007第七章 太阳电池和发光二极管_20060411_完成

007第七章 太阳电池和发光二极管_20060411_完成
007第七章 太阳电池和发光二极管_20060411_完成

第七章 太阳电池和发光二极管

7-1. (a)计算在Ge 、Si 和GaAs 中产生电子空穴对的光源的最大波长λ。 (b) 波长为5500?和6800?的能量为若干?

解: a) )(24

.1um E E hc c

ph

ph ==

=

ν

λ ∴ Si: )(11.112.124

.1max um ==λ Ge )(82.168.024

.1max um ==

λ GaAs )(867.043

.124

.1max um ==

λ b) )(23.055

.024

.1,55001

11eV c

h

h A ==

=∴=λνλ

)(18.068

.024

.1,68002

22eV c

h

h A ==

=∴=λνλ 7-3.一厚为0.46 m μ的GaAs 样品用eV h 2=ν的单色光源照射。吸收系数为

14105--?=cm α,样品的入射功率为10mW 。

(a) 以每秒焦耳为单位计算为样品所吸收的总能量。

(b) 以每秒焦耳为单位求电子在复合前传给晶格过剩热能的速率。 (c) 计算每秒钟由于复合发射的光子数。

解 a )透射 )/(10)46.05exp(1010)exp(3

3

s J d E E ph t --=?-??=-=α 吸收 )/(109101010333

s J E E E t ph ---?=-?=-=吸收

b) 热能

)/(10565.2)43.12(2109)()(33

s J E h h E E h n W g g --?=-?=-=-=ννν吸收

C) )/(1081.210

6.12109169

3

s h E n 个吸收

?=???==--ν 7-4. 假设P N +

二极管受到一个光源的均匀照射,所引起的电子-空穴产生速率为L G ,解

二极管的扩散方程以证明p

p l L x p

p l

V V n n D L G e

D L G e

P P p

T

2/2/0))1((+

--=?-

解:???

? ?

?-=1exp 0T

p V V I I ,V 加到pn 接上,

当0>x 时,002

2=+--L p

n n n p G p p dx p d D τ 2

2

2

)

(p

p

L no n p L no n L

G p p dx

G p p d ττ--=

--∴

其中,p p p D L τ= p L p

p n n G L x

K L x K p p τ++-

=-∴)exp()exp(210 (*) 由边界条件 ,??

??

?

=?∞===p L n T no n G p x V V p p x τ

,exp ,0, 代入到(*)式中,得

?????

=--=0)1(exp 2

1K G V V p K p L T no

τ

p p L p p p L T n no

n n D L G L x D L G V V P p p p 22

0)exp()1(exp +

-???

?????--=-=?∴ 7-5. 利用习题7-4的结果推导 ()L L n p I qG L L A =+

解:同理,N 区注入电子, n n L n n n L T p p p p D L G L x D L G V V n n n n 22

00

)e x p ()1(e x p +

'-???

?????--=-=? n L n n L T p G L x

G V V n ττ+??

????--=)exp()1(exp

0 电流分布为: )e x p ()1(e x p )(0p p L T n p p n p

p L x G V V P L q A D dx dp qAD x I -??????

--=-=τ )e x p ()1(e x p )(0

n n L T p n n p n n L x G V V n L q A D dx

dn qAD x I ??

????--=

=τ 总电流为:

x

x '

)()1)(exp (

)0()0(0p n L T

n

p n p

no p n p L L qAG V V

L n D L p D qA I I I +--+

=+=

L T I V V

I I +-=)1(exp 0 ,)(00n

p n p no p L n D L p D qA I +=

A L L qG I p n L L )(-=∴

7-6. (a) 进行式 7-14式的推导。

(b) 假设暗电流为1.5mA ,光产生的短路电流为100mA,画出I-V 曲线,并用图解法求出最大输出功率的负载电阻。占空因数为若干?

解:a) ???

? ??--==L T I V V

I V VI P )1(exp 0 ???? ?

??+--=??∴

T T mp mp L T mp mp V V V I V I V V I V V P

1exp )1(exp 00 0

1e x p )1(I I

V V V V L T mp T mp

+=+∴

b) )exp 1(105.1100)1(exp

60T

L T V V

I V V I I -?+=+-=- (*) 当)(0A I =时,)(468.0V V oc = 当)(0V V =时,)(100mA I I L ==

)(39.01111exp

0V V V V I I

V V I I V V mp T oc

L

T

mp L T

mp =?++≈+

+

=

代入到(*)式中,得 mA I m p 95= 1.4==

∴mp

mp I V R (

)

%79100

468.095

39.0=??=?=?∴L oc mp mp in mp mp I V V I P V I 占空因数为

7-7. (a)证明对于一N P +

电池,式(7-6)中的电流0I 可用下式表示:

00cosh

sinh cosh sinh p

p

n

p n n n n

p p n n

n n n

W W D S qAn D L L L I W W D L S L L L ?+

=?

+?,式中S 是在欧姆接触处的表面复合速度,W p 为P 区宽度,其他符号表示少数载流子的参数。 (b) 证明:

000tanh )coth S )p n

p n

n n

n p n p n

n

n n

qAn D W D S L L L I qAn D W D L L L ???=?

??? ,当(时,当(时

(註:上式为S<>D n n L /.)

证明:a) 0)

(0

2

02=--

?-?n

p p p p n

n n x

n n D τ

)1()e x p ()e x p (210 n

n p p p L x

K L x K n n n +-=-=?∴, 其中n n n D L τ=2

边界条件为????

???

-=-===dx dn D

n n S W x V V n n x p n po p p T p p )(exp 00时,时,代入到(1)式中,得

??????

?

?

???

?

?-+?-+-=

-+?+=)1(exp )

sinh (2exp

)()1(exp )sinh (2exp )(0201T p n p n n n p n p n n T

p n p n n n p n p n n

V V

n L W ch L D L W S L W L D S K V V n L W ch L D L W S L W L D S K )cosh()sinh()cosh()sinh()

1(exp 00

n

p

n n n p n

p n n

n

p T

p p p p L W L D L W S L x W L D L x

W S V V n n n n +

?-+

-?-=-=?∴

)1(exp sinh cosh sinh

cosh

)0(00

-?++

??-==∴=T P

p p p n n

p p n n

P p

n n p x p p

n V V L W S L W L D L W L D L W S L D qAn dx

dn qAD I

因此 P

p p p n n

p

p n n

P p

n n p L W S L W L D L W L D L W S L D qAn I sinh cosh sinh

cosh

00?++

??=

b) 由a)知,???

