16.2020年高三一模数学分类汇编--圆锥曲线大题

16.2020年高三一模数学分类汇编--圆锥曲线大题
16.2020年高三一模数学分类汇编--圆锥曲线大题

圆锥曲线题型归类大全 17

高考圆锥曲线的常见题型 典型例题 题型一:定义的应用 例1、动圆M 与圆C 1:(x+1)2+y 2=36内切,与圆C 2:(x-1)2+y 2 =4外切,求圆心M 的轨迹方程。 例2、方程 表示的曲线是 题型二:圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断): 1、椭圆:由,分母的大小决定,焦点在分母大的坐标轴上。 2、双曲线:由, 项系数的正负决定,焦点在系数为正的坐 标轴上; 3、抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。 典型例题 例1、已知方程 1212 2=-+-m y m x 表示焦点在y 轴上的椭圆,则m 的 取值范围是 例2、k 为何值时,方程 1592 2=---k y k x 的曲线:(1)是椭圆;(2)是双曲线. 题型三:圆锥曲线焦点三角形(椭圆或双曲线上的一点与两焦点所构成的三角形)问题

1、椭圆焦点三角形面积2 tan 2α b S = ;双曲线焦点三角形面积 2 cot 2α b S = 2、常利用第一定义和正弦、余弦定理求解 3、22,,,n m mn n m n m +-+四者的关系在圆锥曲线中的应用; 典型例题 例1、 椭圆x a y b a b 222210+=>>()上一点P 与两个焦点F F 12,的张角∠F P F 12= α, 求证:△F 1PF 2的面积为b 22 tan α 。 例2、已知双曲线的离心率为2,F 1、F 2是左右焦点,P 为双曲线上一点,且, .求该双曲线的标准方程 题型四:圆锥曲线中离心率,渐近线的求法 1、a,b,c 三者知道任意两个或三个的相等关系式,可求离心率,渐进线的值; 2、a,b,c 三者知道任意两个或三个的不等关系式,可求离心率,渐进线的范围;

2013高考试题分类汇编(理科):圆锥曲线

2013年全国高考理科数学试题分类汇编9:圆锥曲线 一、选择题 1 .引直线l 与曲线y =A,B 两点,O 为坐标原点,当?AOB 的面积取最大值时,直线l 的斜率等于( ) A . 3 B .3 - C .3 ± D .2 .双曲线2 214 x y -=的顶点到其渐近线的距离等于( ) A . 25 B . 45 C D 3 .已知中心在原点的双曲线C 的右焦点为()3,0F ,离心率等于3 2 ,在双曲线C 的方程是( ) A .22 14x = B .22145x y - = C . 22 125 x y -= D .22 12x -= 4 .已知双曲线C :22221x y a b -=(0,0a b >>) ,则C 的渐近线方程为( ) A .14 y x =± B .13 y x =± C .12 y x =± D .y x =± 5 .已知04π θ<<,则双曲线22122:1cos sin x y C θθ-=与22 2222 :1sin sin tan y x C θθθ -=的 ( ) A .实轴长相等 B .虚轴长相等 C .焦距相等 D .离心率相等 6 .抛物线2 4y x =的焦点到双曲线2 2 13 y x -=的渐近线的距离是( ) A .12 B C .1 D 7 .如图,21,F F 是椭圆14 :22 1=+y x C 与双曲线2C 的公共焦点,B A ,分别是1C ,2C 在第二、四象限的公共点.若四边形21BF AF 为矩形,则2C 的离心率是( ) A .2 B .3 C . 2 3 D . 2 6 8 .已知双曲线22 221(0,0)x y a b a b -=>>的两条渐近线与抛物线22(0)px p y =>的准线分别交于A , B 两点, O 为坐标原点. 若双曲线的离心率为2, △AOB 则p =( ) A .1 B . 3 2 C .2 D .3 9 .椭圆22 :143 x y C +=的左、右顶点分别为12,A A ,点P 在C 上且直线2PA 的斜率的取值范围是[]2,1--,那么直线1PA 斜率的取值范围是( ) A .1324 ?????? , B .3384 ?????? , C .112?? ???? , D .314?? ???? , 10.已知抛物线2:8C y x =与点()2,2M -,过C 的焦点且斜率为k 的直线与C 交于,A B 两点,若 0MA MB =uuu r uuu r g ,则k =( ) A . 12 B C D .2 11.若双曲线22 221x y a b -= 则其渐近线方程为( ) A .y =±2x B .y = C .12 y x =± D .2 y x =±

