万有引力和功

万有引力和功
万有引力和功

万有引力单元练习

一、选择题

1.有关开普勒关于行星运动的描述,下列说法中正确的是( )

A.所有的行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上

B.所有的行星绕太阳运动的轨道都是圆,太阳处在圆心上

C.所有的行星轨道的半长轴的三次方跟公转周期的二次方的比值都相等

D.不同的行星绕太阳运动的椭圆轨道是不同的

2.已知万有引力常量G,要计算地球的质量还需要知道某些数据,现在给出下列各组数据,可以计算出地球质量的是( )

A.地球公转的周期及半径B.月球绕地球运行的周期和运行的半径

C.人造卫星绕地球运行的周期和速率D.地球半径和同步卫星离地面的高度

3.人造地球卫星由于受大气阻力,轨道半径逐渐变小,则线速度和周期变化情况是( ) A.速度减小,周期增大,动能减小B.速度减小,周期减小,动能减小

C.速度增大,周期增大,动能增大D.速度增大,周期减小,动能增大

4.一个行星,其半径比地球的半径大2倍,质量是地球的25倍,则它表面的重力加速度是地球表面重力加速度的( )

A.6倍B.4倍C.25/9倍D.12倍

5.“东方一号”人造地球卫星A和“华卫二号”人造卫星B,它们质量比为m A:m B=1:2,它们的轨道半径比为2:1,则下面的结论中正确的是()

A.它们受到地球的引力之比为F A:F B=1:1

B.它们的运行速度大小之比为v A:v B=1:2

2:1

C.它们的运行周期之比为T A:T B=2

3:1

D.它们的运行角速度之比为ωA:ωB=2

6.要使两物体间万有引力减小到原来的1/4,可采取的方法是( )

A使两物体的质量各减少一半,距离保持不变

B使两物体间距离变为原来的2倍,质量不变

C使其中一个物体质量减为原来的1/4,距离不变

D使两物体质量及它们之间的距离都减为原来的1/4

7.若人造卫星绕地球做匀速圆周运动,则下列说法中正确的是()

(A)卫星的轨道半径越大,它的运行速度越大

(B)卫星的轨道半径越大,它的运行速度越小

(C)卫星的质量一定时,轨道半径越大,它需要的向心力越大

(D)卫星的质量一定时,轨道半径越大,它需要的向心力越小

8.把太阳系各行星的运动近似看作匀速圆周运动,则离太阳越远的行星( )

A周期越小B线速度越小C角速度越小D加速度越小

9.设土星绕太阳的运动为匀速圆周运动,若测得土星到太阳的距离为R,土星绕太阳运动的周期为T,万有引力常量G已知,根据这些数据,能够求出的量有( )

A土星线速度的大小B土星加速度的大小C土星的质量D太阳的质量

10.有一星球的密度与地球的密度相同,但它表面处的重力加速度是地面上重力加速度的4倍,则该星球的质量将是地球质量的( )

A 1/4

B 4倍

C 16倍

D 64倍

11.关于地球的第一宇宙速度,下列说法中正确的是( )

A 它是人造地球卫星环绕地球运转的最小速度

B 它是近地圆行轨道上人造卫星的运行速度

C 它是能使卫星进入近地轨道最小发射速度

D 它是能使卫星进入轨道的最大发射速度

12.两颗靠得较近的天体称双星,它们以两者连线上某一点为共同圆心各自做匀速圆周运动,才不至于因彼此之间的万有引力吸引到一起,由此可知,它们的质量与它们的( )

A 线速度成反比

B 角速度成反比

C 轨道半径成反比

D 所需的向心力成反比

13.地球上有两位相距非常远的观察者,都发现自己的正上方有一颗人造地球卫星相对自己静止不动,则这两位观察者的位置以及两颗人造地球卫星到地球中心的距离可能是( ) A 一人在南极,一人在北极,两卫星到地球中心的距离一定相等

B 一人在南极,一人在北极,两卫星到地球中心的距离可以不等,但应成整数倍

C 两人都在赤道上,两卫星到地球中心的距离一定相等

D 两人都在赤道上,两卫星到地球中心的距离可以不等,但应成整数倍

14. 甲、乙两个做匀速圆周运动的卫星,角速度和线速度分别为ω1、ω2和v 1、v 2,如果它们的轨道半径之比R 1:R 2=1:2,则下列说法中正确的是 ( )

(A )1:22:21=ωω (B )ω1:ω2=2:1

(C )1:2:21=v v (D )2:1:21=v v

15. 火星有两颗卫星,分别是火卫一和火卫二,他们的轨道近似为圆。已知火卫一的周期为7小时39分,火卫二的周期为30小时18分,则两颗卫星相比 ( )

(A )火卫一距火星表面较近 (B )火卫二的角速度较大

(C )火卫一的运动速度较大 (D )火卫二的加向心速度较大

16.在圆轨道上质量为m 的人造地球卫星,它到地面的距离等于地球半径R ,地面上的重力加速度为g ,则 ( )

(A )卫星运动的速度为Rg 2 (B )卫星运动的周期为g R 24π

(C )卫星运动的加速度为g 21 (D )卫星的动能为mRg 41

17.设想人类开发月球,不断把月球上的矿藏搬运到地球上,假定经过长时间开采后,地球仍可看作是均匀的球体,月球仍沿开采前的圆周轨道运动,则与开采前相比 ( )

A .地球与月球间的万有引力将变大

B .地球与月球间的万有引力将变小

C .月球绕地球运动的周期将变长

D .月球绕地球运动的周期将变短

18.如图中的圆a 、b 、c ,其圆心均在地球的自转轴线上, 对卫星环绕地球做匀速圆周运

动而言 ( )

A .卫星的轨道可能为a

B .卫星的轨道可能为b

C .卫星的轨道可能为c

D .同步卫星的轨道只可能为b

19.人造地球卫星的轨道半径越大,则 ( )

A .速度越小,周期越小

B .速度越小,周期越大

C .速度越大,周期越小

D .速度越大,周期越大

20.银河系中有两颗行星绕某恒星运行,从天文望远镜中观察到它们的运转周期之比为27:1,则它们的轨道半径的比为( )

A. 3:1

B. 9:1

C. 27:1

D. 1:9

21.宇宙飞船在围绕太阳运行的近似圆形的轨道上运动,若轨道半径是地球轨道半径的9倍,则宇宙飞船绕太阳运行的周期是( )

A. 3年

B. 9年

C. 27年

D. 81年

22.若某人到达一个行星上,这个行星的半径只有地球的一半,质量也是地球的一半,则在这个行星上此人所受的引力是地球上引力的( )

A .1/4

B .1/2

C .1倍

D .2倍

23、绕地球做匀速圆周运动的宇宙飞船中有一质量为10kg 的物体挂在弹簧秤上,这时弹簧秤的示数( )

A .等于98N

B .小于98N

C .大于98N

D .等于0

24、据报道,最近在太阳系外发现了首颗“宜居”行星,其质量约为地球质量的6.4倍,一个在地球表面重量为600N 的人在这个行星表面的重量将变为960N 。由此可推知,该行星的半径与地球半径之比约为( )

A 、0.5

B 、2

C 、3.2

D 、4

25、经长期观测人们在宇宙中已经发现了“双星系统”。“双星系统”由两颗相距较近的恒星组成,每个恒星的线度远小于两个星体之间的距离,而且双星系统一般远离其他天体。如图,两颗星球组成的双星,在相互之间的万有引力作用下,绕连线上的O 点做周期相同的匀速圆周运动。现测得两颗星之间的距离为L ,质量之比为m 1∶m 2 =3∶2,则可知( )

A .m 1、m 2做圆周运动的线速度之比为3∶2

B .m 1、m 2做圆周运动的角速度之比为3∶2

C .m 1做圆周运动的半径为

52L D .m 2做圆周运动的半径为52L

26、假设太阳系中天体的密度不变,天体直径和天体之间距离都缩小到原来的一半,地球绕太阳公转近似为匀速圆周运动,则下列物理量变化正确的是( )