????>><<=时,当(时,当()S coth )tanh 000n n p p n n p n

n

P p n n p L D L W L D qAn L D S L W L D qAn I

7-8. 假设2/40cm mA J L =,画出N P +

GaAs 电池的开路电压与受主浓度的关系。

A

I J 0

0=

,由习题7-7b 中S 《D n n L /的公式给出,5

p n W L m μ==

解:1

11

1000tanh --+-=

=

e e e e L D qAn L W L D qAn I n n p P p n n

p V V e

kT

D T n

n

026.0===

μ

,s V cm n ./86002=μ,37/10--=cm n i s cm D n /2242=∴

????

?

?+=???? ??+=001ln 1ln J J V I I V V L

T L T oc

a

a n n i N e e e e N L D qn A I J 46

.51

111200=+-?==-- ()

a T oc N V V 31033.71ln -?+=∴ ∴

a N

第八章

8.1. 若在GaAs LED 中d a N N =,证明与电子电流相比较,孔穴扩散电流是可以忽略的。用

30=p n

μμ。

证明:

?

?

?

?

?

??-=-=)1(exp )0()1(exp )0(2

2

T a n i n n T d p i p p V V N L n qD I V V

N L n qD I ?

n

p p

n p n L D L D I I =

, 又因为

T p

p

n n

V D D ==μμ,n p L L ≈,

所以

30==≈p

n

p n p n D D I I μμ 因此可以说空穴扩散电流与电子扩散电流相比较是可以忽略的。

8.3. 一GaAs 红外发光器具有下列器件参数,m x cm j i μαη10,10%,801

3

===- a) 计算外量子效率。

b) 若采用折射率为1.8的圆顶装环氧树脂进行LED 封装,重复a )

解:a) 外量子效率为 T x j

i ext αηη+

=

1,其中,2

sin

2

C

T T θ=

303.09

.10111sin ====

s

c K n

θ

3.30235.02

sin 112

sin

22===--=

∴s c

c

K n ,θθ

924.2)1(42

=+=

n n

T

0167.0025.0924.2=?=∴T %3.1067

.010

10101%8014

3=??+=

+

=

∴-T

x j

i ext αηη

8.4. GaAs 中吸收系数的温度依赖关系可近似表示为)exp(0

0T T

αα=,式中0α为α外

推至K T 0=时的值,0T 约为100 K ,300 K 时,二极管的外量子效率为百分之五,其他参数为 1310)300(,2.0,20-===cm K T m x j αμ

a )计算在27 oG 时的内量子效率。

b )假设在这里所考虑的温度范围内内量子效率为常数,求-23和77 oG 时的外量子效率。

解:a)T x j

i ext αηη+

=

1

%55)2.0/1020101(%5)1(43=??+?=+

=∴-T

x j

ext i αηη

b)i 当-23 oG 时,)(25023273K T =-=

)(10)

100300exp(10)exp(),100250exp(1333

000--?====cm e T T αααα

%78.72

.01020101%55435.23=????+

=

--e e ext η ii 当77度时,)(350K T = 5.03010100

350

exp e ==αα %145.32

.01020101%

554

5.03=???+

=-e ext

η 8.5. 计算下列情况下的亮度:(a )红光GaP LED , 在2

/10cm A 时%5=ext η,b) 绿光GaP ,在2

/10cm A 时%03.0=ext η,c) 绿光 4.06.0P GaAs ,在2

/20cm A 时%15.0=ext η。假设

1=S

j A A 。

解:1),

(1150==S

j ext s

j

A A fL A JA L

B ηλ

红光 GaP ,

A 7000=λ,)/(0.3W Lm L = )(2464%57

.010

31150fL B =??

?=∴

绿光 GaP ,

A 5700=λ,Lm L 630= fL

B 3813=∴

绿光 4.06.0P GaAs ,

A 6500=λ ,Lm L 70= fL

B 3715=∴

8.6. 估算书中叙述的红光 GaP 二极管施主-受主间距的范围。 解:r

K q E E E h S a d g 02)(εν+

+-=

r K q

S 0)83.004.0(3.27.024.1ε++-=

)(314.00eV r

K q S =∴

ε ,S K 在10.89~14.44,取S K =12

)(108.4314

.010854.812106.1314.0714

19

0cm K q r S ---?=????=?=∴ε

太阳能电池板原理

太阳能电池板原理

随着全球能源日趋紧张,太阳能成为新型能源得到了大力的开发,其中我们在生活中使用最多的就是太阳能电池了。太阳能电池是以半导体材料为主,利用光电材料吸收光能后发生光电转换,使它产生电流,那么太阳能电池的工作原理是怎么样的呢?太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置。当太阳光照射到半导体上时,其中一部分被表面反射掉,其余部分被半导体吸收或透过。被吸收的光,当然有一些变成热,另一些光子则同组成半导体的原子价电子碰撞,于是产生电子—空穴对。这样,光能就以产生电子—空穴对的形式转变为电能。

一、太阳能电池的物理基础 当太阳光照射p-n结时,在半导体内的电子由于获得了光能而释放电子,相应地便产生了电子——空穴对,并在势垒电场的作用下,电子被驱向型区,空穴被驱向P型区,从而使凡区有过剩的电子,P区有过剩的空穴。于是,就在p-n结的附近形成了与势垒电场方向相反的光生电场。 如果半导体内存在P—N结,则在P型和N型交界面两边形成势垒电场,能将电子驱向N区,空穴驱向P区,从而使得N区有过剩的电子,P区有过剩的空穴,在P—N结附近形成与势垒电场方向相反光的生电场。 制造太阳电池的半导体材料已知的有十几种,因此太阳电池的种类也很多。目前,技术最成熟,并具有商业价值的太阳电池要算硅太阳电池。下

面我们以硅太阳能电池为例,详细介绍太阳能电池的工作原理。 1、本征半导体 物质的导电性能决定于原子结构。导体一般为低价元素,它们的最外层电子极易挣脱原子核的束缚成为自由电子,在外电场的作用下产生定向移动,形成电流。高价元素(如惰性气体)或高分子物质(如橡胶),它们的最外层电子受原子核束缚力很强,很难成为自由电子,所以导电性极差,成为绝缘体。常用的半导体材料硅(Si)和锗(Ge)均为四价元素,它们的最外层电子既不像导体那么容易挣脱原子核的束缚,也不像绝缘体那样被原子核束缚的那么紧,因而其导电性介于二者之间。 将纯净的半导体经过一定的工艺过程制成单晶体,即为本征半导体。晶体中的原子在空间形成排列整齐的点阵,相邻的原子形成共价键。

