数字信号处理习题汇编(1)

数字信号处理习题汇编(1)
数字信号处理习题汇编(1)

习题汇编

第一部分:信号与系统的时域分析

1. Concepts:

1.1 The unit impulse response and the linear convolution

The unit impulse response h[n] of a discrete-time L TI system is the system response to the unit impulse sequence δ[n] when the system has no initial energy.

The concept of the impulse response is very very important. In the time-domain, an L TI system can be uniquely characterized by its impulse response h[n], so, we often use the unit impulse response to represent an L TI system. In this case, the input-output relationship of an L TI system is described by the convolution operation:

∑∞-∞=-

=

k

k

n

h

k

x

n

y]

[

]

[

]

[

Physical meaning: The convolution sum operation has an explicit meaning, which is used to determine the system response. If the system is determined, then its impulse response is unique. We can compute the system response to arbitrary input signals.

Note: The key to compute the convolution sum is determination of the summation interval(求和区间). So we often need to graph x[k] and h[h-k]. Using the graphs of x[k] and h[h-k] can help us to determine the summation interval readily.

Requirements:

Understand the concept of the impulse response, be able to calculate the

system response using the convolution sum operation.

Exercises:

Compute the linear convolution y[n]=x[n]*h[n] of the following pairs of signals:

(a) ]

[][][][n n h n n x n

n

μβμα== β

α

(b) ]

[][][]

[][N n n n h n n x n

--==μμμα N is a positive integer

(b) ]5[][][}6,5,4,3,2,1{][--==n n n h n x μμ (c)

]

3[]2[][]

[5.0][--+==n n n h n n x n

μμμ

Answer the following questions:

(a) How to determine the range of the index n for which the system response y[n] is defined?

(b) How to determine the length of the system response y[n] which is computed from the convolution sum?

1.2 The linear constant-coefficient difference equations and their solutions The convolution sum is one of the mathematical models of the L TI system. In general, we can use a difference equation to represent the input-output relationship of an L TI system.

∑∑==-=

-M

k k

N

k k

k n x b

k n y a

][][

The difference equation gives an implicit relation about y[n]. In order to obtain an explicit expression of y[n], we must solve the equation.

Procedure:

(a) Determine the characteristic equation from the difference equation:

00

=∑=N

k n

k

a

λ

(b) Determine the characteristic roots, then the homogeneous solution can be determined (if no repeated roots):

n

N

N n

n

c C C C n y λλλ+++= 2211][

(c) Assume the particular solution having the same form to the input signal, for example, if the input is x[n] = αn μ[n], we can assume that the particular solution to be y p [n] = K αn μ[n], substituting y p [n] into the difference equation we can determine the constant K.

(d) The complete solution is then given by

][][][n y n y n y p c +=

(e) Translate the initial conditions y[-1], y[-2], … , y[-N] to obtain a set of new additional conditions y[0], y[1], … ,y[N-1] by the recursive method. Substituting y[0], y[1],…,y[N-1] in to the complete solution y[n], then the coefficients C 1, C 2, … , C N can be determined.

Exercises:

Solving the following difference equations (a)

]

[]1[4

1][n x n y n y =--

with the input x[n] = (0.5)n μ[n] and the initial

condition y[-1] = 8

(b)

][]2[8

1]1[4

1][n x n y n y n y =--

--

with the input x[n] = (0.2)n μ[n] and the

initial condition y[-1] = -1, y[-2] = 1.

(c) ]1[2][]2[06.0]1[1.0][--=---n x n x n y n y n y + with the initial conditions y[-1]

= -1, y[-2] = 2, and the input x[n] = (0.4)n μ[n].

(d) The sequence of Fibonacci numbers f[n] is a causal sequence defined by

,2],

2[]1[][≥-+-=n n f n f n f

with f[0]=0 and f[1]=1.

(1) Develop an exact formula to calculate f[n] directly for any n. (2) Show that f[n] is the impulse response of a causal L TI system described by the difference equition

]1[]2[]1[][-+-+-=n x n y n y n y

Solution for (c):

We first determine the homogenous solution:

The characteristic equation: 006.01.02

=-λλ+

The roots are: 3.01-=λ

and

2.01=λ

The homogeneous solution is n

n

c C C n y )

2.0()

3.0(][21+-= for n>0

Determine the particular solution

Assume that the particular solution is n

p K n y )

4.0(][=. Obviousely, ][n y p

satisfies the difference equation, substituting ][n y p

into the difference equation

we arrive at

]1[)

4.0(2][)4.0()

4.0(06.0)

4.0(1.0)4.0(1

2

1

--=----n n K K K n n n n n

μμ+

For n ≥ 1, the above equation is

n

n n n n

K K K )

4.0(4]4

.021[)4.0()

4.0(06.0)4.0(1.0)4.0(1

2

1

-=?-=----+

i.e.,

4)

4.0(06.0)

4.0(1.02

1

-=---K K K + →

3

16-

=K

Then the particular solution is n

p n y )

4.0(3

16][-

=

The total solution is then

n

n

n

C C n y )

4.0(3

16)2.0()3.0(][21-

+-=

By the use of the initial conditions we get 22.1]1[2]0[]2[06.0]1[1.0]0[=----=x x y y y ++-

782

.1]0[2]1[]1[06.0]0[1.0]1[-=--=x x y y y ++-

Substituting the above into the total solution we obtain the following equations:

22

.1316]0[21=-

+=C C y

782

.1)4.0(3

16)2.0()3.0(]1[21-=-

+-=C C y

So

63

.492.121==C C

The total solution is

n

n

n

n y )

4.0(3

16)2.0(63.4)3.0(92.1][-

+-= n ≥ 0

1.3 The properties of L TI discrete-time systems (a) Linearity (b) Time-invariance (c) BIBO stability

If bounded input leads to a bounded output, then the system is said to be the BIBO stable.

Because we often use the impulse response h[n] to represent an L TI system, so we can use the following condition to determine the stability of an L TI system:

<∑

-∞=n n h ][ This condition is called the absolutely summable condition .

(d) Causality

A system is said to be causal if the present output y[n] at n = n 0 depends only on the present input x[n 0] and the past x[n], n

In other word, if the impulse response h[n] is causal, then the system is causal.