历年圆锥曲线高考题附答案

数学圆锥曲线高考题选讲 一、选择题: 1. (2006全国II )已知双曲线x 2a 2-y 2b 2 =1的一条渐近线方程为y =4 3x ,则双曲线的离心率为( ) (A )53 (B )43 (C )54 (D )32 2. (2006全国II )已知△ABC 的顶点B 、C 在椭圆x 2 3+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点 在BC 边上,则△ABC 的周长是( ) (A )2 3 (B )6 (C )4 3 (D )12 3.(2006全国卷I )抛物线2 y x =-上的点到直线4380x y +-=距离的最小值是( ) A . 43 B .7 5 C .85 D .3 4.(2006广东高考卷)已知双曲线2239x y -=,则双曲线右支上的点P 到右焦点的距离与点P 到右准线的距离之比等于( ) A.2 B. 22 3 C. 2 D. 4 5.(2006辽宁卷)方程22520x x -+=的两个根可分别作为( ) A.一椭圆和一双曲线的离心率 B.两抛物线的离心率 C.一椭圆和一抛物线的离心率 D.两椭圆的离心率 6.(2006辽宁卷)曲线 22 1(6)106x y m m m +=<--与曲线221(59)59x y m m m +=<<--的( ) (A)焦距相等 (B) 离心率相等 (C)焦点相同 (D)准线相同 7.(2006安徽高考卷)若抛物线2 2y px =的焦点与椭圆22 162 x y +=的右焦点重合,则p 的值为( ) A .2- B .2 C .4- D .4 8.(2006辽宁卷)直线2y k =与曲线2222 918k x y k x += (,)k R ∈≠且k 0的公共点的个数为( ) (A)1 (B)2 (C)3 (D)4 二、填空题: 9. (2006全国卷I )双曲线2 2 1mx y +=的虚轴长是实轴长的2倍,则m = 。 10. (2006上海卷)已知在平面直角坐标系xOy 中的一个椭圆,它的中心在原点,左焦点为(3,0)F -,右顶点为(2,0)D ,设点11, 2A ?? ??? ,则求该椭圆的标准方程为 。 11. (20XX 年高考全国新课标卷理科14) 在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点12,F F 在 x 轴上, 离心率为 2 2 。过l 的直线 交于,A B 两点,且2ABF 的周长为16,那么C 的方程为 。

高考圆锥曲线典型例题(必考)

椭 圆 典例精析 题型一 求椭圆的标准方程 【例1】已知点P 在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为45 3 和 25 3 ,过P 作长轴的垂线恰好过椭圆的一个焦点,求椭圆的方程. 【解析】故所求方程为x 25+3y 2 10=1或3x 210+y 2 5 =1. 【点拨】(1)在求椭圆的标准方程时,常用待定系数法,但是当焦点所在坐标轴不确定时,需要考虑两种情形,有时也可设椭圆的统一方程形式:mx 2+ny 2=1(m >0,n >0且m ≠n );(2)在求椭圆中的a 、b 、c 时,经常用到椭圆的定义及解三角形的知识. 【变式训练1】已知椭圆C 1的中心在原点、焦点在x 轴上,抛物线C 2的顶点在原点、焦点在x 轴上.小明从曲线C 1,C 2上各取若干个点(每条曲线上至少取两个点),并记录其坐标(x ,y ).由于记录失误,使得其中恰有一个点既不在椭圆C 1上,也不在抛物线C 2上.小明的记录如下: 据此,可推断椭圆C 1的方程为 . x 212+y 2 6 =1.

题型二 椭圆的几何性质的运用 【例2】已知F 1、F 2是椭圆的两个焦点,P 为椭圆上一点,∠F 1PF 2=60°. (1)求椭圆离心率的范围; (2)求证:△F 1PF 2的面积只与椭圆的短轴长有关. 【解析】(1)e 的取值范围是[12,1).(2)2 1 F PF S =12mn sin 60°=3 3 b 2, 【点拨】椭圆中△F 1PF 2往往称为焦点三角形,求解有关问题时,要注意正、余弦定理,面积公式的使用;求范围时,要特别注意椭圆定义(或性质)与不等式的联合使用,如|PF 1|·|PF 2|≤(|PF 1|+|PF 2|2)2 ,|PF 1|≥a -c . 【变式训练2】 已知P 是椭圆x 225+y 2 9=1上的一点,Q ,R 分别是圆(x +4)2 +y 2 =1 4 和圆 (x -4)2+y 2=1 4上的点,则|PQ |+|PR |的最小值是 .【解析】最小值 为9. 题型三 有关椭圆的综合问题 【例3】(2010全国新课标)设F 1,F 2分别是椭圆E :x 2a 2+y 2 b 2=1(a >b >0)的 左、右焦点,过F 1斜率为1的直线l 与E 相交于A ,B 两点,且|AF 2|,|AB |,|BF 2|成等差数列. (1)求E 的离心率;