A、地球的向心力变为缩小前的一半 B、地球的向心力变为缩小前的161

C、地球绕太阳公转周期与缩小前的相同 D、地球绕太阳公转周期变为缩小前的一半

27.绕地球作匀速圆周运动的人造地球卫星内,其内物体处于完全失重状态,物体( )

A .不受地球引力作用

B .所受引力全部用来产生向心加速度

C .加速度为零

D .物体可在飞行器悬浮

28.地球半径为R ,地球表面的重力加速度为g ,若高空中某处的重力加速度为g/2,则该处距地面球表面的高度为( )

A .(2—1)R

B .R

C . 2R

D .2R

29.若某星球的密度与地球相同,它表面的重力加速度是地球表面重力加速度的4倍,则该星球的质量是地球质量的( )

A. 1/4

B. 4倍

C. 16倍

D. 64倍

30.设两人造地球卫星的质量比为1:2,到地球球心的距离比为1:3,则它们的( )

A .周期比为3:1

B .线速度比为1:3

C .向心加速度比为1:9

D .向心力之比为9:2

31.地球表面的平均重力加速度为g ,地球半径为R ,引力常量为G ,可以用下述哪个式子来估算地球的平均密度( ) A. 24g R G π B. 34g RG π C. RG g

D. G R g 2

32、已知地球半径为R ,地球表面的重力加速度为g ,若高空中某处的重力加速度为21g ,则该处距地面球表面的高度为( )

A .(2—1)R

B .R

C . 2R

D .2 R

33、一个行星,其半径比地球的半径大2倍,质量是地球的25倍,则它表面的重力加速度是地球表面重力加速度的( )

A .6倍

B .4倍

C .25/9倍

D .12倍

34、在绕地球做匀速圆周运动的航天飞机外表面,有一隔热陶瓷片自动脱落,则( ) A 陶瓷片做平抛运动 B 陶瓷片做自由落体运动

C 陶瓷片按原圆轨道做匀速圆周运动

D 陶瓷片做圆周运动,逐渐落后于航天飞机

35、“神舟六号”的发射成功,可以预见,随着航天员在轨道舱内停留时间的增加,体育锻炼成了一个必不可少的环节,下列器材适宜航天员在轨道舱中进行锻炼的是 ( )

A .哑铃

B .弹簧拉力器

C .单杠

D .跑步机

36.已知地球半径约为6.4×106M,又知月球绕地球的运动可近似看作匀速圆周运动,则可估算出月球到地心的距离约为___________M(结果只保留一位有效数字)

37.若取地球的第一宇宙速度为8km/s,某行星的质量是地球质量的6倍,半径是地球半径的1.5倍,则这一行星的第一宇宙速度为_________________

38.太阳的两颗行星A.B 绕太阳做匀速圆周运动,已知两行星质量之比为4:1,它们到太阳的距离之比 为4:1,则它们绕太阳运动的线速度之比为__________向心加速度之比为_____ 39若取地球的第一宇宙速度为8km/s,某行星的质量是地球质量的6倍,半径是地球半径的

1.5倍,则这一行星的第一宇宙速度为________________

40,已知太阳的质量是某一行星质量的n 倍,若太阳对该行星引力的大小为F ,则该行星对太阳的引力大小是 。

41,已知月球的半径为r,月球表面的重力加速度为g,万有引力常量为G,若忽略月球的自转,则月球的平均密度表达式为_________

42、已知地球半径为R ,地球表面的重力加速度为g ,地球自转的周期为T ,试求地球同步卫星的向心加速度大小。

43.某一行星有一质量为m 的卫星,以半径r ,周期T 做匀速圆周运动,求:

(1)行星的质量;

(2)卫星的加速度;

(3)若测得行星的半径恰好是卫星运行半径的1/10,则行星表面的重力加速度是多少?

44.两个星球组成双星,它们在相互之间的万有引力作用下,绕连线上某点做周期相同的匀速圆周运动。现测得两星中心距离为R ,其运动周期为T ,求两星的总质量。

二、功、功率练习题

1、关于功率下列说法中正确的是:( )

A 、功率大说明物体做的功多

B 、功率小说明物体做功慢

C 、由P=W/t 可知,机器做功越多,其功率越大

D 、单位时间力做功越多,其功率越大

2、对公式P =FV 的理解,下列说法中正确是( )

A 、F 一定是物体所受的合外力

B 、P 一定是合外力的功率

C 、此公式中F 与V 必须同方向

D 、此公式中F 与V 可以成任意夹角

3、静止的列车在平直轨道上以恒定的功率起动,在开始的一小段时间内,列车运动状态是( )

A 、做匀加速直线运动

B 、列车的速度和加速度均不断增加

C 、列车的速度增大,加速度减小

D 、列车做匀速运动

4、关于摩擦力对物体做功,以下说法中正确的是( )

A 、滑动摩擦力总是做负功

B 、滑动摩擦力可能做负功,也可能做正功

C 、静摩擦力对物体一定做负功

D 、静摩擦力对物体总是做正功

5、如图所示,用力拉一质量为m 的物体,使它沿水平匀速移动距离s ,若物体和地面间的摩擦因数为μ,则此力对物体做的功为( ) A .μmgs

B .μmgs/(cos α+μsin α)

C .μmgs/(cos α-μsin α)

D .μmgscos α/(cos α+μsin α)

6.一质量为m 的木块静止在光滑的水平面上,从t=0开始,将一个大小为F 的水平恒力作用在该木块上,在t=t1时刻F 的功率是[ ]

7.在高处的同一点将三个质量相同的小球以大小相等的初速

[ ]

A .从抛出到落地过程中,重力对它们做功相同

B .从抛出到落地过程中,重力对它们的平均功率相同

C .三个小球落地时,重力的瞬时功率相同

D .三个小球落地时的动能相同。

8、如图所示,质量为m 的物块始终固定在倾角为θ的斜面上,下列说法中正确的是( )

A .若斜面向右匀速移动距离s ,斜面对物块没有做功

B .若斜面向上匀速移动距离s ,斜面对物块做功mgs

C .若斜面向左以加速度a 移动距离s ,斜面对物块做功mas

D .若斜面向下以加速度a 移动距离s ,斜面对物块做功m (g+a )s

9、从空中以40 m/s 的初速平抛一个重力为10 N 的物体,物体在空中运动3 s 落地,不计空气阻力,取g =10 m/s 2,则物体落地时重力的即时功率为( )

A .400 W

B .300 W

C .500 W

D .700 W

10用力将重物竖直提起,先是从静止开始匀加速上升,紧接着匀速上升,如果前后两过程的时间相同,不计空气阻力,则[ ]

A .加速过程中拉力的功一定比匀速过程中拉力的功大

B .匀速过程中拉力的功比加速过程中拉力的功大

C .两过程中拉力的功一样大

D .上述三种情况都有可能

11.关于摩擦力对物体做功,以下说法中正确的是[ ]

A .滑动摩擦力总是做负功

B .滑动摩擦力可能做负功,也可能做正功

C .静摩擦力对物体一定做负功

D .静摩擦力对物体总是做正功

12、起重机竖直吊起质量为m 的重物,上升的加速度是a ,上升的高度是h ,则起重机对货物所做的功是( )

A 、mgh

B 、mah

C 、h g a m )(+

D 、h g a m )(-

13、质量相同的两物体处于同一高度,A 沿固定在地面上的光滑斜面下滑,B 自由下落,最后到达同一水平面,则:( )

A 、重力对两物体做功相同

B 、重力的平均功率相同

C 、到达底端时重力的瞬时功率B A P P >

D 、到达底端时,两物体的速度相同

14、下面列举的哪几种情况下所做的功是零( )

A 、卫星做匀速圆周运动,地球引力对卫星做的功

B 、平抛运动中,重力对物体做的功

C 、举重运动员,扛着杠铃在头上的上方停留10s ,运动员对杠铃做的功

D 、木块在粗糙水平面上滑动,支持力对木块做的功

15、已知质量为m 的物体从高处自由下落,经时间t ,重力对物体做功的平均功率为 ___________,t 时刻重力对物体做功的瞬时功率为___________。

16、汽车的额定功率为P ,汽车的质量为m ,与平直路面的动摩擦因数为μ,则汽车在水平路面上行驶的最大速度为_________。

17.一木块质量2kg ,静止在光滑水平面上,一颗子弹质量10g,以500m/s 的速度射穿木块,穿出木块时的速度减为100m/s ,木块得到的速度是2m/s 。在这过程中,子弹克服阻力做功______。

18.在恒定合力F 作用下,物体由静止开始运动,经过一段位移s 后,速度达到v ,做功为W 。在相同的恒定合力F 作用下,物体的速度由零增至nv ,则F 做的功是原来的______倍,通过的位移是原来的______倍,若要物体的速度由v 增至nv ,则需对它做的功是原来的______倍,在位移仍是s 的情况下,物体受力是原来的_______倍。

19.一台起重机,从静止开始,在时间t 内将重物匀加速提升h ,在此过程中,带动起重机的发动机输出功率为P .设起重机效率η,则起重机所提升重物的质量m=____。

20、质量为10t 的汽车,额定功率为kw 66,如果在行驶中,汽车受到的阻力是车重的0.05倍,求:(1)汽车能够达到的最大速度是多少?