Requirements :

Understand the above properties of the L TI system. Given a mathematic model of an L TI system, you should be able to determine the properties that the system possesses.

Exercises:

For each of the following discrete-time systems, where y[n] and x[n] are, respectively, the output and the input sequences, determine whether or not the system is (1) linear , (2) causal, (3) stable, and (4) shift-invariant.

(a)

];[][3

n x n n y =

(b) ;])[(][5n x n y =

(c)

];2[][+-=n x n y αα

is a nonzero constant

Direction:Fill the best answer into the bracket for each of the following sentences.

1. A causal LTI discrete-time system is described by the difference equation:

]2[2

1]1[][2

1][-+

-+=

n x n x n x n y , its unit impulse response h[n] = (

{2

1,

1,2

1} ).

说明:这是一个FIR 系统,对于FIR 系统,其差分方程的右边系数,即为系统的单位冲激响应。

2. The fundamental period of the discrete-time sequence x[n] = cos(0.4πn) is ( 5 ). 说明:基本周期的定义即计算公式:k

N ω

π

2=

,其中N 和k 均为整数,N 为基本周期

(使得N 为最小整数时k 取值)。本题ω = 0.4π,代入上式得到:1,

5==k N 。

3. Given two sequences x[n] and h[n], their lengths are N and M, respectively, then the length of their linear convolution is ( ).

4. The relationship between the unit impulse sequence and the unit step sequence is ( ).

5. An LTI discrete-time system with its unit impulse response h[n] = δ[n-2], then the

output response y[n] to the input sequence x[n] is equal to ( ).

6. Assume that the unit step response of an LTI discrete-time system is s[n], the unit impulse response h[n] can be expressed as ( ).

7. Sampling the continuous-time signal x(t) = sin(200πt) at sampling frequency F T = 50 Hz, we can obtain a discrete-time sequence x[n] = ( ).

8. The unit impulse response of an LTI discrete-time system is h[n] = 0.5n+1μ[n+1], then the system is ( ). (Stability, causality)

湛柏明

2012-12-05

数字信号处理试卷

数字信号处理试卷集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

数字信号处理试卷 一、填空题 1、序列()0n n -δ的频谱为 。 2、研究一个周期序列的频域特性,应该用 变换。 3、要获得线性相位的FIR 数字滤波器,其单位脉冲响应h (n )必须满足条件: ; 。 4、借助模拟滤波器的H (s )设计一个IIR 高通数字滤波器,如果没有强调 特殊要求的话,宜选择采用 变换法。 5、用24kHz 的采样频率对一段6kHz 的正弦信号采样64点。若用64点DFT 对其做频谱分析,则第 根和第 根谱线上会看到峰值。 6、已知某线性相位FIR 数字滤波器的一个零点为1+1j ,则可判断该滤波器 另外 必有零 点 , , 。 7、写出下列数字信号处理领域常用的英文缩写字母的中文含义: DSP ,IIR ,DFT 。

8、数字频率只有相对的意义,因为它是实际频率对 频率 的 。 9、序列CZT 变换用来计算沿Z 平面一条 线 的采样值。 10、实现IIR 数字滤波器时,如果想方便对系统频响的零点进行控制和调 整,那么常用的IIR 数字滤波器结构中,首选 型结构来实现该IIR 系统。 11、对长度为N 的有限长序列x (n ) ,通过单位脉冲响应h (n )的长度 为M 的FIR 滤波器,其输出序列y (n )的长度为 。若用FFT 计算x (n ) *h (n ) ,那么进行FFT 运算的长度L 应满 足 。 12、数字系统在定点制 法运算和浮点制 法运算中要进行尾数处理, 该过程等效于在该系统相应节点插入一个 。 13、,W k x l X DFT N k kl M ∑-==1 0)()( 的表达式是某 由此可看出,该序列的时域长度 是 ,M W 因子等于 , 变换后数字频域上相邻两个频率样点 之间的间隔是 。 14、Z 平面上点的辐角ω称为 ,是模拟频率Ω对 (s f )的归一化,即ω= 。 15、在极点频率处,)(ωj e H 出现 ,极点离单位圆越 ,峰值 越大;极点在单位圆上,峰值 。 16、采样频率为Fs Hz 的数字系统中,系统函数表达式中1-z

数字信号处理复习题带答案

1.若一模拟信号为带限信号,且对其抽样满足奈奎斯特条件,则只要将抽样信号通过 _____A____即可完全不失真恢复原信号。 A 、理想低通滤波器 B 、理想高通滤波器 C 、理想带通滤波器 D 、理想带阻滤波器 2.下列哪一个单位抽样响应所表示的系统不是因果系统___D__? A 、.h(n)=δ(n)+δ(n -10) B 、h(n)=u(n) C 、h(n)=u(n)-u(n-1) D 、 h(n)=u(n)-u(n+1) 3.若序列的长度为M ,要能够由频域抽样信号X(k)恢复原序列,而不发生时域混叠现象,则频域抽样点数N 需满足的条件是_____A_____。 A.N≥M B.N≤M C.N≤2M D.N≥2M 4.以下对双线性变换的描述中不正确的是__D_________。 A.双线性变换是一种非线性变换 B.双线性变换可以用来进行数字频率与模拟频率间的变换 C.双线性变换把s 平面的左半平面单值映射到z 平面的单位圆内 D.以上说法都不对 5、信号3(n)Acos(n )78 x ππ =-是否为周期信号,若是周期信号,周期为多少? A 、周期N= 37 π B 、无法判断 C 、非周期信号 D 、周期N=14 6、用窗函数设计FIR 滤波器时,下列说法正确的是___a____。 A 、加大窗函数的长度不能改变主瓣与旁瓣的相对比例。 B 、加大窗函数的长度可以增加主瓣与旁瓣的比例。 C 、加大窗函数的长度可以减少主瓣与旁瓣的比例 。 D 、以上说法都不对。 7.令||()n x n a =,01,a n <<-∞≤≤∞,()[()]X Z Z x n =,则()X Z 的收敛域 为 __________。 A 、1||a z a -<< B 、1||a z a -<< C 、||a z < D 、1||z a -< 。