测试LED光电特性的内容及方法介绍

LED灯具检测方法关键缺陷及改善策略 传统的 led 及其模块光、色、电参数检测方法有电脉冲驱动,CCD 快速光谱测量法,也有在一定的条件下,热平衡后的测量法,但这些方法的测量条件和结果与LED 进入照明器具内的实际工作情况都相差甚远。文章介绍了通过Vf—TJ 曲线的标出并控制LED 在控定的结温下测量其光、色、电参数不仅对采用LED的照明器具的如何保证LED 工作结温提供了目标限位,同时也使LED 及其模块的光、色、电参数的测量参数更接近于实际的应用条件。文章还介绍了采用LED的照明器具如测量LED 的结温并确定LED 参考点的限值温度与结温的函数关系。这对快速评估采用LED 的照明器具的工作状态和使用寿命提供了一个有效的途径。 一、序言 对于一个新兴的产品,其产品自身的发展总是先于产品标准和检测方法。虽然产品的标准和检测方法不可能先于产品的研发,但是,产品的标准和检测方法应尽可能地紧跟产品设计开发的进度,因为产品的标准和检测方法的制定过程本身就是对产品研发过程的回顾研讨和小结,只要条件基本成熟,产品标准和检测方法的制订越及时,就越能减少产品研发过程的盲目性。LED 照明产业发展到现在,我们对LED 照明产品标准和检测方法的回顾、小结的时候已经基本到来。 二、 LED 模块的光电参数和检测方法的现状和改进方法 1、传统的LED 模块的检测方法 目前传统的 LED 模块的检测方法主要有两种,第一种是采用脉冲测量的方法,它是把照明LED 模块固定在测量装置上(例如积分球的测量位置等),采用脉冲恒流电源与瞬时测量光谱仪的同步联动,即对LED 发出数十毫秒~数佰毫秒恒流的脉冲电流的同时,同步打开瞬时测量光谱仪器的快门,对LED 发出的光参数(光通量、光色参数等)进行快速检测,同时,也同步采集LED 的正向压降和功率等参数。由于这种方式在检测过程中,LED 的结温几乎等同于室温,所以,测量结果的光效高,光色和电参数与实际使用情况有明显差异,这一般都是LED 芯片(器件)生产商采用的快速检测方法,而与LED 实际应用在最终照明器具中的状态不具有可参比性。 第二种检测方法是把LED模块安装在检测装置上后,可能带上一固定的散热器(也可能具有基座控温功能),给LED施加其声称的工作电流,受传统的照明光源检测方法的影响,也是等到LED达到热平衡后再开始测量它的光电参数。这种方法看似比较严密,但实际上,它的热平衡条件和工作条件与此类LED装入最终的照明器具中的状态仍没有好的关联性,因此所测的光电参数与今后实际的应用状态的参数仍不具有可参比性。已经颁布的GB/T24824—2009/CIE 127-2007NEQ《普通照明用LED模块的基本性能的测量方法》标准中,在这方面是这样规定的:“试验或测量时LED模块应工作在热平衡状态下,在监视环境温度的同时,最好能监视LED模块自身的工作温度,以保证试验的可复现性。如可能监测LED模块结电压,则应首选监测结电压。否则,应监测LED模块指定温度测量点的温度”。可见在监测结电压的条件下来测量LED 模块的光电参数是保证检测重现性的首选方案,但是,标准中没有指明在模拟实际使用结温条件下检测LED 模块的光、色、电参数。 2、LED 模块测量方法的改进

太阳能电池基本原理 光生伏特原理 N结 内建电场 等效电路

太阳能电池基本原理 基本原理——光生伏特效应 太阳能光伏发电是利用太阳电池的光伏效应原理,直接把太阳辐射能转变为电能的发电方式。典型太阳电池是一个 p-n 结半导体二极管。 光子把电子从价带(束缚)激发到导带(自由),并在价带内留下一个空穴(自由)——产生了自由电子-空穴对(光生载流子),p型材料中的电子与n型材料中的空穴将在与少子寿命相当的时间内,以相对稳定的状态存在,直到复合。当载流子复合后,光生电子空穴对将消失,没有电流和功率产生。光生电子-空穴对在耗尽层中产生后,立即被内建电场分离,光生电子被送进n区,光生空穴则被送进p区。光能就以产生电子-空穴对的形式转变为电能。 内建电场 当把N型和P型材料放在一起的时候,在N型材料中,费米能级靠近导带底,在P型材料中,费米能级靠近价带顶,当P型材料和N型材料连接在一起时,费米能级在热平衡时必定恒等,由于在P型材料中有多得多的空穴,它们将向N 型一边扩散。与此同时,在N型一边的电子将沿着相反的方向向P型区扩散。由于电子和空穴的扩散,在p-n结区产生了耗尽层,即空间电荷区电场,又称为内建电场。 (1)光子吸收:在大部分有机太阳能电池中,因为材料的带隙过高,只有一小部分入射光被吸收,吸收只能达到30%左右。 (2)激子扩散:激子的扩散长度应该至少等于薄膜的厚度,否则激子就会发生复合,造成吸收光子的浪费。 (3)电荷分离:对于单层器件,激子在电极与有机半导体界面处离化,对于双层器件,激子在施主-受主界面形成的p-n结处离化。 (4)电荷传输:在有机材料中,电荷的传输是定域态间的跳跃,而不是能带内的传输,这意味着有机材料和聚合物材料中载流子的迁移率通常都比无机半导体材料的低。

LED工作特性

什么是二极管 二极管是半导体设备中的一种最常见的器件,大多数半导体最是由搀杂半导体材料制成(原子和其它物质)发光二极管导体材料通常都是铝砷化稼,在纯铝砷化稼中,所有的原子都完美的与它们的邻居结合,没有留下自由电子连接电流。在搀杂物质中,额外的原子改变电平衡,不是增加自由电子就是创造电子可以通过的空穴。这两样额外的条件都使得材料更具传导性。带额外电子的半导体叫做N型半导体,由于它带有额外负电粒子,所以在N型半导体材料中,自由电子是从负电区域向正电区域流动。带额外“电子空穴”的半导体叫做P型半导体,由于带有正电粒子。电子可以从一个电子空穴跳向另一个电子空穴,从负电区域向正电区域流动。 因此,电子空穴本身就显示出是从正电区域流向负电区域。二极管是由N型半导体物质与P 型半导体物质结合,每端都带电子。这样排列使电流只能从一个方向流动。当没有电压通过二极管时,电子就沿着过渡层之间的汇合处从N型半导体流向P型半导体,从而形成一个损耗区。在损耗区中,半导体物质会回复到它原来的绝缘状态--所有的这些“电子空穴”都会被填满,所有就没有自由电子或电子真空区和电流不能流动。 为了除掉损耗区就必须使N型向P型移动和空穴应反向移动。为了达到目的,连接二极管N 型一方到电流的负极和P型连接到电流的正极。这时在N型物质的自由电子会被负极电子排斥和吸引到正极电子。在P型物质中的电子空穴就移向另一方向。当电压在电子之间足够高的时候,在损耗区的电子将会在它的电子空穴中和再次开始自由移动。损耗区消失,电流流通过二极管。

