基于SolidWorks的齿轮啮合几何建模和运动仿真

基于SolidWorks的齿轮啮合几何建模和运动仿真
基于SolidWorks的齿轮啮合几何建模和运动仿真

基于SolidWorks的齿轮啮合几何建模和运动仿真

河北天择重型机械有限公司(河北邯郸 056200)刘刚

1 引言

齿轮传动是最基本的机械传动型式之一,应用极为广泛,几乎遍及工业各部门。与其他传动相比,齿轮传动具有工作可靠、使用寿命长、瞬时传动比恒定、效率高、结构紧凑、速度和功率的适用范围广等许多优点。在传统的平面绘图中,只能标注出分度圆、齿顶圆、齿根圆等尺寸,无法画出齿形轮廓,更不要说模拟动画了。为了解决齿轮传动平面绘图的缺点,本文提出了一种基于SolidWorks的实体建模和动态仿真,这样可使抽象的问题直观化。Animator插件就是一个与SolidWorks完全集成的动画制作软件插件,它能将SolidWorks的三维模型实现动态的可视化,并且实时录制机构的模拟装配过程、模拟拆卸过程和机构的模拟工作过程,将机构的工作情况得到更好的表达,增强了人们对机构的认识。

2 齿轮啮合零件的实体建模

SolidWorks用户界面非常人性化,便于操作。在SolidWorks的标准菜单中包含了各种用于创建零件特征和基准特征的命令。其中基础实体特征主要有拉伸凸台/基体、旋转凸台/基体等。在基础实体特征上可添加圆角、倒角、肋、抽壳、拔模及异型孔、线性列阵、圆角列阵、镜像等放置特征。在处理复杂的几何形状时还需要其他高级特征选项,包括扫描、放样凸台/基体及参考几何体中基准轴、基准面这些定位特征等。通过以上特征造型技术在SolidWorks中能设计出需要的齿轮轴和键的实体模型。Solidworks2006通过二次开发,开发出了齿轮造型的程序,设计人员只需从右侧设计库的工具箱栏中调出齿轮文件,输入齿轮的参数,计算机就可以自动产生齿轮的实体模型,机壳的设计比较随意,能把两个齿轮轴的距离约束到所需的中心距即可,其零件实体见下图1。

(a)齿轮轴(b)键

(c)齿轮1 (d)齿轮2

图1 齿轮啮合零件实体模型

3 齿轮啮合的装配和拆卸

完成了齿轮啮合的零件实体后就可以进行齿轮啮合的装配。单击“新建”按钮,新建一个装配体,然后依次插入上述零件。其中第一个零件的插入非常重要,它是整个装配体的装配基础,被默认为固定的,即不能运动,其他的零件都是以它为装配参照体。调入零件后,利用系统在配合菜单下提供的重合、同轴、同心、平行、垂直、距离等标准配合,精确地放置实体。由于机壳实体挡住了部分齿轮,因此将机壳实体设置成隐藏。拆卸时,单击装配体中“爆炸视图”按钮,按照提示用鼠标向X、Y、Z三个方向拖动其中零件至理想位置,齿轮啮合的装配图及拆卸图如图2、图3所示。

图2 装配图图3 拆卸图

4 齿轮啮合动态仿真

在实现动态仿真前,先在装配体模式下对齿轮进行动态模拟。单击装配体中“模拟”按钮,分别设置两齿轮的旋转方向和角速度。两齿轮的旋转方向相反,角速度与其齿数成反比。

启动Animator插件,单击菜单“工具”→“插件”,单击Animator前的选项栏,就会出现Animator的工具栏。SolidWorks中Animator的操作都是在工作区的底部,单击工作区底部的“动画”标签就能切换到动画操作。在SolidWorks Animator工具栏

上,单击“动画向导”按钮,选择“物理模拟”,单击“下一步”,然后设置开始时间和动画时间长度,单击“完成”。最后,点击SolidWorks Animator工具栏左侧的“播放”按钮观看动画。在SolidWorks Animator工具栏上,单击“保存”按钮可将制作的动画以AVI格式保存

5 总结

本文采用SolidWorks三维实体造型设计,定义不同零件之间的相对位置约束关系装配零件,设置两齿轮的旋转方向和角速度以实现齿轮啮合的动态仿真,使设计人员能够全方位立体地观察齿轮的运动状态。现在,三维实体设计正逐步取代二维平面设计成为产品开发的主流设计软件,是产品设计发展的必然趋势。

SW画齿轮方法简介2

S O L I D W O R K 精确的绘制齿轮的方法 有有许许多多人人还还不不知知道道怎怎么么运运用用S S O O L L I I D D W W O O R R K K 去去绘绘制制比比较较逼逼真真的的齿齿轮轮。。其其实实S S W W 绘绘齿齿轮轮是是比比较较简简单单的的了了。。在在机机械械制制图图中中我我们们都都学学过过怎怎么么用用手手工工去去绘绘制制齿齿轮轮的的方方法法,,在在S S W W 软软件件里里也也是是一一样样的的运运用用;;也也许许多多人人都都已已忘忘掉掉手手工工是是怎怎么么绘绘制制齿齿轮轮的的了了,,没没有有关关系系了了现现在在我我带带大大家家回回顾顾一一次次吧吧!! 第一步:要是设计齿轮的话必须掌握齿轮的相关知识(查看相关书籍),下面是齿轮的一些常数关系式:

说明的就是:COSθ,这里的θ就是压力角、我国规定的标准确性压力角θ=20o。 第二步:根据公式就可以自己设计齿轮了,我们假设:模数m =1.5、齿数Z =40、COSθ =0.94、那么分度圆的直径D =60、齿顶圆的直径Da =63、齿根圆的直径Df =56.25、 基圆的直径J =56.4、在SW中绘草图如下:

图中说明一下:这图中的基圆?56.4和齿根圆?56.25尺寸比较接近,在图中不易看出、请放大就能看清楚,为了区分基圆为构造线及虑线: 左图绘法如下:(1)连接OA并取中心点O1为圆心,O1A为半径作弧交于基圆于 B点。

(2)以B 点为圆心,BA为半径作弧,在顶圆与基圆之间得到CD 弧。即为所求齿形的一部分; (3)在基圆与根圆之间,没有什么要求、只要作径向线就可以了;并以r=0.2m (m为模数)的小圆弧与根圆光滑相连即可得到半边齿形。 注意点:做到这一步时,大家有没有发现到r=0.2m不能被执行,我们要在这里用剪切命令把基圆剪掉还要把根圆也要剪掉一部分;这时我们以然不能圆弧,我们只有不作基圆与根圆的径向(如果作了再把它删除掉)。直接弧CD与根圆作r=0.2m的圆角就可以了。大家知道为什么会出现这种现象呢!这里面可有很深的机械专业知识在里面哦!!大家只要深入的研究下去就会发现模数m、齿数Z、基圆J以及根圆的关系。设计可不是乱来的哦!!!要是不想自己研究一下,那就在网上找问答吧! (4)画好了齿形的 一半,另一半用镜像命 令可以了;先要作好齿 距的弧线360o/40等 于9o再取弧度的四分 之一就是另一半弧了 (见左图),再把一些不要的线全删掉。

齿轮传动计算题(带答案)

第四章齿轮传动计算题专项训练(答案);1、已知一标准直齿圆柱齿轮的齿数z=36,顶圆d;2、已知一标准直齿圆柱齿轮副,其传动比i=3,主;3、有一对标准直齿圆柱齿轮,m=2mm,α=20;4、某传动装置中有一对渐开线;5、已知一对正确安装的标准渐开线正常齿轮的ɑ=2;解:144=4/2(Z1+iZ1)Z1=18Z2;d 1=4*18=72d2=4*54=216 第四章齿轮传动计算题专项训练(答案) 1、已知一标准直齿圆柱齿轮的齿数z=36,顶圆da=304mm。试计算其分度圆直径d、根圆直径df、齿距p以及齿高h。 2、已知一标准直齿圆柱齿轮副,其传动比i=3,主动齿轮转速n1=750r/mi n,中心距a=240mm,模数m=5mm。试求从动轮转速n2,以及两齿轮齿数z1和z 2。 3、有一对标准直齿圆柱齿轮,m=2mm,α=200, Z1=25,Z2=50,求(1)如果n1=960r/min,n2=?(2)中心距a=?(3)齿距p=?答案: n2=480 a=7 5 p=6.28 4、某传动装置中有一对渐开线。标准直齿圆柱齿轮(正常齿),大齿轮已损坏,小齿轮的齿数z1=24,齿顶圆直径da1=78mm, 中心距a=135mm, 试计算大齿轮的主要几何尺寸及这对齿轮的传动比。解: 78=m(24+2) m=3 a=m/2(z1 +z2) 135=3/2(24+z2) z2 =66 da2=3*66+2*3=204 df2=3*66-2*1.25*3=190.5 i =66/24=2.75 5、已知一对正确安装的标准渐开线正常齿轮的ɑ=200,m=4mm,传动比i12 =3,中心距a=144mm。试求两齿轮的齿数、分度圆半径、齿顶圆半径、齿根圆半径。

二级圆柱齿轮减速器建模及仿真

二级圆柱齿轮减速器建模及仿真 任务书 1.设计的主要任务及目标 在已有减速器设计的基本理论基础上,利用CAD绘图软件进行二维平面设计,建立齿轮、轴、轴承、端盖、上箱体及下箱体的三维参数化模型,将各零件进行装配并且运用Pro/E绘图软件对其进行运动仿真。 2.设计的基本要求和内容 1、根据减速器设计的原始资料,研究减速器各组成部件设计及校核方法; 2、对二级圆柱齿轮减速器设计进行功能分解,确立系统的整体结构; 3、研究二级圆柱齿轮减速器系统设计中相关技术; 4、采用 Pro/E 软件,设计一个二级圆柱齿轮减速器实现减速器的三维模型生 成,以及由此生成三维动态仿真,进行工作过程仿真。 3.主要参考文献 [1] 宋正和,张子泉主编机械设计基础北京交通大学出版社,2007.5 [2] 罗圣国,吴宗泽主编机械设计手册高等教育出版社,2006.5 [3] 濮梁贵,纪名刚主编机械设计高等教育出版社, 2001 [4] 卢颂峰,王大康主编机械设计毕业设计北京工业大学出版社, 1993 [5] 机械设计手册联合编写组机械设计手册中册化学工业出版社, 1982 [6] 张富洲主编机械设计毕业设计西北工业大学出版社 1998 4.进度安排

二级圆柱齿轮减速器建模及仿真 摘要:减速器(又称减速机、减速箱)是一台独立的传动装置,它由密闭的箱体、互相啮合的一对或几对齿轮、传动轴及轴承等组成。常安装在电动机(或其他原动机)与工作机之间。作为一种重要的动力传递装置,在机械化生产中起着不可替代的作用。减速器主要运用齿轮传动装置而实现运作。 本设计简述了带式输送机的动力传递装置—二级直齿圆柱齿轮减速器的设计过程。主要包括传动方案设计、电动机的选择、V带设计选择、,齿轮传动设计及轴的设计选择和校核等。其间设计过程多次运用CAD、Pro/e软件设计绘制减速器装配图零件图来优化完整本设计,最终实现减速器的运动仿真并完成减速器的模拟设计。 关键词:减速器,传动装置,齿轮传动 Two cylindrical gear reducer modeling and simulation Abstract:Reducer ( also known as reducer, reducer ) is an independent transmission device, which is composed of a sealed box, meshing pair or several pairs of gear, shaft and bearing. Often mounted on the motor ( or other prime mover ) and working machine. As a kind of important power transmission device, the mechanized production plays an irreplaceable role. Reducer mainly used gear transmission device and operation. The design of the belt conveyor power transfer device - two straight tooth cylindrical gear reducer design process. Mainly includes the transmission scheme design, the choice of motor, V belt design, selection, design of gear and shaft design and checking. During the design process to use manyCAD, Pro/e software design drawing speed reducer assembly drawing parts drawing to optimize the entire design, final implementation reducer reducer motion simulation and simulation design. Key words: reducer, gear, gear transmission