数字信号处理试卷及答案

A 一、 选择题(每题3分,共5题) 1、)6 3()(π-=n j e n x ,该序列是 。 A.非周期序列 B.周期6 π = N C.周期π6=N D. 周期π2=N 2、序列)1()(---=n u a n x n ,则)(Z X 的收敛域为 。 A.a Z < B.a Z ≤ C.a Z > D.a Z ≥ 3、对)70()(≤≤n n x 和)190()(≤≤n n y 分别作 20 点 DFT ,得)(k X 和)(k Y , 19,1,0),()()( =?=k k Y k X k F ,19,1,0)],([)( ==n k F IDFT n f , n 在 围时,)(n f 是)(n x 和)(n y 的线性卷积。 A.70≤≤n B.197≤≤n C.1912≤≤n D.190≤≤n 4、)()(101n R n x =,)()(72n R n x =,用DFT 计算二者的线性卷积,为使计算量尽可能的少,应使DFT 的长度N 满足 。 A.16>N B.16=N C.16

数字信号处理习题集附答案

第一章数字信号处理概述 简答题: 1.在A/D变换之前和D/A变换之后都要让信号通过一个低通滤波器,它们分别起什么作用? 答:在A/D变化之前为了限制信号的最高频率,使其满足当采样频率一定时,采样频率应大于等于信号最高频率2倍的条件。此滤波器亦称为“抗混叠”滤波器。 在D/A变换之后为了滤除高频延拓谱,以便把抽样保持的阶梯形输出波平滑化,故又称之为“平滑”滤波器。 判断说明题: 2.模拟信号也可以与数字信号一样在计算机上进行数字信号处理,自己要增加一道采样的工序就可以了。()答:错。需要增加采样和量化两道工序。 3.一个模拟信号处理系统总可以转换成功能相同的数字系统,然后基于数字信号处理理论,对信号进行等效的数字处理。()答:受采样频率、有限字长效应的约束,与模拟信号处理系统完全等效的数字系统未必一定能找到。因此数字信号处理系统的分析方法是先对抽样信号及系统进行分析,再考虑幅度量化及实现过程中有限字长所造成的影响。故离散时间信号和系统理论是数字信号处理的理论基础。 第二章离散时间信号与系统分析基础 一、连续时间信号取样与取样定理

计算题: 1.过滤限带的模拟数据时,常采用数字滤波器,如图所示,图中T 表示采样周期(假设T 足够小,足以防止混叠效应),把从)()(t y t x 到的整个系统等效为一个模拟滤波器。 (a ) 如果kHz rad n h 101,8)(=π截止于,求整个系统的截止频率。 (b ) 对于kHz T 201=,重复(a )的计算。 解 (a )因为当0)(8=≥ωπωj e H rad 时,在数 — 模变换中 所以)(n h 得截止频率8πω=c 对应于模拟信号的角频率c Ω为 因此 Hz T f c c 6251612==Ω=π 由于最后一级的低通滤波器的截止频率为T π,因此对 T 8π没有影响, 故整个系统的截止频率由)(ωj e H 决定,是625Hz 。 (b )采用同样的方法求得kHz 201=,整个系统的截止频率为 二、离散时间信号与系统频域分析 计算题: 1.设序列)(n x 的傅氏变换为 )(ωj e X ,试求下列序列的傅里叶变换。 (1))2(n x (2))(*n x (共轭) 解:(1))2(n x 由序列傅氏变换公式 DTFT ∑∞-∞=-==n n j j e n x e X n x ωω)(()]([) 可以得到

数字信号处理期末试卷(含答案)

数字信号处理期末试卷(含答案) 填空题(每题2分,共10题) 1、 1、 对模拟信号(一维信号,是时间的函数)进行采样后,就是 信号,再 进行幅度量化后就是 信号。 2、 2、 )()]([ωj e X n x FT =,用)(n x 求出)](Re[ωj e X 对应的序列 为 。 3、序列)(n x 的N 点DFT 是)(n x 的Z 变换在 的N 点等间隔采样。 4、)()(5241n R x n R x ==,只有当循环卷积长度L 时,二者的循环卷积等于线性卷积。 5、用来计算N =16点DFT ,直接计算需要_________ 次复乘法,采用基2FFT 算法,需要________ 次复乘法,运算效率为__ _ 。 6、FFT 利用 来减少运算量。 7、数字信号处理的三种基本运算是: 。 8、FIR 滤波器的单位取样响应)(n h 是圆周偶对称的,N=6, 3)3()2(2 )4()1(5 .1)5()0(======h h h h h h ,其幅 度特性有什么特性? ,相位有何特性? 。 9、数字滤波网络系统函数为 ∑=--= N K k k z a z H 111)(,该网络中共有 条反馈支路。 10、用脉冲响应不变法将)(s H a 转换为)(Z H ,若)(s H a 只有单极点k s ,则系统)(Z H 稳定的条件是 (取s T 1.0=)。 一、 选择题(每题3分,共6题) 1、 1、 )6 3()(π-=n j e n x ,该序列是 。 A.非周期序列 B.周期 6π = N C.周期π6=N D. 周期π2=N 2、 2、 序列)1()(---=n u a n x n ,则)(Z X 的收敛域为 。 A.a Z < B.a Z ≤ C.a Z > D.a Z ≥ 3、 3、 对)70() (≤≤n n x 和)190()(≤≤n n y 分别作20点DFT ,得)(k X 和)(k Y , 19,1,0),()()( =?=k k Y k X k F ,19,1,0)],([)( ==n k F IDFT n f , n 在 范围内时,)(n f 是)(n x 和)(n y 的线性卷积。 A.70≤≤n B.197≤≤n C.1912≤≤n D.190≤≤n 4、 4、 )()(101n R n x =,)()(72n R n x =,用DFT 计算二者的线性卷积,为使计算量尽可 能的少,应使DFT 的长度N 满足 。 A.16>N B.16=N C.16

