磁性铁分析改进

磁性铁分析改进
磁性铁分析改进

铁矿石中磁性铁的测定方法研究

杨安香凌菡

[摘要]研究了应用自制磁选仪测定铁矿石中磁性铁的分析条件,分析了大量的数据,获得了比较满意的结果。

[关键词]自制磁选仪铁矿石磁性铁

1 前言

目前,国家对磁性铁分析尚无统一标准,磁性铁含量的测定方法多数应用WFC-3型磁选仪快速分离磁性铁,但分析结果偏低。而自制磁选仪在磁场强度为1300奥斯特和分析试样粒度小于0.105mm的条件下进行磁性铁的测定,利用重力和磁力分离磁性和非磁性矿物,分析速度快,准确度高。

2 实验部分

2.1实验仪器

仪器结构

自制磁选仪由框架传动系统及淋洗装置等三大部分组成。框架上装有永久性磁铁和磁选管,传动系统借助马达带动磁选管顺时针和逆时针反复转动淋洗装置用来洗涤矿粒。

2.2操作步骤

称取0.2000g试样于100ml烧杯中,加水约20ml摇匀,调整好磁选管下部的止水夹,使水流速度为60ml/min,开启电源调整稳压器电压,使磁选管转速为40转/min左右,自磁管中加水至磁极以上,缓

缓将烧杯中试样及水倾入磁选管中,在保持管中水面不低于磁极,又不溢出管口的条件下,反复用水将试样从烧杯中冲入磁选管,直至管中磁极以下无明显矿粒下落为止,磁选即结束。

待管中水全部流出后,取下止水夹,以300ml三角烧瓶承接管下,将磁选管移出磁极,用蒸馏水将管内磁性矿物全部冲洗于三角烧瓶中(体积控制在120ml左右,太大影响分析时间)。加硫磷混酸(1+1)20ml于电炉上加热蒸干水分并溶解试料。以下按常规全铁分析方法测定,即为磁性铁的含量。

2.3条件试验

(1) 淋洗次数的影响:

控制每次水量25ml磁选管转速为40转/min,水流速度为60ml/min,分别淋洗二次、三次、四次测定结果见表1:

表1 淋洗次数对磁选分离的影响

淋洗次数二次三次四次分析结果(%)Mfe标值57.46 58.41 56.87 56.31

分析结果(%)Mfe标值57.37 57.97 57.44 56.03

由表1可知:淋洗三次,所得磁性结果较好,当淋洗二次时,所得磁性结果偏高,其产生的原因可能是非磁性物质没有淋洗洗干净,而淋洗四次,首先淋洗时间加长而且影响分析周期,再是所得磁性结果偏低,为此,我们选定淋洗三次。

(2) 淋洗水量的影响

控制磁选管转速为40转/min,水流速度为60ml/min,淋洗三次水量分析为20ml、25ml、30ml测定结果见表2:

表2 淋洗水量对磁选分离的影响

淋冼水量20ml 25ml 30ml

分析结果(%)Mfe标值57.46 56.93 57.20 57.10

分析结果(%)Mfe标值57.37 56.76 57.35 56.90 由表2可知,淋洗水量20ml、25ml、30ml所得磁性结果都在分析误差范围之内,为此我们选择淋洗水量25ml。

(3)磁选管水位的影响

在控制了磁选管转速,水流速度,淋洗次数和淋洗水量的条件下,控制水位在磁极上10cm,正好磁极,磁极下10cm,停止磁选,测定结果见表3:

表3

磁性水位磁极上10cm 正好磁极磁极下10cm 分析结果(%)Mfe标值57.46 56.89 57.15 56.33

分析结果(%)Mfe标值57.37 56.95 57.30 56.20 由表3可知,,控制水位在磁极上10cm,停止磁选,分析结果稍低,但没有超出误差范围,水设在磁极下10cm停止磁选,所得分析结果大大偏低,其产生的原因可能是没有水位磁选管还在转动,磁性铁矿粒不被吸引在磁极近处的管壁上,而易下落,为此我们选定控制水位正好位于磁极,而停止磁选所得分析结果理想。

(4)磁选管转速的影响

选择水量25ml,控制磁选管转速30转/min、40转/min、50转/min,测定结果见表4:

表4 转速对磁选分离的影响

磁选管转速30转/min 40转/min 50转/min 分析结果(%)Mfe标值57.46 57.60 57.30 56.56

分析结果(%)Mfe标值57.37 57.55 57.28 56.27

由表4可知,磁选管转速30转/min,分析结果稍微偏高,磁选管转速50转/min,分析结果偏低,为此我们选择磁选管转速40转/min (5)水位在不同势差高度的影响

选择水量25ml,磁选管转速40转/min,水位在势差1m、1.5m、2m进行淋洗,测定结果见表5:

表5 水位在不同势差高度对磁选分离的影响

水位势差高度1m 1.5m 2m 分析结果(%)Mfe标值57.46 57.71 57.35 57.40

分析结果(%)Mfe标值57.37 58.00 57.28 57.30

由表5可知,淋洗水位低,测定结果偏高,且分析速度慢,水位在势差1.5m至2m分析数据稳定,同时可以加快分析速度。

(6)磁选管水流速度的影响

选择上述的测定条件,控制磁选管水流速度为50ml/min、60ml/min、70ml/min,测定结果见表6:

表6 水流速度对磁选分离的影响

磁选管水流速度50ml/min 60ml/min 70ml/min 分析结果(%)Mfe标值57.46 57.19 57.71 55.70

分析结果(%)Mfe标值57.37 56.97 57.26 56.67 由表6可知,磁选管水流速度为50ml/min,分析结果没有超差,但分析速度慢,选择磁选管水流速度为70ml/min,分析结果偏低,其产生的原因,可能是由于水流速度太快,磁性铁矿粒来不及被吸引在磁极近处管壁上,而被冲走,为此我们选择水流速度为60ml/min。2.4方法对照试验

选取一个标样及生产样分别用WFC—3型磁选仪和自制磁选仪测定其磁性铁含量,结果见表7:

表7 磁性铁分析结果对照

试样编号标准值

(%)

WFC—3型磁选仪

测得磁性铁(%)

自制磁选仪测得磁性铁

(%)

GBWO727标样46.90 46.94、46.98、46.85 47.30、47.22、47.25

生产试样 1 56.89、56.56、56.74 57.50、57.26、57.46 由表7可知:用自制磁选仪分离所得的磁性铁分析结果和精密度和WFC—3型磁选仪分离所得的磁性铁基本一致,符合误差范围。

2.5精度试验

选择二个不同含量的磁性铁矿用自制磁选分离,分析结果见表8:

表8 不同含量的磁性铁分析结果

样品编号 1 2

分析结果(%)57.80、57.40、57.60 54.25、54.65、54.30 57.75、57.28、57.35、

57.45

54.22、54.15、54.38、

54.27

57.42、57.56、57.31、

57.21

54.29、54.33、54.58、

54.62

平均值(%)57.47 54.37

极差(%)0.59 0.40

RSD(%)0.33 0.31

由表8可知,本法所得相对标准偏差均小0.5%精密较好。

2.6回收试验

称取0.2000g磁性铁含量为57.46%的试样5份分别加入0.0200、0.0400、0.0600、0.0800、0.1000g标样(MFe含量为33.80%)进行回收试验,结果见表9:

表9 磁性铁回收试验结果

加入磁性铁(mg) 测得磁性铁(mg) 回收率(%)