(完整版)齿轮传动习题含答案

齿轮传动 一、选择题 7-1.对于软齿面的闭式齿轮传动,其主要失效形式为________。 A .轮齿疲劳折断 B .齿面磨损 C .齿面疲劳点蚀 D .齿面胶合 7-2.一般开式齿轮传动的主要失效形式是________。 A .轮齿疲劳折断 B .齿面磨损 C .齿面疲劳点蚀 D .齿面胶合 7-3.高速重载齿轮传动,当润滑不良时,最可能出现的失效形式为________。 A .轮齿疲劳折断 B .齿面磨损 C .齿面疲劳点蚀 D .齿面胶合 7-4.齿轮的齿面疲劳点蚀经常发生在________。 A .靠近齿顶处 B .靠近齿根处 C .节线附近的齿顶一侧 D .节线附近的齿根一侧 7-5.一对45钢调质齿轮,过早的发生了齿面点蚀,更换时可用________的齿轮代替。 A .40Cr 调质 B .适当增大模数m C .45钢齿面高频淬火 D .铸钢ZG310-570 7-6.设计一对软齿面减速齿轮传动,从等强度要求出发,选择硬度时应使________。 A .大、小齿轮的硬度相等 B .小齿轮硬度高于大齿轮硬度 C .大齿轮硬度高于小齿轮硬度 D .小齿轮用硬齿面,大齿轮用软齿面 7-7.一对齿轮传动,小轮材为40Cr ;大轮材料为45钢,则它们的接触应力________。 A .1H σ=2H σ B. 1H σ<2H σ C .1H σ>2H σ D .1H σ≤2H σ 7-8.其他条件不变,将齿轮传动的载荷增为原来的4倍,其齿面接触应力________。 A .不变 B .增为原应力的2倍 C .增为原应力的4倍 D .增为原应力的16倍 7-9.一对标准直齿圆柱齿轮,z l = 21,z 2 = 63,则这对齿轮的弯曲应力________。 A. 1F σ>2F σ B. 1F σ<2F σ C. 1F σ =2F σ D. 1F σ≤2F σ 7-10.对于开式齿轮传动,在工程设计中,一般________。 A .先按接触强度设计,再校核弯曲强度 B .只需按接触强度设计 C .先按弯曲强度设计,再校核接触强度 D .只需按弯曲强度设计。 7-7.设计闭式软齿面直齿轮传动时,选择小齿轮齿数z 1的原则是________。

行星齿轮的三维建模与运动仿真

北京工业大学耿丹学院 毕业设计(论文) 基于Solidwork的行星齿轮的三维建模与运动仿真 所在学院 专业 班级 姓名 学号 指导老师 年月日

摘要 行星齿轮减速器是一种至少有一个齿轮的几何轴线绕着固定位置转动圆周运动的传动,变速器通常和若干行星轮和传递载荷的作用,为了使功率分流。渐开线行星齿轮传动具有以下优点:传动比大,结构紧凑,体积小、质量小,效率高,噪音低,运转平稳,因此被广泛应用于冶金,工程机械,起重,运输,航空,机床,电气机械及国防工业等部门,作为减速、变速或增速的齿轮传动装置 NGW型行星齿轮传动机构的传动原理:当高速轴由电机驱动,带动太阳轮,然后带动行星轮转动,内齿圈固定,然后带动行星架输出运动的,在行星架上的行星轮既自转和公转,具有相同的结构。二级,三级或多级传输。NGW型行星齿轮传动机构主要由太阳齿轮,行星齿轮,内齿圈,行星架,命名为基本成分后,也被称为zk-h型行星齿轮传动机构。 本设计是基于行星齿轮结构设计的特点,和SolidWorks三维建模和运动仿真。行星齿轮和各种类型的特性的比较,确定方案;其次根据输入功率,相应的输出转速,传动比的传动设计、总体结构设计;三维建模并最终完成了SolidWorks,和模型的装配,并完成了传动部分的运动仿真和运动分析。 关键词:行星齿轮减速器、运动仿真、装配、三维建模

Abstract Planetary gear reducer is driving a at least one gear geometric axis rotated around a circular motion of fixed position, the transmission is usually and planetary gear and transfer load, in order to make the power split. Involute planetary gear transmission has the following advantages: large transmission ratio, compact structure, small volume, small mass, high efficiency, low noise, smooth operation, so it is widely used in metallurgy, engineering machinery, lifting, transportation, aviation, machine tools, electrical machinery and defense industry and other departments, as gear reducer, gear or the growth The transmission principle of NGW type planetary gear transmission mechanism: when the high-speed shaft driven by a motor, to drive the sun gear, and the planet wheel is driven to rotate, the inner gear ring is fixed, and then drives the planetary frame outputting motion, on the planet carrier planet wheel both rotation and revolution, has the same structure. The two level, three level or multilevel transmission. The NGW type planetary gear transmission mechanism mainly consists of a sun gear, planet gear, inner gear ring, a planetary frame, named after the basic components, also known as the ZK-H type planetary gear transmission mechanism. This design is the design of planetary gear structure based on SolidWorks, and 3D modeling and motion simulation. Comparison of characteristics of planetary gears, and various types of determination scheme; secondly according to the input power, the output speed of the overall design, transmission design, ratio; 3D modeling and finished SolidWorks, assembly and model, and the motion simulation and motion analysis of the transmission part. Keywords: planetary gear reducer, assembly, motion simulation, 3D modeling

