供热管网各参数计算常用公式

供热管网各参数计算常用公式
供热管网各参数计算常用公式

供热管网各参数常用计算公式

1比摩阻R (P/m )——集中供热手册P 196

R = 6.25×10-2×52d G ρλ 其中:λ—— 管道摩擦系数(查动力管道手册P345页)

λ= 1/(1.14+2×log K

d )2 G —— 介质质量流量(t/h ) 或:R=d 22

λρν=6.88×10-3×25.525.02d

K G ρ ρ—— 流体介质密度(kg/m 3) d —— 管道内径(m )

K ——管内壁当量绝对粗糙度(m ) 2、管道压力降△P (MPa )

△P = 1.15R (L+∑Lg )×10-6

其中:L —— 管道长度(m )

∑Lg ——管道附件当量长度(m )

3、管道单位长度热损q (W/m )

q =

其中:T 0 —— 介质温度(℃)

λ1 —— 内层保温材料导热系数(W/m.℃)

λ2 —— 外层保温材料导热系数(W/m.℃)

D 0 —— 管道外径(m )

D 1 —— 内保温层外径(m )

D 2 —— 外保温层外径(m )

α—— 外表面散热系数[α=1.163×(10+6?)]

?—— 环境平均风速。预算时可取α=11.63

Ln —— 自然对数底

4、末端温度T ed (℃)

T ed = T 0 - GC L L q g 310)(-?+ 其中:T 0 —— 始端温度(℃) L —— 管道长度(m )

Lg —— 管道附件当量长度(m )

G —— 介质质量流量(t/h )

C —— 介质定容比热(kj / kg.℃) 2122011012121)16(

D D D Ln D D Ln T αλλπ++-

5、保温结构外表面温度T s (℃)

T s = T a + α

π2D q 其中:Ta ——环境温度(南方可取Ta =16℃) 6、管道冷凝水量(仅适用于饱和蒸汽)G C (t/h )

G C = γ3

106.3-?qL 其中:γ——介质汽化潜热(kj / kg )

7、保温材料使用温度下的导热系数λt (W/m.℃)

λt =λo +2

)(B A T T K + 其中:λo ——保温材料常态导热系数 T A —— 保温层内侧温度(℃)

T B —— 保温层外侧温度(℃) K —— 保温材料热变系数 超细玻璃棉K=0.00017 硅酸铝纤维K=0.0002

8、管道直径选择d (mm )

按质量流量计算:d = 594.5

ωρG

按体积流量计算:d = 18.8ωνG

按允许单位比摩阻计算:d = 0.0364×52

R G ?νλ

其中:G —— 介质质量流量(t/h ) G v —— 介质体积流量(m 3/h ) ω —— 介质流速(m/s ) ρ —— 介质密度(kg/m 3)

ΔR —— 允许单位比摩阻(Pa/m )

9、管道流速ω(m/s )

ω= π

ρ29.0d G 其中:G —— 介质质量流量(t/h ) ρ —— 介质密度(kg/m 3)

d —— 管道内径(m )

10、安全阀公称通径(喉部直径)选择DN (mm ) A = φ

133.49010P G 则 DN =πA ?20 其中:A —— 安全阀进气口计算面积(cm 2)

G ——介质质量流量(t/h )

P —— 安全阀排放压力(MPa )

φ——过热蒸汽校正系数,取0.8—0.88 DN ——安全阀通径计算值(mm )

管径计算公式

管道的设计计算——管径和管壁厚度 空压机是通过管路、阀门等和其它设备构成一个完整的系统。管道的设计计算和安装不当,将会影响整个系统的经济性及工作的可靠性,甚至会带来严重的破坏性事故。A.管内径:管道内径可按预先选取的气体流速由下式求得: i d 8 .182 1 u q v 式中, i d 为管道内径(mm );v q 为气体容积流量( h m 3 );u 为管内气体平均流速( s m ),下 表中给出压缩空气的平均流速取值范围。 管内平均流速推荐值 气体介质 压力范围 p (Mpa) 平均流速u (m/s ) 空气 0.3~0.6 10~20 0.6~1.0 10~15 1.0~2.0 8~12 2.0~3.0 3~6 注:上表内推荐值,为输气主管路(或主干管)内压缩空气流速推荐值;对于长度在 1m 内的管 路或管路附件——冷却器、净化设备、压力容器等的进出口处,有安装尺寸的限制,可适当提高瞬间气体流速。 例1:2台WJF-1.5/30及2台H-6S 型空压机共同使用一根排气管路,计算此排气管路内径。 已知WJF-1.5/30型空压机排气量为 1.5 m 3 /min 排气压力为 3.0 MPa 已知H-6S 型空压机排气量为0.6 m 3 /min 排气压力为 3.0 MPa 4台空压机合计排气量v q =1.5×2+0.6×2=4.2 m 3/min =252 m 3 /h 如上表所示u=6 m/s 带入上述公式 i d 8 .182 1 u q v i d 8 .182 1 6 252=121.8 mm 得出管路内径为121mm 。 B.管壁厚度:管壁厚度取决于管道内气体压力。