(2)如果汽车以额定功率行驶,那么当汽车速度为5m/s 时,其加速度多大?

(3)如果汽车以7.5m/s 的速度匀速行驶,发动机的功率多大?

21、在一段平直公路上,一辆质量m=10t的卡车速度从

s

m

v/

5

1

=均匀增加到s

m

v/

15

2

=,

经过的时间t=50s,如果车在运动时受到的阻力为车重力的k倍,k=0.05,求:(1)发动机的平均功率。

(2)在这段路程的时间中点和位移中点发动机的瞬时功率。(

2

/

10s

m

g=)

22、将一质量为m=10 kg的物体,自水平地面由静止开始用一竖直向上的拉力F将其以a =0.5 m/s2的加速度向上拉起.求:

在向上拉动的10s内,拉力F做功的功率;

(2)上拉至10 s末,拉力的功率.

23.在光滑的水平面上放着物体A和小车B,如图所示,小车长L=2m,M=4kg,A的质量m=1kg,μ=0.2,加在小车上的力(1)F=5N,(2)F=12N,求在这两种情况下,在2s时间内F对车做功是多少?摩擦力对A做功多少?(g取10m/s2)

曲线运动万有引力定律知识点总结

曲线运动 1.曲线运动的特征 (1)曲线运动的轨迹是曲线。 (2)由于运动的速度方向总沿轨迹的切线方向,又由于曲线运动的轨迹是曲线,所以曲线运动的速度方向时刻变化。即使其速度大小保持恒定,由于其方向不断变化,所以说:曲线运动一定是变速运动。 (3)由于曲线运动的速度一定是变化的,至少其方向总是不断变化的,所以,做曲线运动的物体的中速度必不为零,所受到的合外力必不为零,必定有加速度。(注意:合外力为零只有两种状态:静止和匀速直线运动。) 曲线运动速度方向一定变化,曲线运动一定是变速运动,反之,变速运动不一定是曲线运动。2.物体做曲线运动的条件 (1)从动力学角度看:物体所受合外力方向跟它的速度方向不在同一条直线上。 (2)从运动学角度看:物体的加速度方向跟它的速度方向不在同一条直线上。 3.匀变速运动:加速度(大小和方向)不变的运动。 也可以说是:合外力不变的运动。 4曲线运动的合力、轨迹、速度之间的关系 (1)轨迹特点:轨迹在速度方向和合力方向之间,且向合力方向一侧弯曲。 (2)合力的效果:合力沿切线方向的分力F2改变速度的大小,沿径向的分力F1改变速度的方向。 ①当合力方向与速度方向的夹角为锐角时,物体的速率将增大。 ②当合力方向与速度方向的夹角为钝角时,物体的速率将减小。 ③当合力方向与速度方向垂直时,物体的速率不变。(举例:匀速圆周运动) 平抛运动基本规律 1.速度:0 x y v v v gt = ? ?= ? 合速度:2 2 y x v v v+ =方向: o x y v gt v v = = θ tan 2.位移 2 1 2 x v t y gt = ? ? ? = ?? 合位移:22 x x y =+ 合 方向: o v gt x y 2 1 tan= = α 3.时间由:2 2 1 gt y=得 g y t 2 =(由下落的高度y决定) 4.平抛运动竖直方向做自由落体运动,匀变速直线运动的一切规律在竖直方向上都成立。

(完整版)第六章万有引力与航天知识点总结

万有引力与航天 1、开普勒行星运动定律 (1).所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上. (2).对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积. (3).所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等. 3 2a K T = (K 只与中心天体质量M 有关) 行星轨道视为圆处理,开三变成3 2r K T =(K 只与中心天体质量M 有关) 2、万有引力定律:自然界中任何两个物体都是相互吸引的,引力的大小跟这两个物体质量 的乘积成正比,跟它们距离的二次方成反比。 表达式:122,m m F G r =2211kg /m N 1067.6??=-G 适用于两个质点(两个天体)、一个质点和一个均匀球(卫星和地球)、两个均匀球。 (质量均匀分布的球可以看作质量在球心的质点) 3、万有引力定律的应用: (天体质量M , 卫星质量m ,天体半径R, 轨道半径r ,天体表面重力加速度g ,卫星运行 向心加速度n a ,卫星运行周期T) 两种基本思路: 1.万有引力=向心力 (一个天体绕另一个天体作圆周运动时,r=R+h ) 人造地球卫星(只讨论绕地球做匀速圆周运动的人造卫星r=R+h ): r GM v =,r 越大,v 越小;3 r GM =ω,r 越大,ω越小;GM r T 324π=,r 越大,T 越大; 2n GM a r =,r 越大,n a 越小。 (1)求质量:①天体表面任意放一物体重力近似等于万有引力:= G M m R 2→2 gR M G = ②当一个星球绕另一个星球做匀速圆周运动时,设中心星球质量为M ,半径为R ,环绕 星球质量为m ,线速度为v ,公转周期为T ,两星球相距r ,由万有引力定律有: 2 222??? ??==T mr r mv r GMm π,可得出中心天体的质量:23224GT r G r v M π==

最新高考物理万有引力与航天解题技巧及经典题型及练习题(含答案)

最新高考物理万有引力与航天解题技巧及经典题型及练习题(含答案) 一、高中物理精讲专题测试万有引力与航天 1.如图所示,宇航员站在某质量分布均匀的星球表面一斜坡上P 点沿水平方向以初速度v 0抛出一个小球,测得小球经时间t 落到斜坡上另一点Q ,斜面的倾角为α,已知该星球半径为R ,万有引力常量为G ,求: (1)该星球表面的重力加速度; (2)该星球的质量。 【答案】(1)02tan v g t θ= (2)202tan v R Gt θ 【解析】 【分析】 平抛运动在水平方向上做匀速直线运动,在竖直方向上做自由落体运动,根据平抛运动的规律求出星球表面的重力加速度;根据万有引力等于重力求出星球的质量; 【详解】 (1)根据平抛运动知识可得 2 00 122gt y gt tan x v t v α=== 解得02v tan g t α = (2)根据万有引力等于重力,则有 2 GMm mg R = 解得2202v R tan gR M G Gt α == 2.宇宙中存在一些离其他恒星较远的三星系统,通常可忽略其他星体对它们的引力作用,三星质量也相同.现已观测到稳定的三星系统存在两种基本的构成形式:一种是三颗星位于同一直线上,两颗星围绕中央星做囿周运动,如图甲所示;另一种是三颗星位于等边三角形的三个顶点上,并沿外接于等边三角形的囿形轨道运行,如图乙所示.设这三个 星体的质量均为 m ,且两种系统中各星间的距离已在图甲、图乙中标出,引力常量为 G , 则: (1)直线三星系统中星体做囿周运动的周期为多少? (2)三角形三星系统中每颗星做囿周运动的角速度为多少?