圆锥曲线大题归类

圆锥曲线大题归类 一.定点问题 例1.已知椭圆C :x 2a 2+y 2=1(a >1)的上顶点为A ,右焦点为F ,直线AF 与圆M : (x -3)2+(y -1)2=3相切. (1)求椭圆C 的方程; (2)若不过点A 的动直线l 与椭圆C 交于P ,Q 两点,且AP →·AQ → =0,求证:直线l 过定点,并求该定点的坐标. [解析](1)圆M 的圆心为(3,1),半径r = 3. 由题意知A (0,1),F (c,0), 直线AF 的方程为x c +y =1,即x +cy -c =0, 由直线AF 与圆M 相切,得|3+c -c |c 2+1 =3, 解得c 2=2,a 2=c 2+1=3, 故椭圆C 的方程为x 23+y 2=1. (2)方法一:由·=0知AP ⊥AQ ,从而直线AP 与坐标轴不垂直, 故可设直线AP 的方程为y =kx +1,直线AQ 的方程为y =-1k x +1. 联立??? y =kx +1, x 23+y 2=1,整理得(1+3k 2)x 2+6kx =0,

解得x =0或x =-6k 1+3k 2 , 故点P 的坐标为(-6k 1+3k 2,1-3k 2 1+3k 2 ), 同理,点Q 的坐标为(6k k 2+3,k 2-3k 2+3 ) ∴直线l 的斜率为k 2-3k 2+3-1-3k 2 1+3k 26k k 2+3--6k 1+3k 2 =k 2-14k , ∴直线l 的方程为y =k 2-14k (x -6k k 2+3)+k 2-3k 2+3 , 即y =k 2-14k x -12. ∴直线l 过定点(0,-12). 方法二:由·=0知AP ⊥AQ ,从而直线PQ 与x 轴不垂直,故可设直线l 的方程为y =kx +t (t ≠1), 联立????? y =kx +t ,x 23+y 2=1, 整理得(1+3k 2)x 2+6ktx +3(t 2-1)=0. 设P (x 1,y 1),Q (x 2,y 2)则????? x 1+x 2=-6kt 1+3k 2, x 1x 2=3(t 2-1)1+3k 2, (*) 由Δ=(6kt )2-4(1+3k 2)×3(t 2-1)>0,得 3k 2>t 2-1.由·=0,

高考数学圆锥曲线大题集大全

高考二轮复习专项:圆锥曲线 1. 如图,直线l1与l2是同一平面内两条互相垂直的直线,交点是A ,点B 、D 在直线l1 上(B 、D 位于点A 右侧),且|AB|=4,|AD|=1,M 是该平面上的一个动点,M 在l1上的射影点是N ,且|BN|=2|DM|. 2. (Ⅰ) 建立适当的坐标系,求动点M 的轨迹C 的方程. (Ⅱ)过点D 且不与l1、l2垂直的直线l 交(Ⅰ)中的轨迹C 于E 、F 两点;另外平面上的点G 、H 满足: ○1(R);AG AD λλ=∈u u u r u u u r ○22;GE GF GH +=u u u r u u u r u u u r ○30.GH EF ?=u u u r u u u r 求点G 的横坐标的取值范围. 2. 设椭圆的中心是坐标原点,焦点在x 轴上,离心率 23=e ,已知点)3,0(P 到这个椭圆上的点的最远距离是4,求这个椭圆的方程. 3. 已知椭圆)0(1:22221>>=+b a b y a x C 的一条准线方程是, 425=x 其左、右顶点分别 是A 、B ;双曲线1 :22 222=-b y a x C 的一条渐近线方程为3x -5y=0. (Ⅰ)求椭圆C1的方程及双曲线C2的离心率; (Ⅱ)在第一象限内取双曲线C2上一点P ,连结AP 交椭圆C1于点M ,连结PB 并延长交椭圆C1于点N ,若=. 求证:.0=? B A D M B N l2 l1

4. 椭圆的中心在坐标原点O,右焦点F (c,0)到相应准线的距离为1,倾斜角为45°的直线交椭圆于A ,B 两点.设AB 中点为M ,直线AB 与OM 的夹角为αa. (1)用半焦距c 表示椭圆的方程及tg α; (2)若2

历年高考数学圆锥曲线试题汇总

高考数学试题分类详解——圆锥曲线 一、选择题 1.设双曲线22221x y a b -=(a>0,b>0)的渐近线与抛物线y=x 2 +1相切,则该双曲线的离心率等于 ( C ) (A)3 (B)2 (C)5 (D )6 2.已知椭圆2 2:12 x C y +=的右焦点为F ,右准线为l ,点A l ∈,线段AF 交C 于点B ,若3FA FB =,则||AF = (A). 2 (B). 2 (C).3 (D ). 3 3.过双曲线22 221(0,0)x y a b a b -=>>的右顶点A 作斜率为1-的直线,该直线与双曲线的两条渐近线 的交点分别为,B C .若1 2 AB BC =,则双曲线的离心率是 ( ) A.2 B.3 C.5 D .10 4.已知椭圆22 221(0)x y a b a b +=>>的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF x ⊥轴, 直线 AB 交y 轴于点P .若2AP PB =,则椭圆的离心率是( ) A . 3 B .22 C.13 D .12 5.点P 在直线:1l y x =-上,若存在过P 的直线交抛物线2 y x =于,A B 两点,且 |||PA AB =,则称点P 为“ 点”,那么下列结论中正确的是 ( ) A .直线l 上的所有点都是“点” B .直线l 上仅有有限个点是“点” C .直线l 上的所有点都不是“ 点” D.直线l 上有无穷多个点(点不是所有的点)是“ 点” 6.设双曲线12222=-b y a x 的一条渐近线与抛物线y=x 2 +1 只有一个公共点,则双曲线的离心率为 ( ). A. 4 5 B. 5 C. 2 5 D.5 2