管道过流计算方法

管道过流计算方法标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

第四章有压管道恒定流 第一节概述 前面我们讨论了水流运动的基本原理,介绍了水流运动的三大方程,水流形态和水头损失,从第五章开始,我们进入实用水利学的学习,本章研究有压管道的恒定流. 一.管流的概念 1.管流是指液体质点完全充满输水管道横断面的流动,没有自由水面存在。 2.管流的特点.①断面周界就是湿周,过水断面面积等于横断面面积;②断面上各点的压强一般不等于大气压强,因此,常称为有压管道。③一般在压力作用而流动. 1.根据出流情况分自由出流和淹没出流 管道出口水流流入大气,水股四周都受大气压强作用,称为自由出流管道。 管道出口淹没在水面以下,则称为淹没出流。 2.根据局部水头损失占沿程水头损失比重的大小,可将管道分为长管和短管。 在管道系统中,如果管道的水头损失以沿程水头损失为主,局部水头损失和流速水头所占比重很小(占沿程水头损失的5%~10%以下),在计算中可以忽略,这样的管道称为长管。否则,称为短管。必须注意,长管和短管不是简单地从管道长度来区分的,而是按局部水头损失和流速水头所占比重大小来划分的。实际计算中,水泵装置、水轮机装置、虹吸管、倒虹吸管、坝内泄水管等均应按短管计算;一般的复杂管道可以按长管计算。 3.根据管道的平面布置情况,可将管道系统分为简单管道和复杂管道两大类。

简单管道是指管径不变且无分支的管道。水泵的吸水管、虹吸管等都是简单管道的例子。由两根以上管道组成的管道系统称为复杂管道。各种不同直径管道组成的串联管道、并联管道、枝状和环状管网等都是复杂管道的例子。 工 程实践中为了输送流体,常常要设置各种有压管道。例如,水电站的压力引水隧洞和压力钢管,水库的有压泄洪洞和泄洪管,供给城镇工业和居民生活用水的各种输水管网系统,灌溉工程中的喷灌、滴灌管道系统,供热、供气及通风工程中输送流体的管道等都是有压管道。研究有压管道的问题具有重要的工程实际意义。 有压管道水力计算的主要内容包括:①确定管道的输水能力;②确定管道直径;③确定管道系统所需的总水头;④计算沿管线各断面的压强。 第二节 简单管路的水力计算 以通过出口断面中心线的水平面为基准面,在离开管道进口一定距离处选定1—1过水断面(该断面符合渐变流条件),管道出口断面为2—2过水断面,1—1与2—2过水断面对基准面建立能量方程,即可解决简单管道的水力计算问题,并可建立一般计算公式。 简单管道自由出流水力计算公式 02gH A Q c μ= 式中,c μ称为管道系统的流量系数,它反映了沿程水头损失和局部水头损失对过流能力的影响。计算公式为 当行近流速水头很小时,可以忽略不计,上述流量公式将简化为 二.二

水机管径的估算表

空调水系统管径的确定 水管管径d 由下式确定: d = 式中m w ------------水流量, m 3/s v------------水流速, m/s 我们建议,水系统中管内水流速按表一中的推荐值选用,经试算来确定其管径,或按表二根据流量确定管径。 ~~~~~~~~~~~~~~摘自《民用建筑空调设计》P234~~~~~~~~~~~~~~ 4m w 3.14 v

空调风系统的管道设计 (一)风管机在设计管道时首先必须从产品资料上了解三个参数:风量、风压、噪声。 1.风量:为了确定送风管道大小。 2.风压:也叫机外静压。为了计算在送风过程中克服阻力所需的参数。简单不确切地说,就是能将风送多大距离的动力。 3.噪声:其产品技术资料所标的噪声只是相对的,因为噪声是随不同条件而相应的变动的。可能产生噪声的渠道有:机器本身的风机、机器运行振动、送风风压过大等。 (二)风系统设计包括的主要内容有:合理采用管内的空气流速以确定风管截面尺寸,计算风系统的阻力及选择风机,平衡各支风路的阻力以保证各支风路的风量达到设计值。 那么管内风速如何选择?风管尺寸如何来确定呢? ※管内风速的选取决定了风管截面的尺寸,两者之间的关系如下: F=a×b=L/(3600*V) (公式1-1) 式中:F:风管断面积(㎡) a、b:风管断面长、宽(m) L:风管风量(m3/h) V:风速(m/s) 以上各取值受到以下几个方面的影响: ①建筑空间:在现代的建筑中,无论是多层建筑或高层建筑,还是高档别墅,建筑空间都是相当紧张的,因此要求我们尽可能提高风速以减少风管的截面。(管内风速与风管截面积成反比,即是风速越高,则风管截面积越小,反之,风速越低,则风管截面积越大。) ②风机压力及能耗:风速越高,则风阻力越大,风机的能耗也就越大,从此点来说又要求降低风速。 ③噪音要求:风速对噪音的影响表现在三个方面:首先,随着风速的提高,风机风压的要求较高而引起风机的运行噪声加大;第二,风速加大至一定程度时,在通过风管部件时将产生气流噪声;第三,随着风速的提高,风管消声的消声能力下降。总的来说,风管内的风速越高,则所产生的噪声就越大。 因此,管内风速的选取是综合平衡各种因素的一个结果.通过查阅相关资料和有关手册以及根据实际工程的体会,建议空调通风系统中的各种风道内的推荐风速见下表所示:(表1) 场合以合宜噪声为主导主风管的风速V(m/s)以合宜风管阻力为主导的风速V(m/s) 送风主管回风主管送风支管回风支管 住宅 3.0 5.0 4.0 3.0 3.0 公寓、酒店客房、医院病房 5.0 7.5 6.5 6.0 5.0

管道面积.重量-计算公式定律

工程量(面积)计算公式 1、除锈、刷油工程。 (1)设备筒体、管道表面积计算公式: S=π×D×L 式中π——圆周率; D——设备或管道直径; L——设备筒体高或管道延长米。 (2)计算设备筒体、管道表面积时已包括各种管件、阀门、法兰、人孔、管口凹凸部分,不再另外计算。 2、防腐蚀工程。 (1)设备筒体、管道表面积计算公式同(1)。 (2)阀门表面积计算式:(图一) S=π×D×2.5D×K×N 图一

式中D——直径; K——1.05; N——阀门个数。 (3)弯头表面积计算式:(图二) 图二 S=π×D×1.5D×K×2π×N/B 式中D——直径; K——1.05; N——弯头个数; B值取定为:90°弯头B=4;45°弯头B=8。 (4)法兰表面积计算式:(图三) S=π×D×1.5D×K×N 图三