数字信号处理习题及答案1

数字信号处理习题及答案1 一、填空题(每空1分, 共10分) 1.序列()sin(3/5)x n n π=的周期为 。 2.线性时不变系统的性质有 律、 律、 律。 3.对4()()x n R n =的Z 变换为 ,其收敛域为 。 4.抽样序列的Z 变换与离散傅里叶变换DFT 的关系为 。 5.序列x(n)=(1,-2,0,3;n=0,1,2,3), 圆周左移2位得到的序列为 。 6.设LTI 系统输入为x(n) ,系统单位序列响应为h(n),则系统零状态输出 y(n)= 。 7.因果序列x(n),在Z →∞时,X(Z)= 。 二、单项选择题(每题2分, 共20分) 1.δ(n)的Z 变换是 ( )A.1 B.δ(ω) C.2πδ(ω) D.2π 2.序列x 1(n )的长度为4,序列x 2(n ) 的长度为3,则它们线性卷积的长度是 ( )A. 3 B. 4 C. 6 D. 7 3.LTI 系统,输入x (n )时,输出y (n );输入为3x (n-2),输出为 ( ) A. y (n-2) B.3y (n-2) C.3y (n ) D.y (n ) 4.下面描述中最适合离散傅立叶变换 DFT 的是 ( ) A.时域为离散序列,频域为连续信号 B.时域为离散周期序列,频域也为离散周期序列 C.时域为离散无限长序列,频域为连续周期信号 D.时域为离散有限长序列,频域也为离散有限长序列 5.若一模拟信号为带限,且对其抽样满足奈奎斯特条件,理想条件下将抽样信号通过 即 可完全不失真恢复原信号 ( )A.理想低通滤波器 B.理想高通滤波器 C.理想带通滤波器 D.理 想带阻滤波器 6.下列哪一个系统是因果系统 ( )A.y(n)=x (n+2) B. y(n)= cos(n+1)x (n) C. y(n)=x (2n) D.y(n)=x (- n)

数字信号处理经典例题解析

1:周期序列()()n n x 0cos ~ ω=, 0ω6 π =,()n x ~是由)(~ t x a ()t 0cos Ω=理想抽样而得。试求(1)()n x ~的周期; (2)()()[]n x F e X j ~ =ω (3) ()t x a ~=∑∞ -∞ =n nt j n 0 e Ωα;求n α (4) ()()[]t x F X a ~ =Ω 解:(1) 对于周期性序列()()n n x 0cos ~ ω= 因为 2ωπ = 6/2ππ =112=K N 所以序列周期12=N (2):由题意知()n x ~是由()t x a ~ 理想抽样所得,设抽样间隔为s T ,抽样输出为()t x a ?; 易得()()[]t x F X a ~ =Ω()[]t F 0cos Ω= ]2 [00t j t j e e F Ω-Ω+= =π()0Ω+Ωδ+π()0Ω-Ωδ 由采样序列()n x ~=()nt x a ?,由采样定理知: () ()[]n x F e X j ~=ω=()s T a X /?ω=ΩΩ =∑∞ ∞ --k s s s T k T X T )2( 1πω = ∑∞ ∞ --k s s T k X T )2(1 πω

=)]26()26([1s k s s T k T k T π πωπδππωπδ-++--∑∞∞- =)]26()26([ππ ωπδππωπδk k k -++--∑∞ ∞ - (3) 由)(~t x a ()t 0cos Ω== 2 00t j t j e e Ω-Ω+=∑∞ -∞ =n nt j n 0 e Ωα得: ?????=±==其他 n n n 0121 α (4)由(2)得:()ΩX =π()0Ω+Ωδ+π()0Ω-Ωδ 2:有限长序列()?? ? ??=n n x 6cos π ()n R 12求: (1))]([)(n R F e R n j n =ω (2) ()()[]n x F e X j =ω,用)(ωj N e R 表示; (3)求(2)中() ωj e X 的采样值??? ? ??k j e X 122 π 110≤≤k ; (4)()()[]n x DFT k X =; (5):求第(3)问中??? ? ??k j e X 122 π 的IDFT 变换; (6):求() ()????????? ??=n R n F e X j 2416cos πω 的采样值??? ? ??k j e X 2421π 230≤≤k ; (7):求第(6)问中的采样序列()n x 1; (8):第(2)问中() ωj e X 的采样值??? ? ??k j e X 242 π 对应的采样序列。 .解:(1))]([)(n R F e R n j n =ω =∑-=1 )(N n n j N e n R ω

《数字信号处理》复习题及答案

《数字信号处理》复习题 一、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在题干的括号内。每小题2分) 1.在对连续信号均匀采样时,若采样角频率为Ωs,信号最高截止频率为Ωc,则折叠频率为( D)。 A. Ωs B. Ωc C. Ωc/2 D. Ωs/2 2. 若一线性移不变系统当输入为x(n)=δ(n)时输出为y(n)=R3(n),则当输入为u(n)-u(n-2)时输出为( C)。 A. R3(n) B. R2(n) C. R3(n)+R3(n-1) D. R2(n)+R2(n-1) 3. 一个线性移不变系统稳定的充分必要条件是其系统函数的收敛域包含( A)。 A. 单位圆 B. 原点 C. 实轴 D. 虚轴 4. 已知x(n)=δ(n),N点的DFT[x(n)]=X(k),则X(5)=( B)。 A. N B. 1 C. 0 D. - N 5. 如图所示的运算流图符号是( D)基2 FFT算法的蝶形运算流图符号。 A. 按频率抽取 B. 按时间抽取 C. 两者都是 D. 两者都不是 6. 直接计算N点DFT所需的复数乘法次数与( B)成正比。 A. N B. N2 C. N3 D. Nlog2N 7. 下列各种滤波器的结构中哪种不是I I R滤波器的基本结构( D)。 A. 直接型 B. 级联型 C. 并联型 D. 频率抽样型 8. 以下对双线性变换的描述中正确的是( B)。 A. 双线性变换是一种线性变换 B. 双线性变换可以用来进行数字频率与模拟频率间的变换 C. 双线性变换是一种分段线性变换 D. 以上说法都不对 9. 已知序列Z变换的收敛域为|z|>1,则该序列为( B)。 A. 有限长序列 B. 右边序列 C. 左边序列 D. 双边序列 10. 序列x(n)=R5(n),其8点DFT记为X(k),k=0,1,…,7,则X(0)为( D)。 A. 2 B. 3