(完整版)高考圆锥曲线经典真题

高考圆锥曲线经典真题 知识整合: 直线与圆锥曲线联系在一起的综合题在高考中多以高档题、压轴题出现,主要涉及位置关系的判定,弦长问题、最值问题、对称问题、轨迹问题等.突出考查了数形结合、分类讨论、函数与方程、等价转化等数学思想方法,要求考生分析问题和解决问题的能力、计算能力较高,起到了拉开考生“档次”,有利于选拔的功能. 1.(江西卷15)过抛物线22(0)x py p =>的焦点F 作倾角为30o 的直线,与抛物线 分别交于A 、B 两点(A 在y 轴左侧),则 AF FB = .1 3 2 (2008年安徽卷)若过点A(4,0)的直线l 与曲线 22 (2)1x y -+=有公共点,则直线l 的斜率的取值范围为 ( ) A. [3,3] B. (3,3) C. 33[33- D. 33 (,33- 3(2008年海南---宁夏卷)设双曲线22 1916x y -=的右顶点为A,右焦点为F,过点F 平行双曲线的一条渐近线的直线与双曲线交于点B,则三角形AFB 的面积为-___________. 热点考点探究: 考点一:直线与曲线交点问题 例1.已知双曲线C :2x2-y2=2与点P(1,2) (1)求过P(1,2)点的直线l 的斜率取值范围,使l 与C 分别有一个交点,两个交点,没有交点. 解:(1)当直线l 的斜率不存在时,l 的方程为x=1,与曲线C 有一个交点.当l

的斜率存在时,设直线l 的方程为y -2=k(x -1),代入C 的方程,并整理得 (2-k2)x2+2(k2-2k)x -k2+4k -6=0 (*) (ⅰ)当2-k2=0,即k=± 2 时,方程(*)有一个根,l 与C 有一个交点 (ⅱ)当2-k2≠0,即k ≠±2 时 Δ=[2(k2-2k)]2-4(2-k2)(-k2+4k -6)=16(3-2k) ①当Δ=0,即 3-2k=0,k=23 时,方程(*)有一个实根,l 与C 有一个交点. ②当Δ>0,即k <23 ,又 k ≠± 2 ,故当k <- 2 或-2 <k < 2 或 2<k <2 3 时,方程(*)有两不等实根,l 与C 有两个交点. ③当Δ<0,即 k >23 时,方程(*)无解,l 与C 无交点. 综上知:当k=±2,或k=23 ,或 k 不存在时,l 与C 只有一个交点; 当2<k <23 ,或-2<k <2,或k <- 2 时,l 与C 有两个交点; 当 k >23 时,l 与C 没有交点. (2)假设以Q 为中点的弦存在,设为AB ,且A(x1,y1),B(x2,y2),则2x12-y12=2,2x22-y22=2两式相减得:2(x1-x2)(x1+x2)=(y1-y2)(y1+y2) 又∵x1+x2=2,y1+y2=2 ∴2(x1-x2)=y1-y1 即kAB= 2 121x x y y --=2 但渐近线斜率为±2,结合图形知直线 AB 与C 无交点,所以假设不正确,即以 Q 为中点的弦不存在.