式中D——直径; K——1.05; N——法兰个数。 (5)设备和管道法兰翻边防腐蚀工程量计算式:(图四) 图4 S=π×(D+A)×A 式中D——直径; A——法兰翻边宽。 (6)带封头的设备防腐(或刷油)工程量计算式:(图五)

图五 S=L×π×D+(D[]22)×π×1.5×N 式中N——封头个数; 1.5——系数值。 3、绝热工程量。 (1)设备筒体或管道绝热、防潮和保护层计算公式: V=π×(D+1.033δ)×1.033δ S=π×(D+2.1δ+0.0082)×L图五式中D——直径 1.033、 2.1——调整系数; δ——绝热层厚度; L——设备筒体或管道长; 0.0082——捆扎线直径或钢带厚。 (2)伴热管道绝热工程量计算式: ①单管伴热或双管伴热(管径相同,夹角小于

管道的设计计算——管径和管壁厚度(精)

管道的设计计算——管径和管壁厚度 空压机是通过管路、阀门等和其它设备构成一个完整的系统。管道的设计计算和安装不当,将会影响整个系统的经济性及工作的可靠性,甚至会带来严重的破坏性事故。 A.管内径:管道内径可按预先选取的气体流速由下式求得: =i d 8.1821 ?? ? ??u q v 式中,i d 为管道内径(mm );v q 为气体容积流量(h m 3);u 为管内气体平均流速(s m ),下表中给出压缩空气的平均流速取值范围。 管内平均流速推荐值 1m 内的管路或管路附件——冷却器、净化设备、压力容器等的进出口处,有安装尺寸的限制,可适当提高瞬间气体流速。 例1:2台WJF-1.5/30及2台H-6S 型空压机共同使用一根排气管路,计算此排气管路内径。 已知WJF-1.5/30型空压机排气量为1.5 m 3/min 排气压力为3.0 MPa 已知H-6S 型空压机排气量为0.6 m 3/min 排气压力为3.0 MPa 4台空压机合计排气量v q =1.5×2+0.6×2=4.2 m 3/min =252 m 3/h 如上表所示u=6 m/s 带入上述公式=i d 8.1821??? ??u q v =i d 8.1821 6252??? ??=121.8 mm 得出管路内径为121mm 。

B.管壁厚度:管壁厚度δ取决于管道内气体压力。 a.低压管道,可采用碳钢、合金钢焊接钢管;中压管道,通常采用碳钢、合金钢无缝钢管。其壁厚可近似按薄壁圆筒公式计算: min δ= []c np npd i +-?σ2 式中,p 为管内气体压力(MPa );n 为强度安全系数5.25.1~=n ,取[σ]为管材的许用应力(MPa ),常用管材许用应力值列于下表;?为焊缝系数,无缝钢管?=1,直缝焊接钢管?=0.8;c 为附加壁厚(包括:壁厚偏差、腐蚀裕度、加工减薄量),为简便起见,通常当δ>6mm 时,c ≈0.18δ;当δ≤6mm 时,c =1mm 。 当管子被弯曲时,管壁应适当增加厚度,可取 'δ=R d 20δ δ+ 式中,0d 为管道外径;R 为管道弯曲半径。 b.高压管道的壁厚,应查阅相关专业资料进行计算,在此不做叙述。 常用管材许用应力 例2: 算出例1中排气管路的厚度。管路材料为20#钢 公式 min δ=[]c np npd i +-?σ2中 n=2 , p=3.0 MPa , i d =121 如上表20#钢150o C 时的许用应力为131,即σ=131 ?=1 , C =1 带入公式 min δ=[]c np npd i +-?σ2=1321131212132+?-????=3.8 mm 管路厚度取4 mm

供热管网各参数计算常用公式

供热管网各参数计算 常用公式

供热管网各参数常用计算公式 1比摩阻R (P/m )——集中供热手册P 196 R = 6.25×10-2×52d G ρλ 其中:λ—— 管道摩擦系数(查动力管道手册P345页) λ= 1/(1.14+2×log K d )2 G —— 介质质量流量(t/h ) 或:R=d 22 λρν=6.88×10-3×25.525 .02d K G ρ ρ—— 流体介质密度(kg/m 3) d —— 管道内径(m ) K ——管内壁当量绝对粗糙度(m ) 2、管道压力降△P (MPa ) △P = 1.15R (L+∑Lg )×10-6 其中:L —— 管道长度(m ) ∑Lg ——管道附件当量长度(m ) 3、管道单位长度热损q (W/m ) q = 其中:T 0 —— 介质温度(℃) λ1 —— 内层保温材料导热系数(W/m.℃) λ2 —— 外层保温材料导热系数(W/m.℃) D 0 —— 管道外径(m ) D 1 —— 内保温层外径(m ) D 2 —— 外保温层外径(m ) α—— 外表面散热系数[α=1.163×(10+6?)] ?—— 环境平均风速。预算时可取α=11.63 Ln —— 自然对数底 4、末端温度T ed (℃) 2122011012121)16(D D D Ln D D Ln T αλλπ++-