基于内燃机气门机构及SolidWorks运动仿真

重庆理工大学机械设计专业课程设计 设计题目:内燃机配气门设计与仿真 指导老师:贾秋红 姓名:舒浩于 专业:机械设计制造及其自动化 学号:11104020617 学院:机械工程学院 中国 重庆 2014年6月

摘要 内燃机是一种动力机械,它是通过使燃料在机器内部燃烧,并将其放出的热能直接转换为动力的热力发动机。通常所说的内燃机是指活塞式内燃机。活塞式内燃机以往复活塞式最为普遍。活塞式内燃机将燃料和空气混合,在其气缸内燃烧,释放出的热能使气缸内产生高温高压的燃气。燃气膨胀推动活塞作功,再通过曲柄连杆机构或其他机构将机械功输出,驱动从动机械工作。内燃机的工作循环由进气、压缩、燃烧和膨胀、排气等过程组成。这些过程中只有膨胀过程是对外作功的过程,其他过程都是为更好地实现作功过程而需要的过程。四冲程是指在进气、压缩、膨胀和排气四个行程内完成一个工作循环,此间曲轴旋转两圈。进气行程时,此时进气门开启,排气门关闭;压缩行程时,气缸内气体受到压缩,压力增高,温度上升;膨胀行程是在压缩上止点前喷油或点火,使混合气燃烧,产生高温、高压,推动活塞下行并作功;排气行程时,活塞推挤气缸内废气经排气门排出。此后再由进气行程开始,进行下一个工作循环. 关键词:构建模型零件装配运动仿真

目录 第一章设计要求 (1) 1.1 设计任务 (1) 1.2 设计思路 (1) 第二章内燃机各零件建模 (1) 2.1 内燃机的工作原理 (1) 2.2 内燃机运动循环图 (1) 2.3 内燃机各个零件的建模 (2) 2.3.1活塞的建模 (2) 2.3.2 汽缸的建模 (4) 2.3.3 曲轴建模 (5) 2.3.4 小带轮建模 (7) 2.3.5 大带轮建模 (8) 2.3.6 凸轮轴建模 (8) 2.3.7 凸轮建模 (9) 2.3.8 摆臂建模 (10) 2.3.9 弹簧座建模 (11) 2.3.10 气门头部建模 (11) 2.3.11 气缸盖建模 (11) 2.3.12 活塞销建模 (15) 2.3.13 连杆建模 (15) 第三章内燃机各零件的装配 (15)

第六章-轮系计算题专项训练(附答案)

第六章轮系计算题专项训练(答案) 1、如图所示,已知:z 1=16,z=32,z 2 ,=20,z 3 =40,蜗杆z 3 ,=2,蜗轮z 4 =40,n 1 =8 00r/min。试求蜗轮的转速n 4 并确定各轮的回转方向。 2、在图示轮系中,已知z1、z2、z2'、z3、z4、z4'、z5、z5'、z6。求传动比i16 。 i16=z2z4z5z6/z1z2'z4'z5' 3、图示轮系中蜗杆1为双头左旋蜗杆Z 1 =2,转向如图所示。蜗轮的齿数为Z2=50,蜗杆2为单头右旋蜗杆Z2’=1, 蜗轮3的齿数为Z3=40,其余各轮齿数为Z3’=30, Z4=20, Z4’=26, Z5=18, Z5’=46, Z6=16, Z7=22。求i17。

i17=Z2Z3Z4Z5Z6Z7/Z1Z2'Z3'Z4'Z5'Z6=50*40*20*18*22/2*1*30*26*46= 220.7 4、在习题图8所示的轮系中,已知z 1=15 , z 2 =25 , z 2’ =15 , z 3 =30 , z 3’ =15 , z 4=30, z 4’ =2,z 5 =60, 若n 1 =500 r/min,求齿轮5转速的大小和方向。 (n 5 =2.5 r/min , 顺时针)

2002151515603030254534231251=??????=='''z z z z z z z z n n ,)/(5.2200 50020015m r n n ===;齿轮5的方向可以画箭头确定。 5、在图示轮系中,已知z1、z 2、z2'、z3、z 4、 z 4'、 z 5、 z5'、z6。 求传动比 i 16。 ? 6、如图所示轮系,已知122344524,46,23,48,35,20,48z z z z z z z ''=======,1O 为主动轴。试计算轮系的传动比15i 并确定齿轮5的转动方向。

