矩阵与线性方程

矩阵与线性方程
矩阵与线性方程

矩阵与线性方程

————————————————————————————————作者:————————————————————————————————日期:

2

1 第一章 矩阵与线性方程组

在中学已经学习了有关两个未知量、两个方程的二元一次方程组的基本知识。一次方程又称为线性方程。在自然科学、社会科学和许多工程技术问题中,常常需要处理几十、几百甚至成千上万个未知量的线性方程组,未知量的个数和方程的个数也不一定完全一致,这就要求我们把关于二元一次方程组的知识推广到有n 个未知量和m 个方程的线性方程组上去。矩阵是解决这类问题的重要工具之一。

1.1 矩阵及其运算

1.1.1 线性方程组及其矩阵表示

线性方程组(system of linear equations )的一般形式为

???????=+++=+++=+++m

n mn m m n n n n b x a x a x a b x a x a x a b x a x a x a ΛΛΛΛΛΛΛΛΛΛΛΛΛΛ22112

222212********* (1.1)

显见,二元一次方程组是其特款。方程组(1.1)中有m 个

方程、n 个未知量。a ij 代表第i 个方程中未知量x j 的系数,b i 是

第i 个方程的常数项。当常数项b 1 ,b 2 ,…,b m 全为零时,式(1.1)称为齐次线性方程组;当常数项不全为零时,式(1.1)称为非齐次线性方程组。

当m 、n 较大时,方程组(1.1)的书写需重复许多次未知量以及“+”、“=”运算符号,如用计算机进行处理,则浪费很多存储空间。因此,我们将方程组(1.1)中未知量的系数简化

2 成如下的m 行n 列矩形数表

????????????mn m m n n a a a a a a a a a ΛM M M M ΛΛ21

2222111211 如果再考虑到方程组右端的常数项(非齐次项),还可以得

到m 行n +1列矩形数表

?????

???????m mn m m n n b a a a b a a a b a a a ΛM M M M M ΛΛ21222221111211 对方程组的研究将归结于对如上形式数表的研究。

将上述类型的数表抽象为如下的矩阵定义。

定义1.1 将m×n 个数ij a (i =1,2,…,m;j =1,2,…,n )排成一个矩形数表

A =?????????

???mn m m n n a a a a a a a a a ΛM M M M ΛΛ21

2222111211 (1.2)

称为一个m 行n 列矩阵(matrix),简称为m×n 矩阵。其中横向各排称为行,纵

向各排称为列,m×n 个数叫作矩阵A 的元或元素;a ij 叫做矩阵A 的第i 行第j 列元;所有元素均为0的矩阵,称为零矩阵,记作O 。元是实数的矩阵称为实矩阵,元是复数的矩阵称为复矩阵。

式(1.2)也简记为:

A = (a ij )m×n 或 A = (a ij )

一般情况下,我们用大写字母A ,B ,C ,…表示矩阵。本书中的矩阵除特殊说明外,都指实矩阵。

定义1.2 如果两个矩阵A ,B 有相同的行数与相同的列数,并且对应位置的元均相等,则称矩阵A 与矩阵B 相等,记为

3 A =B 。即如果A = (a ij )m×n , B = (b ij )m×n , 且a ij =b ij (i=1,2,…, m ; j=1,2,…, n ),则 A =B

我们可以对矩阵定义一些运算,它们都是有其实际背景的。为了说明线性方程组如何通过矩阵来表示,先引进矩阵的乘法运算。

定义1.3 设矩阵A = (a ik )m×l 的列数与B = (b k j )l×n 行数相同,则由元素

c i j =a i 1b 1j + a i 2b 2j +…+ a il b l j =∑=l

k kj ik

b a

1

(i=1,2,…, m ;

j=1,2,…, n )

构成的m 行n 列矩阵C = (c ij )m×n =(∑=l

k kj ik

b a

1

)m×n 称为矩阵A

与矩阵B 的乘积,记为 C=AB

如果记

A =????????????mn m m n n a a a a a a a a a ΛM M M M ΛΛ212222111211, x =?

?

???

?

??????n x x x M 2

1, b =????????????m b b b M 21

则线性方程组(1.1)可以通过矩阵的乘法表示成矩阵方程

Ax=b (1.3)

1.1.2 矩阵的基本运算及性质

需要指出,能用矩阵描述的问题并不局限于线性方程组。矩阵在工业、农业、经济等许多领域有着广泛的应用,伴随计算机技术的飞速发展,矩阵被更有效地运用到物理学、力学、化学、生物学、遗传学、医学等众多学科中,成为解决线性问题的有力工具。矩阵已经有了完整的理论体系,本小节主要介绍矩阵的基本运算。

定义1.4 设有两个m×n 矩阵A = (a ij )m×n ,B = (b i j )m×n ,那么A 与B 的和记作A +B ,规定为

4 A +B =?

?

???

??

??

???+++++++++mn mn m m m m n n n n b a b a b a b a b a b a b a b a b a ΛM M M M ΛΛ

2

21

12222

2221

211112121111 应当注意,只有两个矩阵是同型矩阵,即它们的行数、列数分别对应相等时,这两个矩阵才能进行加法运算。

矩阵加法满足下列运算规律(设A 、B 、C 都是m×n 矩阵) (1) A +B = B +A

(2) (A +B)+C=A+(B+C) 设矩阵A = (a ij ),记

- A = (-a ij )

-A 称为矩阵A 的负矩阵, 显然有 A+(-A)=O 由此规定矩阵的减法为

A -B=A+(-B)

定义1.5 数λ与矩阵A 的乘积记作λA 或A λ,规定为

λA=A λ=???

??

????

???mn m m n n a a a a a a

a a a λλλλλλλλλΛ

M M

M

M ΛΛ21

222

21

11211

设A 、B 为m×n 矩阵,λ、μ为数,数乘矩阵满足下列运算

规律

(1) (λμ)A =λ(μA ) (2) (λ+μ)A =λA +μA (3) λ(A+B )=λA +λB

这些运算规律都很容易从数的运算规律得到。

下面给出一些矩阵基本运算的例子。

例1.1 设 A =????

??-361531 B=???

???--83

0212

5 则 A+B=?

?

?

?