6.76

7.00 103.55

13.52 13.48 99.70

20.28 20.97 103.40

27.04 27.37 101.22

33.80 33.92 100.35

由表9可知,本法回收率在99.70—103.55

3结果与讨论

3.1检测限

本法适用于岩石、矿物中磁性铁含量在1.0%~70.0%之间的测定。

3.2注意事项

(1)两块永久磁块间磁选管中有效场强需达到1000奥斯特。(2)铁矿物各相之间往往存在连生体,要达到磁选分离完全,试料粒度必须达到单体分离。试料粒度必须在180~200目,但过细,磁性反而减弱。

4结束语

本文提出了应用自制磁选仪定量分离铁矿石中磁性铁的方法,做了大量的条件试验,找到了影响磁选分离的主要因素,进行了回收率试验及精密度试验。获得较满意的结果。

钢结构构件检测技术

钢结构构件检测技术 https://www.360docs.net/doc/a518594067.html,/kaiyun/news/2012-8-17/142.html 一、钢结构中所用的构件一般是由钢厂批量生产,并需有合格证明,因此材料的强度及化学成分是有良好保证的。工程检测的重点在于安装、拼接过程中产生的质量问题。钢结构工程中主要的检测内容有: 构件尺寸及平整度的检测; 构件表面缺陷的检测; 连接(焊接、螺栓连接)的检测; 钢材锈蚀检测; 防火涂层厚度检测。 如果钢材无出厂合格证明,或对其质量有怀疑,则应增加钢材的力学性能试验,必要时再检测其化学成分。 二、钢结构各检测规范的应用范围知识 三、构件尺寸及平整度的检测 每个尺寸在构件的3个部位量测,取3处的平均值作为该尺寸的代表值。钢构件的尺寸偏差应以设计图纸规定的尺寸为基准计算尺寸偏差;偏差的允许值应符合其产品标准的要求。 梁和桁架构件的变形有平面内的垂直变形和平面外的侧向变形,因此要检测两个方向的平直度。柱的变形主要有柱身倾斜与挠曲。检查时可先目测,发现有异常情况或疑点时,对梁、桁架可在构件支点间拉紧一根铁丝或细线,然后测量各点的垂度与偏差;对柱的倾斜可用经纬仪或铅垂测量。柱挠曲可在构件支点间拉紧一根铁丝或细线测量。 四、构件表面缺陷的检测——磁粉探伤 1、磁粉探伤的基本原理 外加磁场对工件(只能是铁磁性材料)进行磁化,被磁化后的工件上若不存在缺陷,则它各部位的磁特性基本一致,而存在裂纹、气孔或非金属物夹渣等缺陷时,由于它们会在工件上造成气隙或不导磁的间隙,使缺陷部位的磁阻大大增加,工件内磁力线的正常传播遭到阻隔,根据磁连续性原理,这时磁化场的磁力线就被迫改变路径而逸出工件,并在工件表面形成漏磁场。 漏磁场的强度主要取决磁化场的强度和缺陷对于磁化场垂直截面的影响程度。利用磁粉就可以将漏磁场给予显示或测量出来,从而分析判断出缺陷的存在与否及其位置和大小。 将铁磁性材料的粉未撒在工件上,在有漏磁场的位置磁粉就被吸附,从而形成显示缺陷形状的磁痕,能比较直观地检出缺陷。这种方法是应用最早、最广的一种无损检测方法。 磁粉一般用工业纯铁或氧化铁制作,通常用四氧化三铁(Fe3O4)制成细微颗粒的粉末作为磁粉。磁粉可分为荧光磁粉和非荧光磁粉两大类,荧光磁粉是在普通磁粉的颗粒外表面涂上了一层荧光物质,使它在紫外线的照射下能发出荧光,主要的作用是提高了对比度,便于观察。磁粉检测又分干法和湿法两种: 1.干法 —将磁粉直接撒在被测工件表面。为便于磁粉颗粒向漏磁场滚动,通常干法检测所用的磁粉颗粒较大,所以检测灵敏度较低。但是在被测工件不允许采用湿法与

铁磁材料居里点的测定实验报告

铁磁材料居里点的测定实验报告

铁磁材料居里点的测定实验报告 一、实验目的与实验仪器 1.实验目的 (1)了解示波器测量动态磁滞回线的原理和方法; (2)学会一种测量铁磁材料居里点的方法。 2.实验仪器 用于测量环状磁性介质样品的JLD-Ⅲ居里点测量仪(含五种样品)。 二、实验原理 1.铁磁材料和居里点 铁磁材料在很小的磁场作用下就被磁化到饱和,不但磁化率大于零,而且达到 χ~10 —106 数量级,当铁磁性物质的温度高于临界温度Tc(居里点温度)时,铁磁性物质

转变成为顺磁性。即在居里点附近,材料的磁性发生突变。 反复磁化铁磁材料时会出现磁滞现象。另一重要的特点就是磁滞。磁滞现象是材料磁化时,材料内部的磁感应强度B 不仅与当时的磁场强度 H 有关,而且与以前的磁化状态有关。 2.示波器测量磁滞回线的原理 如图所示,给待定铁心线圈(N匝)通50Hz交流电,次级线圈产生的感应电动势为 ε = - WS dB ,次级回路电压方程为ε = Ri + u C,dt

当R >> 1 2πfC 时,Ri >> u C,则 i = ε R =- WS R dB dt . t时刻, u C =q C = q0 C +1 C ∫idt t =(q0 C +WS RC B0 ) -WS RC B 上式中,前一项为t = 0 时,电容初始状态和铁芯初始状态决定的直流电压值,若其为0,则 u C = -WS RC B,即u C∝B,将u C输入示波器y轴,则水平方向偏转与B成正比。 在初级线圈中,u H = R H i H,而H = ni H,则u H = R H n H,将u H输入示波器x轴,则竖直方向偏转与H成正比。 综上,示波器上能够显示出稳定的B-H曲线。 三、实验步骤 测量环状磁性介质的居里点 1.接线:将加热接口与居里点测试仪接口用专线相连;将铁磁材料样品与居里点测试仪用专线