T ed = T 0 - GC L L q g 310)(-?+ 其中:T 0 —— 始端温度(℃) L —— 管道长度(m ) Lg —— 管道附件当量长度(m ) G —— 介质质量流量(t/h ) C —— 介质定容比热(kj / kg.℃) 5、保温结构外表面温度T s (℃) T s = T a + α π2D q 其中:Ta ——环境温度(南方可取Ta =16℃) 6、管道冷凝水量(仅适用于饱和蒸汽)G C (t/h ) G C = γ3 106.3-?qL 其中:γ——介质汽化潜热(kj / kg ) 7、保温材料使用温度下的导热系数λt (W/m.℃) λt =λo +2 )(B A T T K + 其中:λo ——保温材料常态导热系数 T A —— 保温层内侧温度(℃) T B —— 保温层外侧温度(℃) K —— 保温材料热变系数 超细玻璃棉K=0.00017 硅酸铝纤维K=0.0002 8、管道直径选择d (mm ) 按质量流量计算:d = 594.5 ωρG 按体积流量计算:d = 18.8ωνG 按允许单位比摩阻计算:d = 0.0364×52 R G ?νλ 其中:G —— 介质质量流量(t/h ) G v —— 介质体积流量(m 3/h ) ω —— 介质流速(m/s ) ρ —— 介质密度(kg/m 3)

流量与管径、压力、流速之间关系计算公式

流量与管径、压力、流速的一般关系 一般工程上计算时,水管路,压力常见为0.1--0.6MPa,水在水管中流速在1--3米/秒,常取1.5米/秒。 流量=管截面积X流速=0.002827X管内径的平方X流速(立方米/小时)。 其中,管内径单位:mm ,流速单位:米/秒,饱和蒸汽的公式与水相同,只是流速一般取20--40米/秒。 水头损失计算Chezy 公式 这里: Q ——断面水流量(m3/s) C ——Chezy糙率系数(m1/2/s) A ——断面面积(m2) R ——水力半径(m) S ——水力坡度(m/m) 根据需要也可以变换为其它表示方法: Darcy-Weisbach公式

由于 这里: h f——沿程水头损失(mm3/s) f ——Darcy-Weisbach水头损失系数(无量纲) l ——管道长度(m) d ——管道内径(mm) v ——管道流速(m/s) g ——重力加速度(m/s2) 水力计算是输配水管道设计的核心,其实质就是在保证用户水量、水压安全的条件下,通过水力计算优化设计方案,选择合适的管材和确经济管径。输配水管道水力计算包含沿程水头损失和局部水头损失,而局部水头损失一般仅为沿程水头损失的5~10%,因此本文主要研究、探讨管道沿程水头损失的计算方法。 1.1 管道常用沿程水头损失计算公式及适用条件 管道沿程水头损失是水流摩阻做功消耗的能量,不同的水流流态,遵循不同的规律,计算方法也不一样。输配水管道水流流态都处在紊流区,紊流区水流的阻力是水的粘滞力及水流速度与压强脉动的结果。紊流又根据阻力特征划分为

水力光滑区、过渡区、粗糙区。管道沿程水头损失计算公式都有适用范围和条件,一般都以水流阻力特征区划分。 水流阻力特征区的判别方法,工程设计宜采用数值做为判别式,目前国内管道经常采用的沿程水头损失水力计算公式及相应的摩阻力系数,按照水流阻力特征区划分如表1。 沿程水头损失水力计算公式和摩阻系数表1

管径计算公式

流体在一定时间内通过某一横断面的容积或重量称为流量。用容积表示流量单位是L/s或 (`m^3`/h);用重量表示流量单位是kg/s或t/h。 流体在管道内流动时,在一定时间内所流过的距离为流速,流速一般指流体的平均流速,单位为 m/s。 流量与管道断面及流速成正比,三者之间关系: `Q = (∏ D^2)/ 4 · v · 3600 `(`m^3` / h ) 式中 Q —流量(`m ^3` / h 或 t / h ); D —管道内径(m); V —流体平均速度(m / s)。 根据上式,当流速一定时,其流量与管径的平方成正比,在施工中遇到管径替代时,应进行计算后方 可代用。例如用二根DN50的管代替一根DN100的管是不允许的,从公式得知DN100的管道流量是DN50管 道流量的4倍,因此必须用4根DN50的管才能代用DN100的管。 给水管道经济流速 影响给水管道经济流速的因素很多,精确计算非常复杂。 对于单独的压力输水管道,经济管径公式: D=(fQ^3)^[1/(a+m)] 式中:f——经济因素,与电费、管道造价、投资偿还期、管道水头损失计算公式等多项因素有关的系数;Q——管道输水流量;a——管道造价公式中的指数;m——管道水头损失计算公式中的指数。 为简化计算,取f=1,a=1.8,m=5.3,则经济管径公式可简化为: D=Q^0.42 例:管道流量22 L/S,求经济管径为多少? 解:Q=22 L/S=0.022m^3/s 经济管径 D=Q^0.42=0.022^0.42=0.201m,所以经济管径可取200mm。 水头损失 没有“压力与流速的计算公式 管道的水力计算包括长管水力计算和短管水力计算。区别是后者在计算时忽略了局部水头损失,只考虑沿程水头损失。(水头损失可以 理解为固体相对运动的摩擦力) 以常用的长管自由出流为例,则计算公式为 H=(v^2*L)/(C^2*R), 其中H为水头,可以由压力换算, L是管的长度, v是管道出流的流速, R是水力半径R=管道断面面积/内壁周长=r/2, C是谢才系数C=R^(1/6)/n,

管道承压计算公式

管道承压计算公式 一、根据设计压力计算壁厚 参照规范GB50316-2000<工业金属管道设计规范>计算公式P44,当直管计算厚度S1小于管子外径D 的1/6时,按照下面公式计算 公式1 S1= ) ]([21PY E PD +σ 公式2 S=S1+C1+C2 二、根据壁厚简单计算管道承受压力校核验算 公式1 P=S D ES +2)]([2σ