如果尝试使电流向其它方向流动,P型端就边接到电流负极和N型连接到正极,这时电流将不会流动。N型物质的负极电子被吸引到正极电子。P型物质的正极电子空穴被吸引到负极电子。因为电子空穴和电子都向错误的方向移动所以就没有电流流通过汇合处,损耗区增加。 为什么二极管会发光 当电子经过该晶片时,带负电的电子移动到带正电的空穴区域并与之复合,电子和空穴消失的同时产生光子。电子和空穴之间的能量(带隙)越大,产生的光子的能量就越高。光子的能量反过来与光的颜色对应,可见光的频谱范围内,蓝色光、紫色光携带的能量最多,桔色光、红色光携带的能量最少。由于不同的材料具有不同的带隙,从而能够发出不同颜色的光。 发光二极管的伏安特性 正向电压(VF)&.正向电流(IF); 反向电压(VR)&反向电流(IR); LED是电流驱动元件,非电压驱

太阳能电池探究亮特性光照强度关系

扬州大学物理科学与技术学院 大学物理综合实验训练论文实验名称:太阳能电池探究亮特性光照强度关系 班级:物教1201班 姓名:郑清华 学号:120801117 指导老师:李俊来

太阳能电池探究亮特性光照强度关系 物教1201 郑清华指导老师:李俊来 摘要:本文介绍了太阳能电池研究背景、实验原理等。在不同光强条件对单晶硅太阳电尺进行了测试.研究发现,当光强为3433.56—10617.33W/2 m时,开路电压随着光强的增加呈对数关系增加,短路电流几乎呈线性变化。效率随着光强的增加先增加后减小,最大效率值1、21%。填充因子随着光强的增加减小。 关键词:太阳能电池;输出特性;光强特性。 一、研究背景 随着经济社会的不断发展,能量与能源问题的重要性日益凸显。人类对能源的需求,随着社会经济而急剧膨胀,专家估计目前每年能源总消耗量为200亿吨标准煤,并且其中90%左右为不可再生的化石能源来维持。就目前情况,全球化石能源储备只能维持100年左右。太阳能以其清洁、长久、无害等优点自然而然成为人类可持续发展不得不考虑的能源方式。太阳每年通过大气向地球输送的能量高达3×1024焦耳,而地球上人类一年的能源总需求达到约4.363×1020焦耳,也就是说,如果我们可以收集其中的万分之一到万分之二就足够我们的需求。太阳能是最为清洁的能源,并且不受任何地域限制,随处可取。此外,将太阳能转换为电能后,电能又是应用范围最广,输送最方便的一种能源。 太阳能一般指太阳光的辐射能量。我们知道在太阳内部无时无刻不在进行着氢转变为氦的热核反应,反应过程中伴随着巨大的能量释放到宇宙空间。太阳释放到宇宙空间的所有能量都属于太阳能的范畴。太阳能电池是目前太阳能利用的关键环节,核心概念是pn结和光生伏特效应 晶体硅太阳电池在如今的光伏市场中占据了绝对主导的地位,而且这一地位在今后很长一段时间内不会改变,因此提高晶体硅太阳电池效率,降低生产成本, 使晶体硅太阳电池能与常规能源进行竞争成为现今光伏时代的主题.太阳能是最具发展潜力的新能源。光伏发电是解决能源危机,实现能源可持续发展的重要途径之一。硅太阳能电池是当今市场的主流产品,其最高效率是24.7%,由新南威尔士大学马丁·格林教授研制的PERL单晶硅电池取得单并保持至今。继续提高转换效率十分困难,但电池的效率会随温度和光强变化而变化。因此,研究温度和光强对太阳能电池的影响是必要的。 二、太阳能光伏电池实验 (一)实验目的 1.了解pn结的基本结构与工作原理。 2.了解太阳能电池组件的基本结构,理解其工作原理。

发光二极管主要参数与特性

发光二极管主要参数与特性 https://www.360docs.net/doc/a614159635.html,发布日期:2007-2-5 17:12:17 信息来源:LED 发光二极管主要参数与特性 LED是利用化合物材料制成pn结的光电器件。它具备pn结结型器件的电学特性:I-V特性、C -V特性和光学特性:光谱响应特性、发光光强指向特性、时间特性以及热学特性。 1、LED电学特性 1.1 I-V特性表征LED芯片pn结制备性能主要参数。LED的I-V特性具有非线性、整流性质:单向导电性,即外加正偏压表现低接触电阻,反之为高接触电阻。 如左图: (1) 正向死区:(图oa或oa′段)a点对于V0 为开启电压,当V<Va,外加电场尚克服不少因载流子扩散而形成势垒电场,此时R很大;开启电压对于不同LED其值不同,GaAs为1V,红色GaAsP为1.2V,GaP为1.8V,GaN为2.5V。 (2)正向工作区:电流I F与外加电压呈指数关系 I F = I S (e qVF/KT –1) -------------------------I S 为反向饱和电流。 V>0时,V>V F的正向工作区I F 随V F指数上升 I F = I S e qVF/KT (3)反向死区:V<0时pn结加反偏压 V= - V R 时,反向漏电流I R(V= -5V)时,GaP为0V,GaN为10uA。 (4)反向击穿区 V<- V R ,V R 称为反向击穿电压;V R 电压对应I R为反向漏电流。当反向偏压一直增加使V<- V R时,则出现I R突然增加而出现击穿现象。由于所用化合物材料种类不同,各种LED的反向击穿电压V R也不同。 1.2 C-V特性 鉴于LED的芯片有9×9mil (250×250um),10×10mil,11×11mil (280×280um),12×12mi l (300×300um),故pn结面积大小不一,使其结电容(零偏压)C≈n+pf左右。 C-V特性呈二次函数关系(如图2)。由1MH Z交流信号用C-V特性测试仪测得。 1.3 最大允许功耗PF m 当流过LED的电流为I F、管压降为U F则功率消耗为P=U F×I F LED工作时,外加偏压、偏流一定促使载流子复合发出光,还有一部分变为热,使结温升高。若结温为Tj、外部环境温度为Ta,则当Tj>Ta时,内部热量借助管座向外传热,散逸热量(功率),可表示为P = K T(Tj – Ta)。 1.4 响应时间 响应时间表征某一显示器跟踪外部信息变化的快慢。现有几种显示LCD(液晶显示)约10-3~1 0-5S,CRT、PDP、LED都达到10-6~10-7S(us级)。 ① 响应时间从使用角度来看,就是LED点亮与熄灭所延迟的时间,即图中t r 、t f 。图中t0值很小,可忽略。 ② 响应时间主要取决于载流子寿命、器件的结电容及电路阻抗。 LED的点亮时间——上升时间t r是指接通电源使发光亮度达到正常的10%开始,一直到发光亮度达到正常值的90%所经历的时间。