铁磁谐振的规程

电力系统铁磁谐振过电压防护规程 电力系统中存在着许多储能元件,当系统进行操作或发生故障时,变压器、互感器等含铁芯元件的非线性电感元件与系统中电容串联可能引起铁磁谐振,对电力系统安全运行构成危害。在中性点不接地的非直接接地系统中,铁磁式电压互感器引起的铁磁谐振过电压是常见的,是造成事故较多的一种内部过电压。这种过电压轻则使电压互感器一次熔丝熔断,重则烧毁电压互感器,甚至炸毁瓷绝缘子及避雷器造成系统停运。在一定的电源作用下会产生串联谐振现象,导致系统中出现严重的谐振过电压。1 电压互感器引起铁磁谐振的原因分析在中性点不接地系统中,为了监视对地绝缘,母线上常接有Y接线的电磁式电压互感器,如图1所示,图中u0为电源电势,C为线路等设备的对地电容,L为电压互感器激磁电感,R0为中性点串联消谐电阻。在正常运行状态下电压互感器励磁感抗很大,其数值范围在兆殴级以上且各相对称。C数值视线路长短而定,线路愈长容抗愈小,即以1 km线路而言,其每相对地电容约0.004μF ,故其容抗小于1 MΩ,所以整个网络对地仍呈容性且基本对称,电网中性点的位移电压很小,接近地电位。但电压互感器的励磁电感随通过的电流大小而变化,其U-I特性如图2所示。 由图2可见,曲线的起始一段接近直线,其电感相应地保持常数。当激磁电流过大时,铁芯饱和,则L值随之大大降低。正常运行时铁芯工作在直线范围,当系统中出现某些波动,如电压互感器突然合闸的巨大涌流、线路瞬间单相弧光接地等,使电压互感器发生三相不同程度的饱和,以至破坏了电网的对称,电网中性点就出现较高的位移电压,造成工频谐振或激发分频谐振。2 铁磁谐振的特点对于铁磁谐振电路,在相同的电源电势作用下,回路可能不只有一种稳定的工作状态。电路到底稳定在哪种工作状态,要看外界冲击引起的过渡过程的情况。TV的非线性铁磁特性是产生铁磁谐振的根本原因,但铁磁元件的饱和效应本身,也限制了过电压的幅值。此外回路损耗也使谐振过电压受到阻尼和限制。当回路电阻大于一定的数值时,就不会出现强烈的铁磁谐振过电压。串联谐振电路,产生铁磁谐振过电压的的必要条件是ω0 = 1/L0C<ω。因此铁磁谐振可在很大的范围内发生。维持谐振振荡和抵偿回路电阻损耗的能量均由工频电源供给。为使工频能量转化为其它谐振频率的能量,其转化过程必须是周期性,且有节律的,即…1/2(1,2,3…)倍频率的谐振。铁磁谐振对TV的损坏,铁磁谐振(分频)一般应具备如下三个条件。铁磁式电压互感器(TV)的非线性效应,是产生铁磁谐振的主要原因。TV感抗为容抗的100倍以内,即参数匹配在谐振范围。要有激发条件,如投入和断开空载母线、TV突然合闸、单相接地突然消失、外界对系统的干扰或系统操作产生的过电压等。由前面分析可知,事故中具备了3个条件,才导致了此次事故。当良站10 kV系统发生单相接地时,故障点流过电容电流,未接地的两相B、C相电压升高31/2,对系统产生扰动,在这一瞬间电压突变过程中,TV高压线圈的非接地两相的励磁电流就要突然增大,甚至饱和,由此构成相间串联谐振。饱和后的TV励磁电感变小,系统网络对地阻抗趋于感性,此时若系统网络的对地电感与对地电容相匹配,就形成共振回路,激发各种铁磁谐振过电压。尤其是分频铁磁谐振可导致相电压低频摆动,励磁感抗成倍下降,产生过电压,过电压幅值可达到近2~3.5Ue以上,但此过电压达不到避雷器的动作电压1.7 kV,

电磁铁磁学名词解释

什么叫磁感应强度(B),什么叫磁通密度(B),B与H,J,M之间存在什么样的关系 理论与实践均表明,对任何介质施加一磁场H时(该磁场可由外部电流或外部永磁体提供,亦可由永磁体对永磁介质本身提供,由永磁体对永磁介质本身提供的磁场又称退磁场---关于退磁场的概念,见9 Q),介质内部的磁场强度并不等于H,而是表现为H与介质的磁极化强度J之和。由于介质内部的磁场强度是由磁场H通过介质的感应而表现出来的,为与H区别,称之为介质的磁感应强度,记为B: B=?0H+J (SI单位制)(1-1) B=H+4?M (CGS单位制) 磁感应强度B的单位为T,CGS单位为Gs(1T=104Gs)。 对于非铁磁性介质如空气、水、铜、铝等,其磁极化强度J、磁化强度M 几乎等于0,故在这些介质中磁场强度H与磁感应强度B相等。 由于磁现象可以形象地用磁力线来表示,故磁感应强度B又可定义为磁力线通量的密度,磁感应强度B和磁通密度B在概念上可以通用。 金属磁性材料分为几大类,它们是如何划分的 金属磁性材料分为永磁材料、软磁材料二大类。通常将内禀矫顽力大于0.8kA/m的材料称为永磁材料,将内禀矫顽力小于0.8kA/m的材料称为软磁材料。 什么叫磁能积(BH)m 在永磁材料的B退磁曲线上(二象限),不同的点对应着磁体处在不同的工作状态,B退磁曲线上的某一点所对应的Bm和Hm(横坐标和纵坐标)分别代表磁体在该状态下,磁体内部的磁感应强度和磁场的大小,Bm和Hm的绝对值的乘积(BmHm)代表磁体在该状态下对外做功的能力,等同于磁体所贮存的磁能量,称为磁能积。在B退磁曲线上的Br点和bHc点,磁体的(BmHm)=0,表示此时磁体对外做功的能力为0,即磁能积为0;磁体在某一状态下(BmHm)

铁磁材料居里温度测试实验

铁磁材料居里温度测试实验 【实验目的】 1.了解铁磁物质由铁磁性转变为顺磁性的微观机理。 2.利用交流电桥法测定铁磁材料样品的居里温度。 3.分析实验时加热速率和交流电桥输入信号频率对居里温度测试结果的影响。 【实验仪器】 FD-FMCT-A铁磁材料居里温度测试实验仪,示波器检 【实验原理】 一、概述:磁性材料在电力、通讯、电子仪器、汽车、计算机和信息存储等领域有着十分广泛的应用,近年来已成为促进高新技术发展和当代文明进步不可替代的材料,因此在大学物理实验开设关于磁性材料的基本性质的研究显得尤为重要。 铁磁性物质的磁特性随温度的变化而改变,当温度上升至某一温度时,铁磁性材料就由铁磁状态转变为顺磁状态,即失掉铁磁性物质的特性而转变为顺磁性物质,这个温度称为居里温度,居里温度是表征磁性材料基本特性的物理量,它仅与材料的化学成分和晶体结构有关,几乎与晶粒的大小、取向以及应力分布等结构因素无关,因此又称它为结构不灵敏参数。测定铁磁材料的居里温度不仅对磁材料、磁性器件的研究和研制,而且对工程技术的应用都具有十分重要的意义。 本实验仪根据铁磁物质磁矩随温度变化的特性,采用交流电桥法测量铁磁物质自发磁化消失时的温度,该方法具有系统结构简单,性能稳定可靠等优点,通过对软磁铁氧体材料居里温度的测量,加深对这一磁性材料基本特性的理解。仪器配有自动采集系统,可以通过计算机自动扫描分析, 二、实验原理 1.铁磁质的磁化规律 由于外加磁场的作用,物质中的状态发生变化,产生新的磁场的现象称为磁性,物质的磁性可分为反铁磁性(抗磁性)、顺磁性和铁磁性三种,一切可被磁化的物质叫做磁介质,在铁磁质中相邻电子之间存在着一种很强的”交换耦合“作用,在无外磁场的情况下,它们的自旋磁矩能在一个个微小区域内“自发地”整齐排列起来而形成自发磁化小区域,称为磁畴。在未经磁化的铁磁质中,虽然每一磁畴内部都有确定的自发磁化方向,有很大的磁性,但大量磁畴的磁化方向各不相同因而整个铁磁质不显磁性。如图1所示,给出了多晶磁畴结构示意图。当铁磁质处于外磁场中时,那些自发磁化方向和外磁场方向成小角度的磁畴其体积随着外加磁场的增大而扩大并使磁畴的磁化方向进一步转向外磁场方向。另一些自发磁化方向和外磁场方向成大角度的磁畴其体积则逐渐缩小,这时铁磁质对外呈现宏观磁性。当外磁场增大时,上述效应相应增大,直到所有磁畴都沿外磁场排列好,介质的磁化就达到饱和。

