意做题思路与方法。 离散数学综合练习题 一、选择题 1.下列句子中,()是命题。 A.2是常数。B.这朵花多好看呀! C.请把门关上!D.下午有会吗? 2.令p: 今天下雪了,q:路滑,r:他迟到了。则命题“下雪路滑,他迟到了” 可符号化为()。 A. p q r ∨→ ∧→ B. p q r C. p q r ∨? ∧∧ D. p q r 3.令:p今天下雪了,:q路滑,则命题“虽然今天下雪了,但是路不滑”可符号化为()。 A.p q ∧ ∧? B.p q C.p q →? ∨? D. p q 4.设() Q x:x会飞,命题“有的鸟不会飞”可符号化为()。 P x:x是鸟,() A. ()(()()) Q x ??∧()) x P x Q x ??→ B. ()(() x P x C. ()(()()) Q x ??∧()) x P x Q x ??→ D. ()(() x P x 5.设() L x y:x大于等于y;命题“所有整数 f x:x的绝对值,(,) P x:x是整数,() 的绝对值大于等于0”可符号化为()。 A. (()((),0)) ?→ x P x L f x ?∧B. (()((),0)) x P x L f x C. ()((),0) ?→ xP x L f x ?∧ D. ()((),0) xP x L f x 6.设() F x:x是人,() G x:x犯错误,命题“没有不犯错误的人”符号化为()。 A.(()()) ??→? x F x G x ?∧B.(()()) x F x G x C.(()()) ??∧? x F x G x ??∧D.(()()) x F x G x 7.下列命题公式不是永真式的是()。 A. () p q p →→ →→ B. () p q p C. () →∨ p q p p q p ?∨→ D. () 8.设() R x:x为有理数;() Q x:x为实数。命题“任何有理数都是实数”的符号化为()

相关文档
最新文档