数字信号处理完整试题库

1. 有一个线性移不变的系统,其系统函数为: 2z 2 1 )21)(2 11(2 3)(11 1<<-- - = ---z z z z H 1)用直接型结构实现该系统 2)讨论系统稳定性,并求出相应的单位脉冲响应)(n h 4.试用冲激响应不变法与双线性变换法将以下模拟滤波器系统函数变换为数字滤波器系统函数: H(s)= 3) 1)(s (s 2 ++其中抽样周期T=1s 。 三、有一个线性移不变的因果系统,其系统函数为: ) 21)(2 1 1(2 3)(111------= z z z z H 1用直接型结构实现该系统 2)讨论系统稳定性,并求出相应的单位脉冲响应)(n h 七、用双线性变换设计一个三阶巴特沃思数字低通虑波器,采样频率为kHz f s 4=(即采样周期为s T μ250=),其3dB 截止频率为kHz f c 1=。三阶模拟巴特沃思滤波器为: 3 2 ) ()(2)(211)(c c c a s s s s H Ω+Ω+Ω+= 解1)2 111112 5 12 3) 21)(2 1 1(2 3)(------+-- = --- = z z z z z z z H …………………………….. 2分 当2 1 2> >z 时: 收敛域包括单位圆……………………………6分 系统稳定系统。……………………………….10分 1111 1211 2 111)21)(2 11(2 3)(------- -= -- - = z z z z z z H ………………………………..12分 )1(2)()2 1 ()(--+=n u n u n h n n ………………………………….15分 4.(10分)解: 3 1 11)3)(1(1)(+- +=++= s s s s s H ………………1分 1 311)(------ -= Z e s T Z e T z H T T ……………………3分

数字信号处理习题及答案

三、计算题 1、已知10),()(<<=a n u a n x n ,求)(n x 的Z 变换及收敛域。 (10分) 解:∑∑∞ =-∞ -∞=-= = )()(n n n n n n z a z n u a z X 1 111 )(-∞=--== ∑ az z a n n ||||a z > 2、设)()(n u a n x n = )1()()(1--=-n u ab n u b n h n n 求 )()()(n h n x n y *=。(10分) 解:[]a z z n x z X -=? =)()(, ||||a z > []b z a z b z a b z z n h z H --=---= ?=)()(, ||||b z > b z z z H z X z Y -= =)()()( , |||| b z > 其z 反变换为 [])()()()()(1n u b z Y n h n x n y n =?=*=- 3、写出图中流图的系统函数。(10分) 解:2 1)(--++=cz bz a z H 2 1124132)(----++= z z z z H 4、利用共轭对称性,可以用一次DFT 运算来计算两个实数序列的DFT ,因而可以减少计算量。设都是N 点实数序列,试用一次DFT 来计算它们各自的DFT : [])()(11k X n x DFT = []) ()(22k X n x DFT =(10分)。 解:先利用这两个序列构成一个复序列,即 )()()(21n jx n x n w +=

即 [][])()()()(21n jx n x DFT k W n w DFT +== []()[]n x jDFT n x DFT 21)(+= )()(21k jX k X += 又[])(Re )(1n w n x = 得 [])(})({Re )(1k W n w DFT k X ep == [] )())(()(2 1*k R k N W k W N N -+= 同样 [])(1 })({Im )(2k W j n w DFT k X op == [] )())(()(21*k R k N W k W j N N --= 所以用DFT 求出)(k W 后,再按以上公式即可求得)(1k X 与)(2k X 。 5、已知滤波器的单位脉冲响应为)(9.0)(5n R n h n =求出系统函数,并画出其直接型 结构。(10分) 解: x(n) 1-z 1-z 1-z 1-z 1 9.0 2 9.0 3 9.0 4 9.0 y(n) 6、略。 7、设模拟滤波器的系统函数为 31 11342)(2+-+=++=s s s s s H a 试利用冲激响应不变法,设计IIR 数字滤波器。(10分) 解 T T e z T e z T z H 31111)(-------=

(完整版)数字信号处理试卷及答案

江 苏 大 学 试 题 课程名称 数字信号处理 开课学院 使用班级 考试日期

江苏大学试题第2A页

江苏大学试题第3A 页

江苏大学试题第页

一、填空题:(每空1分,共18分) 8、 数字频率ω是模拟频率Ω对采样频率s f 的归一化,其值是 连续 (连续还是离散?)。 9、 双边序列z 变换的收敛域形状为 圆环或空集 。 10、 某序列的DFT 表达式为∑-== 10 )()(N n kn M W n x k X ,由此可以看出,该序列时域的长度为 N , 变换后数字频域上相邻两个频率样点之间的间隔是 M π 2 。 11、 线性时不变系统离散时间因果系统的系统函数为2 52) 1(8)(22++--=z z z z z H ,则系统的极点为 2,2 1 21-=-=z z ;系统的稳定性为 不稳定 。系统单位冲激响应)(n h 的初值4)0(=h ; 终值)(∞h 不存在 。 12、 如果序列)(n x 是一长度为64点的有限长序列)630(≤≤n ,序列)(n h 是一长度为128点的有限长 序列)1270(≤≤n ,记)()()(n h n x n y *=(线性卷积),则)(n y 为 64+128-1=191点 点的序列,如果采用基FFT 2算法以快速卷积的方式实现线性卷积,则FFT 的点数至少为 256 点。 13、 用冲激响应不变法将一模拟滤波器映射为数字滤波器时,模拟频率Ω与数字频率ω之间的映射变换 关系为T ω = Ω。用双线性变换法将一模拟滤波器映射为数字滤波器时,模拟频率Ω与数字频率ω之 间的映射变换关系为)2tan(2ωT = Ω或)2 arctan(2T Ω=ω。 当线性相位FIR 数字滤波器满足偶对称条件时,其单位冲激响应)(n h 满足的条件为)1()(n N h n h --= ,