??-1191323 例1.2 3??????????---543501321=??

??

??????---151291503963

例1.3 矩阵乘法

????????????-????????????????-1011 10010010010010120101

=????????????????+++++-+++++-+++-10010010000010120001=??

?

????

?

????????--21021 例1.4 矩阵乘法

???????

??????????

??

???--111101100101 01

1011110011=??

???

?

?????

?--021*********

0011 例1.5 给定矩阵A =??????????100100010 B =????

??????000000100 则有 AB =??????????100100010??????????000000100=??????????000000000= O BA=??????????000000100??????????100100010=????

??????000000100≠O 由定义及例1.5可以看出,矩阵乘法与数的乘法有一些根本

性的区别:

6 (1)矩阵的乘法对相乘的两个矩阵在行数和列数上是有要求的,即乘积AB 中A 的列数必须与B 的行数相一致,否则乘法无意义。

(2)矩阵的乘法一般是不可交换的,即在一般情况下,AB ≠BA 。实际上,AB 有意义时,BA 不一定有意义,即使有意义,两者也不一定相等。

(3)两个非零矩阵相乘有可能变成零矩阵。因而,由AB =O 并不能推出A=O 或B=O 。随之而来的是:由AB=AC ,且A ≠O ,并不能推出B=C 。

可以验证矩阵的乘法满足如下运算规律(假设运算都是可行的)

(1)结合律 A(BC)=(AB)C

(2)分配律(A+B )C=AC+BC A(B+C)=AB+AC (3)对任一数k ,有k (AB)=(k A)B=A(k B)

矩阵连同对其所定义的满足如上运算规律的加法、数乘和乘法运算一起称为矩阵代数。

对于矩阵,还可以定义转置运算。

定义1.6 把矩阵A 的各行变成同序数的列得到一个新的矩阵,称为A 的转置(transpose ),记作A T (或A t ,或A ')。

例如矩阵 A =??????-113021的转置矩阵为 A T =????

?

?????-101231 矩阵的转置满足如下运算规律(假设其中所涉及的运算都

是有意义的)

(1)(A T )T =A

(2)(A+B)T =A T +B T (3)(λA)T =λA T (4)(AB )T =B T A T

前三个规律是显然的,现在证明(4):

设A = (a ij )是m×n 矩阵,B =(b ij )是n×p 矩阵。

于是 A T =(ij

a ')n×m ,B T =(ij

b ')p×n ,其中 ij a '=a ji ,ij b '=b ji B T A T 中第i 行第j 列元为

7

∑∑∑=====''n

k ki jk n

k jk ki

n k kj

ik

b a a b

a b 1

1

1

而(AB T

)中第i 行第j 列元是AB 中的第j 行第i 列元,即

∑=n

k ki jk

b a

1

所以 (AB T

)=B T A T 证毕 设A 为n 阶方阵,如果满足A T =A ,即

a ij =a ji (i,j=1,2,…,n )

那么A 称为对称阵。对称阵的特点是:它的元以主对角线为对称轴而对应相等。 1.1.3 几种特殊形式的矩阵

如果矩阵A = (a ij ) 行数与列数等于n ,则称A 为n 阶矩阵

(或称n 阶方阵)。

在方阵中,从左上角到右下角的对角线称为主对角线,主对角线上的元称为对角元。主对角线一侧所有元都为零的方阵称为三角形矩阵。三角形矩阵有两种,分别称

????????????nn n n a a a a a a ΛM M M M ΛΛ00022211211 或 ????????????nn n n a a a a a a ΛM M M M ΛΛ

21

222111000 为上三角形矩阵或下三角形矩阵。

主对角线以外全为零的n 阶方阵

Λ=?

?

???

?

??????n λλλΛM M M M ΛΛ

00000021 称为对角线矩阵(diagonal matrix ),简称对角阵,也可以记为

Λ=diag(λ1 ,λ2 ,…,λn )

主对角线上元都为1的n 阶对角阵

8 ?

????

?

??????100010001ΛM M M M ΛΛ

称为n 阶单位矩阵(identity matrix ),记为E 或E n 。在矩阵的乘法运算中,

单位矩阵具有如下性质:

对任意矩阵A ,B ,有EA =A ,BE=B

这里假设上述矩阵乘法都是有意义的。

1.1.4 逆矩阵

定义1.7 设A 是一个n 阶方阵,如果存在n 阶方阵B ,使得

AB=BA=E

则称A 为可逆阵,B 是A 的逆矩阵(inverse ),简称逆阵;可逆阵也称为非退

化阵或非奇异阵。

性质1.1 如果方阵A 可逆,则A 有唯一的逆阵。 证明 设矩阵B 、C 都是A 的逆阵,则有

B=EB=(CA)B=C(AB)=CE=C

所以A 的逆阵是唯一的。 证毕

由于可逆阵A 的逆阵为唯一确定,所以可以用符号A -

1表示,有

A A -1=A -

1A =E

利用逆矩阵的记号,可以方便地表示出某些线性方程组的解。

考虑由n 个方程、n 个未知量构成的线性方程组:

??????

?+++++++++n

n n a x a x a a x a x a a x a x a ΛΛΛΛΛΛΛΛΛΛΛΛ221122221211212111

其系数矩阵是方阵

同济大学线性代数教案第一章线性方程组与矩阵

线性代数教学教案 第一章线性方程组与矩阵 授课序号01 1112121 2 n n m m mn a a a a a a ?? ?? ??? ,有时为了强调矩阵的行数和列数,也记为

n a ???. 212 n n n nn a a a ? ??? . 1112 00n n nn a a a a ?? ?? ? ? ?与上三角矩阵200 n nn a ? ??? . 000 0n a ??? ??? ,或记为100 1? ???? . 负矩阵的定义:对于矩阵()ij m n a ?=A ,称矩阵21 22 n m m m mn mn b a b a b ?? +++? ,

a b+

21 2 n m m mn a a a ????,转置矩阵212.m n n nm a ? ??? 矩阵的转置满足的运算规律(这里k 为常数,A 与B 为同型矩阵)阶方阵()ij a =A 如果满足222n n m mn n a x +21 2 n m m mn a a a ????称为该线性方程组的系数矩阵n x ???,m b = ? ??? β,有:

2221122221 21122n n n m m mn n m m mn n a a a x a x a x a x ??? ? =??? ???? ? ++ +????? . 再根据矩阵相等的定义,该线性方程组可以用矩阵形式来表示:=Ax β.