传动系统(驱动系统)的力学建模与仿真SimDriveLine

——传动系统(驱动系统)的力学建模与仿真 SimDriveline是Simulink?的扩展,它为传动系统(驱动系统)的力学建模与仿真提供有力的工具。这些工具包括像齿轮、转动轴和离合器等部件;标准的变速器模板;发动机和轮胎模型。SimDriveline专门为传动系的力学分析进行了易用性和计算速度方面的优化。它实现了与MathWorks控制系统设计和代码生成产品的集成,这样不仅可以进行控制器设计,而且还能够把机械系统模型生成实时代码,在实时环境中对控制器进行测试。 SimDriveline可以广泛用于汽车、航空、国防和工业领域。它尤其适合于 汽车和航空传动系统的控制器开发。 特点 ?在Simulink下对传动系力学进行定义的 建模环境 ?通用的齿轮结构库 ?动态元件库,包括离合器和转动限位器 (Rotational stops)、液力变矩器和扭转的 弹簧-减震器 ?通用的变速器模板 ?车辆部件的基本模型,包括发动机、纵向 车辆动力学和轮胎 强大功能 传动系统的建模 SimDriveline为在Simulink环境中建立传动系模型提供了有效的途径。用户可以使用模块图网络描述来表示一个系统。不同的模块代表不同的部件,如齿轮、离合器和液力变矩器。连接不同模块之间的线代表旋转部件,如驱动轴。在SimDriveline中,用户可以拥有Simulink的所有功能。使用传感器模块,用户可以测量速度、加速度和转矩,并且把这些测量信号值传给标准的Simulink 模块。Simulink信号能够通过执行器模块对驱动转矩进行定义,或者预先设定传动轴的动力学参数。SimDriveline为实现完全的机械系统3-D仿真器提供了另外一条有效的途径,它完全专注于旋转机械的力学仿真。每一根杆件的运动被限制于绕某个轴的转动,用户可以通过一个简单的惯性质量部件为每根杆件进行质量参数赋值。只对每根杆件的旋转速度进行记录的结果就是加快仿真执行的速度。 齿轮、离合器和动力学元件建模 SimDriveline包括了很多部件的模块库,这些模块定义了连接轴之间的部件的运动和转矩关系。

基于Solidworks的机械手运动仿真设计

2012年8月第24期 科技视界 SCIENCE &TECHNOLOGY VISION 科技视界0引言 机械手对实现工业生产自动化,推动工业生产的进一步 发展起着重要作用。工业机械手可以代替人手的繁重劳动,显著减轻工人的劳动强度,改善劳动条件,能在有害环境下操作以保护人身安全,因而广泛应用于机械制造、冶金、电子、轻工和原子能等部门,更能提高劳动生产率和自动化水平。随着现代生产的机械化和自动化的发展对机器人的需求越来越大因而对机器人的末端执行机构机械手的研究尤为重要。一些软件的发展为机械手的设计分析提供了方便降低了生产成本,本设计是基于S olidworks 软件,使得设计效率大大提高[1]。 本文是为普通车床配套而设计的上料机械手。它是一种模仿人体上肢的部分功能,按照预定要求输送工件或握持工具进行操作的自动化技术设备,对实现工业生产自动化,推动工业生产的进一步发展起着重要作用。 1机械手工作原理 上料机械手直接与工件接触的部件,它能执行人手的抓 握功能。手抓取物体以物体为中心,用两根手指包络物体。根据抓取物体时的相对状态,靠手指与工件之间的摩擦力来夹持工件。本上料机械手采用二指平动手爪,属于夹持式手爪,手指由四杆机构带动,当上料机械手手爪夹紧和松开物体时, 手指姿态不变,作平动。机械手手爪的结构见图1,①为支架、 ②气动杆、③和④为大螺钉、⑤和⑥为三孔连杆、⑦为小螺 钉、⑧短连杆、⑨和⑩为手指。 通过气动杆②来传动力的,气缸带动气动杆②使之向上移动时,其它的杆件共同运动,此时手爪是处于握紧工件的过程;反之,当气缸带动气动杆②向下移动时,手爪是处于张开的过程。这样,用气缸带动连杆②做往复平动,从而使其它杆件运动,带动手爪张合,手指上的任意一点的运动轨迹为一弧摆动。 图1 机械手装配简图 基于Solidworks的机械手运动仿真设计 郑向华 (成都工业学院机电工程系 四川成都611730) 【摘 要】本文在上料机械手设计与研究的基础上,具体进行了机械手仿真动画设计。完成基于S olidworks 的机械手运动仿 真,利用仿真动画来描述其工作原理。设计结果表明该设计可大大提高设计效率,收到良好效果。 【关键词】机械手;运动仿真;Solidworks The Design of Manipulator ’s Motion Simulation Based on the Solidworks Z HENG Xiang-hua (Electromechanical Engineering Department,Chengdu Technological University,Chengdu Sichuan ,611730,China)【Abstract 】In this paper,the design of manipulator on the basis of the design and study,specific for manipulator simulation ani - mation https://www.360docs.net/doc/a59129141.html,pleted based on SolidWorks manipulator motion simulation,simulation animation to describe its working principle.The result indicates that this design can greatly improve the design efficiency,received good results. 【Key words 】Manipulator ;M otion simulation ;Solidworks ※基金项目:四川省教育厅项目(基金号10ZC035)。 作者简介:郑向华(1977—),女,黑龙江嫩江人,讲师,硕士研究生毕业,主要从事机电设计、CAD\CAE\CAM 及材料的研究 。 项目与课题 17

solidworks齿轮工程图画法

1、利用SolidWorks自带插件 “Toolbox”生成齿轮 对于出图与用于运动模拟的用户,可以用简化的“渐开线”齿轮代替,这样不但可以大大简化建模的时间,而且可以充分利用现有的计算机资源。在SolidWorks 的Toolbox插件中就有齿轮模块,下面就具体介绍一下这种方法。 (1)首先在插件中打开Toolbox插件,如图1所示。点击“确定”就可以在右边的“任务窗格”设计库中找到“Toolbox”了,如图2所示。 (2)目前虽然在“GB”中还没有齿轮,但就是可以用其她标准中的齿轮代替。下面就以“AnsiMetric”标准为例,介绍Toolbox中调用齿轮的方法。 在Toolbox的目录中通过“AnsiMetric”→“动力传动”→“齿轮”,在这里系统已经给出了常用的齿轮形式, 我们需要哪种形式的齿轮就可以生成哪种,如圆

柱直齿轮,这里翻译成了“正齿轮”。具体参数设置,如图3所示。 (3)通过一系列的设置,我们就可以得到想要的齿轮了,如果还达不到自己的要求,就可以在现有的齿轮基础上进行修改。如要孔板形式的齿轮,就可以用一个“旋转切除”命令与一个“拉伸切除”命令完成。具体操作如图4所示。接着再添加几个孔,如图5所示。