【答案】(1)3 45L Gm 23 3Gm L 【解析】 【分析】 (1)两侧的星由另外两个星的万有引力的合力提供向心力,列式求解周期; (2)对于任意一个星体,由另外两个星体的万有引力的合力提供向心力,列式求解角速度; 【详解】 (1)对两侧的任一颗星,其它两个星对它的万有引力的合力等于向心力,则: 222 222()(2)Gm Gm m L L L T π+= 3 45L T Gm ∴=(2)三角形三星系统中星体受另外两个星体的引力作用,万有引力做向心力,对任一颗 星,满足:2 222cos30()cos30L Gm m L ω?=? 解得:3 3Gm L ω 3.一宇航员在某未知星球的表面上做平抛运动实验:在离地面h 高处让小球以某一初速度水平抛出,他测出小球落地点与抛出点的水平距离为x 和落地时间t ,又已知该星球的半径为R ,己知万有引力常量为G ,求: (1)小球抛出的初速度v o (2)该星球表面的重力加速度g (3)该星球的质量M (4)该星球的第一宇宙速度v (最后结果必须用题中己知物理量表示) 【答案】(1) v 0=x/t (2) g=2h/t 2 (3) 2hR 2/(Gt 2) (4) 2hR t 【解析】 (1)小球做平抛运动,在水平方向:x=vt , 解得从抛出到落地时间为:v 0=x/t (2)小球做平抛运动时在竖直方向上有:h= 12 gt 2 ,

(完整版)万有引力与航天重点知识归纳及经典例题练习

第五讲 万有引力定律重点归纳讲练 知识梳理 考点一、万有引力定律 1. 开普勒行星运动定律 (1) 第一定律(轨道定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。 (2) 第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等时间内扫过相等的面积。 (3) 第三定律(周期定律):所有行星的轨道的半长轴的三次方跟公转周期二次方的比值都相等,表达式: k T a =23 。其中k 值与太阳有关,与行星无关。 (4) 推广:开普勒行星运动定律不仅适用于行星绕太阳运转,也适用于卫星绕地球运转。当卫星绕行星旋转时,k T a =2 3 ,但k 值不同,k 与行星有关,与卫星无关。 (5) 中学阶段对天体运动的处理办法: ①把椭圆近似为园,太阳在圆心;②认为v 与ω不变,行星或卫星做匀速圆周运动; ③k T R =2 3 ,R ——轨道半径。 2. 万有引力定律 (1) 内容:万有引力F 与m 1m 2成正比,与r 2成反比。 (2) 公式:2 21r m m G F =,G 叫万有引力常量,2211 /10 67.6kg m N G ??=-。 (3) 适用条件:①严格条件为两个质点;②两个质量分布均匀的球体,r 指两球心间的距离;③一个均匀球体和球外一个质点,r 指质点到球心间的距离。 (4) 两个物体间的万有引力也遵循牛顿第三定律。 3. 万有引力与重力的关系 (1) 万有引力对物体的作用效果可以等效为两个力的作用,一个是重力mg ,另一个是物体随地球自转所需的向心力f ,如图所示。 ①在赤道上,F=F 向+mg ,即R m R Mm G mg 22 ω-=; ②在两极F=mg ,即mg R Mm G =2 ;故纬度越大,重力加速度越大。 由以上分析可知,重力和重力加速度都随纬度的增加而增大。 (2) 物体受到的重力随地面高度的变化而变化。在地面上,2 2 R GM g mg R Mm G =?=;在地球表面高度为h 处: 22)()(h R GM g mg h R Mm G h h +=?=+,所以g h R R g h 2 2 ) (+=,随高度的增加,重力加速度减小。 考点二、万有引力定律的应用——求天体质量及密度 1.T 、r 法:2 3 2224)2(GT r M T mr r Mm G ππ=?=,再根据3 23 33,34R GT r V M R V πρρπ=?== ,当r=R 时,2 3GT πρ= 2.g 、R 法:G g R M mg R Mm G 22 = ?=,再根据GR g V M R V πρρπ43,3 43=?== 3.v 、r 法:G rv M r v m r Mm G 2 22 =?=

高中物理万有引力与航天练习题及答案及解析

高中物理万有引力与航天练习题及答案及解析 一、高中物理精讲专题测试万有引力与航天 1.天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星.双星系统在银河系中很普遍.利用双星系统中两颗恒星的运动特征可推算出它们的总质量.已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T ,两颗恒星之间的距离为r ,试推算这个双星系统的总质量.(引力常量为G ) 【答案】 【解析】 设两颗恒星的质量分别为m 1、m 2,做圆周运动的半径分别为r 1、r 2,角速度分别为w 1,w 2.根据题意有 w 1=w 2 ① (1分) r 1+r 2=r ② (1分) 根据万有引力定律和牛顿定律,有 G ③ (3分) G ④ (3分) 联立以上各式解得 ⑤ (2分) 根据解速度与周期的关系知 ⑥ (2分) 联立③⑤⑥式解得 (3分) 本题考查天体运动中的双星问题,两星球间的相互作用力提供向心力,周期和角速度相同,由万有引力提供向心力列式求解 2.人类第一次登上月球时,宇航员在月球表面做了一个实验:将一片羽毛和一个铁锤从同一个高度由静止同时释放,二者几乎同时落地.若羽毛和铁锤是从高度为h 处下落,经时间t 落到月球表面.已知引力常量为G ,月球的半径为R . (1)求月球表面的自由落体加速度大小g 月; (2)若不考虑月球自转的影响,求月球的质量M 和月球的“第一宇宙速度”大小v . 【答案】(1)22h g t =月 (2)2 2 2hR M Gt =;2hR v = 【解析】

【分析】 (1)根据自由落体的位移时间规律可以直接求出月球表面的重力加速度; (2)根据月球表面重力和万有引力相等,利用求出的重力加速度和月球半径可以求出月球的质量M ; 飞行器近月飞行时,飞行器所受月球万有引力提供月球的向心力,从而求出“第一宇宙速度”大小. 【详解】 (1)月球表面附近的物体做自由落体运动 h =1 2 g 月t 2 月球表面的自由落体加速度大小 g 月=2 2h t (2)若不考虑月球自转的影响 G 2 Mm R =mg 月 月球的质量 2 2 2hR M Gt = 质量为m'的飞行器在月球表面附近绕月球做匀速圆周运动m ′g 月=m ′2 v R 月球的“第一宇宙速度”大小 v 【点睛】 结合自由落体运动规律求月球表面的重力加速度,根据万有引力与重力相等和万有引力提供圆周运动向心力求解中心天体质量和近月飞行的速度v . 3.宇航员在某星球表面以初速度v 0竖直向上抛出一个物体,物体上升的最大高度为h .已知该星球的半径为R ,且物体只受该星球的引力作用.求: (1)该星球表面的重力加速度; (2)从这个星球上发射卫星的第一宇宙速度. 【答案】(1)202v h (2) v 【解析】 本题考查竖直上抛运动和星球第一宇宙速度的计算. (1) 设该星球表面的重力加速度为g ′,物体做竖直上抛运动,则2 02v g h =' 解得,该星球表面的重力加速度20 2v g h '= (2) 卫星贴近星球表面运行,则2 v mg m R '= 解得:星球上发射卫星的第一宇宙速度v v = =

曲线运动万有引力与航天测试题带答案

第4章曲线运动万有引力与航天 一、选择题(本大题共15小题) 1.一个物体受到恒定的合力作用而做曲线运动,则下列说法正确的是 A.物体的速率可能不变 B.物体一定做匀变速曲线运动,且速率一定增大 C.物体可能做匀速圆周运动 D.物体受到的合力与速度的夹角一定越来越小,但总不可能为零 2.一物体在光滑的水平桌面上运动,在相互垂直的x方向和y方向上的分运动速度随时间变化的规律如图1所示.关于物体的运动,下列说法正确的是 图1 A.物体做曲线运动 B.物体做直线运动 C.物体运动的初速度大小是50 m/s D.物体运动的初速度大小是10 m/s 3.小船过河时,船头偏向上游与水流方向成α角,船相对静水的速度为v,其航线恰好垂直于河岸.现水流速度稍有增大,为保持航线不变,且准时到达对岸,下列措施中可行的是 A.增大α角,增大船速v B.减小α角,增大船速v C.减小α角,保持船速v不变 D.增大α角,保持船速v不变 4.(2011·上海市闸北调研)质量为2 kg的质点在x-y平面上做曲线运动,在x方向的速度图象和y方向的位移图象如图2所示,下列说法正确的是