铁磁材料居里温度测试

铁磁材料居里温度的测试 1.实验数据表格 表9-1磁滞回线消失时所对应的温度值: 表9-2感应电动势积分值ε'及其对应的温度T值: 样品编号1(室温)初始(输出)感应电压328mV,磁滞回线消失时所对应的温度值63.2℃ 样品编号2 (室温)初始(输出)感应电压425mV,磁滞回线消失时所对应的温度值91.7℃ 2.各样品的U~T曲线 图1 样品1的U—T曲线

I n d u c e d v o l t a g e (m v ) 示波器法测得Tc= 图2 样品2的U —T I n d u c e d v o l t a g e (m V ) 示波器法测得Tc=91.7℃(室温25℃);U~T 曲线用切线法测得Tc=92.8℃ 3.实验结果分析: 从数据处理的结果可以看出,用示波器观察样品磁滞回线消失温度来确定的居里点Tc 和通过感应电动势随温度变化的曲线来推断居里点温度略有出入,但基本上相等。

4.思考题: (1)、样品的磁化强度在温度达到居里点时发生的微观机理是什么? 答:由于外加磁场的作用,物质中的状态发生变化,产生新的磁场的现象称为磁性,物质的磁性可分为反铁磁性(抗磁性)、顺磁性和铁磁性三种,一切可被磁化的物质叫做磁介质,在铁磁质中相邻电子之间存在着一种很强的“交换耦合”作用,在无外磁场的情况下,它们的自旋磁矩能在一个个微小区域内“自发地”整齐排列起来而形成自发磁化小区域,称为磁畴。在未经磁化的铁磁质中,虽然每一磁畴内部都有确定的自发磁化方向,有很大的磁性,但大量磁畴的磁化方向各不相同因而整个铁磁质不显磁性。当铁磁体受到强烈的震动,或在高温下由于剧烈运动的影响,磁畴便会瓦解,这时与磁畴联系的一系列铁磁性质(如高磁导率、磁滞等)全部消失。对于任何铁磁物质都有这样一个临界温度,高过这个温度铁磁性就消失,变为顺磁性,这个临界温度叫做铁磁质的居里点。 (2)、通过测定感应电动势随温度变化的曲线来推断居里点温度时,为什么要由曲线上斜率最大处的切线与温度轴的交点来确定T C,而不是由曲线与温度轴的交点来确定T C? 答:因为温度升高到居里点时,铁磁性材料的磁性才发生突变,所以要在斜率最大处作切线;又因为在居里点附近时,铁磁性已基本转化为顺磁性,故曲线不可能与横坐标相交。 (3)、为什么尽可能选择高的“激励电压”,以得到尽可能高的(室温)初始(输出)感应电压(“电压测量”框中显示的数值),可以提高测试结果的精度? 答:因为高的“激励电压” 有利于抵抗由互感引起的感应电压的影响,提高测试结果的精度。另外,由于随温度的升高,感应电动势是减小的,如果初始电压小,则不易观察到温度升高时,电压降低的幅度变化,影响居里温度的确定,因此选择高的“激励电压”有利于获得全面准确的数据,并在绘制U~T 曲线时易观察到随温度的降低,感应电动势降低的幅度的变化,有利于作图的准确性和确定居里温度以提高测试结果的精度。

浅析铁磁谐振现象产生的原因和消除措施

浅析铁磁谐振现象产生的原因和消除措施 摘要:高压系统谐振过电压是电力系统常见的故障现象之一,其实质是电磁式电压互感器励磁特性饱和,在特定的运行条件下激发铁磁谐振,从而电力设备和系统安全运行带来危害。文章从故障实例入手,分析了铁磁谐振产生的机理、类型以及铁磁谐振的特性,并提出多种消除谐振的措施。 关键词:铁磁谐振;过电压;产生条件;影响因素;消除措施 高压系统谐振过电压是电力系统常见的故障现象之一,其实质是电磁式电压互感器(以下简称TV)励磁特性饱和,在特定的运行条件下激发铁磁谐振。由于谐振时会产生很高的过电压,危及电力设备和系统安全运行,因此必须采取有效的消除和防护措施。 电力系统的铁磁谐振可分两大类:一类是在66 kV及以下中性点不接地系统中,由于对地容抗与电磁式电压互感器励磁感抗的不利组合,在系统电压大扰动(如遭雷击、单相接地故障消失过程以及开关操作等)作用下而激发产生的铁磁谐振现象;另一类是发生在220 kV(或110 kV)变电站空载母线上,当用220 kV、110 kV带断口均压电容的主开关或母联开关对带电磁式电压互感器的空母线充电,或切除带有电磁式电压互感器的空母线时,操作暂态过程使连接在空母线上的电磁式电压互感器组中的一相、两相或三相激发产生的铁磁谐振现象。 1故障实例 佛子岭水电站地处山区,高压线路架设于崇山峻岭之中,雷雨季节遭受雷击几率较高,铁磁谐振过电压现象时有发生。 2007年7月某日,雷击后,该站发生35 kVⅡ段母线电压一相降低,另两相升高(超过线电压)现象,发“单相接地”信号并熔断2TV高压保险。35 kV系统接线图如图1所示。其时,35 kVⅠ、Ⅱ段母线并列运行,两回出线空载。1TV 与2TV的型号分别为:YDJJ-35、JDJJ2-35。 2008年某日,110 kV母线停电操作过程中,当拉开最后一台高压开关时,母线电压瞬时升高,二次保护回路电压继电器线圈烧毁,如图2所示。TV型号是JCC6-110,高压开关型号是SW4-110Ⅱ,双断口带有均压电容器。 以上两起故障是典型的铁磁谐振过电压现象,下面我们来简单分析一下故障的成因。 2铁磁谐振产生过程及其特点 2.1铁磁谐振现象的基本概念

铁磁性材料居里温度的测试

铁磁性材料居里温度的测试 铁磁性物质的磁性随温度的变化而改变。温度上升到某一温度时,铁磁性材料就由铁磁状态转变为顺磁状态,即失掉铁磁性物质的特性而转变为顺磁性物质,这个温度称之为居里 表示。居里温度是磁性材料的本征参量之一,它仅与材料的化学成分和晶体结温度,以T c 构有关,几乎与晶粒的大小、取向以及应力分布等组织结构因素无关,为组织和结构不敏感参量。测定铁磁性材料的居里温度不仅对磁性材料、磁性器件的研究和研制,而且对工程技术应用都具有十分重要的意义。 一、数据记录、处理及误差分析 1、实验前应列出记录数据的表格(参见表9—1、9—2),记录时准确定出有效数字位数。注意:要求记录不同样品的(室温)初始(输出)感应电压值。 表9-1磁滞回线消失时所对应的温度值及初始(输出)感应电压值 表9-2感应电动势积分值ε'及其对应的温度T值

2、绘出每个样品的U~T 曲线,按照图9—5的方法确定各自的居里点Tc ,并与通过示波器观察样品磁滞回线消失温度来确定居里点Tc 方法得到的结果进行比较,并加以分析讨论。 20 30 40 50 60 70 80 90 050100150200250300 350400 i n d u c e d v o l t a g e (m V ) temperature(℃) 图1-1 试样一的U~T 曲线 示波器法测得Tc=85℃(室温26℃) U~T 曲线用切线法测得Tc=85.2℃ 050100150200250300 350400i n d u c e d v o l t a g e (m V ) temperature(℃) 图1-2 试样二的U~T 曲线 示波器法测得Tc=130.6℃(室温25℃) U~T 曲线用切线法测得Tc=130.2℃