授课序号02 21 2 t s s st ????A A A ,21 2 t s s st ? = ? ??? B B B B ,的行数相同、列数相同,则有 21 22 t s s s st st ?? ±±±? B A B A B . 111221 2 t s s st ? ? ??? A A A A A ,都有21 2 t s s st k k ? ??? A A A .

矩阵的各种运算详细讲解

一、矩阵的线性运算 定义1 设有两个矩阵和,矩阵与的和记作, 规定为 注:只有两个矩阵是同型矩阵时,才能进行矩阵的加法运算. 两个同型矩阵的和,即为两个矩阵对应位置元素相加得到的矩阵. 设矩阵记 , 称为矩阵的负矩阵, 显然有 . 由此规定矩阵的减法为 . 定义2 数与矩阵A的乘积记作或, 规定为 数与矩阵的乘积运算称为数乘运算. 矩阵的加法与矩阵的数乘两种运算统称为矩阵的线性运算. 它满足下列运算规律:设都是同型矩阵,是常数,则 (1) (2) ; (3) (4) (5) (6) (7) (8) 注:在数学中,把满足上述八条规律的运算称为线性运算. 二、矩阵的相乘 定义3设

矩阵与矩阵的乘积记作, 规定为 其中,( 记号常读作左乘或右乘. 注: 只有当左边矩阵的列数等于右边矩阵的行数时, 两个矩阵才能进行乘法运算. 若,则矩阵的元素即为矩阵的第行元素与矩阵的第列对应元素乘积的和. 即 . 矩阵的乘法满足下列运算规律(假定运算都是可行的): (1) (2) (3) (4) 注: 矩阵的乘法一般不满足交换律, 即 例如, 设则 而 于是且 从上例还可看出: 两个非零矩阵相乘, 可能是零矩阵, 故不能从必然推出 或 此外, 矩阵乘法一般也不满足消去律,即不能从必然推出例如, 设 则 但 定义4如果两矩阵相乘, 有

则称矩阵A与矩阵B可交换.简称A与B可换. 注:对于单位矩阵, 容易证明 或简写成 可见单位矩阵在矩阵的乘法中的作用类似于数1. 更进一步我们有 命题1设是一个n阶矩阵,则是一个数量矩阵的充分必要条件是与任何n阶矩阵可换。 命题2设均为n阶矩阵,则下列命题等价: (1) (2) (3) (4) 三、线性方程组的矩阵表示 设有线性方程组 若记 则利用矩阵的乘法, 线性方程组(1)可表示为矩阵形式: (2) 其中矩阵称为线性方程组(1)的系数矩阵. 方程(2)又称为矩阵方程. 如果是方程组(1)的解, 记列矩阵 则 ,

知识点总结 矩阵的初等变换与线性方程组

第三章 矩阵的初等变换与线性方程组 第一节 矩阵的初等变换 初等行变换 ()1()i j r r ?对调两行,记作。 ()20()i k r k ≠?以数乘以某一行的所有元素,记作。 ()3()i j k r kr +把某一行所有元素的倍加到另一行对应的元素上去,记作。 初等列变换:把初等行变换中的行变为列,即为初等列变换,所用记号是把“r ”换成“c ”。 扩展 矩阵的初等列变换与初等行变换统称为初等变换,初等变换的逆变换仍为初等变换, 且类型相同。 矩阵等价 A B A B 如果矩阵经有限次初等变换变成矩阵,就称矩阵与等价。 等价关系的性质 (1)反身性 A~A 2 A ~B , B ~A;()对称性若则 3 A ~B,B ~C, A ~C ()传递性若则。(课本P59) 行阶梯形矩阵:可画出一条阶梯线,线的下方全为零,每个台阶只有一行,台阶数即是非零行的行数阶梯线的竖线(每段竖线的长度为一行)后面的第一个元素为非零元,也是非零行的第一个非零元。 行最简形矩阵:行阶梯矩阵中非零行的第一个非零元为1,且这些非零元所在的列的其他元素都为0. 标准型:对行最简形矩阵再施以初等列变换,可以变换为形如r m n E O F O O ???= ???的矩阵,称为标准型。标准形矩阵是所有与矩阵A 等价的矩阵中形状最简单的矩阵。 初等变换的性质

设A 与B 为m ×n 矩阵,那么 (1);r A B m P PA B ?=:存在阶可逆矩阵,使 (2)~;c A B n Q AQ B ?=存在阶可逆矩阵,使 (3)P ;A B m P n Q AQ B ?=:存在阶可逆矩阵,及阶可逆矩阵,使 初等矩阵:由单位矩阵经过一次初等变换得到的方阵称为初等矩阵。 初等矩阵的性质 设A 是一个m ×n 矩阵,则 (1)对A 施行一次初等行变换,相当于在A 的左边乘以相应的m 阶初等矩阵; ~;r A B m P PA B ?=即存在阶可逆矩阵,使 (2)对A 施行一次初等列变换,相当于在A 的右边乘以相应的n 阶初等矩阵; 即~;c A B n Q AQ B ?=存在阶可逆矩阵,使 (3)~P ;A B m P n Q AQ B ?=存在阶可逆矩阵,及阶可逆矩阵,使 (4)方阵A 可逆的充分必要条件是存在有限个初等方阵1212,,,,l l P P P A PP P =L L 使。 (5)~r A A E 可逆的充分必要条件是。(课本P ? ) 初等变换的应用 (1)求逆矩阵:()1(|)|A E E A -????→初等行变换或1A E E A -????????→ ? ????? 初等列变换。 (2)求A -1B :A (,) ~ (,),r A B E P 即() 1(|)|A B E A B -??→行,则P =A -1B 。或1E A B BA -????????→ ? ????? 初等列变换. 第二节 矩阵的秩