图2 A .质点的初速度为5 m/s B .质点所受的合外力为3 N C .质点初速度的方向与合外力方向垂直 D .2 s 末质点速度大小为6 m/s 5.如图3所示,甲、乙、丙三个轮子依靠摩擦转动,相互之间不打滑,其半径分别为r 1、r 2、r 3.若甲轮的角速度为ω1,则丙轮的角速度为 图3 A.r 1ω1r 3 B.r 3ω1 r 1 C. r 3ω1r 2 D.r 1ω1 r 2 6.如图4所示,轻杆的一端有一个小球,另一端有光滑的固定轴O.现给球一初速度,使球和杆一起绕O 轴在竖直面内转动,不计空气阻力,用F 表示球到达最高点时杆对小球的作用力.则F 图4 A .一定是拉力 B .一定是推力 C .一定等于0 D .可能是拉力,可能是推力,也可能等于0

(完整版)万有引力与航天重点知识、公式总结

万有引力与航天重点规律方法总结 一.三种模型 1.匀速圆周运动模型: 无论是自然天体(如地球、月亮)还是人造天体(如宇宙飞船、人造卫星)都可看成质点,围绕中心天体(视为静止)做匀速圆周运动 2.双星模型: 将两颗彼此距离较近的恒星称为双星,它们相互之间的万有引力提供各自 转动的向心力。 3.“天体相遇”模型: 两天体相遇,实际上是指两天体相距最近。 二.两种学说 1.地心说:代表人物是古希腊科学家托勒密 2/日心说:代表人物是波兰天文学家哥白尼 三.两个定律 1.开普勒定律: 第一定律(又叫椭圆定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳位于椭圆 的一个焦点上 第二定律(又叫面积定律):对每一个行星而言,太阳和行星的连线,在相等时间内扫 过相同的面积。 第三定律(又叫周期定律):所有行星绕太阳运动的椭圆轨道的半长轴R 的三次方跟公 转周期T 的二次方的比值都相等。 表达式为:)4(2 23 π GM K K T R == k 只与中心天体质量有关的 定值与行星无关 2.牛顿万有引力定律 1687年在《自然哲学的数学原理》正式提出万有引力定律 ⑴.内容:宇宙间的一切物体都是相互吸引的.两个物体间引力的方向在它们的连线上,引力的大小跟它们的质量的乘积成正比,跟它们之间的距离的二次方成反比. ⑵.数学表达式: r F Mm G 2 =万 ⑶.适用条件: a.适用于两个质点或者两个均匀球体之间的相互作用。(两物体为均匀球体时,r 为两球心间的距离) b. 当0→r 时,物体不可以处理为质点,不能直接用万有引力公式计算 c. 认为当0→r 时,引力∞→F 的说法是错误的 ⑷.对定律的理解 a.普遍性:任何客观存在的有质量的物体之间都有这种相互作用力 b.相互性:两个物体间的万有引力是一对作用力和反作用力,而不是平衡力关系。 c.宏观性:在通常情况下万有引力非常小,只有在质量巨大的星球间或天体与天体附 近的物体间,它的存在才有实际意义. d.特殊性:两个物体间的万有引力只与它们本身的质量、它们之间的距离有关.与所在 空间的性质无关,与周期及有无其它物体无关. (5)引力常数G :

高考(2015-2019)物理真题分项B4版——专题(五)万有引力与航天(试题版)

专题五 万有引力与航天 1、(2019全国Ⅰ卷)在星球M上将一轻弹簧竖直固定在水平桌面上,把物体P轻放在弹簧上端,P 由静止向下运动,物体的加速度a与弹簧的压缩量x间的关系如图中实线所示。在另一星球N上用完全相同的弹簧,改用物体Q完成同样的过程,其a–x关系如图中虚线所示,假设两星球均为质量均匀分布的球体。已知星球M的半径是星球N的3倍,则() A.M与N的密度相等 B.Q的质量是P的3倍 C.Q下落过程中的最大动能是P的4倍 D.Q下落过程中弹簧的最大压缩量是P的4倍 2、(2019全国Ⅱ卷)2019年1月,我国嫦娥四号探测器成功在月球背面软着陆,在探测器“奔向”月球的过程中,用h表示探测器与地球表面的距离,F表示它所受的地球引力,能够描述F随h变化关系的图像是() 3.(2019全国Ⅲ卷)金星、地球和火星绕太阳的公转均可视为匀速圆周运动,它们的向心加速度大小分别为a金、a地、a火,它们沿轨道运行的速率分别为v金、v地、v火。已知它们的轨道半径R金a地>a火B.a火>a地>a金C.v地>v火>v金D.v火>v地>v金 4、(2019北京卷)2019年5月17日,我国成功发射第45颗北斗导航卫星,该卫星属于地球静止轨道卫星(同步卫星)。该卫星() A.入轨后可以位于北京正上方B.入轨后的速度大于第一宇宙速度 C.发射速度大于第二宇宙速度 D.若发射到近地圆轨道所需能量较少 5、(2019天津卷)2018年12月8日,肩负着亿万中华儿女探月飞天梦想的嫦娥四号探测器成功发射,“实现人类航天器首次在月球背面巡视探测,率先在月背刻上了中国足迹”。已知月球的质量为M、半径为R,探测器的质量为m,引力常量为G,嫦娥四号探测器围绕月球做半径为r的匀速圆周运动时,探测器的() A.周期为 23 4πr GM B.动能为 2 GMm R C.角速度为 3 Gm r D.向心加速度为 2 GM R 6、(2019 江苏卷)1970年成功发射的“东方红一号”是我国第一颗人造地球卫星,该卫星至今仍沿椭圆轨道绕地球运动.如图所示,设卫星在近地点、远地点的速度分别为v1、v2,近地点到地心的距离为r,地球质量为M,引力常量为G.则() A. r GM v v v= > 1 2 1 ,B. r GM v v v> > 1 2 1 , C. r GM v v v= < 1 2 1 , D. r GM v v v> > 1 2 1 , 7、(2018全国Ⅰ卷)2017年,人类第一次直接探测到来自双中子星合并的引力波。根据科学家们复原的过程,在两颗中子星合并前约100 s时,它们相距约400 km,绕二者连线上的某点每秒转动12圈,将两颗中子星都看作是质量均匀分布的球体,由这些数据、万有引力常量并利用牛顿力学知识,可以估算出这一时刻两颗中子星() A. 质量之积 B. 质量之和 C. 速率之和 D. 各自的自转角速度 1

第六章《万有引力与航天》测试题(含详细解答)

《万有引力与航天》测试题 一、选择题(每小题4分,全对得4分,部分对的得2分,有错的得0分,共48分。) 1.第一次通过实验比较准确的测出引力常量的科学家是( ) A . 牛顿 B . 伽利略 C .胡克 D . 卡文迪许 2.如图1所示a 、b 、c 是在地球大气层外圆形轨道上运动的3颗卫星,下列说法正确的是( ) A .b 、c 的线速度大小相等,且大于a 的线速度; B .b 、c 的向心加速度大小相等,且大于a 的向心加速度; C .c 加速可追上同一轨道上的b ,b 减速可等候同一轨道上的c ; D .a 卫星由于某种原因,轨道半径变小,其线速度将变大 3.宇宙飞船为了要与“和平号“轨道空间站对接,应该:( ) A.在离地球较低的轨道上加速 B.在离地球较高的轨道上加速 C.在与空间站同一高度轨道上加速 D.不论什么轨道,只要加速就行 4、 发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火, 使其沿椭圆轨道2运行,最后再次点火,将卫星送入同步圆轨道3,轨道1、2相切于Q 点,轨道2、3相切于P 点,如图2所示。则在卫星分别在1、2、3轨道上正常运行时,以下说法正确的是:( ) A .卫星在轨道3上的速率大于在轨道1上的速率。 B .卫星在轨道3上的角速度小于在轨道1上的角速度。 C .卫星在轨道1上经过Q 点时的速度大于它在轨道2 上经过Q 点时的速度。 D .卫星在轨道2上经过P 点时的加速度等于它在轨道3 b a c 地球 图1