高考数学圆锥曲线历年高考真题

浙江省高考数学圆锥曲线真题 22 04. 若椭圆 x 2 y 2 ab 1(a > b > 0)的左、右焦点分别为 F 1、F 2, 线段 F 1F 2被抛物线 y 2=2 bx 的焦点 分成 5∶ 3的两 段 , 则此椭圆的离心率为 16 (A) 1167 05.过双曲线 2 x 2 a 4 17 (B) 17 2 b y 2 1(a b 4 (C)45 (D) 255 5 0,b 0) 的左焦点且垂直于 x 轴的直线与双曲线相交于 M 、 N 两点 , 以 MN 为直径的圆恰好过双曲线的右顶点 则双曲线的离心率等于 07. 已知双曲线 2 x 2 a 2 y 2 1(a 0,b b 2 0) 的左、右焦点分别为 F 1,F 2, P 是准线上一点 , PF 1 PF 2,|PF 1| |PF 2| 4ab , 则双曲线的离心率是 B ) 3 (C ) 2 (D ) 3 △ ABP 的面积为定 则动点 P 的轨迹是A . 圆 B . 椭圆 C . 一条直线 D . 两条平行直线 09. 2 x 过双曲线 2 a 2 y b 2 1(a 0,b 0) 的右顶 点 条渐近线的交点分别为 B,C uuur .若 AB 1 uuur BC , 2 A . 2 B .3 C 08.如图 , AB 是平面 的斜.线.段. ) B A P 第 10 题) A 作斜率为 1的直线 , 该直线与双曲线的两 则双曲线的离心率 是 ( ) .5 D . 10 A 为斜足 , 若点 P 在平面 内运动 , 使得 点 A (0,2) 。若线段 FA 的中点 B 在抛物线上 2 10. (13)设抛物线 y 2 2px (p 0) 的焦点为 F, 则 B 到该抛物线准线的距离为 近线与以 C 1 的长轴为直径的圆相交于 A, B 两点 ( ) 13 2 B . a 2= 13 1 D . A .a 2= C .b 2= b 2=2 2 2 2 11. 设 F 1, F 2分别为椭圆 x 2 3 y 2 1的 左、 右焦点 22 x y 2 11. 已知椭圆 C 1: 2 2 =1 (a > b > 0)与双曲线 C 2: x 2 ab 则点 A 的坐标是 _______ 2 y 1有公共的焦点 , C 2 的一条渐 4 若 C 1 恰好将线段 AB 三等分 , 则 uuur uuuur 点 A, B 在椭圆上. 若 F 1A 5F 2B ,

全国卷高考数学圆锥曲线大题集大全

全国卷高考数学圆锥曲线大题集大全 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高考二轮复习专项:圆锥曲线大题集 1. 如图,直线l 1与l 2是同一平面内两条互相垂直的直线,交点是A ,点B 、D 在直线l 1上(B 、D 位于点A 右侧),且|AB|=4,|AD|=1,M 是该平面上的一个动点,M 在l 1上的射影点是N ,且|BN|=2|DM|. (Ⅰ) 建立适当的坐标系,求动点M 的轨迹C 的方程. (Ⅱ)过点D 且不与l 1、l 2垂直的直线l 交(Ⅰ)中的轨迹C 于E 、F 两点;另外平面上的点G 、H 满足: (R); AG AD λλ=∈2; GE GF GH +=0.GH EF ?= 求点G 的横坐标的取值范围. 2. 设椭圆的中心是坐标原点,焦点在x 轴上,离心率 23 = e ,已知点)3,0(P 到 这个椭圆上的点的最远距离是4,求这个椭圆的方程. 3. 已知椭圆)0(1:22221>>=+b a b y a x C 的一条准线方程是 , 425=x 其左、右顶点分别 B A D M B N l 2 l 1

是A、B;双曲线 1 : 2 2 2 2 2 = - b y a x C 的一条渐近线方程为3x-5y=0. (Ⅰ)求椭圆C1的方程及双曲线C2的离心率; (Ⅱ)在第一象限内取双曲线C2上一点P,连结AP交椭圆C1于点M,连结PB并延长交椭圆C1于点N,若AM=. 求证:.0 = ?AB MN 4. 椭圆的中心在坐标原点O,右焦点F(c,0)到相应准线的距离为1,倾斜角为45°的直线交椭圆于A,B两点.设AB中点为M,直线AB与OM的夹角为αa. (1)用半焦距c表示椭圆的方程及tanα; (2)若2

椭圆各类题型分类汇总

椭圆经典例题分类汇总 1. 椭圆第一定义的应用 例1 椭圆的一个顶点为()02, A ,其长轴长是短轴长的2倍,求椭圆的标准方程. 例2 已知椭圆19822=++y k x 的离心率2 1=e ,求k 的值. 例3 已知方程1352 2-=-+-k y k x 表示椭圆,求k 的取值范围. 例4 已知1cos sin 2 2=-ααy x )0(πα≤≤表示焦点在y 轴上的椭圆,求α的取值范 围. 例5 已知动圆P 过定点()03,-A ,且在定圆()64322 =+-y x B :的内部与其相内切,求动圆圆心P 的轨迹方程.

2.焦半径及焦三角的应用 例1 已知椭圆13422=+y x ,1F 、2F 为两焦点,问能否在椭圆上找一点M ,使M 到左准线l 的距离MN 是1MF 与2MF 的等比中项?若存在,则求出点M 的坐标;若不存在,请说明理由. 例2 已知椭圆方程()0122 22>>=+b a b y a x ,长轴端点为1A ,2A ,焦点为1F ,2F ,P 是椭圆上一点,θ=∠21PA A ,α=∠21PF F .求:21PF F ?的面积(用a 、b 、α表示). 3.第二定义应用 例1 椭圆112162 2=+y x 的右焦点为F ,过点() 31,A ,点M 在椭圆上,当MF AM 2+为最小值时,求点M 的坐标.