(4)这样这个齿轮就差不多完成了,如果用户齿轮有其她的形式,当然可以自己再做进一步的修改。修改完以后就可以保存了。注意这里建议用“另存为”,因为直接点击保存,系统会自动保存到Toolbox配置的路径中去,那就会添加不必要的麻烦。当然如果就想保存到Toolbox的配置路径,那么就直接保存即可。Toolbox的配置路径更改有很多方法,如可以在“选项”→“异型孔向导/Toolbox”→“配置”,也可以在菜单中找到,还可以在“设计窗格”→“设计库”→“预览

SolidWorks渐开线齿轮的绘制方法

现在中国使用SolidWorks软件的用户越来越多,对于一些初学者,在齿轮的绘制过程中会遇到很多问题。本文笔者就是针对这一主题而写,希望对那些还处于齿轮建模迷惑中的读者有一些抛砖引玉的作用,提高设计者的软件使用水平,开拓一条新的设计思路。阅读本文前,读者朋友应当先完成SolidWorks基本模块的学习,或者是有一定的软件使用经历和基础。 一、明确设计目的 齿轮在机械传动设计中是重要的传动零件,它有很多其他传动机构无法比拟的优点,如传动效率高(一般在0.9以上),传动平稳(斜齿轮尤为突出),传动力矩大,准确的瞬时传动比,寿命长,而且可以改变传动方向等,这些优点决定了齿轮在动力传动和运动传动中占有不可动摇的地位。一般齿轮的齿廓都是渐开线,那么如何在SolidWorks中绘制渐开线呢?在开篇之前先请读者思考一个问题:为什么要绘制精确的“渐开线”齿轮呢?是为了做运动模拟?出2D 的工程图?到C N C里进行加工?还是作为CAE的分析模型呢? 当然,如果我们的目的不同,那么我们的齿轮就有不同的绘制方法。请看下面的详细讲解。 二、简化齿轮的绘制 1.利用SolidWorks自带插件 “Toolbox”生成齿轮 对于出图和用于运动模拟的用户,可以用简化的“渐开线”齿轮代替,这样不但可以大大简化建模的时间,而且可以充分利用现有的计算机资源。在SolidWorks的Toolbox插件中就有齿轮模块,下面就具体介绍一下这种方法。 (1)首先在插件中打开Toolbox插件,如图1所示。点击“确定”就可以在右边的“任务窗格”设计库中找到“Toolbox”了,如图2所示。

(2 )目前虽然在“GB”中还没有齿轮,但是可以用其他标准中的齿轮代替。下面就以“AnsiMetric”标准为例,介绍Toolbox中调用齿轮的方法。 在Toolbox的目录中通过“AnsiMetric”→“动力传动”→“齿轮”,在这里系统已经给出了常用的齿轮形式,我们需要哪种形式的齿轮就可以生成哪种,如圆柱直齿轮,这里翻译成了“正齿轮”。具体参数设置,如图3所示。 (3)通过一系列的设置,我们就可以得到想要的齿轮了,如果还达不到自己的要求,就可以在现有的齿轮基础上进行修改。如要孔板形式的齿轮,就可以用一个“旋转切除”命令和一个“拉伸切除”命令完成。具体操作如图4所示。接着再添加几个孔,如图5所示。

齿轮传动习题集+答案

齿轮传动 例1 二级圆柱齿轮减速器,其中一级为直齿轮,另一级为斜齿轮。试问斜齿轮传动应置于高速级还是低速级?为什么?若为直齿锥齿轮和圆柱齿轮组成减速器,锥齿轮传动应置于高速级还是低速级?为什么? 答:在二级圆柱齿轮传动中,斜齿轮传动放在高速级,直齿轮传动放在低速级。其原因有三点:1)斜齿轮传动工作平稳,在与直齿轮精度等级相同时允许更高的圆周速度,更适于高速。2)将工作平稳的传动放在高速级,对下级的影响较小。如将工作不很平稳的直齿轮传动放在高速级,则斜齿轮传动也不会平稳。3)斜齿轮传动有轴向力,放在高速级轴向力较小,因为高速级的转矩较小。 由锥齿轮和斜齿轮组成的二级减速器,一般应将锥齿轮传动放在高速级。其原因是:低速级的转矩较大,齿轮的尺寸和模数较大。当锥齿轮的锥距R 和模数m 大时,加工困难,制造成本提高。 例3 一对闭式直齿圆柱齿轮传动,已知:z 1= 25,z 2 = 75,m = 3 mm ,d φ= 1,小齿轮的转速 n =970 r/min 。主从动轮的][H σ 1 = 690 MPa ,][H σ 2 = 600 MPa ,载荷系数K = 1.6, 节点区域系数Z H = 2.5,材料弹性系数Z E = 189.8 MPa ,重合度系数εZ =0.9,是按接触疲 劳强度,求该齿轮传动传递的功率。 提示:接触疲劳强度校核公式为 ][ )1(2211H H E H u bd u KT Z Z Z σσε ≤+= 解:由已知条件: u = z 2 / z 1 = 75/25 = 3 d 1 = m z 1 = 3×25 = 75 mm b =φd d 1 = 1×75 = 75 mm 因为大齿轮的许用接触应力较低,故按大齿轮计算承载能力: )1(2][212 21+???? ? ??=u K u bd Z Z Z T E H H εσ )13(6.12375759.08.1895.260022 +????? ?? ? ????== 195182 Nmm = 195.182 Nm 齿轮传动所能传递的功率为: =??=?=30 970 182.1953011ππn T P 19826 W = 19.826 kW