上经过P 点时的加速度 5、 宇航员在围绕地球做匀速圆周运动的空间站中会处于完全失重中,下列说法中正确的是 ( ) A.宇航员仍受重力的作用 B.宇航员受力平衡 C.宇航员受的重力正好充当向心力 D.宇航员不受任何作用力 6.某星球质量为地球质量的9倍,半径为地球半径的一半,在该星球表面从某一高度以10 m/s 的初 速度竖直向上抛出一物体,从抛出到落回原地需要的时间为(g 地=10 m/s 2 )( ) A .1s B . 91s C .18 1 s D . 36 1 s 7.假如地球自转速度增大,关于物体重力,下列说法正确的是( ) A 放在赤道地面上的万有引力不变 B 放在两极地面上的物体的重力不变 C 放在赤道地面上物体的重力减小 D 放在两极地面上的物体的重力增加 8、设想把质量为m 的物体放在地球的中心,地球的质量为M ,半径为R ,则物体与地球间的万有引力是( ) A.零 B.无穷大 C.2 GMm R D.无法确定 9.对于质量m 1和质量为m 2的两个物体间的万有引力的表达式12 2m m F G r ,下列说法正确的是 ( ) 和m 2所受引力总是大小相等的 B 当两物体间的距离r 趋于零时,万有引力无穷大 C.当有第三个物体m 3放入之间时,m 1和m 2间的万有引力将增大 D.所受的引力性质可能相同,也可能不同 10地球赤道上的重力加速度为g ,物体在赤道上随地球自转的向心加速度为a ,要使赤道上物 体“飘” 起来,则地球的转速应为原来转速的( )

(完整版)高考专题-万有引力与航天

高考专题-万有引力与航天 1.题型特点 关于万有引力定律及应用知识的考查,主要表现在两个方面:(1)天体质量和密度的计算:主要考查对万有引力定律、星球表面重力加速度的理解和计算.(2)人造卫星的运行及变轨:主要是结合圆周运动的规律、万有引力定 律,考查卫星在轨道运行时线速度、角速度、周期的计算,考查卫星变轨运行时线速度、角速度、周期以及有关能量的变化.以天体问题为背景的信息题,更是受专家的青睐.高考中一般以选择题的形式呈现. 2.命题趋势 从命题趋势上看,对本部分内容的考查仍将延续与生产、生活以及航天科技相结合,形成新情景的物理题.

1.(多选)(2015·新课标全国Ⅰ·21)我国发射的“嫦娥三号”登月探测器靠近月球后,先在月球表面附近的近似圆轨道上绕月运行;然后经过一系列过程,在离月面4 m高处做一次悬停(可认为是相对于月球静止);最后关闭发动机,探测器自由下落.已知探测器的质量约为1.3×103 kg,地球质量约为月球的81倍,地球半径约为月球的3.7倍,地球表面的重力加速度大小约为9.8 m/s2.则此探测器() A.在着陆前的瞬间,速度大小约为8.9 m/s B.悬停时受到的反冲作用力约为2×103 N C.从离开近月圆轨道到着陆这段时间内,机械能守恒 D.在近月圆轨道上运行的线速度小于人造卫星在近地圆轨道上运行的线速度2.(2015·江苏单科·3)过去几千年来,人类对行星的认识与研究仅限于太阳系内,行星“51 peg b”的发现拉开了研究太阳系外行星的序幕.“51 peg b”绕其中心恒星做匀速圆周运动,周

期约为4天,轨道半径约为地球绕太阳运动半径的1 20,该中心恒星与太阳的质量比约为( ) A.1 10 B .1 C .5 D .10 3.(2015·四川理综·5)登上火星是人类的梦想,“嫦娥之父”欧阳自远透露:中国计划于2020年登陆火星.地球和火星公转视为匀速圆周运动,忽略行星自转影响.根据下表,火星和地球相比( ) A.火星的公转周期较小 B .火星做圆周运动的加速度较小 C .火星表面的重力加速度较大 D .火星的第一宇宙速度较大 4.(2015·安徽理综·24)由三颗星体构成的系统,忽略其他星体对它们的作用,存在着一种运动形式,三颗星体在相互之间的万有引力作用下,分别位于等边三角形的三个顶点上,绕某一共同的圆心O 在三角形所在的平面内做相同角速度的圆周运动(图为A 、B 、C 三颗星体质量不相同时的一般情况).若A 星体质量为2m 、B 、C 两星体的质量均为m ,三角形的边长为a ,求: (1)A 星体所受合力大小F A ; (2)B 星体所受合力大小F B ; (3)C 星体的轨道半径R C ; (4)三星体做圆周运动的周期T . 考题一 万有引力定律的理解 1.(2015·安康二模)由中国科学院、中国工程院两院院士评出的2012年中国十大科技进展新闻,于2013年1月19日揭晓,“神九”载人飞船与“天宫一号”成功对接和“蛟龙”号下潜突破7 000米分别排在第一、第二.若地球半径为R ,把地球看做质量分布均匀的球体.“蛟龙”下潜深度为d ,天宫一号轨道距离地面高度为h ,“蛟龙”号所在处与“天宫一号”所在处的加速度之比为( ) A.R -d R +h B.(R -d )2(R +h )2 C.(R -d )(R +h )2R 3 D.(R -d )(R +h )R 2 行星 半径/m 质量/kg 轨道半径/m 地球 6.4×106 6.0×1024 1.5×1011 火星 3.4×106 6.4×1023 2.3×1011

万有引力与航天试题附答案

万有引力与航天单元测试题 一、选择题 1.关于日心说被人们接受的原因是 ( ) A.太阳总是从东面升起,从西面落下 B.若以地球为中心来研究的运动有很多无法解决的问题 C.若以太阳为中心许多问题都可以解决,对行星的描述也变得简单 D.地球是围绕太阳运转的 2.有关开普勒关于行星运动的描述,下列说法中正确的是( ) A.所有的行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上 B.所有的行星绕太阳运动的轨道都是圆,太阳处在圆心上 C.所有的行星轨道的半长轴的三次方跟公转周期的二次方的比值都相等 D.不同的行星绕太阳运动的椭圆轨道是不同的 3.关于万有引力定律的适用围,下列说法中正确的是( ) A.只适用于天体,不适用于地面物体 B.只适用于球形物体,不适用于其他形状的物体 C.只适用于质点,不适用于实际物体 D.适用于自然界中任意两个物体之间 4.已知万有引力常量G,要计算地球的质量还需要知道某些数据,现在给出下列各组数据,可以计算出地球质量的是( ) A.地球公转的周期及半径 B.月球绕地球运行的周期和运行的半径 C.人造卫星绕地球运行的周期和速率 D.地球半径和同步卫星离地面的高度 5.人造地球卫星由于受大气阻力,轨道半径逐渐变小,则线速度和周期变化情况是( ) A.速度减小,周期增大,动能减小 B.速度减小,周期减小,动能减小 C.速度增大,周期增大,动能增大 D.速度增大,周期减小,动能增大 6.一个行星,其半径比地球的半径大2倍,质量是地球的25倍,则它表面的重力加速度是地球表面重力加速度的( ) A.6倍B.4倍C.25/9倍D.12倍 7.假如一个做圆周运动的人造卫星的轨道半径增大到原来的2倍仍做圆周运动,则( )