铁磁材料居里温度的测量

铁磁材料居里温度的测量 一、实验目的 1、了解物质由铁磁性转变为顺磁性的微观机理。 2、学会一种测量铁磁材料居里点的实验方法。 3、测定铁磁环样品的居里温度。 二、实验原理 1、磁介质与物质的磁性 在磁场的作用下发生变化并反过来影响磁场的物质叫磁介质。磁介质在磁场作用下发生变化的过程叫磁化(任何物质都就是磁介质) 2、磁化的微观机制 安培的分子电流假说:每个分子内部电荷运动的总效果相当于一个圆形电流——分子电流 物质磁性的根源:原子内部电荷运动。 温度对磁性有显著影响。分子热运动,对磁畴磁矩有序排列有破坏作用,温度升高到一定数值,铁磁性消失。 居里点——铁磁材料失去磁性或者从铁磁相转变为顺磁相的温度(相变)。 测量原理: 给绕在待测样品磁环上的线圈L1通交变电流i(励磁电流),产生交变磁场H,使铁磁环反复磁化。样品中B与H的关系B=f(H)为磁滞回线。 由于H正比于L1的电流,因此可以用电流的信号代表H的信号。 在励磁电路中串接采样电阻R1,将其两端的电压讯号(与电流正比)经放大后, 送至示波器的X轴输入以表示H。

B就是通过副线圈L2中因磁通量变化而产生的感应电动势来测定的。 所以,磁环中B与L2上感应电动势积分成正比。将L2上经过R2C积分电路,从积分电容上取出B值,放大处理送至示波器Y轴输入。 示波器x轴输入反映H,Y轴输入反映B,示波器显示磁滞回线。当磁环被加热到一定温度,磁滞回线消失。对应温度即居里点。 三、实验仪器 JHD-Ⅱ型居里点测试仪: 1、电源箱(电源部分,温度设置控制,H、B信号处理部分); 2、加热炉 3、铁磁材料样品; 4、示波器。 四、注意事项 1、实验过程中适当调节X衰减,以显示较理想的磁滞回线。 2、每次须让加热炉降至常温再放入样品,以免温度传感器响应时间不同引起测量误差。 3、谨慎换放样品,不能拉扯金属插头外导线。 4、测800以上样品,小心高温烫伤。 5、观察磁滞回线时,两线圈有互感,故始终有感应电压。因此,当磁滞回线变为直线时,不能将Y轴输入衰减无限减小。 五、实验内容 一、观察材料升温过程中磁滞回线消失及居里点 1、连线、放样品。连线加热炉与电源箱面板;样品与电源箱专用线连接,放入

铁磁性材料居里温度的测试

实验九铁磁性材料居里温度的测试 铁磁性物质的磁性随温度的变化而改变。温度上升到某一温度时,铁磁性材料就由铁磁状态转变为顺磁状态,即失掉铁磁性物质的特性而转变为顺磁性物质,这个温度称之为居里 表示。居里温度是磁性材料的本征参量之一,它仅与材料的化学成分和晶体结温度,以T c 构有关,几乎与晶粒的大小、取向以及应力分布等组织结构因素无关,为组织和结构不敏感参量。测定铁磁性材料的居里温度不仅对磁性材料、磁性器件的研究和研制,而且对工程技术应用都具有十分重要的意义。 一、数据记录、处理及误差分析 1、实验前应列出记录数据的表格(参见表9—1、9—2),记录时准确定出有效数字位数。注意:要求记录不同样品的(室温)初始(输出)感应电压值。 表9-1磁滞回线消失时所对应的温度值及初始(输出)感应电压值 表9-2感应电动势积分值ε'及其对应的温度T值

样品编号3 (室温)初始(输出)感应电压332 mV,磁滞回线消失时所对应的温度值104.6 ℃ 2、绘出每个样品的U~T曲线,按照图9—5的方法确定各自的居里点Tc,并与通过示波器观察样品磁滞回线消失温度来确定居里点Tc方法得到的结果进行比较,并加以分析讨论。 图1-1 试样一的U~T曲线 示波器法测得Tc=65.9℃(室温25℃) U~T曲线用切线法测得Tc=65.2℃

图1-2 试样二的U~T曲线示波器法测得Tc=104.7℃(室温25℃) U~T曲线用切线法测得Tc=103.2℃ 图1-3 试样三的U~T曲线 示波器法测得Tc=104.6℃(室温25℃)

U~T曲线用切线法测得Tc=103.5℃ 答:从数据处理的结果我们可以看出,用示波器观察样品磁滞回线消失温度来确定的居里点Tc比通过感应电动势随温度变化的曲线来推断居里点温度略大,但基本上相等。影响示波器测量结果的因素有(1)待测样品上的线圈L1、L2互绕在一起有一定的互感,始终存在一定感应电压,使示波器显示的磁滞回线不能准确地反映待测样品的真实磁滞回线的情况。(2)由于人眼的分辨率的影响,当磁滞回线变为一直线时,人们对形成直线的判断不同,因此在读取磁滞回线消失时的温度时造成误差。影响通过感应电动势随温度变化的曲线推断居里点温度结果的因素有(1)由于磁芯有温度滞后效应,所以加热速率的快慢对居里点Tc测试结果会略有影响。(2)在绘制U~T曲线后,切线作图的准确性和坐标点的读取也会对测试结果产生影响。 3、实验数据点在图中要明显点出,画曲线要求做到一笔落成,曲线要光滑、粗细要均匀。答:请见图1—1、1—2、1—3。 4、对实验现象和误差进行分析讨论。 答:在实验开始时,通过调节示波器,我们可以观察到B~H曲线为一闭合曲线,即磁滞回线。这是因为铁磁物质最大的特点是当它被外磁场磁化时,其磁感应强度B和磁场强度H 的关系不是非线性的,也不是单值的,而且磁化情况还与它以前的磁化历史有关。开始时,随着温度的升高,感应电动势缓慢降低,在50℃或60℃以后,感应电动势迅速降低,直至为0mV;而磁滞回线随温度的升高逐渐变扁变宽,在某一温度(居里温度)时,磁滞回线消失变成一条直线,这是因为铁磁性物质的磁性随温度的变化而改变。当温度上升到某一温度时,铁磁性材料就由铁磁状态转变为顺磁状态,即失掉铁磁性物质的特性而转变为顺磁性物质,这个温度就是居里温度。在实验数据处理后,用磁滞回线和U~T曲线做切线方法所得到的居里温度Tc不同,所造成的误差可能有,磁滞回线法:(1)待测样品上的线圈L1、L2互绕在一起有一定的互感,始终存在一定感应电压,使示波器显示的磁滞回线不能准确地反映待测样品的真实磁滞回线的情况。(2)由于人眼的分辨率的影响,当磁滞回线变为一直线时,人们对形成直线的判断不同,因此在读取磁滞回线消失时的温度时造成误差。U~T曲线做切线法:(1)由于磁芯有温度滞后效应,所以加热速率的快慢对居里点Tc测试结果会略有影响。(2)在绘制U~T曲线后,切线作图的准确性和坐标点的读取也会对测试结果产生影响。 二、思考题 1.样品的磁化强度在温度达到居里点时发生突变的微观机理是什么?试用磁畴理论进行解释。 答:样品的磁化强度在温度达到居里点时发生突变的微观机理是,铁磁性物质的磁化与温度有关,存在一临界温度Tc称为居里温度(也称为居里点)。当温度增加时,由于热扰动影响磁畴内磁矩的有序排列,但在未达到居里温度Tc时,铁磁体中分子热运动不足以破坏磁畴内磁矩基本的平行排列,此时物质仍具有铁磁性,仅其自发磁化强度随温度升高而降低。如果温度继续升高达居里点时,物质的磁性发生突变,磁化强度M(实为自发磁化强度)剧烈下降,因为这时分子热运动足以使相邻原子(或分子)之间的交换耦合作用突然消失,从而瓦解了磁畴内磁矩有规律的排列,此时磁畴消失,铁磁性变为顺磁性。 2.通过测定感应电动势随温度变化的曲线来推断居里点温度时,为什么要由曲线上斜率最大处的切线与温度轴的交点来确定Tc,而不是由曲线与温度轴的交点来确定Tc? 答:在εeff(B)~T曲线斜率最大处作切线,与横坐标轴(温度)相交的一点即为居里温度Tc,