线性方程组的矩阵求解算法

线性方程组的矩阵求解算法 摘要 线性方程组的矩阵求解算法,只需在约当消元法的基础上,再对方程组的 增广矩阵的行最简形进行行(列)删除和增加行,交换行等运算即可得到方程组的解,并且这种方法既可求解有唯一解的方程组.因而算法简单,易于实现. 关键词 线性方程组;解向量;解法;约当消元法 1 矩阵求解算法 设有线性方程组m n A X b ?=,其增广矩阵())(1,m n A A b ?+=,算法的步骤如下: 第一步:利用约当消元法,把增广矩阵A 化为行最简形,设行最简形为()1m n B ?+.若()t i (),r A r =则方程组无解;否则设(),r A R =并执行以下步骤; 第二步:删除B 中的所有零行和每一行第一个非零元素(这个非零元素一定是1)所在的列,得到矩阵()1,r n r D ?-+并记录每行的第一个非零元所在的列标,放在一维数组()1,,t r L 中,如第i 行的第一个非零元在第j 列,则()t i j =; 第三步:构造矩阵() 1m n r D H F ?-+?? = ? ??,其中 ()()1100 001 0000 10n r n r F -?-+-?? ?- ? = ? ? -??L L L L L L L L 第四步:对矩阵H 中的行作交换运算:把H 中的第i 行(,1,1,i r r =-L 即从第r 行开始直到第一行)依次与其下一行交换,使之成为第()t i 行,交换运算结果后的矩阵记为G ,则G 中的前n r -个n 维列向量即为方程组的一个基础解系,最后一列向量即为方程组的一个特解; 第五步:写出方程组的通解. 2 算法证明 先证一个特殊情形,增广矩阵A 的行最简形矩阵B 的左上角为一r 阶的单位矩阵,即第i 行的第一个非零元的列标为i ,即()()1t i i i r =≤≤,所以设B 为

总结求线性方程组的方法

总结求线性方程组的方法-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

华北水利水电大学 总结求线性方程组的方法 课程名称:线性代数 专业班级: 成员组成: 联系方式: 2014年12月31日

摘要:线性方程组的求解是当代代数学中的一个重要组成部分。它广泛应用在数学以及其他领域。它与矩阵、线性变换、行列式、向量组的线性相关性,二次型,这些型之间有着相当密切的联系。线性方程组是线性代数中一个相当基础的内容必须要学会以及熟悉内容。本文章主要说明和讨论线性方程组的基本结构,然后应用克拉莫法则,高斯消元法来来求解。 关键词:线性方程组、高斯消元法、克拉莫法则; Summary for the method of liner equations Abstract: Solution of the system of linear equations is an important component part of algebra. It is widely used in mathematics and other areas. It and determinant, matrix, linear transformation, linear correlation vector group, quadratic form, has the close relation. System of linear equations is a very basic content in linear algebra must grasp and familiar with the content. This article mainly explain and discuss the basic structure of system of linear equations, then apply law of kramer, gauss elimination method to solve.

第三章知识点总结 矩阵的初等变换与线性方程组

第三章矩阵的初等变换与线性方程组 第一节 矩阵的初等变换 初等行变换 ()1()i j r r ?对调两行,记作。 ()20()i k r k ≠?以数乘以某一行的所有元素,记作。 ()3()i j k r kr +把某一行所有元素的倍加到另一行对应的元素上去,记作。 初等列变换:把初等行变换中的行变为列,即为初等列变换,所用记号是把“r ”换成“c ”。 扩展 矩阵的初等列变换与初等行变换统称为初等变换,初等变换的逆变换仍为初等变换, 且类型相同。 矩阵等价 A B A B 如果矩阵经有限次初等变换变成矩阵,就称矩阵与等价。 等价关系的性质 (1)反身性 A~A 2 A ~B , B ~A;()对称性若则 3 A ~B,B ~C, A ~C ()传递性若则。(课本P59) 行阶梯形矩阵:可画出一条阶梯线,线的下方全为零,每个台阶只有一行,台阶数即是非零行的行数阶梯线的竖线(每段竖线的长度为一行)后面的第一个元素为非零元,也是非零行的第一个非零元。 行最简形矩阵:行阶梯矩阵中非零行的第一个非零元为1,且这些非零元所在的列的其他元素都为0. 标准型:对行最简形矩阵再施以初等列变换,可以变换为形如r m n E O F O O ???= ???的矩阵,称为标准型。标准形矩阵是所有与矩阵A 等价的矩阵中形状最简单的矩阵。 初等变换的性质 设A 与B 为m ×n 矩阵,那么 (1);r A B m P PA B ?= 存在阶可逆矩阵,使 (2)~;c A B n Q AQ B ?=存在阶可逆矩阵,使 (3)P ;A B m P n Q AQ B ?= 存在阶可逆矩阵,及阶可逆矩阵,使 初等矩阵:由单位矩阵经过一次初等变换得到的方阵称为初等矩阵。 初等矩阵的性质 设A 是一个m ×n 矩阵,则 (1)对A 施行一次初等行变换,相当于在A 的左边乘以相应的m 阶初等矩阵; ~;r A B m P PA B ?=即存在阶可逆矩阵,使

线性方程组与矩阵

高代小练习 专业课研究部 一、填空题 1.设n 元齐次线性方程组的系数矩阵的秩r < n ,则方程组的基础解系由_n-r__个解向量组成. 2.向量组123,,ααα线性无关,则122331(,,)rank αααααα+++=__3____. 3.设向量组12,,,r βββ 可以由向量组12,,,s ααα 线性表出.如果向量组12,,,r βββ 线性无关,则r __<=___s (填大小关系). 4.在数域K 上的4维向量空间K 4内,给定向量组α1 =(1,-3,0,2)α2 =(-2,1,1,1)α3 =(-1,-2, 1,3),则此向量组的秩是_2____. 5.若V={(a+bi ,c+di)|a,b,c,d 属于R},则V 对于通常的加法和数乘,在复数域上是__2____维的,而在实数域上是__4_____维的. 6.设线性方程组AX=0的解都是线性方程组BX=0的解,则秩A ?>=??秩B. 7.设t ηηη,,,21 及t t ηληληλ+++ 2211都是)0(≠=b b AX 的解向量,则 =+++t λλλ 21______。 8.设任意一个n维向量都是齐次线性方程組0=AX 的解向量,则=)(A r ______。 9.已知321,,ααα是齐次方程组0=AX 的基础解系,那么基础解系还可以是______. (A) 332211αααk k k ++ (B) 133221,,αααααα+++ (C) 3221,αααα-- (D) 233211,,αααααα-+- 10.在三维几何空间中,用V 1表示通过原点的直线,V 2表示通过原点且与V 1垂直的平面,试求 21V V ?=_原点____,和21V V ?=_整个空间R 3 ____。 二.解答题 1.在4维向量空间中, (1)求基 到基 的过渡矩阵。