太阳能电池等效电路修订稿

太阳能电池等效电路 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

太阳能电池等效电路 图是利用P/N 结光生伏特效应做成的理想光电池的等效电路图,图中把光照下的p-n 结看作一个理想二极管和恒流源并联,恒流源的电流即为光生电流I L ,R L 为外负载。I L 的能力通过p-n 结的结电流I j 用二极管表示。这个等效电路的物理意义是:太阳能电池光照后产生一定的光电流I L ,其中一部分用来抵消结电流I j ,另一部分即为供给负载的电流I R 。其端电压V 、结电流I 以及工作电流I 的大小都与负载电阻R 有关,但负载电阻并不是唯一的决定因素。如上所述,I 的大小为 j L I I I -= (1-1) 根据扩散理论,二极管结电流I j 可以表示为 )1(0-=kT qV j j e I I (1-2) 将式(2-2)代入(2-1),得 )1(0--=kT qV L j e I I I (2-3) 图 太阳能电池的实际等效电路

实际的太阳能电池,由于前面和背面的电极和接触,以及材料本身具有一定的电阻率,基区和顶层都不可避免的要引入附加电阻。流经负载的电流,经过它们时,必然引起损耗。在等效电路中,可将它们的总效果用一个串联电阻R S来表示。由于电池边沿的漏电和制作金属化电极时,在电池的微裂纹、划痕等处形成的金属桥漏电等,使一部分本应通过负载的电流短路,这种作用的大小可用一并联电阻R SH来等效。则实际的光电池的等效电路如图所示[17-20]。p-n 结光生伏特效应最主要的应用是作为太阳能电池。太阳辐射的光能有一个光谱分布,禁带宽度越窄的半导体,可以利用的光谱越广。但是,禁带宽度E g 太小的话相应能产生的光电动势又会比较小。反之,E g大的半导体,虽然V OC 可以提高,但可以利用的太阳光谱范围就会比较小[35]。也就是说,开路电压V oc随E g 的增大而增大,但另一方面,短路电流密度J SC随E g 的增大而减小。结果是可期望在某一个确定的E g处出现太阳能电池效率的峰值。因此如何充分合理的利用太阳能资源,是一个太阳能电池生产商面临的关键技术问题。

发光二极管主要参数与特性(精)

发光二极管主要参数与特性 LED 是利用化合物材料制成 pn 结的光电器件。它具备pn 结结型器 件的电学特性:I-V 特性、C-V 特性和光学特性:光谱响应特性、发光光强指向特性、时间特性以及热学特性。 1、LED 电学特性 1.1 I-V 特性 表征LED 芯片pn 结制备性能主要参数。LED 的I-V 特性具有非线性、整流性质:单向导电性,即外加正偏压表现低接触电阻,反之为高接触电阻。 如左图: (1) 正向死区:(图oa 或oa ′段)a 点对于V 0 为开启电压,当V <Va ,外加电 场尚克服 不少因载 流子扩散 而形成势垒电场,此时R 很大;开启电压对于不同LED 其值不同,GaAs 为1V ,红色GaAsP 为1.2V ,GaP 为1.8V ,GaN 为2.5V 。 (2)正向工作区:电流I F 与外加电压呈指数关系 I F = I S (e qV F /KT –1) -------------------------I S 为反向饱和电流 。 V >0时,V >V F 的正向工作区I F 随V F 指数上升 I F = I S e qV F /KT (3)反向死区 :V <0时pn 结加反偏压 V= - V R 时,反向漏电流I R (V= -5V )时,GaP 为0V ,GaN 为10uA 。 (4)反向击穿区 V <- V R ,V R 称为反向击穿电压;V R 电压对应I R 为反向漏电流。当反向偏压一直增加使V <- V R 时,则出现I R 突然增加而出现击穿现象。由于所用化合物材料种类不同,各种LED 的反向击穿电压V R 也不同。 1.2 C-V 特性 鉴于LED 的芯片有9×9mil (250×250um),10×10mil ,11×11mil (280×280um),12×12mil (300×300um),故pn 结面积大小不一,使其结电容(零偏压) C ≈n+pf 左右。 C-V 特性呈二次函数关系(如图2)。由1MH Z 交流信号用C-V 特性测试仪测得。 1.3 最大允许功耗PF m 当流过LED 的电流为I F 、

太阳能电池等效电路

图1.1理想光电池的等效电路图 Fig. 1.1 Equivale nt circuit of the ideal solar cell 图1.2太阳能电池的实际等效电路 Fig.1.2 Equivale nt circuit of the actual 实际的太阳能电池,由于前面和背面的电极和接触,以及材料本身具有一定的电阻率, 基区和顶层都不可避免的要引入附加电阻。流经负载的电流,经过它们时,必然引起损耗。 在等效电路中,可将它们的总效果用一个串联电阻R s来表示。由于电池边沿的漏电和制作金属化电极时,在电池的微裂纹、划痕等处形成的金属桥漏电等,使一部分本应通过负载的电 流短路,这种作用的大小可用一并联电阻R SH来等效。则实际的光电池的等效电路如图 1.2 太阳能电池等效电路 图1.1是利用P/N结光生伏特效应做成的理想光电池的等效电路图,图中把光照下的 p-n结看作一个理想二极管和恒流源并联,恒流源的电流即为光生电流I I,R L为外负载。I L 的能力通过p-n结的结电流l j用二极管表示。这个等效电路的物理意义是:太阳能电池光照 后产生一定的光电流I I,其中一部分用来抵消结电流l j,另一部分即为供给负载的电流I R。其 端电压V、结电流I以及工作电流I的大小都与负载电阻R有关,但负载电阻并不是唯一的决定 因素。如上所述,I的大小为 l I L l j (1-1) 根据扩散理论,二极管结电流l j可以表示 为 l j l o(e kT 1) (1-2) 将式(2-2 )代入(2-1 ),得 l I L qV j kT" l o(e 1) (2-3)

所示[17-20]。 p-n 结光生伏特效应最主要的应用是作为太阳能电池。太阳辐射的光能有一个 光谱分布,禁带宽度越窄的半导体,可以利用的光谱越广。但是,禁带宽度E g 太小的话相应能产生的光电动势又会比较小。反之,E g 大的半导体,虽然 V OC可以提高,但可以利用 的太阳光谱范围就会比较小[35]。也就是说,开路电压V oc随E g的增大而增大,但另一方面, 短路电流密度J SC随E g的增大而减小。结果是可期望在某一个确定的E g处出现太阳能电池 效率的峰值。因此如何充分合理的利用太阳能资源,是一个太阳能电池生产商面临的关键技术问题。