铁磁谐振

铁磁谐振的几个特点 1)对于铁磁谐振电路,在相同的电源电势作用下回路可能不只一种稳定的工作状态。电路到底稳定在哪种工作状态要看外界冲击引起的过渡过程的情况。 2)PT的非线性铁磁特性是产生铁磁谐振的根本原因,但铁磁元件的饱和效应本身也限制了过电压的幅值。此外回路损耗也使谐振过电压受到阻尼和限制。当回路电阻大于一定的数值时,就不会出现强烈的铁磁谐振过电压。 3)串联谐振电路来说,产生铁磁谐振过电压的的必要条件是因此铁磁谐振可在很大 的范围内发生。 4)维持谐振振荡和抵偿回路电阻损耗的能量均由工频电源供给。为使工频能量转化为其它谐振频率的能量,其转化过程必须是周期性且有节律的,即…1/2(1,2,3…) 倍频率的谐振。 5)铁磁谐振对PT的损坏。电磁谐振(分频)一般应具备如下三个条件。 ①铁磁式电压互感器(PT)的非线性效应是产生铁磁谐振的主要原因。 ②PT感抗为容抗的100倍以内,即参数匹配在谐振范围。 ③要有激发条件,如PT突然合闸、单相接地突然消失、外界对系统的干扰或系统 操作产生的过电压等。 据试验分频谐振的电流为正常电流的240倍以上,工频谐振电流为正常电流的40~60倍左右,高频谐振电流更小。在这些谐振中,分频谐振的破坏最大,如果PT的绝缘 良好,工频和高频一般不会危及设备的安全 当系统发生单相接地时,故障点流过电容电流,末接地的两相相电压长高√3,这将严重影响线路和电气设备的安全运行(此时电压互感器的励磁阻抗很大,故流过的电流很小)。但是,一旦接地故障点消除,非接地相在故障期间已充的电荷只能通过电压互感器高压线圈经其自身的接地点接入大地。在这一瞬间电压突变过程中,电压互感器高压线圈的非接地两相的励磁电流就要突然增大,甚至饱和、由此构成相间串联谐振。由于接地电弧熄灭时间不同,故障点的切除就不一样。因此,不一定在每次出现单相接地故障时,电压互感器高压线圈中都要产生很大的激磁电流,其高压侧熔断器的情况也有所不同。 铁磁谐振的常用消除办法 根据以上分析配电系统铁磁谐振的特性,就不难找到加以解决的办法。通常的解决办法有: 1)PT一次的中性点加装阻尼电阻。该方法在已广泛采用,生产定型产品的厂家比较多,在实际运用中都取得了满意的效果。如西安电瓷厂生产的RXQ系列消谐器,该消谐器串接于PT一次绕组中性点与地之间,内部材料为大容量的非线性碳化硅电阻片及散热片等串联组装于瓷套内而成。其工作原理为:在低压下消谐器呈高电阻值(可达几百千欧)使谐振在起始阶段不易发展,单相接地时,消谐器上出现千余伏电压,它的非线性电阻下降,使其不影响接地保护的工作。 2)在PT开口三角侧并联固定(或可变)阻尼,一些要求不太高的变电所或配电系统常在PT开口三角处并联电灯泡或电炉丝。其缺点是:电灯泡或电炉丝易损坏,当其损坏后将不会有消谐作用;当系统发生单相接地时,在开口三角侧将产生100 V的电压,而由于电灯泡或电炉丝的冷态电阻是较小的,这将在PT开口三角侧流过较大的电流引起PT损坏。 针对这些办法的不足,一些厂家相继开发生产出了一些较高级的产品。如云南昆明

铁的用途

铁的用途
铁元素 铁是有光泽的银白色金属,硬而有延展性,熔点为 1535℃, 沸点 2750℃,有很 强的铁磁性,并有良好的可塑性和导热性。比热容约为 0.46*1000J/(KG*℃ ) 声音在其中的传播速率:(m/S) 5120 纯铁密度:7.86g/cm^3 编辑本段铁的形成
相对原子质量 55.847。铁有多种同素异形体。铁是比较活泼的金属,在金属活动顺序 表里排在氢的前面。常温时,铁在干燥的空气里不易与氧、硫、氯等非金属单质起反 应,在高温时,则剧烈反应。铁在氧气中燃烧,生成 Fe3O4,赤热的铁和水蒸气起反 应也生成 Fe3O4。铁易溶于稀的无机酸和浓盐酸中,生成二价铁盐,并放出氢气。在 常温下遇浓硫酸或浓硝酸时,表面生成一层氧化物保护膜,使铁“钝化”,故可用铁 制品盛装浓硫酸或浓硝酸。铁是一变价元素,常见价态为+2 和+3。铁与硫、硫酸铜溶 液、盐酸、稀硫酸等反应时失去两个电子,成为+2 价。与 Cl2、Br2、硝酸及热浓硫酸 反应,则被氧化成 Fe3+。铁与氧气或水蒸气反应生成的 Fe3O4,可以看成是 FeO·Fe2O3,其中有 1/3 的 Fe 为+2 价,另 2/3 为+3 价。但 FeO·Fe2O3 不符合 Fe3O4 不与稀酸反应的性质,经光谱检验,应为 Fe(+3)Fe(+2)[Fe(+3)O4],即铁酸铁与铁酸 亚铁的复合盐。铁的+3 价化合物较为稳定,但有较强的氧化性,能把铜氧化成+2 价 (2FeCl3+Cu===2FeCl2+CuCl2,常温下即可反应,用于刻蚀铜板) 常见化合价+2 和
+3,有好的延展性和导热性。也能导电。纯铁既能磁化,又可去磁,且均很迅速。电 离能为 7.870 电子伏特。化学性质比较活泼,是一种良好的还原剂。若有杂质,在潮 湿的空气中易锈蚀;在有酸气或卤素蒸气存在的湿空气中生锈更快。易溶于稀酸。在 浓硝酸中能被钝化。加热时均能同卤素、硫、硅、碳、磷等化合。除生成+2 和+3 价氧
1 / 17