曲线运动与万有引力知识点总结与经典题

一、曲线运动 1、运动的合成与分解按平行四边形法则进行。 2、船过河所需最短时间(v 船垂直于河岸) t v v s d s t v s v t ?+=+=== 2 222d 水船水河实水水船 河宽 3、船要通过最短的路程(即船到达河对岸)则v 船逆水行驶与水平成α角 合 河宽水 船合船 水 v d v v v v v = -== t cos 2 2α 4、平抛运动是匀变速曲线运动: F 合=G ; a=g 平抛运动可以分解为 动 竖直方向的自由落体运动水平方向的匀速直线运 (1)水平位移g h v t v x 20 0== (2)竖直位移2 2 1gt y = (3)通过的合位移222022)gt 2 1 ()t V (y x s +=+= (4)水平速度0v v x == t x (5)竖直速度gt v y ==gh 2 (6)合速度22 022)(gt v v v v y x t +=+= (7)夹角 0 y v v tg x y tg = β=α (8)飞行时间由下落的高度决定:g h t 2= (9)实验求0v : a 、已知抛出点时: b 、不知抛出点时: t x v g h 2t 0= = 212t s s a -= g y y t 122 -=∴ ,t x v =0 5、匀速圆周运动是变加速曲线运动:0≠合F ,v F ⊥合,0≠a ,v a ⊥ (1)线速度V=s/t=2πr/T=2πrf=2πrn=ωr ,线速度是矢量,单位:米/秒(m/s ) (2)角速度ω=θ/t =2π/T= 2πf=2πn=V/r ,角速度是矢量,单位:弧度/秒(rad/s )

高考物理万有引力与航天基础练习题

高考物理万有引力与航天基础练习题 一、高中物理精讲专题测试万有引力与航天 1.如图所示,返回式月球软着陆器在完成了对月球表面的考察任务后,由月球表面回到绕月球做圆周运动的轨道舱.已知月球表面的重力加速度为g ,月球的半径为R ,轨道舱到月球中心的距离为r ,引力常量为G ,不考虑月球的自转.求: (1)月球的质量M ; (2)轨道舱绕月飞行的周期T . 【答案】(1)G gR M 2 = (2)2r r T R g π=【解析】 【分析】 月球表面上质量为m 1的物体,根据万有引力等于重力可得月球的质量;轨道舱绕月球做圆周运动,由万有引力等于向心力可得轨道舱绕月飞行的周期; 【详解】 解:(1)设月球表面上质量为m 1的物体,其在月球表面有:11 2Mm G m g R = 1 12 Mm G m g R = 月球质量:G gR M 2 = (2)轨道舱绕月球做圆周运动,设轨道舱的质量为m 由牛顿运动定律得: 2 2Mm 2πG m r r T ??= ??? 222()Mm G m r r T π= 解得:2r r T R g π= 2.如图所示,宇航员站在某质量分布均匀的星球表面一斜坡上P 点沿水平方向以初速度v 0抛出一个小球,测得小球经时间t 落到斜坡上另一点Q ,斜面的倾角为α,已知该星球半径为R ,万有引力常量为G ,求:

(1)该星球表面的重力加速度; (2)该星球的质量。 【答案】(1)02tan v g t θ= (2)202tan v R Gt θ 【解析】 【分析】 平抛运动在水平方向上做匀速直线运动,在竖直方向上做自由落体运动,根据平抛运动的规律求出星球表面的重力加速度;根据万有引力等于重力求出星球的质量; 【详解】 (1)根据平抛运动知识可得 2 00 122gt y gt tan x v t v α=== 解得02v tan g t α = (2)根据万有引力等于重力,则有 2 GMm mg R = 解得2202v R tan gR M G Gt α == 3.a 、b 两颗卫星均在赤道正上方绕地球做匀速圆周运动,a 为近地卫星,b 卫星离地面高度为3R ,己知地球半径为R ,表面的重力加速度为g ,试求: (1)a 、b 两颗卫星周期分别是多少? (2) a 、b 两颗卫星速度之比是多少? (3)若某吋刻两卫星正好同时通过赤道同--点的正上方,则至少经过多长时间两卫星相距最远? 【答案】(1)2R g ,16R g (2)速度之比为2 87R g π 【解析】 【分析】根据近地卫星重力等于万有引力求得地球质量,然后根据万有引力做向心力求得运动周期;卫星做匀速圆周运动,根据万有引力做向心力求得两颗卫星速度之比;由根据相距最远时相差半个圆周求解; 解:(1)卫星做匀速圆周运动,F F =引向, 对地面上的物体由黄金代换式2Mm G mg R =

《万有引力与航天》测试题含答案

《万有引力与航天》单元测试 一、选择题 1.星球上的物体脱离星球引力所需的最小速度称为第二宇宙速度.星球的第二宇宙速度v 2与第一宇宙速度v 1的关系就是v 2=2v 1、已知某星球的半径为r ,它表面的重力加速度为地球表面重力加速度g 的1 6 ,不计其她星球的影响,则该星球的第二宇宙速度为( ) A 、gr B 、 16 gr C 、 1 3 gr D 、13gr 解析:由题意v 1=g ′r = 1 6 gr ,v 2=2v 1= 1 3 gr ,所以C 项正确. 答案:C 2.太阳能电池就是将太阳能通过特殊的半导体材料转化为电能,在能量的利用中,它有许多优点,但也存在着一些问题,如受到季节、昼夜及阴晴等气象条件的限制.为了能尽量地解决这些问题,可设想把太阳能电池送到太空中并通过一定的方式让地面上的固定接收站接收电能,太阳能电池应该置于( ) A.地球的同步卫星轨道 B.地球大气层上的任一处 C.地球与月亮的引力平衡点 D.地球与太阳的引力平衡点 解析:太阳能电池必须与地面固定接收站相对静止,即与地球的自转同步.

答案:A 3.据媒体报道,“嫦娥”一号卫星绕月工作轨道为圆轨道,轨道距月球表面的高度为200 km,运行周期为127 min 、若要求出月球的质量,除上述信息外,只需要再知道( ) A.引力常量与“嫦娥”一号的质量 B.引力常量与月球对“嫦娥”一号的吸引力 C.引力常量与地球表面的重力加速度 D.引力常量与月球表面的重力加速度 解析:对“嫦娥”一号有G Mm (R +h )2=m 4π2T 2(R +h ),月球的质量为M =4π2GT 2(R +h )3,在月球表面g =G M R 2,故选项D 正确. 答案:D 4.地球同步卫星轨道半径约为地球半径的6、6倍,设月球密度与地球相同,则绕月心在月球表面附近做圆周运动的探月探测器的运行周期约为( ) A.1 h B.1、4 h C.6、6 h D.24 h 解析:因月球密度与地球的相同,根据ρ=m 4πR 3/3,可知m 地m 月=R 3 地R 3月 ,又 Gm 地m 卫 (6、6R 地)2=m 卫4π2T 2卫×6、6R 地,Gm 月m 探R 2 月=m 探4π2 T 2探R 月,已知T 卫=24 h,联立解得T 探≈1、4 h 、 答案:B 5、

专题03 曲线运动与万有引力(解析版)

2020年物理二轮专题过关宝典 专题三:曲线运动与万有引力 【知识回扣】 一、曲线运动 1、平抛运动的两个重要推论 ①任意时刻速度的反向延长线一定通过此时水平位移的中点。 ②设在任意时刻瞬时速度与水平方向的夹角为θ,位移与水平方向的夹角为φ,则有tanθ=2tanφ。 2、离心运动

①当F =mr ω2时,物体做匀速圆周运动; ②当F =0时,物体沿切线方向飞出; ③当F <mr ω2时,物体逐渐远离圆心,F 为实际提供的向心力。 ④当F >mr ω2时,物体逐渐向圆心靠近,做向心运动。 二、万有引力定律及航天 1.天体绕行是匀速圆周运动,可综合匀速圆周运动规律,根据G Mm r 2=m v 2r =mω2 r =m 4π2 T 2r =ma 2.在忽略地球自转时,万有引力近似等于物体重力。 【热门考点透析】 考点一 运动的合成与分解 1.(2018·全国卷Ⅰ) 如图,abc 是竖直面内的光滑固定轨道,ab 水平,长度为2R ;bc 是半径为R 的四分之一圆弧,与ab 相切于b 点。一质量为m 的小球,始终受到与重力大小相等的水平外力的作用,自a 点处从静止开始向右运动。重力加速度大小为g 。小球从a 点开始运动到其轨迹最高点,机械能的增量为( )