阀门磅级,MPA, BAR, PSI和公斤的含义和换算 阀门磅级,MPA, BAR, PSI和公斤的含义和换算 class 150 300 400 600 800 900 1500 2500 LB Mpa 1.6-2.0 2.5-5.0 6.3 10.0 13.0 15.0 25.0 42.0 MPA 150LB对应1.6-2.0MPa,300LB对应2.5-5.0MPa,400LB对应6.3MPa,600LB对应10MPa,800LB对应13MPa,900LB对应15MPa,1500LB对应25MPa,2500LB对应42MPa 我通常所用的PN,CLass,都是压力的一种表示方法,所不同的是,它们所代表承受的压力对应参照温度不同,PN欧洲体系是指在120℃下所对应的压力,而CLass美标是指在425.5℃下所对应的压力。所以在工程互换中不能只单纯的进行压力换算,如CLass300#单纯用压力换算应是2.1MPa,但如果考虑到使用温度的话,它所对应的压力就升高了,根据材料的温度耐压试验测定相当于5.0MPa。 阀门的体系有2种:一种是德国(包括我国)为代表的以常温下(我国是100度、德国是120度)的许用工作压力为基准的“公称压力”体系。一种是美国为代表的以某个温度下的许用工作压力为代表的“温度压力体系” 美国的温度压力体系中,除150LB以260度为基准外,其他各级均以454度为基准。 150磅级(150psi=1MPa)的25号碳钢阀门在260度时候,许用应力为1MPa,而在常温下的许用应力要比1MPa大得多,大约是2.0MPa。 所以,一般说美标150LB对应的公称压力等级为2.0MPa,300LB对应的公称压力等级为5.0MPa等等。因此,不能随便按照压力变换公式来变换公称压力和温压等级。 PN是一个用数字表示的与压力有关的代号,是提供参考用的一个方便的圆整数,PN是近似于折合常温的耐压MPa数,是国内阀门通常所使用的公称压力。对碳钢阀体的控制阀,指在200℃以下应用时允许的最大工作压力;对铸铁阀体,指在120℃以下应用时允许的最大工作压力;对不锈钢阀体的控制阀,指在250℃以下应用时允许的最大工作压力。当工作温度升高时,阀体的耐压会降低。 美标阀门以磅级为表示公称压力,磅级是对于某一种金属的结合温度和压力的计算结果,他根据ANSI B16.34的标准来计算。磅级与公称压力不是一一对应的主要原因是磅级与公称压力的温度基准不同。我们通常使用软件来计算,但是也要懂得使用表格来查磅级。日本主要用K值表示压力等级。 对于气体的压力,在中国,我们一般更常用其质量单位“公斤”描述(而不是“斤”),单位kg。其对应的压强单位是“kg/cm2”,一公斤压力就是一公斤的力作用在一个平方厘米上。 同样,相对应于国外,对于气体的压力,常用的压强单位是“psi”,单位是“1 pound/inch2”, 就是“磅/平方英寸”,英文全称为Pounds per square inch。但是更常用的是直接称呼其质量单位,即磅(LB.),实际这LB.就是前面提到的磅力。把所有的单位换成公制单位就可以算出: 1 psi=1磅/inch 2 ≈0.068bar,1 bar≈14.5psi≈0.1MPa,欧美等国家习惯使用psi作单位。 在Class600和Class1500中对应欧标和美标有两个不同数值, 11MPa(对应600磅级)是欧洲体系规定,这是在《ISO 7005-1-1992 Steel Flanges》里面的规定;10MPa(对应600磅级)是美洲体系规定,这是在ASME B16.5里面的规定。 因此不能绝对地说600磅级对应的就是11MPa或者10MPa,不同体系的规定是不同的。 阀门的体系主要有2种:一种是德国(包括我国)为代表的以常温下(我国是100度、德国是120

热量计算公式

供热简单知识 1.供热系统:供热系统分一次和二次供热系统,一次由热源单位来提供热源,二次是经过换热站对用户采暖供热(蒸汽系统除外),我公司分东西部供热系统。 2.热量计算公式:Q=C*G(T2-T1)÷1000 二次网流量选择原则:G=KW*0.86*1.1/(T2-T1) (地热温差取10℃;分户改造取15℃;二次网直连取25℃)。 采暖期用热:Q*24*167*0.64 分户估算水量:一般情况下为3-3.5KG/㎡ 老式供暖水量:一般情况下为2-2.5KG/㎡ 地热供暖水量:一般情况下为3.5-5KG/㎡,根据外网负荷确定。 根据45W,50W,55W计算流量情况能得出调整水平关系。可以实际计算。 3.一、二次网的热量相等: Q1=Q2,C1*G1*(T22-T21)=C2*G2*(T22'-T21'),水C1=C2, 一次网温差一般取45℃,直连系统一般选用25℃。但要和设计联系在一起,高值也可取65℃。从公式看出温差和流量决定一、二次网热量计算。 4.板式换热器系统阻力正常范围应在5-7mH2O

5.民用建筑室内管道流速不大于1.2m/s。 6.压力与饱和水温度关系: 7.单位换算:W=1J/S 例子:45W/㎡的采暖期的耗热量 45*3600*24*167*0.64=0J 变成GJ: 0÷00=0.41555GJ/㎡ 8.比摩阻:供热管路单位长度沿程阻力损失。若将大管径改为小一号管径,比摩阻增加1-2倍。 9.集中供热管网布置与敷设:管网主干线尽可能通过热负荷中心;管网力求线路短直;管网敷设应力求施工方便,工程量少;在满足安全运行、维修简便前提下,应节约用地;在管网改建、扩建过程中,应尽可能做到新设计的管线不影响原有管线正常运行;管线一般应沿路敷设,不应穿过仓库、堆场以及发展的预留地段;尽可能不通过铁路、公路及其他管线、管沟等,并适当注意整齐美观等,还有许多这里不做介绍。 管网布置有四种形式: A:枝装布置,B:环装布置,C:放射布置,D:网络布置。