数字信号处理习题集大题及答案

1设序列x(n)={4,3,2,1} , 另一序列h(n) ={1,1,1,1},n=0,1,2,3 (1)试求线性卷积 y(n)=x(n)*h(n) (2)试求6点圆周卷积。 (3)试求8点圆周卷积。 解:1.y(n)=x(n)*h(n)={4,7,9,10,6,3,1} 2.6点圆周卷积={5,7,9,10,6,3} 3.8点圆周卷积={4,7,9,10,6,3,1,0} 2二.数字序列 x(n)如图所示. 画出下列每个序列时域序列: (1) x(n-2); (2)x(3-n); (3)x[((n-1))6],(0≤n ≤5); (4)x[((-n-1))6],(0≤n ≤5); n 1 2 3 4 0.5 4 3210-1-2-3x(3-n) x[((n-1))6] n 5432104 3 2 1 0.5 n 1 2 3 4 0.5 5 43210x[((-n-1))6] 3.已知一稳定的LTI 系统的H(z)为) 21)(5.01() 1(2)(111------=z z z z H 试确定该系统H(z)的收敛域和脉冲响应h[n]。 解: 0.5 2Re Im 系统有两个极点,其收敛域可能有三种形式,|z|<0.5, 0.5<|z|<2, |z|>2 因为稳定,收敛域应包含单位圆,则系统收敛域为:0.5<|z|<2 1 1 111213 /25.013/4)21)(5.01()1(2)(--------=---=z z z z z z H )1(23 2 )()5.0(34)(--+= n u n u n h n n

4.设x(n)是一个10点的有限序列 x (n )={ 2,3,1,4,-3,-1,1,1,0,6},不计算DFT ,试确定下列表达式的值。 (1) X(0), (2) X(5), (3) ∑=9 0)(k k X ,(4) ∑=-9 5 /2)(k k j k X e π 解:(1) (2) (3) (4) 5. x(n)和h(n)是如下给定的有限序列 x(n)={5, 2, 4, -1, 2}, h(n)={-3, 2, -1 } (1) 计算x(n)和h(n)的线性卷积y(n)= x(n)* h(n); (2) 计算x(n)和h(n)的6 点循环卷积y 1(n)= x(n)⑥h (n); (3) 计算x(n)和h(n)的8 点循环卷积y 2(n)= x(n)⑧h (n); 比较以上结果,有何结论? 解:(1) 5 2 4 -1 2 -3 2 1 5 2 4 -1 210 4 8 -2 4-15 - 6 -12 3 -6 -15 4 -3 13 -4 3 2 14 ][]0[1 9 0===∑=n N n x X W 12 ][][]5[1 19 180510 -=-= ==???-=∑∑====奇 偶 奇数 偶数n n n n n n x n x X n n W 20 ]0[*10][] [101]0[9 9 ===∑∑==x k X k X x k k 0 ]8[*10][] [101]))210[((] []))[((2 )10/2(9 2 )10/2(9 10)/2(===-? --=-=-∑∑x k X e k X e x k X e m n x k j k k j k m N k j N πππ

数字信号处理试卷大全..

北京信息科技大学 2010 ~2011 学年第一学期 《数字信号处理》课程期末考试试卷(A) 一、填空题(本题满分30分,共含4道小题,每空2分) 1.两个有限长序列x1(n),0≤n≤33和x2(n),0≤n≤36,做线性卷积 后结果的长度是,若对这两个序列做64点圆周卷积,则圆周卷积结果中n= 至为线性卷积结果。 W的、和三个固有特性来实现2.DFT是利用nk N FFT快速运算的。 3.IIR数字滤波器设计指标一般由、、和等 四项组成。 4.FIR数字滤波器有和两种设计方法,其结构 有、和等多种结构。 二、判断题(本题满分16分,共含8道小题,每小题2分,正 确打√,错误打×) 1.相同的Z变换表达式一定对应相同的时间序列。() 2.Chirp-Z变换的频率采样点数M可以不等于时域采样点数N。() 3.按频率抽取基2 FFT首先将序列x(n)分成奇数序列和偶数序列。() 4.冲激响应不变法不适于设计数字带阻滤波器。() 5.双线性变换法的模拟角频率Ω与数字角频率ω成线性关系。() 6.巴特沃思滤波器的幅度特性必在一个频带中(通带或阻带)具有等

波纹特性。( ) 7. 只有FIR 滤波器才能做到线性相位,对于IIR 滤波器做不到线性相 位。( ) 8. 在只要求相同的幅频特性时,用IIR 滤波器实现其阶数一定低于 FIR 阶数。( ) 三、 综合题(本题满分18分,每小问6分) 若x (n)= {3,2,1,2,1,2 },0≤n≤5, 1) 求序列x(n)的6点DFT ,X (k)=? 2) 若)()]([)(26k X W n g DFT k G k ==,试确定6点序列g(n)=? 3) 若y(n) =x(n)⑨x(n),求y(n)=? 四、 IIR 滤波器设计(本题满分20分,每小问5分) 设计一个数字低通滤波器,要求3dB 的截止频率f c =1/π Hz ,抽样频率f s =2 Hz 。 1. 导出归一化的二阶巴特沃思低通滤波器的系统函数H an (s)。 2. 试用上述指标设计一个二阶巴特沃思模拟低通滤波器,求其系 统函数H a (s),并画出其零极点图。 3. 用双线性变换法将H a (s)转换为数字系统的系统函数H(z)。 4. 画出此数字滤波器的典范型结构流图。 五、 FIR 滤波器设计(本题满分16分,每小问4分)

数字信号处理期末试卷及答案

A 一、选择题(每题3分,共5题) 1、 )6 3()(π-=n j e n x ,该序列是 。 A.非周期序列 B.周期6 π = N C.周期π6=N D. 周期π2=N 2、 序列)1()(---=n u a n x n ,则)(Z X 的收敛域为 。 A.a Z < B.a Z ≤ C.a Z > D.a Z ≥ 3、 对)70() (≤≤n n x 和)190()(≤≤n n y 分别作20 点 DFT ,得 )(k X 和)(k Y , 19,1,0),()()( =?=k k Y k X k F ,19,1,0)],([)( ==n k F IDFT n f , n 在 范围内时,)(n f 是)(n x 和)(n y 的线性卷积。 A.70≤≤n B.197≤≤n C.1912≤≤n D.190≤≤n 4、 )()(101n R n x =,)()(72n R n x =,用DFT 计算二者的线性卷积,为使计算量尽可能的少,应使DFT 的长度N 满足 。 A.16>N B.16=N C.16