齿轮传动系统的动力学仿真分析

齿轮传动系统的动力学仿真分析 摘要:本文对建立好的整体机械系统的虚拟样机模型进行运动学和动力学的仿真分析,通过仿真分析,可以方便地得出齿轮传动系统在特定负载和特定工况下的转矩,速度,加速度,接触力等,仿真分析后,可以确定各个齿轮之间传递的力和力矩,为零件的有限元分析提供基础。 关键词:传动系统动力学仿真 adams 虚拟样机 中图分类号:th132 文献标识码:a 文章编号: 1007-9416(2011)12-0207-01 随着计算机图形学技术的迅速发展,系统仿真方法论和计算机仿真软件设计技术在交互性、生动性、直观性等方面取得了较大进展,它是以计算机和仿真系统软件为工具,对现实系统或未来系统进行动态实验仿真研究的理论和方法。 运动学仿真就是对已经添加了拓扑关系的运动系统,定义其驱动方式和驱动参数的数值,分析其系统其他零部件在驱动条件下的运动参数,如速度,加速度,角速度,角加速度等。对仿真结果进行分析的基础上,验证所建立模型的正确性,并得出结论。 本文中所用的动力学仿真软件是adams软件。adams软件使用交互式图形环境和零件库、约束库、力库,创建完全参数化的机械系统几何模型,其求解器采用多刚体系统动力学理论中的拉格郎日方程方法,建立系统动力学方程,对虚拟机械系统进行静力学、运动学和动力学分析,输出位移、速度、加速度和反作用力曲线。adams

软件的仿真可用于预测机械系统的性能、运动范围、碰撞检测、峰值载荷以及计算有限元的输入载荷等。虚拟样机就是在adams软件中建的样机模型。 1、运动参数的设置 先在造型软件ug中将齿轮传动系统造型好,如下图所示。在已经设置好运动副的齿轮传动系统的第一级齿轮轴上绕地的旋转副上 给传动系统添加一个角速度驱动。然后进行仿真。在进行仿真的过程中,单位时间内仿真步数越多,步长越短,越能真实反映系统的真实结果,但缺点是仿真时间也随之变长,占用的系统空间也就越大。所以应该在兼顾仿真真实性与所需物理资源和仿真时间的基础上,选择一个合适的仿真时间和仿真的步长。 在仿真之前先设置系统所用到的物理量的单位,在工程实际中,角速度一般使用的单位是r/min,所以在系统的基本单位中把时间的单位设为min,角度的单位设成rad,而在adams中转速单位为 rad/min。本过程仿真的运动过程为:系统从加速运动到额定转速,平稳运动一段时间后,再减速运动直到停止。运动过程用函数来模拟,输入的角速度驱动的函数表达式为: step( time ,0 ,0 ,2.5 ,9168.8)+ step(time ,7.5 ,0 ,10 ,-9168.8),此函数表达式的含义为:系统从开始加速运动一直到2.5s时达到了系统的额定转速 9168.8rad/min(1460r/min),从2.5s到7.5s的时间段内,系统以额定转速运动,在7.5s到10s的时间段内,系统从额定转速减速

solidworks齿轮画法

1、首先新建一个零件。选择拉伸凸台/基体选项卡,选择前视基准面,绘制直径490的齿顶 圆。退出草图,点击两侧对称拉伸,输入拉伸厚度为140mm.如图1 图1 2、点击草图选项卡,选择第一步拉伸实体的任意平面,绘制直径470mm的齿根圆,和直径449.50mm的分度圆,并将分度圆变为构造线。点击齿顶圆,再点击草图选项卡下的转换实体引用(如图2)。再点击齿顶圆,变为构造线(如图3)。 图2图3 3、绘制渐开线:选择“样条曲线”中的“方程式驱动的曲线”,方程式类型为“参数性”。输入以 下函数:X t=d b/2?(t?sin(t)+cos(t)), Y t=d b/2/2?(sin(t)?t?cos(t)),这里d b= 441.656mm,t为极坐标角度(单位为弧度)t1=0,t2=1。单击确定按钮(如图4). 4、绘制中心线,以此中心线为镜像轴,对渐开线镜像(如图5)。 5、添加约束:按住ctrl键,选择上渐开线和分度圆,添加重合约束,同理,为下渐开线跟 分度圆,使之重合。再添加约束,使中心线始终作为两个渐开线的中线。对分度圆上渐开线添加尺寸约束,长度为15.70mm。修剪多余的线条,只保留齿槽轮廓线。对齿根圆

与渐开线倒角,半径为3.80mm(如图6)。退出草图,选择完全贯穿(如图7)。 图5 图6 图7 6、 圆周阵列齿槽:选择圆柱面为阵列基准,阵列特征为齿槽,阵列数为47,按回车键。 图4

7、切辐板:点击拉伸切除选项卡,选择圆柱面为基准面,绘制直径200mm和直径400mm 的圆(如图8),退出草图,拉伸切除深度为30mm生成一面辐板。选择镜像实体,镜像平面选择前视基准面,镜像特征为刚生成的辐板,点击确定,生成另一面的辐板。 8、打辐板孔:选择拉伸切除,基准面为圆柱面,绘制直径300mm构造线圆,在构造线圆 上绘制直径50mm的圆,退出草图,拉伸厚度为完全贯穿(如图9)。 9、阵列辐板孔:数目为6个(如图10)。 10, 轴孔跟键槽:选择拉伸切除,基准面为圆柱面,绘制如(图11)所示尺寸,退出草图,切除厚度为完全贯穿。 11、最终三维图如图12. 图8 图9 图10 图11