A.2mgR B.4mgR C.5mgR D.6mgR 【答案】C 【解析】小球始终受到与重力大小相等的水平外力的作用,机械能的增量ΔE机=W除G外力,机械能的增量等于水平外力在从a点开始运动到其轨迹最高点过程做的功。设小球运动到c点的速度为v c,由动能定理有:F·3R- mg·R=1 2mv 2 c ,解得:v c=2gR。小球运动到c点后,根据小球受力情况,可分解为水平方向初速度为零的匀加 速运动,加速度为a x=g,竖直方向的竖直上抛运动加速度也为g,小球上升至最高点时,竖直方向速度减小为 零,时间为t=v c g= 2gR g,水平方向的位移为:x= 1 2a x t 2= 1 2g? ? ? ? 2gR g 2=2R,综上所述小球从a点开始运动到其轨 迹最高点,机械能的增量为ΔE机=F·(3R+x)=5mgR,C正确。 2. (2019·鹤壁市期末)如图所示,物体A套在竖直杆上,经细绳通过定滑轮拉动物体B在水平面上运动,开始时 A、B间的细绳呈水平状态,现由计算机控制物体A的运动,使其恰好以速度v沿杆匀速下滑(B始终未与滑轮相碰),则() A.绳与杆的夹角为α时,B的速率为v sin α

必修二万有引力与航天知识点总结完整版

第六章 万有引力与航天知识点总结 一. 万有引力定律: ①内容:自然界中任何两个物体都相互吸引,引力的大小与物体的质量1m 和2m 的乘积成正比,与它们 之间的距离r 的二次方成反比。即: 其中G =6. 67×10 -11N ·m 2/kg 2 ②适用条件 (Ⅰ)可看成质点的两物体间,r 为两个物体质心间的距离。 (Ⅱ)质量分布均匀的两球体间,r 为两个球体球心间的距离。 ③运用 (1)万有引力与重力的关系: 重力是万有引力的一个分力,一般情况下,可认为重力和万有引力相等。 忽略地球自转可得: 二. 重力和地球的万有引力: 1. 地球对其表面物体的万有引力产生两个效果: (1)物体随地球自转的向心力: F 向=m ·R ·(2π/T 0)2,很小。 由于纬度的变化,物体做圆周运动的向心力不断变化,因而表面物体的重力随纬度的变化而变化。 (2)重力约等于万有引力: 在赤道处:mg F F +=向,所以R m R GMm F F mg 22自向ω-=-=,因地球自转角速度很小,R m R GMm 22自ω>>,所以2R GM g =。 地球表面的物体所受到的向心力f 的大小不超过重力的0. 35%,因此在计算中可以认为万有引力和重 力大小相等。如果有些星球的自转角速度非常大,那么万有引力的向心力分力就会很大,重力就相应减小, 就不能再认为重力等于万有引力了。如果星球自转速度相当大,使得在它赤道上的物体所受的万有引力恰 好等于该物体随星球自转所需要的向心力,那么这个星球就处于自行崩溃的临界状态了。 在地球的同一纬度处,g 随物体离地面高度的增大而减小,即21)('h R Gm g += 。 强调:g =G ·M /R 2不仅适用于地球表面,还适用于其它星球表面。 2. 绕地球运动的物体所受地球的万有引力充当圆周运动的向心力,万有引力、向心力、重力三力合一。 即:G ·M ·m /R 2=m ·a 向=mg ∴g =a 向=G ·M /R 2 122 m m F G r =2 R Mm G mg =

2019高考物理试题分类汇编(7)-万有引力与航天(含详解)

2019高考物理试题分类汇编(7)-万有引力与航天(含详解) 1〔2018海南卷〕.2017年4月10日,我国成功发射第8颗北斗导航卫星,建成以后北斗导航卫星系统将包含多可地球同步卫星,这有助于减少我国对GPS 导航系统的依赖,GPS 由运行周期为12小时的卫星群组成,设北斗星的同步卫星和GPS 导航的轨道半径分别为1 R 和 2R ,向心加速度分别为1a 和2a ,那么12:R R _。12:a a =_____4 〔可用根式表 示〕 解析: 122T T =,由2224GMm m R ma R T π==得 :R =,2GM a R =因而 :2 3 1122R T R T ?? == ??? , 2 11224 a R a R -??== ??? 2〔2018广东卷〕.如图6所示,飞船从轨道1变轨至轨道2。假设飞船在两轨道上都做匀速 圆周运动,不考虑质量变化,相对于在轨道1上,飞船在轨道2上的 A.动能大 B.向心加速度大 C.运行周期长 D.角速度小 答案:CD 3〔2018北京高考卷〕、关于环绕地球卫星的运动,以下说法正 确的选项是 A 、分别沿圆轨道和椭圆轨道运行的两颗卫星,不可能具有相同的周期 B 、沿椭圆轨道运行的一颗卫星,在轨道不同位置可能具有相同的速率 C 、在赤道上空运行的两颗地球同步卫星,它们的轨道半径有可能不同 D 、沿不同轨道经过北京上空的两颗卫星,它们的轨道平面一定会重合 答案:B 4〔2018山东卷〕.2017年11月3日,“神州八号”飞船与“天宫一号”目标飞行器成功实施了首次交会对接。任务完成后“天宫一号”经变轨升到更高的轨道,等待与“神州九号”交会对接。变轨前和变轨完成后“天宫一号”的运行轨道均可视为圆轨道,对应的轨道半径分别为R 1、R 2,线速度大小分别为1v 、2 v 。那么12 v v 等于 222 1R R D. 21 R R 答案:B 5〔2018福建卷〕、一卫星绕某一行星表面附近做匀速圆周运动,其线速度大小为 v 假设宇 航员在该行星表面上用弹簧测力计测量一质量为m 的物体重力,物体静止时,弹簧测力计的

高中物理训练专题【曲线运动与万有引力】

限时规范训练(二) 曲线运动与万有引力 建议用时45分钟,实际用时________ 一、单项选择题 1.如图所示,绕过定滑轮的细线连着两个小球,小球a 、b 分别套在 水平杆和竖直杆上,某时刻连接两球的细线与竖直方向的夹角均为37°, 此时a 、b 两球的速度大小之比v a v b 为(已知sin 37°=0.6,cos 37°=0.8)( ) A.43 B .34 C.259 D .2516 解析:A 将a 、b 两小球的速度分解为沿细线方向的速度与垂直细线方向的速度,则a 球沿细线方向的速度大小为v 1=v a sin 37°,b 球沿细线方向的速度大小为v 2=v b cos 37°,又 v 1=v 2,解得v a v b =cos 37°sin 37°=43 ,A 正确. 2.羽毛球运动员林丹曾在某综艺节目中表演羽毛球定点击鼓,如图是他表演时的羽毛球场地示意图.图中甲、乙两鼓等高,丙、丁两鼓较低但也等高,若林丹各次发球时羽毛球飞出位置不变且均做平抛运动,则( ) A .击中甲、乙的两球初速度v 甲=v 乙 B .击中甲、乙的两球运动时间可能不同 C .假设某次发球能够击中甲鼓,用相同大小的速度发球可能击中丁鼓 D .击中四鼓的羽毛球中,击中丙鼓的初速度最大 解析:C 由题图可知,甲、乙高度相同,所以球到达两鼓用时相同,但由于两鼓离林 丹的水平距离不同,甲的水平距离较远,由v =x t 可知,击中甲、乙的两球初速度v 甲>v 乙,故A 、B 错误;甲鼓的位置比丁鼓位置较高,则球到达丁鼓用时较长,则若某次发球能够击中甲鼓,用相同大小的速度发球可能击中丁鼓,故C 正确;由于丁鼓与丙鼓高度相同,但由题图可知,丁鼓离林丹的水平距离大,所以击中丁鼓的球的初速度一定大于击中丙鼓的球的初速度,即击中丙鼓的球的初速度不是最大的,故D 错误.

相关文档
最新文档