例2 已知椭圆1422=+b b 上一点P 到右焦点2F 的距离为b )1(>b ,求P 到左准线的距离. 例3 已知椭圆15 92 2=+y x 内有一点)1,1(A ,1F 、2F 分别是椭圆的左、右焦点,点P 是椭圆上一点. (1) 求1PF PA +的最大值、最小值及对应的点P 坐标; (2) 求22 3PF PA + 的最小值及对应的点P 的坐标. 4.参数方程应用 例1 求椭圆13 22 =+y x 上的点到直线06=+-y x 的距离的最小值.

圆锥曲线历年高考题(整理)附答案

数学圆锥曲线测试高考题 一、选择题: 1. (2006全国II )已知双曲线x 2a 2-y 2b 2=1的一条渐近线方程为y =4 3x ,则双曲线的离心率为( ) (A )53 (B )43 (C )54 (D )3 2 2. (2006全国II )已知△ABC 的顶点B 、C 在椭圆x 23+y 2 =1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( ) (A )2 3 (B )6 (C )4 3 (D )12 3.(2006全国卷I )抛物线2 y x =-上的点到直线4380x y +-=距离的最小值是( ) A . 43 B .7 5 C .85 D .3 4.(2006广东高考卷)已知双曲线2239x y -=,则双曲线右支上的点P 到右焦点的距离与点P 到右准线的距离之比等于( ) B. C. 2 D. 4 5.(2006辽宁卷)方程22520x x -+=的两个根可分别作为( ) A.一椭圆和一双曲线的离心率 B.两抛物线的离心率 C.一椭圆和一抛物线的离心率 D.两椭圆的离心率 6.(2006辽宁卷)曲线 22 1(6)106x y m m m +=<--与曲线221(59)59x y m m m +=<<--的( ) (A)焦距相等 (B) 离心率相等 (C)焦点相同 (D)准线相同 7.(2006安徽高考卷)若抛物线2 2y px =的焦点与椭圆22 162 x y +=的右焦点重合,则p 的值为( ) A .2- B .2 C .4- D .4 8.(2006辽宁卷)直线2y k =与曲线2222 918k x y k x += (,)k R ∈≠且k 0的公共点的个数为( ) (A)1 (B)2 (C)3 (D)4 二、填空题: 9. (2006全国卷I )双曲线2 2 1mx y +=的虚轴长是实轴长的2倍,则m = 。 10. (2006上海卷)已知在平面直角坐标系xOy 中的一个椭圆,它的中心在原点,左焦点为(F ,右顶点为(2,0)D ,

(完整word版)2018年高考圆锥曲线大题

2018年高考圆锥曲线大题 一.解答题(共13小题) 1.已知斜率为k的直线l与椭圆C:+=1交于A,B两点,线段AB的中点为M(1,m)(m>0).(1)证明:k<﹣; (2)设F为C的右焦点,P为C上一点,且++=.证明:||,||,||成等差数列,并求该数列的公差. 2.已知斜率为k的直线l与椭圆C:+=1交于A,B两点,线段AB的中点为M(1,m)(m>0).(1)证明:k<﹣; (2)设F为C的右焦点,P为C上一点,且++=,证明:2||=||+||.

3.双曲线﹣=1,F1、F2为其左右焦点,C是以F2为圆心且过原点的圆. (1)求C的轨迹方程; (2)动点P在C上运动,M满足=2,求M的轨迹方程. 4.设椭圆C:+y2=1的右焦点为F,过F的直线l与C交于A,B两点,点M的坐标为(2,0).(1)当l与x轴垂直时,求直线AM的方程; (2)设O为坐标原点,证明:∠OMA=∠OMB.

5.已知椭圆M:+=1(a>b>0)的离心率为,焦距为2.斜率为k的直线l与椭圆M有 两个不同的交点A,B. (Ⅰ)求椭圆M的方程; (Ⅱ)若k=1,求|AB|的最大值; (Ⅲ)设P(﹣2,0),直线PA与椭圆M的另一个交点为C,直线PB与椭圆M的另一个交点为D.若C,D和点Q(﹣,)共线,求k. 6.设常数t>2.在平面直角坐标系xOy中,已知点F(2,0),直线l:x=t,曲线Γ:y2=8x(0≤x≤t,y≥0).l与x轴交于点A、与Γ交于点B.P、Q分别是曲线Γ与线段AB上的动点. (1)用t表示点B到点F的距离; (2)设t=3,|FQ|=2,线段OQ的中点在直线FP上,求△AQP的面积; (3)设t=8,是否存在以FP、FQ为邻边的矩形FPEQ,使得点E在Γ上?若存在,求点P的坐标;若不存在,说明理由.