矩阵分解与线性方程组求解

一、 用列主元素高斯削去法求解下述线性方程组: ?????? ?-=+--=++---=--+=--+36 15531495102210762133421342143214 3214321x x x x x x x x x x x x x x x 程序: function x=gaussa(a) m=size(a); n=m(1); x=zeros(n,1); for k=1:n-1 [c,i]=max(abs(a(k:n,k))); q=i+k-1; if q~=k d=a(q,:);a(q,:)=a(k,:);a(k,:)=d end for i=k+1:n a(i,:)=a(i,:)-a(k,:)*a(i,k)/a(k,k) end end for j=n:-1:1 x(j)=(a(j,n+1)-a(j,j+1:n)*x(j+1:n))/a(j,j) end 执行过程: >> a=[1 13 -2 -34 13;2 6 -7 -10 -22;-10 -1 5 9 14; -3 -5 0 15 -36] a = -10 -1 5 9 14 2 6 -7 -10 -22 1 13 -2 -34 13 -3 -5 0 15 -36 >> gaussa(a) a = -10.0000 -1.0000 5.0000 9.0000 14.0000 0 5.8000 -6.0000 -8.2000 -19.2000 1.0000 13.0000 -2.0000 -34.0000 13.0000 -3.0000 -5.0000 0 15.0000 -36.0000 a = -10.0000 -1.0000 5.0000 9.0000 14.0000 0 5.8000 -6.0000 -8.2000 -19.2000 0 12.9000 -1.5000 -33.1000 14.4000 -3.0000 -5.0000 0 15.0000 -36.0000 a = -10.0000 -1.0000 5.0000 9.0000 14.0000 0 5.8000 -6.0000 -8.2000 -19.2000 0 12.9000 -1.5000 -33.1000 14.4000 0 -4.7000 -1.5000 12.3000 -40.2000

线性方程组的矩阵求法

线性方程组的矩阵求法 摘要: 关键词: 第一章引言 矩阵及线性方程组理论是高等代数的重要内容, 用矩阵 方法解线性方程组又是人们学习高等代数必须掌握的基本 技能,本文将给出用矩阵解线性方程组的几种方法,通过对线性方程组的系数矩阵(或增广矩阵)进行初等变换得到其解,并列举出几种用矩阵解线性方程组的简便方法。 第二章用矩阵消元法解线性方程组 第一节预备知识 定义1:一个矩阵中不等于零的子式的最大阶数叫作这个矩阵的秩。定理1:初等变换把一个线性方程组变为一个与它同解的线性方程组。 定义2:定义若阶梯形矩阵满足下面两个条件: (1)B的任一非零行向量的第一个非零分量(称为的 一个主元)为1; (2)B中每一主元是其所在列的唯一非零元。 则称矩阵为行最简形矩阵。 第二节 1.对一个线性方程组施行一个初等变换,相当于对它的增广矩

阵施行一个对应的行初等变换,而化简线性方程组相当于用行初等变换化简它的增广矩阵,因此,我们将要通过花间矩阵来讨论化简线性方程组的问题。这样做不但讨论起来比较方便,而且能给我们一种方法,就一个线性方程组的增广矩阵来解这个线性方程组,而不必每次都把未知量写出来。 下面以一般的线性方程组为例,给出其解法: (1) 11112211 21122222 1122 , , . n n n n m m mn n m a x a x a x b a x a x a x b a x a x a x b +++= +++= +++= L L L L L L L L L L L L L L L 根据方程组可知其系数矩阵为: (2) 11121 21222 12 n n m m mn a a a a a a a a a ?? ? ? ? ? ??? L L L L L L L L L L L L 其增广矩阵为: (3) 111211 212222 12 n n m m mn m a a a b a a a b a a a b ?? ? ? ? ? ??? L L L L L L L L L L L L L L L 根据(2)及矩阵的初等变换我们可以得到和它同解的线性方程组,并很容易得到其解。 定理2:设A是一个m行n列矩阵

矩阵在线性方程组中的应用

矩阵在线性方程组中的应用 摘要 矩阵和线性方程组都是高等数学的重要教学内容。在高等数学教学中利用矩阵解线性方程组的方法基本上是所知的固定几种:利用矩阵初等变换、克拉默法则、高斯—若尔当消去法。但是解一个线性方程组有时需要几种方法配合使用,有时则需要选择其中的最简单的方法。而对于一些特殊的线性方程组的解法很少有进行归类、讲解。我们希望可以通过对本课题的研究,总结和归纳用特殊矩阵解几类特殊线性方程组的解法。 关键词矩阵;线性方程组;齐次线性方程组;非齐次线性方程组

MATRICES IN THE APPLICATIONS OF THE SYSTEM OF LINEAR EQUATIONS ABSTRACT Matrices and system of linear equations are important content of advanced mathematics. We often use several fixed methods to solve system of linear equations in advanced mathematics,such as Matrix transformations;Cramer's Ruleand Gauss-Jordan elimination method. But sometimes, we need to choose one of the most simple ways,or we need to use several methods to solve system of linear equations. For some special solution method of system of linear equations, there are few classification and explanation in detail. We hope that we can research, summarizes and induces solution method of some special system of linear equations with special matrices. KEY WORDS matrices; system of linear equations; homogeneous system of linear equations; nonhomogeneoussystem of linear equations

线性代数习题第三章 矩阵的初等变换与线性方程组

习题3-1 矩阵的初等变换及初等矩阵 1、用初等行变换化矩阵 1021 2031 3043 A - ?? ?? =?? ?? ?? 为行最简形、 2、用初等变换求方阵 321 315 323 A ?? ?? =?? ?? ?? 的逆矩阵、 3、设 412 221 311 A - ?? ?? =?? ?? - ?? , 3 22 31 - ?? ?? ?? ?? - ?? 1 B=,求X使AX B =、 4、设A就是n阶可逆矩阵,将A的第i行与第j行对换后得矩阵B、 (1) 证明B可逆(2)求1 AB-、