管道通过能力的实用计算公式及其选择

天然气由气田或气体处理厂进入输气干线,其流量和压力是稳定的。在有压缩机站的长输管道两站间的管段,起点与终点的流量是相同的,压力也是稳定的,即属于稳定流动。长输管道的末段,有时由于城镇用气量的不均衡,要承担城镇日用气量的调峰,则长输管道末段在既输气又储气、供气的条件下,它的起点和终点压力,以及终点流量二十四小时都是不同的,属不稳定流动(流动随时间而变)。天然气的温度在进入输气管时,一般高于(也可能低于)管道埋深处的土壤温度。并且随着起点到终点的压力降,存在焦耳-汤姆逊节流效应产生温降,但由于管道与周围土壤的热传导,随着天然气在管道的输送过程,天然气的温度会缓慢地与输气管道深处的地层温度逐渐平衡。所以天然气在输气干管中流动状态,也不完全是等温过程,为便于理解,我们先给出稳定流动下的水力计算基本公式,再介绍沿线温度分布规律和平均温度。 计算公式随地形条件差异而不同。 在平坦地带,由于气体密度低,对于输气管道任意两点间的相对高差小于200 m的管道,可视为水平输气管段。在稳定输送状态下,管道输送量与管道起、终点压力的函数关系如下: 式中Q——管道标准状态下的体积流量,m3/s; C——常数,按此处所取各参数单位时,C值为··s/kg; p1——计算管段起点压力,Pa; p2——计算管段终点压力,Pa; λ——水力摩阻系数; d——管道内直径,m; L——管道计算段长度,m; △*——天然气相对密度; T——管道中天然气平均温度,K; Z——管输平均压力与平均温度下天然气压缩系数。 在地形起伏较大地带,当输气管道沿线任意两点高差大于200m,位差对输气管道流量的影响就不能忽略不计了。在稳定输送状态下,非水平输气管段的基本流量公式为:

案例5-1:内容:施工临时用水量及管径计算方法

不记得页码: 施工机械用水量 3600 83221?? ?=∑K N Q K q (5-7) 麻烦核实一下施工机械用水量公式5-7 q 缺少下角标2,正确应为q 2: 3600 832212?? ?=∑K N Q K q (5-7) 页码:154 原文字: 工地上采用这种布置方式。 7.工地临时供电系统的布置 建议修改文字: 插入案例5-1 工地上采用这种布置方式。 案例5-1 案例5-1 某工程,建筑面积为18133m 2,占地面积为4600m 2。地下一层,地上9层。筏形基础,现浇混凝土框架剪力墙结构,填充墙空心砌块隔墙;生活区与现场一墙之隔,建筑面积750m 2,常住工人330名。水源从现场南侧引入,要求保证施工生产,生活及消防用水。 问题: (1) 当施工用水系数K 1=1.15,年混凝土浇筑量11743m 3,施工用水定额2400L/m 3 ,年持续有效工作日为150d ,两班作业,用水不均衡系数K 2=1.5。要求计算现场施工用水? (2) 施工机械主要是混凝土搅拌机,共4台,包括混凝土输送泵的清洗用水、进出施工现场运输车辆冲洗等,用水定额平均N 2=300L/台。未预计用水系数K 1=1.15,施工不均衡系数K 3=2.0,求施工机械用水量? (3) 假定现场生活高峰人数P 1=350人,施工现场生活用水定额N 3=40L/班,施工现场生活用水不均

衡系数K 4=1.5,每天用水2个班,要求计算施工现场生活用水量? (4) 假定生活区常住工人平均每人每天消耗水量为N 4=120L ,生活区用水不均衡系数K 5按2.5计取;计算生活区生活用水量? (5) 请根据现场占地面积设定消防用水量? (6) 计算总用水量? (7) 计算临时用水管径? 案例解析 (1) 计算现场施工用水量: S L K b T N Q K q /626.53600 85.1215024001174315.136008211111=?????=???= (2) 计算施工机械用水量: s L K N Q K q /0958.03600 80.2300415.13600832 212=????=?=∑ (3) 计算施工现场生活用水量: s L b K N P q /365.03600 825.140350360084313=????=????= (4) 计算生活居住区生活用水量 s L K N p q /15.13600245.21203303600245424=???=???= (5) 设定消防用水量: 消防用水量 q 5的确定。按规程规定,施工现场在25ha(250000m 2)以内时,不大于15L/s ;(注:一公倾(ha )等于10000m 2)。 由于施工占地面积远远小于250000m 2,故按最小消防用水量选用,为q 5=10L/s 。 (6) 计算总用水量 54321/237.715.1365.00958.0626.5q s L q q q q <=+++=+++, 故总用水量按消防用水量考虑,即总用水量s L q Q /105==。若考虑10%的漏水损失,则总用水量:s L Q /1110%)101(=?+=。 (7) 计算临时用水管径 供水管管径是在计算总用水量的基础上按公式计算的,如果已知用水量,按规定设定水流速度(假定为:1.5m/s),就可以进行计算。计算公式如下:

管道设计计算公式(流速规定、泵的选用)

1流速与管径计算公式 水流速度取0.7 m/s,则管径计算值如下: D= 4×Q 3600×π×V = 4×6000 3600×3.14×0.7 =174 mm 空气管道的流速,一般规定为:干、支管为10~15m/s,通向空气扩散装置的竖管、小支管为4~5m/s。 2泵的选型 水管管路的水头损失=沿程水头损失+局部水头损失 沿途水头损失=(λL/d)*V^2/(2g)------------P150(层流、紊流均适用) 局部水头损失=ζ*V^2/(2g) 水管管路的水头损失=沿程水头损失+局部水头损失=(λL/d+ζ)*V^2/(2g) 式中:λ—管道沿途阻力系数;L—管道长度;ζ——局部阻力系数,有多个局部阻力系数,则要相加;d—管道内径, g—重力加速度,V—管内断面平均流速。沿途阻力系数λ和局部阻力系数ζ都可查水力学手册。 λ=64/Re 仅适用于圆管层流。对于紊流,由于运动的复杂性,其规律主要由试验确定,但可在理论上给以某些阐述。P171