太阳能电池等效电路分析

?太阳能电池等效电路分析 ?引言 太阳能电池是利用光伏效应直接将光能转换为电能的器件。其理想等效电路模型是一个电流源和一个理想二极管的并联电路,其输出特性可以用J-V曲线图表示。如图1(略)。 在实际器件中,由于表面效应、势垒区载流子的产生及复合、电阻效应等因素的影响,其电流电压特性与理想特性有很大差异,这是因为理想模型不能正确反映实际器件的特点。实际模型采用串联电阻及并联电阻来等效模拟实际器件中的各种非理想效应的影响。本文针对太阳电池的等效电路模型,利用Matlab软件建立了仿真模块,模拟了太阳电池各输出参数受其内部电阻影响的程度。 太阳能电池等效电路分析 实际太阳电池等效电路如图2所示,由一个电流密度为JL的理想电流源、一个理想二极管D和并联电阻Rsh,串联电阻Rs组合而成。Rsh为考虑载流子产生与复合以及沿电池边缘的表面漏电流而设计的一个等效并联电阻,Rs 为扩散顶区的表面电阻、电池体电阻及上下电极之间的欧姆电阻等复合得到的等效串联电阻。太阳电池两端的电压为V,流过太阳电池单位面积的电流为J。由图2可以得出其电流电压关系(公式略): 式中,Js——二极管反向饱和电流密度。当太阳电池两端开路时,即负载阻抗为无穷大时,通过太阳电池的净电流J 为零,此时的电压为太阳电池的开路电压VOC。在(1)式中令J=0,则有(公式略) (2)式表明,开路电压不受串联电阻Rs,的影响,但与并联电阻Rsh有关。可以看出,Rsh减小时,开路电压VOC 会随之减小。 太阳电池两端短路即负载阻抗为零时,电压V为零,此时的电流为短路电流密度Jsc。在(1)式中令V=0,并且考虑到一般情况下R<

LED的光学特性

LED作为一个光源,LED电源工厂的光学参数包括光和辐射在空间分布的能量参数、光和辐射能量的光谱分布参数及它们在人眼中所引起的心理响应。LED的光学特征参数包括:光通量、发光强度、相对光谱功率分布特性、峰值波长和峰值波长半宽度等,这些都是衡量LED作为一个光源的发光特性的主要参数. 2.3.1相对光谱功率分布 LED的相对光谱功率分布是在其光辐射波长范围内(u],各个波长的辐射功率分布情况.常采用光谱辐射计进行测量.在实际场合中通常用相对光谱功率分布来表示。光谱密度与波长之间的函数关系称为光谱分布.以光谱密度的相对值与波长之间的函数关系来描述光谱分布.称为相对光谱能量(功率)分布PM.光谱波长丸为横坐标,相对光谱能量分布PM为纵坐标,就可以绘制出光源相对光谱能量分布曲线.知道了光源的相对光谱能量分布,就知道了光源的颜色特性.反过来说,光源的颜色特性,取决于在发出的光线中,不同波长上的相对能量比例,而与光谱密度的绝对值无关。绝对值的大小只反映光的强弱,不会引起光源颜色的变化. 人眼对色彩的感知是一种错综复杂的过程,为了将色彩的描述加以量化,国际照明协会(CIE)根据标准观侧者的视觉实验,将人眼对不同波长的辐射能所引起的视觉感加以记录在RGB系统的墓础上采用设想的三原色X. Y, Z(分别代表红色,绿色和蓝色),建立了CIE-1931色度图,同时将匹配等能光谱各种颜色的三原色数据标准化,确定了“CIE1931-XYZ标准色度学系统”.计算出三原色的配色函数,经过数学转换后即得所谓的CIE1931标准色度观察者光谱三刺激值曲线,如图(12]2一所示,将人眼对可见光的刺激值以XYZ表示.根据此配色函数,后续发展出数种色彩度量定义.使人们得以对色彩加以描述运用. LED的光谱功率分布的测试需要通过分光进行,将各色光从混合的光中区分出来进行测定,采用棱镜和光栅实现分光·对于实现了空间分离分布的各个波长的光,一般用单色仪各个波长逐个采集或线阵CCD全波段一次采集的方法得到整个光谱功率分布曲线.

太阳能电池等效电路

太阳能电池等效电路公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

太阳能电池等效电路 图是利用P/N 结光生伏特效应做成的理想光电池的等效电路图,图中把光照下的p-n 结看作一个理想二极管和恒流源并联,恒流源的电流即为光生电流I L ,R L 为外负载。I L 的能力通过p-n 结的结电流I j 用二极管表示。这个等效电路的物理意义是:太阳能电池光照后产生一定的光电流I L ,其中一部分用来抵消结电流I j ,另一部分即为供给负载的电流I R 。其端电压V 、结电流I 以及工作电流I 的大小都与负载电阻R 有关,但负载电阻并不是唯一的决定因素。如上所述,I 的大小为 j L I I I -= (1-1) 根据扩散理论,二极管结电流I j 可以表示为 )1(0-=kT qV j j e I I (1-2) 将式(2-2)代入(2-1),得 )1(0--=kT qV L j e I I I (2-3) 实际的太阳能电池,由于前面和背面的电极和接触,以及材料本身具有一定的电阻率,基区和顶层都不可避免的要引入附加电阻。流经负载的电流,经过它们时,必然引起损耗。在等效电路中,可将它们的总效果用一个串联电阻R S 来表示。由于电池边沿的漏电和制作金属化电极时,在电池的微裂纹、划痕等处形成的金属桥漏电等,使一部分本应通过负载的电流短路,这种作用的大小可用一并联电阻R SH 来等效。则实际的光电池的等效电路如图所示[17-20] 。p-n 结光生伏特效应最主要的应用是作为太阳能电池。太阳辐射的光能有一个光谱分布,禁带宽度越窄的半导体,可以利用的光谱越广。但是,禁带宽度E g 太小 图 太阳能电池的实际等效电路 Equivalent circuit of the actual

太阳电池内部电阻对其输出特性的影响(精)