高考数学圆锥曲线分类大全理

2011-2018 新课标(理科)圆锥曲线分类汇编
一、选择填空
【2011 新课标】7. 设直线 l 过双曲线 C 的一个焦点,且与 C 的一条对称轴垂直,l 与 C 交于 A,B
两点, AB 为 C 的实轴长的 2 倍,则 C 的离心率为( B )
(A) 2
(B) 3
(C)2
(D)3
【2011 新课标】14. 在平面直角坐标系 xOy 中,椭圆 C 的中心为原点,焦点 F1, F2 在 x 轴上,
离心率为
2 。过 l 的直线 2
交于 A, B 两点,且 △ABF2 的周长为 16,那么 C 的方程为
x2 y2 1

16 8
【2012 新课标】4. 设 F1F2 是椭圆 E :
x2 a2
y2 b2
1(a
b 0) 的左、右焦点,P 为直线 x
3a 2

一点, F2PF1 是底角为 30o 的等腰三角形,则 E 的离心率为( C )
【解析】
F2PF1 是底角为 30o 的等腰三角形 PF2
F2F1
2(3 a c) 2c e c 3
2
a4
【2012 新课标】8. 等轴双曲线 C 的中心在原点,焦点在 x 轴上,C 与抛物线 y 2 16 x 的准线
交于 A, B 两点, AB 4 3 ;则 C 的实轴长为( C )
【解析】设 C : x2 y2 a2 (a 0) 交 y 2 16 x 的准线 l : x 4 于 A(4, 2 3) B(4, 2 3) 得: a2 (4)2 (2 3)2 4 a 2 2a 4
【2013 新课标 1】4. 已知双曲线 C:xa22-yb22=1(a>0,b>0)的离心率为 ,则 C 的渐近线方程 为( C )
A、y=± x
(B)y=± x
(C)y=± x
(D)y=±x
【解析】由题知, c a
5 2
,即
5 4
=
c2 a2
=
a2 b2 a2
,∴ b2 a2
=1 4
,∴
b a
=
1 2
,∴ C
的渐近线方程
为 y 1 x ,故选 C . 2
【2013 新课标 1】10、已知椭圆xa22+yb22=1(a>b>0)的右焦点为 F(3,0),过点 F 的直线交椭圆于
A、B 两点。若 AB 的中点坐标为(1,-1),则 E 的方程为 (
D
)
x2 y2 A、45+36=1
x2 y2 B、36+27=1
x2 y2 C、27+18=1
x2 y2 D、18+ 9 =1
【解析】设 A(x1, y1), B(x2 , y2 ) ,则 x1 x2 =2, y1 y2 =-2,

全国卷高考数学圆锥曲线大题集大全

高考二轮复习专项:圆锥曲线大题集 1. 如图,直线l 1与l 2是同一平面内两条互相垂直的直线,交点是A ,点B 、D 在直线l 1上 (B 、D 位于点A 右侧),且|AB|=4,|AD|=1,M 是该平面上的一个动点,M 在l 1上的射影点是N ,且|BN|=2|DM|. (Ⅰ) 建立适当的坐标系,求动点M 的轨迹C 的方程. (Ⅱ)过点D 且不与l 1、l 2垂直的直线l 交(Ⅰ)中的轨迹C 于E 、F 两点;另外平面上的点G 、H 满足: ①(R);AG AD λλ=∈②2;GE GF GH +=③0.GH EF ?= 求点G 的横坐标的取值范围. 2. 设椭圆的中心是坐标原点,焦点在x 轴上,离心率23 = e ,已知点)3,0(P 到这个椭圆 上的点的最远距离是4,求这个椭圆的方程. 3. 已知椭圆)0(1:22221>>=+b a b y a x C 的一条准线方程是 , 425=x 其左、右顶点分别 B A D M B N l 2 l 1

是A、B;双曲线 1 : 2 2 2 2 2 = - b y a x C 的一条渐近线方程为3x-5y=0. (Ⅰ)求椭圆C1的方程及双曲线C2的离心率; (Ⅱ)在第一象限内取双曲线C2上一点P,连结AP交椭圆C1于点M,连结PB并延长交椭圆C1于点N,若MP AM=. 求证:.0 = ?AB MN 4. 椭圆的中心在坐标原点O,右焦点F(c,0)到相应准线的距离为1,倾斜角为45°的直线交椭圆于A,B两点.设AB中点为M,直线AB与OM的夹角为αa. (1)用半焦距c表示椭圆的方程及tanα; (2)若2

椭圆经典例题分类汇总

椭圆经典例题分类汇总 1.椭圆第一定义的应用 例1 椭圆的一个顶点为()02,A ,其长轴长是短轴长的2倍,求椭圆的标准方程. 分析:题目没有指出焦点的位置,要考虑两种位置. 解:(1)当()02,A 为长轴端点时,2=a ,1=b , 椭圆的标准方程为:11 42 2=+y x ; (2)当()02,A 为短轴端点时,2=b ,4=a , 椭圆的标准方程为: 116 42 2=+y x ; 说明:椭圆的标准方程有两个,给出一个顶点的坐标和对称轴的位置,是不能确定椭圆的横竖的,因而要考虑两种情况. 例2 已知椭圆 19 82 2=++y k x 的离心率21=e ,求k 的值. 分析:分两种情况进行讨论. 解:当椭圆的焦点在x 轴上时,82 +=k a ,92 =b ,得12 -=k c .由2 1 =e ,得4=k . 当椭圆的焦点在y 轴上时,92 =a ,82 +=k b ,得k c -=12 . 由21= e ,得 4191=-k ,即4 5 -=k . ∴满足条件的4=k 或4 5 -=k . 说明:本题易出现漏解.排除错误的办法是:因为8+k 与9的大小关系不定,所以椭圆的焦点可能在x 轴上,也可能在y 轴上.故必须进行讨论. 例3 已知方程 1352 2-=-+-k y k x 表示椭圆,求k 的取值范围. 解:由?? ? ??-≠-<-<-,35,03,05k k k k 得53<>b a 这个条件,当b a =时,并不表示椭圆. 例4 已知1cos sin 2 2=-ααy x )0(πα≤≤表示焦点在y 轴上的椭圆,求α的取值范围.