沿程水头损失 (1)层流区Re<2320(即lgRe<3.36)λ=64/Re (2)层流转变为紊流过渡区2320<Re<4000(即3.36<lgRe<3.6),试验点散乱,流动情况比较复杂且范围不大,一般不作详细分析。 (3)紊流区Re>4000(即lgRe>3.6)分为紊流光滑区、紊流过渡区、紊流粗糙区。 ①紊流光滑区:不同相对粗糙度△/d试验点均落在直线cd上,说明λ与△/d无关。和层流情况相类似,λ值也仅仅与Re有关。可表示为λ=(Re),但与层流区所遵循的函数关系不同。

②紊流粗糙区:分界线ef右方,λ与Re无关,仅与△/d有关,可表示为λ=(△/d) ③紊流过度粗糙区λ=(△/d,Re)

管道承压计算公式

管道承压计算公式 无锡灏艺合金制品有限公司 一、根据设计压力计算壁厚 参照规范GB50316-2000<工业金属管道设计规范>计算公式P44,当直 管计算厚度S1小于管子外径D 的1/6时,按照下面公式计算 公式1 S1=) ]([21PY E PD +σ 公式2 S=S1+C1+C2

二、根据壁厚简单计算管道承受压力校核验算 公式1 P=S D ES +2)]([2σ 阀门磅级,MPA, BAR, PSI 和公斤的含义和换算 阀门磅级,MPA, BAR, PSI 和公斤的含义和换算 class 150 300 400 600 800 900 Mpa MPA 150LB 对应,300LB 对应,400LB 对应,600LB 对应10MPa ,800LB 对应13MPa ,900LB 对应15MP

对应42MPa 我通常所用的PN,CLass,都是压力的一种表示方法,所不同的是,它们所代表承受的压力对系是指在120℃下所对应的压力,而CLass美标是指在℃下所对应的压力。所以在工程互换中如CLass300#单纯用压力换算应是,但如果考虑到使用温度的话,它所对应的压力就升高了定相当于。 阀门的体系有2种:一种是德国(包括我国)为代表的以常温下(我国是100度、德国是12的“公称压力”体系。一种是美国为代表的以某个温度下的许用工作压力为代表的“温度压美国的温度压力体系中,除150LB以260度为基准外,其他各级均以454度为基准。 150磅级(150psi=1MPa)的25号碳钢阀门在260度时候,许用应力为1MPa,而在常温下的许约是。 所以,一般说美标150LB对应的公称压力等级为,300LB对应的公称压力等级为等等。 因此,不能随便按照压力变换公式来变换公称压力和温压等级。 PN是一个用数字表示的与压力有关的代号,是提供参考用的一个方便的圆整数,PN是近似于内阀门通常所使用的公称压力。对碳钢阀体的控制阀,指在200℃以下应用时允许的最大工作以下应用时允许的最大工作压力;对不锈钢阀体的控制阀,指在250℃以下应用时允许的最

供热煤耗计算公式

供汽量锅炉效率总耗标准煤发电量发电标煤耗供热标准煤耗供热量供热比站用电量供电标煤耗 发电标煤耗热电比机组热效率318140.84288.5272181.68488.605383799.9218287329.40.886149.740.370.268937351335.274.3 279040.83761.4592164.01428.554863332.9043476596.50.886145.060.360.261298011297.375.1 294590.83971.0732168.33452.436853518.63635808650.886149.460.3810.268779691334.473.58 251600.83391.568128.61386.4123005.15669064.20.886141.60.4440.300452531491.769.6 00.800000000000 56280.8758.654445.7286.435879672.21852115448.90.886117.80.310.189********.6277.01 279270.83764.5596200.93428.90813335.651576659.60.886150.180.2850.213461461059.876.16 255680.83446.5664193.07392.678143053.8882670184.20.886149.180.2730.203386411009.876.49 286110.83856.7628198.63439.41313417.349778537.20.886145.380.2870.221221921098.375.93 259460.83497.5208194.01398.483533099.0372771221.80.886147.780.2730.20539331019.776.42 237160.83196.9168160.73364.234772832.6820365100.40.8861430.3090.226612811125.175.78 1100.775.92 294080.83964.1984203.73451.653583512.54482807250.886150.420.2950.221692232006年35吨 25558.2730.872733445.25516167.22392.528743052.7264270157.50.886144.509090.3260.2345718701164.675.12 269560.83633.6688187.03413.99533219.673573994.20.886148.640.2990.22135413109975.93 183700.82476.276121.64282.12992194.146150425.70.886134.760.3250.231938431151.575.64 215410.82903.7268161.41330.830722572.89608591300.886144.720.2840.204962961017.676.43 300220.84046.9656179.65461.083513585.8820982410.40.886148.680.3520.256656561274.275.06 298740.84027.0152177.68458.810493568.2047182004.10.8861510.3620.25822293128275.02 278220.83750.4056169.2427.295493323.1101176371.40.886147.740.3520.252538711253.875.15 272630.83675.0524162.51418.710273256.3421374836.90.886147.80.3650.2576521279.275.04 288800.83893.024173.67443.544453449.4795579275.60.886150.520.360.25539498126875.08 266680.83594.8464167.05409.572143185.2742673203.70.886150.080.350.245179371217.375.31 244080.83290.1984139.38374.862642915.33576670000.886141.960.3850.268950091335.374.81 293690.83958.9412172.38451.054613507.8865980617.90.886145.80.3560.261662961299.174.95 1222.375.29 246680.83325.2464153.89378.855772946.3906367713.70.886143.040.3420.246186092005年35吨 26320.0830.83547.94723163.79404.228773143.7184672248.60.886146.228330.3440.2467249301224.975.31 615790.88300.8492483.06945.741837355.107371690340.8861106.970.2510.19578144972.0176.75 570000.87683.6438.72875.416696808.183311564650.886197.910.2570.199********.6776.62 597450.88053.626448.02917.574917136.0510********.8861106.60.2690.204806691016.876.44