数字信号处理复习题1

数字信号处理复习题1 第一题 给定信号21041()6 040n n x n n n +-≤≤-??=≤≤???为其他值 (1) 画出()x n 的图形,并标上各点的值。 (2) 试用()n δ及其相应的延迟表示()x n 。 (3) 令1()2(1)y n x n =-,试画出1()y n 的图形。 (4) 令2()3(2)y n x n =+,试画出2()y n 的图形。 (5) 将()x n 延迟4个抽样点再以y 轴翻转,得3()y n ,试画出3()y n 的图形。 (6) 先将()x n 翻转,再延迟4个抽样点得4()y n ,试画出4()y n 的图形。 第二题 给定下述系统: (1) ()()(1)(2)y n x n x n x n =+-+-。 (2) ()()y n y n =-。 (3) 2()()y n x n =。 (4) 2()()y n x n =。 试判断每一个系统是否具有线性、移不变形?并说明理由。 第三题 给定下述系统: (1) 0 1()()1N k y n x n k N ==-+∑,其中N 为大于零的整数。 (2) ()()y n ax n b =+。 (3) ()()(1)y n x n cx n =++,其中c 为常数。 (4) 2()()y n x n =。 试判断哪一个是因果系统?哪一个是非因果系统?并说明理由。

第四题 令{}{}()(0),(1),(2)3,2,1h n h h h ==,求1()()()y n h n h n =*。 第五题 设()nTs x nTs e -=为一指数函数,0,1,2,,n =∞ ,而Ts 为抽样间隔,求()x n 的自相关函数()x r mTs 。 第六题 试证明:若()x n 是复信号,则()x r m 满足*()()x x r m r m =-。 第七题 已知序列()1x n =,(~)n =-∞∞,试用单位阶跃序列()u n 表示()x n 。 第八题 令1()()x n u n =,2()()n x n a u n =,分别求它们的偶部和奇部。 注:请参考教材P16例1.1.1。 第九题 单位阶跃序列是能量信号吗?为什么?是功率信号吗?为什么? 第十题 求序列1()()x n u n =的平均功率。

数字信号处理习题集附答案)

第一章数字信号处理概述简答题: 1.在A/D变换之前和D/A变换之后都要让信号通过一个低通滤波器,它们分别起什么作用? 答:在A/D变化之前让信号通过一个低通滤波器,是为了限制信号的最高频率,使其满足当采样频率一定时,采样频率应大于等于信号最高频率2倍的条件。此滤波器亦称位“抗折叠”滤波器。 在D/A变换之后都要让信号通过一个低通滤波器,是为了滤除高频延拓谱,以便把抽样保持的阶梯形输出波平滑化,故友称之为“平滑”滤波器。 判断说明题: 2.模拟信号也可以与数字信号一样在计算机上进行数字信号处理,自己要增加一道采样的工序就可以了。()答:错。需要增加采样和量化两道工序。 3.一个模拟信号处理系统总可以转换成功能相同的数字系统,然后基于数字信号处理 理论,对信号进行等效的数字处理。() 答:受采样频率、有限字长效应的约束,与模拟信号处理系统完全等效的数字系统未必一定能找到。因此数字信号处理系统的分析方法是先对抽样信号及系统进行分析,再考虑幅度量化及实现过程中有限字

长所造成的影响。故离散时间信号和系统理论是数字信号处理的理论基础。 第二章 离散时间信号与系统分析基础 一、连续时间信号取样与取样定理 计算题: 1.过滤限带的模拟数据时,常采用数字滤波器,如图所示,图中T 表示采样周期(假设T 足够小,足以防止混迭效应),把从)()(t y t x 到的整个系统等效为一个模拟滤波器。 (a ) 如果kHz rad n h 101,8)(=π截止于,求整个系统的截止频率。 (b ) 对于kHz T 201=,重复(a )的计算。 解 (a )因为当0)(8=≥ω πωj e H rad 时,在数 — 模变换中 )(1)(1)(T j X T j X T e Y a a j ωω=Ω= 所以)(n h 得截止频率8πω=c 对应于模拟信号的角频率c Ω为 8 π = ΩT c 因此 Hz T f c c 625161 2==Ω= π

数字信号处理试卷和答案

一 判断 1、 模拟信号也可以与数字信号一样在计算机上进行数字信号处理,只要加一道采样的工序就可以了。 (╳) 2、 已知某离散时间系统为 ,则该系统为线性时不变系统。(╳) 3、 一个信号序列,如果能做序列的傅里叶变换(DTFT ),也就能对其做 变换。(╳) 4、 用双线性变换法进行设计 数字滤波器时,预畸并不能消除变换中产生的所有频率点的非线性畸变。 (√) 5、 时域周期序列的离散傅里叶级数在频域也是一个周期序列 (√) 二 填空题(每题3分,共5题) 1对模拟信号(一维信号,是时间的函数)进行采样后,就是_____信号,再进行幅度量化后就是_____信号。 2、要想抽样后能够不失真的还原出原信号,则抽样频率必须_____,这就是奈奎斯特抽样定理。 3、系统稳定的充分必要条件_____。 4、快速傅里叶变换(FFT )算法基本可分为两大类,分别是:_____;_____。 5、线性移不变系统的性质有______、______和分配律。 1.离散 数字2大于2倍信号最高频率3系统的单位脉冲响应绝对可和4时间抽取法和频率抽取法5交换率,结合律 三 大题 1、对一个带限为3f kHz ≤的连续时间信号采样构成一离散信号,为了保证从此离散信号中能恢复出原信号,每秒钟理论上的最小采样数为多少?如将此离散信号恢复为原信号,则所用的增益为1,延迟为0的理想低通滤波器的截止频率该为多少? 答:由奈奎斯特采样定理,采样频率必须大于两倍的信号最高频率,236s f kHz kHz >?=每秒钟理论上得最小采样数为6000。如将此离散信号恢复为原信号,为避免混淆,理想低通滤波器的截止频率为采样频率的一半,即32s kHz Ω=。 2、有限频带信号11()52cos(2)cos(4)f t f t f t ππ=++,式中,11f kHz =。用5s f kHz =的冲激函数序列()T t δ进行取样。 (1)画出()f t 及采样信号()s f t 在频率区间(10,10)kHz kHz -的频谱图。 (2)若由()s f t 恢复原信号,理想低通滤波器的截止频率c f 。 解:(1)()f t 在频率区间(10,10)kHz kHz -的频谱图 /kHz -10 0 1 2 10 ()s f t 在频率区间(10,10)kHz kHz -的频0谱图