铁磁材料居里点的测量大物论

铁磁材料居里点的测量 辽宁科技大学 机械工程与自动化学院 机械设计11-A1 毕帅 [摘要]:本文利用居里点测量仪对温敏铁磁样品的居里点温度进行定性测量和定量测量,通过对测量结果的对比发现,采用定性测量和定量测量得到的居里点温度存在一定的差异,并对产生差异的原因进行了简要的分析。 [关键词]:铁磁材料;居里点;测量方法 引言;铁磁性物质的磁特性随温度的变化而改变,当温度上升至某一温度时,铁磁性材料就由铁磁状态转变为顺磁状态,即失掉铁磁性物质的特性而转变为顺磁性物质,这个温度称为居里温度,以T c 表示。居里温度是磁性材料的本征参数之一,它仅与材料的化学成分和晶体结构有关,几乎与晶粒的大小、取向以及应力分布等结构因素无关,因此又称它为结构不灵敏参数。测定铁磁材料的居里温度不仅对磁材料、磁性器件的研究和研制,而且对工程技术的应用都具有十分重要的意义。本项研究利用居里点测量仪对温敏铁磁样品的居里点温度进行定性测量和定量测量,并对测量结果产生差异的原因进行了简要的分析。 一、实验原理 1.1基本理论 在铁磁物质中,相邻原子间存在着非常强的交换耦合作用,这个相互作用促使相邻原子的磁矩平行排列起来,形成一个自发磁化达到饱和状态的区域,这个区域的体积约为10-8m 3 ,称之为磁畴。在没有外磁场作用时,不同磁畴的取向各不相同,如图1所示。因此,对整个铁磁物质来说,任何宏观区域的平均磁矩为零,铁磁物质不显示磁性。当有外磁场作用时,不同磁畴的取向趋于外磁场的方向,任何宏观区域的平均磁矩不再为零,且随着外磁场的增大而增大。当外磁场增大到一定值时,所有磁畴沿外磁场方向整齐排列,如图2所示,任何宏观区域的平均磁矩达到最大值,铁磁物质显示出很强的磁性,我们说铁磁物质被磁化了。铁磁物质的磁导率μ远远大于顺磁物质的磁导率。 铁磁物质被磁化后具有很强的磁性,但这种强磁性是与温度有关的,随着铁磁物质温度的升高,金属点阵热运动的加剧会影响磁畴磁矩的有序排列,但在未达到一定温度时,热运动不足以破坏磁畴磁矩基本平行排列,此时任何宏观区域的平均磁矩仍不为零,物质仍具有磁性,只是平均磁矩随温度升高而减小。而当与k T (k 是玻尔兹曼常数,T 绝对温度)成正比的热运动能足以破坏磁畴磁矩的整齐排列时, 磁畴被瓦解,平均磁矩降为零,铁磁物质的磁性消失而转变为顺磁物质,与磁畴相联系的一系列铁磁性 图 1 无外磁场作用的磁畴 图 2 在外磁场作用下的磁畴

钢构件磁粉探伤的聚磁成因分析

钢构件磁粉探伤的聚磁成因分析 发表时间:2018-08-15T10:49:41.200Z 来源:《防护工程》2018年第7期作者:韩冰 [导读] 本文通过使用磁粉探伤、电子探针、低倍检验等多种检验分析方法,得出了由C38N2制成的某钢构件的聚磁成因,并且从构件加工角度考虑,明确分析这一裂纹的产生原理。 中国航发哈尔滨东安发动机有限公司黑龙江哈尔滨 150066 摘要:本文通过使用磁粉探伤、电子探针、低倍检验等多种检验分析方法,得出了由C38N2制成的某钢构件的聚磁成因,并且从构件加工角度考虑,明确分析这一裂纹的产生原理。 关键词:钢构件;磁粉探伤;聚磁成因 磁粉探伤被称之为MT或者MPI,它是一种有效的探测方法,经常被应用于钢铁等磁性材料的表面探伤中。本文对聚磁误判的钢结构构件中取样展开了检验,通过磁粉探伤和低倍检验等多种方法,全面分析了聚磁现象产生的原因。 1、成因 某钢厂生产的GCr15轴承钢用于生产铁路轴承滚子,在对轴承滚子进行磁粉探伤检验时,发现个别滚子表面有聚磁现象。对该轴承钢聚磁件进行低倍检验、金相检验、电镜扫描及能谱分析,结果表明,轴承钢淬火金相组织存在隐晶马氏体区和结晶马氏体区,这是由于钢锭结晶时产生树枝状偏析造成碳和铬在成分上的不均匀所致,在加热淬火时此微区为欠热区,存在较多的未溶碳化物颗粒、较细的奥氏体晶粒和较多隐晶马氏体区,从而保留较多的残余奥氏体,产生聚磁现象。 2、取样 本次取样工作的重点是,在初次磁粉探伤的过程中,发现有磁痕而被误判的钢结构构件中,切取聚磁部位展开分析。 3、检验 3.1再次磁粉探伤 在实验过程中,将这一钢构件的聚磁部分切取下来,采取荧光湿法和横向磁化的方法再次实施磁粉探伤工作,以此确定磁痕的具体问题。等到再次确认磁粉探伤的时候可以看出,钢结构磁粉聚集现象和第一次磁粉探伤时产生的现象是一摸一样的。 3.2低倍检验 使用提示显微镜来观察试样聚磁部位的外表特点,随后实施低倍组织检验工作。 从低倍组织图可以看出,呈现的钢构件试样聚磁位置处,有着较小的裂痕,并且这种裂痕现象的实际走向是垂直于构架加工过程中的磨削方向。 3.3高倍检验 通过对该钢结构件试样切片之后,实施金相组织检验工作,根据检验结果可得出,钢材的金相组织是一种回火马氏体组织情况,其中剩余的奥氏体量比较小,并且没有任何组织发生异常现象。 从夹杂物实际检验现象可以看出来,观察到的钢构件试样夹杂物自身具有很低的等级,硫化物呈现良好的发展趋势。 3.4电子探针分析 使用电子探针分析方式对这一钢构件试样切片展开全面的分析和研究。 在3000倍下开展观察工作,从表面一直到3.0mm位置上,每间隔0.5mm便观察一次,在大约 2.0~3.0mm位置处,可以看出,组织存在一定的异常情况,呈现细微的针状马氏体形状。钢构件试样表面到3.0mm不同深度处的组织面貌如下图所示: 图十 2.0mm处的组织形貌图十一 3.0mm处的组织形貌 从以上多个图观察到的试样不同深度处组织形貌可以看出,在3.0mm范围内,试样的组织大都是较为粗大的回火马氏体,这一种物体属于钢种中频淬火之后的低温回火组织。 从电子探针观察到的现象可以看出,上述图中钢构件试样磁痕位置处具有一定的裂纹,并且这一裂纹的实际走向和硫化物方向是一样的,两者差不多都属于垂直方向,纵向的裂纹表面如下图所示,横向裂纹形貌如下:

铁磁材料居里点的测量

标题:铁磁材料居里点的测量 作者: 摘要:介绍了通过转换出分别与磁化强度和磁场强度成正比的电压信号,来定性观察与定量测量居里点的一种方法。 关键词:铁磁材料;居里点;磁滞回线 引言:铁磁材料的磁性随温度的变化而改变,当温度上升到某一定值时,铁磁材料就失掉铁磁物质的特性而转变为顺磁性物质,这一 转变温度称为居里温度,以表示。对的测定不仅对磁性材料、磁性器件的研制、使用,而且对工程技术乃至家用电器的设计都具有重要的意义。 正文:铁磁材料(又称铁氧体)是铁和其它一种或多种适当的金属元素的复合氧化物.按磁滞回线的形状来分,有软磁材料,硬磁(又叫永久磁性)材料。 铁磁材料在工业上,尤其在电力工业上应用最为广泛,如制造发电机,电动机及电力输送变压器上的永久磁铁和硅钢片。我们日常用的家电里有收音机中的天线棒,中周变压器,电视机中的回扫变压器,录象机中的磁头,磁鼓。计算机中的记忆元件,逻辑元件,扬声器以及电话机中都有磁性材料。 铁磁材料在尖端技术和国防科技中应用也很多,如雷达,微波多路通讯,自动控制,射电天文望远镜,远程操纵等。 1,铁磁材料居里点存在的基本原理 以铁为代表的一类磁性很强的物质叫铁磁质。在纯化学元素中,