各种管道水头损失简便计算公式

各种管道水头损失的简便计算公式 (879) 摘要:从计算水头损失的最根本公式出发,将各种管道的计算公式加以推导,得出了计算水头损失的简便公式,使得管道工程设计人员从繁琐的计算中解脱出来,提高了工作效率。 关键词:水头损失塑料管钢管铸铁管混凝土管钢筋混凝土管 在给水工程应用中经常要用到水头损失的计算公式,一般情况下计算水头损失都是从水力摩阻系数λ等基本参数出发,一步一步的代入计算。其实各个公式之间是有一定的联系的,有的参数在计算当中可以抵消。如果公式中只剩下流速、流量、管径这些基本参数,那么就会给计算者省去不少的麻烦。在此我们充分利用了各参数之间以及水头损失与水温的关系,将公式整理简化,供大家参考。 1、PVC-U、PE的水头损失计算 根据《埋地硬聚氯乙烯给水管道工程技术规程》规定,塑料管道沿程水头损失hf应按下式计算: (式1-1) 式中λ—水力摩阻系数; L—管段长度(m); di—管道内径(m);

v—平均流速(m/s); g—重力加速度,9.81m/s2。 因考虑到在通常的流速条件下,常用热塑性塑料给水管PVC-U、PE管一般处于水力光滑区,管壁绝对当量粗糙度对结果的影响非常小或没有影响,故水力摩阻系数λ可按下式计算: (式1-2) 式中Re—雷诺数。 雷诺数Re应按下式计算: (式1-3) 式中γ—水的运动粘滞度(m3/s),在不同温度时可按表1采用。 表1水在不同温度时的γ值(×10-6) 05101520253040 水温℃ 1.78 1.52 1.31 1.14 1.000.890.80 0.66

γ(m3/s) 从前面的计算可知,若要计算水头损失,需将表1中的数据代入,并逐步计算,最少需要3个公式,计算较为繁琐。为将公式和计算简化,以减少工作量,特推导如下: 因具体工程水温的变化较大,水力计算中通常按照基准温度计算,然后根据具体情况,决定是否进行校正。冷水管的基准温度多选择10℃。 当水温为10℃时的γ=1.31×10-6 m3/s,代入式1-3 得(式1-4) 将式1-4代入式1-2 (式1-5) 再将式1-5代入式1-1 得 (式1-6) 取L为单位长度时,hf即等同于单位长度的水头损失i,所以 (式1-7)

供热管网各参数计算常用公式

供热管网各参数常用计算公式 1比摩阻R(P/m)——集中供热手册P 196 R = 6、25×10-2×52d G ρλ 其中:λ—— 管道摩擦系数(查动力管道手册P345页) λ= 1/(1、14+2×log K d )2 G —— 介质质量流量(t/h) 或:R=d 22 λρν=6、88×10-3×25.525.02d K G ρ ρ—— 流体介质密度(kg/m 3) d —— 管道内径(m) K ——管内壁当量绝对粗糙度(m) 2、管道压力降△P(MPa) △P = 1、15R(L+∑Lg)×10-6 其中:L —— 管道长度(m) ∑Lg ——管道附件当量长度(m) 3、管道单位长度热损q(W/m) q = 其中:T 0 —— 介质温度(℃) λ1 —— 内层保温材料导热系数(W/m 、℃) λ2 —— 外层保温材料导热系数(W/m 、℃) D 0 —— 管道外径(m) D 1 —— 内保温层外径(m) D 2 —— 外保温层外径(m) α—— 外表面散热系数[α=1、163×(10+6?)] ?—— 环境平均风速。预算时可取α=11、63 Ln —— 自然对数底 4、末端温度T ed(℃) T ed = T 0 - GC L L q g 310)(-?+ 其中:T 0 —— 始端温度(℃) L —— 管道长度(m) Lg —— 管道附件当量长度(m) G —— 介质质量流量(t/h) C —— 介质定容比热(kj / kg 、℃) 5、保温结构外表面温度T s(℃) 2122011012121 )16(D D D Ln D D Ln T αλλπ++-

T s = T a + α π2D q 其中:Ta ——环境温度(南方可取Ta =16℃) 6、管道冷凝水量(仅适用于饱与蒸汽)G C (t/h) G C = γ3 106.3-?qL 其中:γ——介质汽化潜热(kj / kg) 7、保温材料使用温度下的导热系数λt (W/m 、℃) λt =λo +2 )(B A T T K + 其中:λo ——保温材料常态导热系数 T A —— 保温层内侧温度(℃) T B —— 保温层外侧温度(℃) K —— 保温材料热变系数 超细玻璃棉K=0、00017 硅酸铝纤维K=0、0002 8、管道直径选择d(mm) 按质量流量计算:d = 594、5 ωρG 按体积流量计算:d = 18、8ωνG 按允许单位比摩阻计算:d = 0、0364×52 R G ?νλ 其中:G —— 介质质量流量(t/h) G v —— 介质体积流量(m 3/h) ω —— 介质流速(m/s) ρ —— 介质密度(kg/m 3) ΔR —— 允许单位比摩阻(Pa/m) 9、管道流速ω(m/s) ω= π ρ29.0d G 其中:G —— 介质质量流量(t/h) ρ —— 介质密度(kg/m 3) d —— 管道内径(m) 10、安全阀公称通径(喉部直径)选择DN(mm)

相关文档
最新文档