第5章齿轮传动_题目及答案

第六章 齿轮传动 一、简答题: (1) 齿轮传动的失效形式有哪几种?闭式软齿面齿轮传动一般针对哪种失效 形式进行计算? (2) 齿轮传动中,载荷分布不均匀系数βK 与哪些因素有关?如减小βK 值可 采取哪些措施? (3) 设计软齿面齿轮传动,为什么要使小齿轮齿面硬度比大齿轮齿面硬度高 一些? (4) 为什么斜齿圆柱齿轮传动的承载能力要比直齿圆柱齿轮传动的承载能力 高? (5) 在软齿面闭式圆柱齿轮传动设计中,若齿数比u 、中心距a 、齿宽b 及许 用应力不变,减小模数m ,并相应增加齿数,则对齿面接触强度、齿根弯曲强度、传动的平稳性和齿轮加工等各有何影响? (6) 齿轮传动中的内部附加动载荷产生的主要原因是什么?为减小内部附加 动载荷可采取哪些措施? (7) 一对标准直齿圆柱齿轮传动,传动比为2,问: a 哪一个齿轮的齿根弯曲应力大,为什么? b 若大、小齿轮的材料、热处理硬度均相同,小齿轮的应力循环次数 6 110 N N <=,则它们的许用弯曲应力是否相等,为什么? (8) 与带传动、链传动比较,齿轮传动有哪些主要优、缺点? (9) 载荷系数K 由哪几部分组成?各考虑什么因素的影响? (10)一对直齿圆柱齿轮的齿面接触应力的大小与齿轮的哪几个几何参数有 关?在哪一点啮合的接触应力最大?通常接触强度计算时算的是哪一点的接触应力?为什么? (11)为什么把Fa Y 叫做齿形系数?有哪些参数影响它的数值?为什么与模数 m 无关? (12)设计齿轮传动中的下列参数:斜齿圆柱齿轮的法向模数与端面模数、圆 锥齿轮的大端模数与平均模数、齿数与当量齿数、螺旋角、分度圆直径、

solidworks齿轮工程图画法

1.利用SolidWorks自带插件 “Toolbox”生成齿轮 对于出图和用于运动模拟的用户,可以用简化的“渐开线”齿轮代替,这样不但可以大大简化建模的时间,而且可以充分利用现有的计算机资源。在SolidWorks 的Toolbox插件中就有齿轮模块,下面就具体介绍一下这种方法。 (1)首先在插件中打开Toolbox插件,如图1所示。点击“确定”就可以在右边的“任务窗格”设计库中找到“Toolbox”了,如图2所示。 (2)目前虽然在“GB”中还没有齿轮,但是可以用其他标准中的齿轮代替。下面就以“AnsiMetric”标准为例,介绍Toolbox中调用齿轮的方法。 在Toolbox的目录过“AnsiMetric”→“动力传动”→“齿轮”,在这里系统已经给出了常用的齿轮形式,我们需要哪种形式的齿轮就可以生成哪种,如圆柱

直齿轮,这里翻译成了“正齿轮”。具体参数设置,如图3所示。 (3)通过一系列的设置,我们就可以得到想要的齿轮了,如果还达不到自己的要求,就可以在现有的齿轮基础上进行修改。如要孔板形式的齿轮,就可以用一个“旋转切除”命令和一个“拉伸切除”命令完成。具体操作如图4所示。接着再添加几个孔,如图5所示。

(4)这样这个齿轮就差不多完成了,如果用户齿轮有其他的形式,当然可以自己再做进一步的修改。修改完以后就可以保存了。注意这里建议用“另存为”,因为直接点击保存,系统会自动保存到Toolbox配置的路径中去,那就会添加不必要的麻烦。当然如果就想保存到Toolbox的配置路径,那么就直接保存即可。Toolbox的配置路径更改有很多方法,如可以在“选项”→“异型孔向导/Toolbox”→“配置”,也可以在菜单中找到,还可以在“设计窗格”→“设计库”→“预

Solidworks齿轮画法

SolidWorks渐开线齿轮的绘制方法 SolidWorks, 渐开线齿轮, 绘制SolidWorks, 渐开线齿轮, 绘制 一、明确设计目的 齿轮在机械传动设计中是重要的传动零件,它有很多其他传动机构无法比拟的优点,如传动效率高(一般在0.9以上),传动平稳(斜齿轮尤为突出),传动力矩大,准确的瞬时传动比,寿命长,而且可以改变传动方向等,这些优点决定了齿轮在动力传动和运动传动中占有不可动摇的地位。一般齿轮的齿廓都是渐开线,那么如何在SolidWorks中绘制渐开线呢?在开篇之前先请读者思考一个问题:为什么要绘制精确的“渐开线”齿轮呢?是为了做运动模拟?出2D 的工程图?到C N C里进行加工?还是作为CAE的分析模型呢? 当然,如果我们的目的不同,那么我们的齿轮就有不同的绘制方法。请看下面的详细讲 解。 二、简化齿轮的绘制 1.利用SolidWorks自带插件 “Toolbox”生成齿轮 对于出图和用于运动模拟的用户,可以用简化的“渐开线”齿轮代替,这样不但可以大大简化建模的时间,而且可以充分利用现有的计算机资源。在SolidWorks的Toolbox插件中就有齿轮模块,下面就具体介绍一下这种方法。 (1)首先在插件中打开Toolbox插件,如图1所示。点击“确定”就可以在右边的“任务窗 格”设计库中找到“Toolbox”了,如图2所示。

(2)目前虽然在“GB”中还没有齿轮,但是可以用其他标准中的齿轮代替。下面就以 “AnsiMetric”标准为例,介绍Toolbox中调用齿轮的方法。 在Toolbox的目录中通过“AnsiMetric”→“动力传动”→“齿轮”,在这里系统已经给出了常用的齿轮形式,我们需要哪种形式的齿轮就可以生成哪种,如圆柱直齿轮,这里翻译成了“正齿轮”。具体参数设置,如图3所示。

相关文档
最新文档