习题 3-2 矩阵的秩 1、求矩阵的秩: (1)310211211344A ????=--????-?? (2)111212122212n n n n n n a b a b a b a b a b a b B a b a b a b ??????=??????L L L L L L L 01,2,,i i a b i n ≠????=?? L 2、设12312323k A k k -????=--????-?? 问k 为何值,可使 (1)()1R A =; (2)()2R A =; (3)()3R A =、

3、 从矩阵A 中划去一行,得矩阵B ,则)(A R 与)(B R 的关系就是 、 .()()a R A R B = .()()b R A R B <; .()()1c R B R A >-; .()()() 1.d R A R B R A ≥≥- 4、 矩阵???? ??????-------815073*********的秩R= 、 a 、1; b 、 2; c 、 3; d 、 4、 5、 设n (n ≥3)阶方阵????? ???????=111ΛΛΛΛΛΛΛΛa a a a a a a a a A 的秩R (A )=n -1,则a = 、 a 、 1; b 、 n -11; c 、 –1; d 、 1 1-n 、 6、设A 为n 阶方阵,且2A A =,试证: ()()R A R A E n +-=

线性方程组AX=B的数值计算方法实验

线性方程组AX=B的数值计算方法实验 【摘要】在自然科学与工程技术中很多问题的解决常常归结为解线性代数方程组。例如电学中的网络问题,船体数学放样中建立三次样条函数问题,用最小二乘法验数据的曲线拟合问题,解非线性方程组的问题,用差分法或者有限元法解常微分方程,偏微分方程边值问题等都导致求解线性方程组。线性代数方面的计算方法就是研究求解线性方程组的一些数值解法与研究计算矩阵的特征值及特征向量的数值方法。关于线性方程组的数值解法一般有两类:直接法和迭代法。 关键字高斯消元法、三角分解法、高斯-赛德尔迭代、稀疏矩阵 一、实验目的 1.掌握高斯消元法、三角分解法、高斯—赛德尔迭代发的编程技巧。 2.掌握线性方程组AX=B的数值计算方法。 3.掌握矩阵的基本编程技巧。 二、实验原理 1.高斯消元法

数学上,高斯消元法是线性代数规划中的一个算法,可用来为线性方程组求解。高斯(Gauss )夏鸥按法其实是将一般的线性方程组变换为三角形(上三角)方程组求解问题(消元法),只是步骤规,便于编写计算机程序。 一般高斯消元法包括两过程:先把方程组化为同解的上三角形方程组,再按相反顺序求解上三角方程组。前者称为消去或消元过程,后者称回代过程。消去过程实际上是对增广矩阵作行初等变换。 对一般的n 阶方程组,消去过程分n-1步:第一步消去11a 下方元素。第二步消去22a 下方元素,......,第n-1步消去1-n 1-n a ,下方元素。即第k 步将第k 行的适当倍数加于其后各行,或可说是从k+1~n 行减去第k 行的适当倍数,使它们第k 列元素变为零,而其余列元素减去第k 行对应列元素的倍数。 2.三角分解法 三角分解法是将原正方 (square)矩阵分解成一个上三角形矩阵或是排列(permuted) 的上三角形矩阵和一个 下三角形矩阵,这样的分解法又称为LU 分解法。它的用途主要在简化一个大矩阵的行列式值的计算过程,求 反矩阵,和求解联立方程组。不过要注意这种分解法所得到的上下三角形矩阵并非唯一,还可找到数个不同 的一对上下三角形矩阵,此两三角形矩阵相乘也会得到原矩阵。

线性方程组和矩阵知识总结.doc

线性方程组和矩阵知识总结 吴荣魁 2013201363 线性方程组的基本概念 ???????=+++=+++=+++m mn m m n n n n b x a x a x a b x a x a x a b x a x a x a 322112222212111212111 其中未知数的个数n 和方程式的个数m 不必相等. 线性方程组的解是一个n 维向量它满足:当每个方中的未知数xi 都用ki 替代时都成为等式. 线性方程组的解的情况有三种:无解,唯一解,无穷多解. 对线性方程组讨论的主要问题两个:(1)判断解的情况.(2)求解 b1=b2=…=bm=0的线性方程组称为齐次线性方程组. n 维零向量总是齐次线性方程组的解,称为零解.因此齐次线性方程组解的情况只有两种:唯一解(即只要零解)和无穷多解(即有非零解). 把一个非齐次线性方程组的每个方程的常数项都换成0,所得到的齐次线性方程组称为原方程组的导出齐次线性方程组,简称导出组. 线性方程组的解法 ???????=+++=+++=+++m mn m m n n n n b x a x a x a b x a x a x a b x a x a x a 322112222212111212111 (1)、写出线性方程组的增广矩阵。 (2)、用初等行变换把增广矩阵化为阶梯形矩阵。 (3)、看阶梯形矩阵的最后一个非零行的首非零元是否在最后一列。如果是,则方程组无解;反之方程组有解。 (4)、在有解的情况下,找出阶梯形矩阵中非零行的个数r 。如果r=n ,则方程组有唯一解;如果r

常系数线性方程组基解矩阵的计算

常系数线性方程组基解矩阵的计算

常系数线性方程组基解矩阵的计算 董治军 (巢湖学院数学系,安徽巢湖238000) 摘要:微分方程组在工程技术中的应用时非常广泛的,不少问题都归结于它的求解问题,基解矩阵的存在和具体寻求是不同的两回事,一般齐次线性微分方程组的基解矩阵是无法通过积分得到的,但当系数矩阵是常数矩阵时,可以通过方法求出基解矩阵,这时可利用矩阵指数exp A t,给出基解矩阵的一般形式,本文针对应用最广泛的常系数线性微分方程组,结合微分方程,线性代数等知识,讨论常系数齐次线性微分方程的基解矩阵的几个一般的计算方法. 关键词;常系数奇次线性微分方程组;基解矩阵;矩阵指数 Calculation of Basic solution Matrix of