除铁之外,还有过渡族中的其它元素,如钴,镍和某些稀土族元素如钆,镝,钬都具有铁磁性.但常用的铁磁质多数是铁和其它金属或非金属组成的合金,以及某些包含铁的氧化物(铁氧体)。 铁磁质的磁性主要来源于电子自旋磁矩。在没有外磁场的条件下铁磁质中的电子自旋磁矩可以在小范围内自发地排列起来,形成一个个小的自发磁化区。这种自发磁化区叫做磁畴。 自发磁化只发生在微小的区域(体积约为10 -8 m 3,其中含有1017一1021个原子)内,这些区域叫做磁畴。 如图19-l,其中图19-l(a)为单晶磁畴结构示意图,图19-l(b)为多晶磁畴结构示意图。由图可见在没有外磁场作用时,在每个磁畴中,原子磁矩已经取向同一方位,但对不同的磁畴其分子磁矩的取向各不相同,磁畴的这种排列方式,使磁体处于最小能量的稳定状态.因此对整个铁磁体来说,任何宏观区域的总磁矩仍然为零,整个磁体不显磁性。线条为畴界,箭头为磁畴的磁化方向。 但在外加磁场后将显示出宏观的磁性来。当外加的磁化场不断加大时,磁畴的磁化方向在不同程度上转向磁化场的的磁方向,当所有畴都按磁化场的方向排列好,介质的磁化就达到饱和。饱和时的磁化强度是很大的。介质掺杂和内应力在磁化场去掉后阻碍着磁畴

铁磁谐振原理

(1) 铁磁谐振是电力系统自激振荡的一种形式,是由于变压器、电压互感器等铁磁电感的饱和作用续性、高幅值谐振过电压现象。其主要特点为: 1、谐振回路中铁心电感为非线性的,电感量随电流增大、铁心饱和而下降; 2、铁磁谐振需要一定的激发条件,使电压、电流幅值从正常工作状态转移到谐振状态。如电源电压暂时升高、系统受到较强烈的电流冲击等; 3、铁磁谐振存在自保持现象。激发因素消失后,铁磁谐振过电压仍然可以继续长期存在; 4、铁磁谐振过电压一般不会非常高,过电压幅值主要取决于铁心电感的饱和程度。 (2) 中文词条名:铁磁谐振过电压现象和消除办法是什么? 英文词条名: 答:现象:三相电压不平衡,一或两相电压升高超过线电压。 消除办法:改变系统参数。 (1)断开充电断路器,改变运行方式。 (2)投入母线上的线路,改变运行方式。 (3)投入母线,改变接线方式。 (4)投入母线上的备用变压器或所用变压器。 (5)将TV开口三角侧短接。 (6)投、切电容器或电抗器。 发生铁磁谐振的防范措施 中国电力网 2008年1月9日13:47 来源:点击直达中国电力社区 110 kV良站10 kV系统为中性点不接地系统,在10 kV系统出现A相单相接地时,发生10 kV母线干式电压互感器烧坏的故障。事后检查,母线电压互感器本体炸裂、内部绝缘物喷

出,非接地相B、C相一次熔丝熔断,母线电压互感器的避雷器未动作,中性点所接消谐电阻正常,中性点绝缘正常,励磁特性在正常范围,二次回路绝缘正常。现分析单相接地时,电压互感器烧坏及铁磁谐振产生的原因。 电力系统中存在着许多储能元件,当系统进行操作或发生故障时,变压器、互感器等含铁芯元件的非线性电感元件与系统中电容串联可能引起铁磁谐振,对电力系统安全运行构成危害。在中性点不接地的非直接接地系统中,铁磁式电压互感器引起的铁磁谐振过电压是常见的,是造成事故较多的一种内部过电压。这种过电压轻则使电压互感器一次熔丝熔断,重则烧毁电压互感器,甚至炸毁瓷绝缘子及避雷器造成系统停运。在一定的电源作用下会产生串联谐振现象,导致系统中出现严重的谐振过电压。 1 电压互感器引起铁磁谐振的原因分析 在中性点不接地系统中,为了监视对地绝缘,母线上常接有Y接线的电磁式电压互感器,如图1所示,图中u0为电源电势,C为线路等设备的对地电容,L为电压互感器激磁电感,R0为中性点串联消谐电阻。

铁磁、反铁磁、顺磁、抗磁教学内容

铁磁、反铁磁、顺 磁、抗磁

铁磁性 铁磁性 Ferromagnetism 过渡族金属(如铁)及它们的合金和化合物所具有的磁性叫做铁磁性,这个名称的由来是因为铁是具有铁磁性物质中最常见也是最典型的。钐(Sam arium),钕(neodymium)与钴的合金常被用来制造强磁铁。 铁磁理论的奠基者,法国物理学家P.-E.外斯于1907年提出了铁磁现象的唯象理论。他假定铁磁体内部存在强大的“分子场”,即使无外磁场,也能使内部自发地磁化;自发磁化的小区域称为磁畴,每个磁畴的磁化均达到磁饱和。实验表明,磁畴磁矩起因于电子的自旋磁矩。1928年W.K.海森伯首先用量子力学方法计算了铁磁体的自发磁化强度,给予外斯的“分子场”以量子力学解释。1930年F.布洛赫提出了自旋波理论。海森伯和布洛赫的铁磁理论认为铁磁性来源于不配对的电子自旋的直接交换作用。 铁磁性材料存在长程序,即磁畴内每个原子的未配对电子自旋倾向于平行排列。因此,在磁畴内磁性是非常强的,但材料整体可能并不体现出强磁

性,因为不同磁畴的磁性取向可能是随机排列的。如果我们外加一个微小磁场,比如螺线管的磁场会使本来随机排列的磁畴取向一致,这时我们说材料被磁化[1]。材料被磁化后,将得到很强的磁场,这就是电磁铁的物理原理。 当外加磁场去掉后,材料仍会剩余一些磁场,或者说材料"记忆"了它们被磁化的历史。这种现象叫作剩磁,所谓永磁体就是被磁化后,剩磁很大。 当温度很高时,由于无规则热运动的增强,磁性会消失,这个临界温度叫居里温度(Curie temperature)。 如果我们考察铁磁材料在外加磁场下的机械响应,会发现在外加磁场方向,材料的长度会发生微小的改变,这种性质叫作磁致伸缩(magnetostrictio n)。 产生铁磁性条件: 铁磁质的自发磁化: 铁磁现象虽然发现很早,然而这些现象的本质原因和规律,还是在本世纪初才开始认识的。1907年法国科学家外斯系统地提出了铁磁性假说,其主要内容有:铁磁物质内部存在很强的“分子场”,在“分子场”的作用下,原子磁矩趋于同向平行排列,即自发磁化至饱和,称为自发磁化;铁磁体自发磁化分成若干个小区域(这种自发磁化至饱和的小区域称为磁畴),由于各个区域(磁畴)的磁化方向各不相同,其磁性彼此相互抵消,所以大块铁磁体对外不显示磁性。 外斯的假说取得了很大成功,实验证明了它的正确性,并在此基础上发展了现代的铁磁性理论。在分子场假说的基础上,发展了自发磁化(sponta

相关文档
最新文档