数字信号处理习题解答1

第一章 第二章 11-=--m/2 m=-m -/2 12 m=--/2 -/21 2 m=-m=-()121.7DTFT[x(2n)]=(2n)e m=2n DTFT[x(2n)]=(m)e =[()(1) ()]e [()e e ()e ] [()()] j n n j m j m j m j m j m j j x x x m x m x m x m X e X e ωωωωπ ωωωπ∞ ∞∞ ∞∞ ∞∞ ∞ ∞ ∞-+-=+ =+∑∑ ∑∑∑,为偶数 求下列序列的傅里叶变换()x(2n) 令,于是 -n 1 1 121 z (1) 2u(n)()2 ()2 1,|(2)|11(2),||n n n n n n X z u n z z z z z z z +∞ --=-∞+∞ --=-∞ --=== <-=>-∑∑14.求出下列序列的变换及收敛域 3.3(1).()cos(),781() 8 (2).()5.25n 640() (5)()x n A n A j n x n e x n y n e πππω=--==判断下面的序列是否周期的是常数 试判断系统是否为线性时不变的()y(n)=x (n)(7) y(n)=x(n)sin() .试判断系统是否为因果稳定系统()y(n)=x(n-n )

-1 -1-2 -1 -1112 1-317.X(z)=,2-5+2105< | z | < 2x(n)(2) | z | > 2x(n) 11 X(z)= -1-z 1-2z 05< | z | < 2(n)=2(-n-1)+()(n) | z | > 2(n)=()(n)-2(n)n n n n z z z u u u u 已知分别求:()收敛域.对应的原序列收敛域对应的原序列解:收敛域.时: x 收敛域时: x -1-1 -1 -1-1 -1 21.(n)=0.9y(n-1)+x(n)+0.9x(n-1)(1)h(n)(2)H(e )1+0.9(1)H(z)=,|z|>0.91-0.91+0.9F(z)=H(z)z =z 1-0.9n 1z=0.9(n j n n z z z z h ω≥已知线性因果网络用下面差分方程表示: y 求网络的系统函数及单位脉冲响应写出网络频率响应函数的表达式,并定性画出其幅频特性曲线解: 令当时,有极点-1-1=0.9-112-1-1-1-1=0=0.9-1-1)=Res[F(z),0.9]1+0.9=z (z-0.9)|1-0.9=20.9(n)=0,n<0 n=0z =0,=0.9(n)=Res[F(z),0]+Res[F(z),0.9]1+0.91+0.9=z z|+z (z-0.9)|1-0.91-0.9=-1+2=1 h(n)=n z n z z z z z h z z z z ?∴因为系统是因果系统,所以有h 当时,有极点00000000=0n-m =0n -m =0 n n 20.9(n-1)+(n)+0.9 (2)H(e )=-0.9 (3)y(n)=h(n)*x(n) =(m)x(n-m) =(m)e =(m)e e =e H(e )+0.9=e -0.9 n j j j m j m j j m j j j j j u e e h h h e e ωω ω ωωωωωωωωδ∞ ∞ ∞ ?∑∑∑( )

数字信号处理复习题带答案

数字信号处理复习题带答案

1.若一模拟信号为带限信号,且对其抽样满足奈奎斯特条件,则只要将抽样信号通过_____A____即可完全不失真恢复原信号。 A、理想低通滤波器 B、理想高通滤波器 C、理想带通滤波器 D、理想带阻滤波器 2.下列哪一个单位抽样响应所表示的系统不是因果系统___D__? A、.h(n)=δ(n)+δ(n-10) B、h(n)=u(n) C、h(n)=u(n)-u(n-1) D、h(n)=u(n)-u(n+1) 3.若序列的长度为M,要能够由频域抽样信号X(k)恢复原序列,而不发生时域混叠现象,则频域抽样点数N需满足的条件是_____A_____。 A.N≥M B.N≤M C.N≤2M D.N≥2M 4.以下对双线性变换的描述中不正确的是__D_________。 A.双线性变换是一种非线性变换 B.双线性变换可以用来进行数字频率与模拟频率间的变换 C.双线性变换把s平面的左半平面单值映射到z平面的单位圆内 D.以上说法都不对 5、信号 3 (n)Acos(n) 78 x ππ =-是否为周期信号,若是周期信号,周期为多少? A、周期N=3 7 π B、无法判断 C、非周期信号 D、周期N=14 6、用窗函数设计FIR滤波器时,下列说法正确的是___a____。

A 、加大窗函数的长度不能改变主瓣与旁瓣的相对比例。 B 、加大窗函数的长度可以增加主瓣与旁瓣的比例。 C 、加大窗函数的长度可以减少主瓣与旁瓣的比例 。 D 、以上说法都不对。 7.令||()n x n a =,01,a n <<-∞≤≤∞,()[()]X Z Z x n =,则()X Z 的收敛域 为 __________。 A 、1||a z a -<< B 、1||a z a -<< C 、||a z < D 、1||z a -< 。 8.N 点FFT 所需乘法(复数乘法)次数为 ____D___。 A 、2N log N B 、N C 、2N D 、 2 log 2 N N 9、δ(n)的z 变换是 A A. 1 B.δ(w) C. 2πδ(w) D. 2π 10、下列系统(其中y(n)是输出序列,x(n)是输入序列)中__ C___属于线性 系统。 A.y(n)=x 2(n) B.y(n)=4x(n)+6 C.y(n)=x(n-n 0) D.y(n)=e x(n) 11、在应用截止频率为Ωc 的归一化模拟滤波器的表格时,当实际Ωc ≠1时,代替表中的复变量s 的应为___B________。 A 、Ωc /s B 、s/Ωc C 、-Ωc /s D 、s/c Ω 12、用窗函数法设计FIR 数字滤波器时,在阶数相同的情况下,加矩形窗时所

相关文档
最新文档