Linear Homogeneous System with Constant Coefficients Zhijun Dong (Department of Mathematics, Chaohu College Anhui, Chaohu) Abstract: Differential equations application in engineering technology is very extensive, when many problems are attributable to its solving problem, base solution matrix existence and specific seek is different things, general homogeneous linear differential equations is not the base solution matrix by integral get, but when coefficient matrix is constant matrix, can pass out the base solution matrix method, then are available matrix exponential t, the general form base solution matrix, the paper discusses the most widely used differential equations with constant coefficients, combined with differential equations, linear algebra, discuss knowledge of homogeneous linear differential equation with constant coefficients of base solution matrix several general calculation method. Keyword: linear homogeneous system with constant coefficients; matrix of basic solutions; matrix exponent 引言: 线性微分方程组的求解历来是常微分方程的重点,根据线性微分方程组的解的结构理论,求解线性微分方程组的关键在于求出对应齐次线性微分方程组的基解矩阵,本文主要讨论齐次线性微分方程组 X ’=AX ★ 的基解矩阵的计算问题,这里A 是n n ?常数矩阵. 一.矩阵指数exp A 的定义和性质: 1.矩阵范数的定义和性质 定义:对于n n ?矩阵A =ij a ???? n ×n 和n 维向量X =()1,...,T n X X 定义A 的范数为A =,1 n ij i j a =∑ ,X =1 n i i x =∑ 设A ,B 是n ×n 矩阵,x ,y 是n 维向量,易得下面两个性质:

矩阵的初等变换与线性方程组习题含答案

第三章 矩阵的初等变换与线性方程组 3.4.1 基础练习 1.已知121011251-?? ? = ? ?-??A ,求()R A . 2.已知3210 1032 100000200000-?? ?- ? = ?- ? ?? ?B ,求()R B . 3.若矩阵,,A B C 满足=A BC ,则( ). (A)()()R R =A B (B) ()()R R =A C (C)()()R R ≤A B (D) ()max{(),()}R R R ≥A B C 4. 设矩阵X 满足关系2=+AX A X ,其中423110123?? ? = ? ?-??A ,求X . 5. 设矩阵101210325?? ?= ? ?--?? A ,求1 ()--E A . 6.A 是m n ?矩阵,齐次线性方程组0=Ax 有非零解的充要条件是 . 7.若非齐次线性方程组=Ax b 中方程个数少于未知数个数,那么( ). (A) =Ax b 必有无穷多解; (B) 0=Ax 必有非零解; (C) 0=Ax 仅有零解; (D) 0=Ax 一定无解. 8. 求解线性方程组 (1)12312312312333332x x x x x x x x x +-=??+-=??-+=?, (2)72315 532151011536 x y z x y z x y z ++=?? -+=??-+=? (3)123412341 23420 202220 x x x x x x x x x x x x ++-=?? ++-=??+++=?

9.若方程组 12323232132(3)(4)(2)x x x x x x x λλλλλλ+-=-?? -=-??-=--+-? 有无穷多解,则λ= . 10.若12(1,0,2),(0,1,1)T T ==-αα都是线性方程组0=Ax 的解,则=A ( ). (A)()2,1,1- (B)201011-?????? (C)102011-????-?? (D)011422010-?? ??--?? ???? 3.4.2 提高练习 1.设A 为5阶方阵,且()3R =A ,则* ()R A = . 2.设矩阵12332354445037a a -????=-?? ??-?? A ,以下结论正确的是( ). (A)5a =时,()2R =A (B) 0a =时,()4R =A (C)1a =时,()5R =A (D) 2a =时,()1R =A 3.设A 是43?矩阵,且()2R =A ,而102020103?? ? = ? ?-??B ,则()R =AB . 4.设12243311t -?? ? = ? ?-??A ,B 为3阶非零矩阵,且0=AB ,则t = . 5.设12312323k k k -?? ? =-- ? ?-?? A , 问k 为何值,可使 (1)()1R =A (2)()2R =A (3)()3R =A . 6.设矩阵111111111111k k k k ?? ? ? = ? ? ??? A ,且()3R =A ,则k = .

线性方程组的几种求解方法

线性方程组的几种解法 线性方程组形式如下: 常记为矩阵形式 其中 一、高斯消元法 高斯(Gauss)消元法的基本思想是:通过一系列的加减消元运算,也就是代数中的加减消去法,将方程组化为上三角矩阵;然后,再逐一回代求解出x 向量。现举例说明如下: (一)消元过程 第一步:将(1)/3使x 1的系数化为1 得 再将(2)、(3)式中x 1的系数都化为零,即由(2)-2×(1)(1) 得 )1(32)2( (03) 4 32=+x x )1(321)1(......23132=++ x x x

由(3)-4×(1)(1) 得 第二步:将(2)(1) 除以2/3,使x 2系数化为1,得 再将(3)(1) 式中x 2系数化为零,即 由(3)(1) -(-14/3)*(2)(2) ,得 第三步:将(3)(2) 除以18/3,使x 3系数化为1,得 经消元后,得到如下三角代数方程组: (二)回代过程 由(3)(3) 得 x 3=1, 将x 3代入(2)(2) 得x 2=-2, 将x 2 、x 3代入(1)(1) 得x 2=1 所以,本题解为[x]=[1,2,-1]T (三)、用矩阵演示进行消元过程 第一步: 先将方程写成增广矩阵的形式 第二步:然后对矩阵进行初等行变换 初等行变换包含如下操作 (1) 将某行同乘或同除一个非零实数 ) 3(3)3(......1-=x )2(3)3( (63) 18-=x ) 2(32) 2(......02=+x x ) 1(32)3( (63) 10 314-=-- x x