太阳能电池内部电阻对其输出特性影响的仿真 引言 太阳能电池是利用光伏效应直接将光能转换为电能的器件。其理想等效电路模型是一个电流源和一个理想二极管的并联电路,其输出特性可以用J-V曲线图表示。如图1(略)。 在实际器件中,由于表面效应、势垒区载流子的产生及复合、电阻效应等因素的影响,其电流电压特性与理想特性有很大差异,这是因为理想模型不能正确反映实际器件的特点。实际模型采用串联电阻及并联电阻来等效模拟实际器件中的各种非理想效应的影响。本文针对太阳电池的等效电路模型,利用Matlab软件建立了仿真模块,模拟了太阳电池各输出参数受其内部电阻影响的程度。 太阳能电池等效电路分析 实际太阳电池等效电路如图2所示,由一个电流密度为JL的理想电流源、一个理想二极管D和并联电阻Rsh,串联电阻Rs组合而成。Rsh为考虑载流子产生与复合以及沿电池边缘的表面漏电流而设计的一个等效并联电阻,Rs为扩散顶区的表面电阻、电池体电阻及上下电极之间的欧姆电阻等复合得到的等效串联电阻。太阳电池两端的电压为V,流过太阳电池单位面积的电流为J。由图2可以得出其电流电压关系(公式略): 式中,Js——二极管反向饱和电流密度。当太阳电池两端开路时,即负载阻抗为无穷大时,通过太阳电池的净电流J为零,此时的电压为太阳电池的开路电压VOC。在(1)式中令J=0,则有(公式略) (2)式表明,开路电压不受串联电阻Rs,的影响,但与并联电阻Rsh有关。可以看出,Rsh减小时,开路电压VOC会随之减小。 太阳电池两端短路即负载阻抗为零时,电压V为零,此时的电流为短路电流密度Jsc。在(1)式中令V=0,并且考虑到一般情况下R<

光电二极管三极管的性能及运用

光电二极管及光电三极管的工作原理及用途 可得工贸的光电二极管和光电三极管具有低功耗、响应速度快、抗干扰性能强等特点,可得公司是一家专业从事研发, 生产,销售LED和红外光电器件的高新技术企业:其中光敏二极管、850nm/940nm红外发射管,LED数码管,数码模块,以及发光二极管等产品以良好的品质受到市场的认可。 在红外遥制系统中,光电二极管(也称光敏二极管)及光电三极管(也称光敏三极管)均为红外线接收管,它把接收到的红外线变成电信号,经过放大及信号处理后用于各种控制。除广泛用于红外线遥控外,还可用于光纤通信、光纤传感器、工业测量、自动控制、火灾报警器、防盗报警器、光电读出装置(纸带读出器、条形码读出器等)及光电耦合器等方面。 不同用途的光电二极管有不同的外形及封装,但用于红外遥控的光电二极管一般都是树脂封装的。为减少可见光的干扰常采用黑色树脂,可以滤掉700nm波长以下的光线。常见的几种光电二极管外形。对方形或长方形的管子,往往做出标记角,指示受光面的方向。一般如引脚长短不一样,长者为正极。 光电三极管可以等效为一个光电二极管与一只晶体三极管的组合,所以它具有电流放大作用。其等效电路、外形及电路符号,光电三极管一般仅引出集电极及发射极两个引脚,外形与一般发光二极管一样,常用透明树脂封装。光电二极管及光电三极管的管芯主要用硅材料制作。 光电二极管的两种工作状态 当光电二极管加上反压时,管子的反向电流将随光照强度的变化而变化如同一个光敏电阻,光照强度越大电阻越小,反向电流越大。大多数情况都工作于这种状态。光电二极管上不加电压,利用P?N结受光照射时产生正向电压的原理,可看作微型光电池。这种工作状态一般用作光电检测器。光电二极管的工作电压VR ,允许的最高反向电压一般不超过10V,最高的可达50V。 暗电流ID及光电流IL ,无光照时,加一定反压时的反向漏电流称为暗电流ID,一般ID小于100nA ???。加一定反压并受到光照时流过管子的电流称为光电流 IL,一般光电流IL为几十微安 ???,并且与照度成线性关系。 光谱特性。硅光电二极管的光谱范围为400~1100nm,其峰值波长为880~900nm,如图7所示。这与GaAs红外发光二极管的波长相匹配,可获得较高的传输效率。但它除能接收红外光以外,对可见光也敏感,所以要加滤光措施或防止阳光或灯光的干扰。 光电三极管的特性与一般晶体管相同,差别仅在于参变量不同:三极管的参变量是基极电流,而光电三极管的参变量是入射光强。光电三极管的主要参数有:反向击穿电压VR(最小的为5V,最大的可达75V以上);暗电流ID小于0?3μA (300nA);光电流IL在0?4~2.5mA之间,最大功耗Pm为50~100mW。 PH302及PT331C的主要特性。

LED主要参数及特性(精)

LED主要参数与特性 LED是利用化合物材料制成pn结的光电器件。它具备pn结结型器件的电学特性:I-V特性、C-V特性和光学特性:光谱响应特性、发光光强指向特性、时间特性以及热学特性。 1、LED电学特性 1.1 I-V特性表征LED芯片pn结制备性能主要参数。LED的I-V特性具有非线性、整流性质:单向导电性,即外加正偏压表现低接触电阻,反之为高接触电阻。 如图: (1) 正向死区:(图oa或oa′段)a点对于V0 为开启电压,当V<Va,外加电场尚克服不少因载流子扩散而形成势垒电场,此时R很大;开启电压对于不同LED其值不同,GaAs为1V,红色GaAsP为1.2V,GaP为1.8V,GaN为2.5V。(2)正向工作区:电流IF与外加电压呈指数关系 IF = IS (e qVF/KT –1) -------------------------IS 为反向饱和电流。V>0时,V>VF的正向工作区IF 随VF指数上升 IF = IS e qVF/KT (3)反向死区:V<0时pn结加反偏压 V= - VR 时,反向漏电流IR(V= -5V)时,GaP为0V,GaN为10uA。 (4)反向击穿区 V<- VR ,VR 称为反向击穿电压;VR 电压对应IR为反向漏电流。当反向偏压一直增加使V<- VR时,则出现IR突然增加而出现击穿现象。由于所用化合物材料种类不同,各种LED的反向击穿电压VR也不同。 1.2 C-V特性 鉴于LED的芯片有9×9mil (250×250um),10×10mil,11×11mil (280×280um),12×12mil (300×300um),故pn结面积大小不一,使其结电容(零偏压)C≈n+pf 左右。 C-V特性呈二次函数关系(如图2)。由1MHZ交流信号用C-V特性测试仪测得。