(2)将某行加入到另一行 (3)将任意两行互换 第三步:将增广矩阵变换成上三角矩阵,即主对角线全为1,左下三角矩阵全为0,形式如下: 示例: (四)高斯消元的公式 综合以上讨论,不难看出,高斯消元法解方程组的公式为 1.消元 (1)令 a ij(1) = a ij , (i,j=1,2,3,…,n) b i(1) =b i , (i=1,2,3,…,n) (2)对k=1到n-1,若a kk(k)≠0,进行 l ik = a ik(k) / a kk(k) , (i=k+1,k+2,…,n) a ij(k+1) = a ij(k) - l ik * a kj(k), (i,j= k+1,k+2,…,n) b i(k+1) = b i(k) - l ik * b k(k), (i= k+1,k+2,…,n) 2.回代 若a nn(n) ≠0 x n = b n(n) / a nn(n) x i = (b i(i) – sgm(a ij(i) * x j)/- a ii(i),(i = n-1,n-2,…,1),( j = i+1,i+2,…,n ) (五)高斯消元法的条件 消元过程要求a ii(i) ≠0 (i=1,2,…,n),回代过程则进一步要求a nn(n) ≠0,但就方程组Ax=b 讲,a ii(i)是否等于0时无法事先看出来的。 注意A的顺序主子式D i(i=1,2,…,n),在消元的过程中不变,这是因为消元所作的变换是“将某行的若干倍加到另一行”。若高斯消元法的过程进行了k-1步(a ii(i) ≠0,i

矩阵与线性方程组

第1 章矩阵与线性方程组 矩阵是描述和求解线性方程组最基本和最有用的工具。本章涉及向量和矩阵的基本 概念,归纳了向量和矩阵的基本运算。 1.1 主要理论与方法 1.1.1 矩阵的基本运算 一、矩阵与向量 a11x1 + a12x2 + ¢ ¢ ¢+ a1n x n = b1 a21x1 + a22x2 + ¢ ¢ ¢+ a2n x n = b2 ... a m1x1 + a m2x2 + ¢ ¢ ¢+ a mn x n = b m 9> >>>=>>>>; (1.1) 它使用m个方程描述n个未知量之间的线性关系。这一线性方程组很容易用矩阵||向量 形式简记为 Ax = b (1.2) 式中 A =26664 a11 a12 ¢ ¢ ¢ a1n a21 a22 ¢ ¢ ¢ a2n ... ... ... a m1 a m2 ¢ ¢ ¢ a mn 37775 (1.3) 称为m £ n矩阵,是一个按照长方阵列排列的复数或实数集合;而 x =26664 x1 x2 ... x n 37775 ; b =26664 b1 b2 ... b m 37775 (1.4) 分别为n £1向量和m£1向量,是按照列方式排列的复数或实数集合,统称列向量。类似地,按照行方式排列的复数或实数集合称为行向量,例如 a = [a1; a2; ¢ ¢ ¢ ; a n] (1.5) 是1 £ n向量。 二、矩阵的基本运算 1. 共轭转置:若A = [a ij ]是一个m£ n矩阵,则A的转置记作A T,是一个n £m矩阵, 定义为[A T]ij = a ji;矩阵A的复数共轭A¤定义为[A¤]ij = a¤ji;复共轭转置记作A H,定义 为 A H =26664 a¤11 a¤21 ¢ ¢ ¢ a¤m1 a¤12 a¤22 ¢ ¢ ¢ a¤m2 ...

求解线性方程组的几种方法

§1 消元法 引例 求解线性方程组 ?????=++=++=++288338 219432321321321x x x x x x x x x (1.1) 解: 用i r 表示方程组中的第i 个方程,采用消元法求解此线性方程组: 方程组(1.1)???→??21r r ?????=++=++=++2883319 43282321321321x x x x x x x x x ?? ???==+=++??????→?--423 0823,23323211312x x x x x x r r r r (1.2) ?????===???????→?÷+-23 12),(3213321x x x r r r r (1.3) 由于方程组(1.1)与(1.3)同解,从而得到(1.1)的解T x x x x ),,(321=T )2,3,1(= 定义 以下变换1,2,3称为线性方程组的初等变换。 1. 将某一方程乘以一个非零的倍数; 2. 将某一方程的某个倍数加到另外一方程上去; 3. 对调两方程的位置。 命题 初等变换总是把方程组变成同解的方程组。 用消元法求解线性方程组的过程:首先用初等变换化线性方程组为阶梯形方程组,把最后的恒等式“0=0”(如果出现的话)去掉。如果剩下的方程当中最后的一个等式是零等于一个非零的数,那么方程组无解,否则有解。在有解的情况下,如果阶梯形方程组中方程的个数等于未知量的个数,那么方程组有唯一的解;如果阶梯形方程组中方程的个数小于未知量的个数,那么方程组有无穷多个解。 定理 在齐次线性方程组 111122121122221122000 n n n n s s sn n a x a x a x a x a x a x a x a x a x +++=??+++=????+++=?L L L L L L L L L L L L L L 中,如果s

线性代数习题矩阵的初等变换与线性方程组讲课讲稿

线性代数习题[第三章]矩阵的初等变换与线 性方程组

习题3-1矩阵的初等变换及初等矩阵 3 2 1 3 1 5的逆矩阵. 3 2 3 4.设A 是n 阶可逆矩阵 将A 的第i 行与第j 行对换后得矩阵B . (1)证明B 可逆 ⑵求AB 1. 1?用初等行变换化矩阵A 1 0 2 1 2 0 3 1 为仃取简形 3 0 4 3 4 1 2 1 3 2 2 1 ,B= 2 2 ,求X 使AX B 3 1 1 3 1 3.设A 2?用初等变换求方阵A

习题3-2矩阵的秩1?求矩阵的秩: (1)A 1 2 3k 2.设A 1 2k 3问k为何值,可使 k 2 3 (1)R(A) 1 ; ⑵R(A) 2; ⑶ R(A) 3 qb o i 1,2, |||,n &1 b| &1 b? a? b| a?b? Ill III a n E a n b 2 a2b n III a n b n

3.从矩阵A中划去一行,得矩阵B,则R(A)与R(B)的关系是_______ a. R(A) R(B) b. R(A) R(B); c. R(B) R(A) 1 ; d. R(A) R(B) R(A) 1. 3 2 1 3 1 4.矩阵2 1 3 1 3 的秩R= 7 0 5 1 8 a.1; b. 2; c.: 3; d. 4. 1 a a a 5.设n(n 3)阶方阵 a A 1 a a 的秩R(A)=n-1,则 a a a a 1 a. 1; b. 1 ; c.—; d . 1 1 n n 1 6.设A为n阶方阵,且A2A,试证: R(A) R(A E) n

相关文档
最新文档