太阳能电池等效电路

太阳能电池等效电路 图1.1是利用P/N 结光生伏特效应做成的理想光电池的等效电路图,图中把光照下的p-n 结看作一个理想二极管和恒流源并联,恒流源的电流即为光生电流I L ,R L 为外负载。I L 的能力通过p-n 结的结电流I j 用二极管表示。这个等效电路的物理意义是:太阳能电池光照后产生一定的光电流I L ,其中一部分用来抵消结电流I j ,另一部分即为供给负载的电流I R 。其端电压V 、结电流I 以及工作电流I 的大小都与负载电阻R 有关,但负载电阻并不是唯一的决定因素。如上所述,I 的大小为 j L I I I -= (1-1) 根据扩散理论,二极管结电流I j 可以表示为 )1(0-=kT qV j j e I I (1-2) 将式(2-2)代入(2-1),得 )1(0--=kT qV L j e I I I (2-3) 实际的太阳能电池,由于前面和背面的电极和接触,以及材料本身具有一定的电阻率,基区和顶层都不可避免的要引入附加电阻。流经负载的电流,经过它们时,必然引起损耗。在等效电路中,可将它们的总效果用一个串联电阻R S 来表示。由于电池边沿的漏电和制作金属化电极时,在电池的微裂纹、划痕等处形成的金属桥漏电等,使一部分本应通过负载的电流短路,这种作用的大小可用一并联电阻R SH 来等效。则实际的光电池的等效电路如图1.2所示[17-20] 。p-n 结光生伏特效应最主要的应用是作为太阳能电池。太阳辐射的光能有一个光谱分布,禁带宽度越窄的半导体,可以利用的光谱越广。但是,禁带宽度E g 太小的话相应能产生的光电动势又会比较小。反之,E g 大的半导体,虽然V OC 可以提高,但可以利用的太阳光谱范围就会比较小[35]。也就是说,开路电压V oc 随E g 的增大而增大,但另一方面,短路电流密度J SC 随E g 的增大而减小。结果是可期望在某一个确定的E g 处出现太阳能电池效率的峰值。因此如何充分合理的利用太阳能资源,是一个太阳能电池生产商面临的关键技术问题。 图 1.2 太阳能电池的实际等效电路

LED基本工作原理

LED 部分基本工作原理 1 LED 的原理概述 发光二极管主要由 PN 结芯片、电极和光学系统组成。其发光体--晶片的尺寸一般为 8.9.10.12..13.14mil (1mil=0.0254 毫米),目前市面上晶片尺寸越来越大,超过40mil 。其发光过程包括三部分:正向偏压下的载流子注入、复合辐射和光能传输。当电子经过该晶片时,带负电的电子移动到带正电的空穴区域并与之复合,电子和空穴消失的同时产生光子。电子和空穴之间的能量(带隙)越大,产生的光子的能量就越高。光子的能量反过来与光的颜色对应,可见光的频谱范围内,蓝色光、紫色光携带的能量最多,桔色光、红色光携带的能量最少。由于不同的材料具有不同的带隙,从而能够发出不同颜色的光。 2 发光二极管的伏安特性 顺向电压(VF)v.s.顺向电流(IF); 逆向电压(VR)v.s.逆向电流(IR); LED 是电流驱动元件,非电压驱动元件; 测试时,VR =5V 时,IR <10μA 也就是说:IR =10μA 时, VR>5V; 电流从正极PIN 脚流入,经金线流至芯片正极(P 极),再流至芯片P/N 结,从而激发芯片发光(芯片为P/N 结处发光),再流至N 结,至杯底后经短脚流出,而形成一完整的封闭电路 通常芯片设计时考虑其正常工作电流为20mA ,因此,使用发光二极管及生产测试时,通过发光二极管的电流均为20mA ,此电流称为正向电流(If )。

伏安特性曲线图 LED光电特性参数 1 、三要素 LED的VF,IV,λd(x,y)称为其光电特性三要素; IV是指在一定正向电流下的亮度; λd是指其主波长;波长决定了发光的颜色。X,Y是指在CIE光谙图中色度坐标系统中的坐标值。可見光的波段从紫光(約 380nm )到紅光(770nm ) 不可見光的波長紅外線長於 770nm 紫外線短於 380nm。 VF顺向电压 ,一般:红、黄、黄绿,VF值在1.8-2.3V蓝、绿、紫,VF值在2。8-3.6V之间。 2、IF顺向电流

(整理)太阳能电池各电性能参数-草稿.

太阳能电池各电性能参数的本质及工艺意义 ?武宇涛 ? 电性能参数主要有:V oc,Isc,Rs,Rsh,FF,Eff,Irev1,… 电性能参数在生产过程中尤其是在实时的生产控制现场,非常及时地反映了整个生产线生产工艺尤其是后道工序的动态变化情况,为我们对产线的控制及生产设备工艺参数的实时调节起到了非常重要的参考作用。 从可控性难易角度来说,V oc,Rs,Rsh,主要和原材料及生产工艺的本身特征相关,与工艺现场的调控波动性关系不是特别紧密,可称之为长程可控参数。而Isc,FF, Irev1与工艺现场的调控联系紧密,对各调控参数比较敏感,可称之为短程可控参数。 当然我们最关心的是效率Eff。而Eff则是以上所有参数的综合表现。 太阳能电池的理论基础建立在以下几个经典公式之上: Voc=(KT/q)×ln(Isc/Io+1) Voc=(KT/q)×ln(N aNd/ni2) 1 2 FF=Pm/(Voc×Isc)=Vm×Im/ (Voc×Isc) 3 4

Eff=Pm/(APin)=FF×Voc×Isc/APin=FF×Voc×Jsc/Pin 5 图-1太阳能电池的I-V曲线 图-2太阳能电池等效电路 从上面5式我们可以看到,与效率直接相关的电性能参数主要有:FF,Voc, Isc。在生产中我们还比较关心暗电流情况:Irev1,由1式可以看出,它与Voc有比较紧密地联系(实际也是这样的)。 为了更好地说明各参数间的联系,这里先录用几组数据如下:

表-1 线别Uoc Isc FF Rs Rsh EFF Irev>6>16%Isc>8.2Voc>620FF>78 P156(71)0.6188.2177.20.00381816.11%0.17%78.73%56.2%33.1% 1.3% P156(62)0.6168.2176.60.00413315.92%0.53%56.06%55.2%18.1%0.4% E-CELL(LY)0.6277.2978.10.00312914.68% 1.23%40.03%20.3%69.8%65.8% 以上P156均系LDK片源。 1,Voc 由于光生电子-空穴对在内建场的作用下分别被收集到耗尽层的两端,从而形成电势。所以我们认为Voc是内建电场即PN 结扫集电流的能力的直观表现。 由上面公式1所反映,Voc主要与电池片的参杂浓度(Nd)相关。对于宽△Eg的电池材料,相对会有比较高的Voc;但△Eg过高,又会导致光吸收效率的迅速下降(主要是长波段响应降低),使Isc是降低,所以需要找到一个最佳掺杂深度值。另一方面,高参杂又会引入更多的复合中心,使复合电流增加,同样也降低了Voc。所以在没有引起复合电流增加或者其增量比较小的前提下,参杂浓度的提高对Voc总是有益的。 在上表所示的三种成品电池片中,P156的片子与E-CELL 片子Voc有着显著的不同,这显然是由于冶金级硅的杂质浓度过大导致的。而对于62栅线和71栅线的电池片,由于其总体参杂浓度并没有显著的改变,所以其开压并没有显著差别。从上表还可以看出,E-CELL电池的Isc已经比比另两者有显著降低,我们可以认为对于P156的正常多晶硅电池片其Voc在620mv左右达

相关文档
最新文档