圆锥曲线分类汇编

2013年全国各地高考文科数学试题分类汇编9:圆锥曲线 一、选择题 1 .(2013年高考湖北卷(文))已知π 04 θ<<,则双曲线1C :22221sin cos x y θθ-=与2C :22221cos sin y x θθ-=的 ( ) A .实轴长相等 B .虚轴长相等 C .离心率相等 D .焦距相等 【答案】D 2 .(2013年高考四川卷(文))从椭圆22 221(0)x y a b a b +=>>上一点P 向x 轴作垂线,垂足恰为左焦点1F ,A 是椭圆与x 轴正半轴的交点,B 是椭圆与y 轴正半轴的交点,且//AB OP (O 是坐标原点),则该椭圆的离心率是 ( ) A . 2 4 B . 12 C . 22 D . 32 【答案】C 3 .(2013年高考课标Ⅱ卷(文))设抛物线C:y 2= 4x 的焦点为F,直线L 过F 且与C 交于A, B 两点.若|AF|=3|BF|, 则L 的方程为 ( ) A .y=x-1或y=-x+1 B .y= (X-1)或y=-(x-1) C .y= (x-1)或y=-(x-1) D .y=(x-1)或y=-(x-1) 【答案】C 4 .(2013年高考课标Ⅰ卷(文))O 为坐标原点,F 为抛物线2:42C y x =的焦点,P 为C 上一点,若 ||42PF =,则POF ?的面积为 ( ) A .2 B .22 C .23 D .4 【答案】C 5 .(2013年高考课标Ⅰ卷(文))已知双曲线2222:1x y C a b -=(0,0)a b >>的离心率为52 ,则C 的渐近线 方程为 ( ) A .1 4 y x =± B .13 y x =± C .12 y x =± D .y x =± 【答案】C 6 .(2013年高考福建卷(文))双曲线12 2 =-y x 的顶点到其渐近线的距离等于 ( ) A . 2 1 B . 2 2 C .1 D .2 【答案】B

江苏历年高考数学试题及答案汇编十圆锥曲线

江苏历年高考理科数学试题及答案汇编十圆锥曲线 (2008-2018)试题 1、9.(5分)(2008江苏)如图,在平面直角坐标系xoy中,设三角形ABC的顶点分别为A (0,a),B(b,0),C(c,0),点P(0,p)在线段AO上的一点(异于端点),这里a,b,c,p均为非零实数,设直线BP,CP分别与边AC,AB交于点E,F,某同学已正确求得直线 OE的方程为,请你完成直线OF的方程:. 2、12.(5分)(2008江苏)在平面直角坐标系xOy中,椭圆的焦距为2c,以O为圆心,a为半径作圆M,若过作圆M的两条切线相互垂直,则椭圆的离心率为. 3、13.(5分)(2009江苏)如图,在平面直角坐标系xoy中,A1,A2,B1,B2为椭圆 的四个顶点,F为其右焦点,直线A1B2与直线B1F相交于点T,线段OT与椭圆的交点M恰为线段OT的中点,则该椭圆的离心率为.

4、6.(5分)(2010江苏)在平面直角坐标系xOy 中,双曲线上一点M ,点M 的横坐标是3,则M 到双曲线右焦点的距离是 . 5、8.(5分)(2010江苏)函数y=x 2(x >0)的图象在点(a k ,a k 2 )处的切线与x 轴交点的横坐标为a k+1,k 为正整数,a 1=16,则a 1+a 3+a 5= . 6、9.(5分)(2010江苏)在平面直角坐标系xOy 中,已知圆x 2+y 2 =4上有且仅有四个点到直线12x ﹣5y+c=0的距离为1,则实数c 的取值范围是 . 7、14.(5分)(2011江苏)设集合 222{(,)| (2),,},{(,)|221,,} 2 m A x y x y m x y B x y m x y m x y =-+∈=++∈R R 若,A B ≠? 则实数m 的取值范围是______________. 8、8.(5分)(2012江苏)在平面直角坐标系xOy 中,若双曲线 的离心率为 ,则m 的值为 . 9、12.(5分)(2012江苏)在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2 ﹣8x+15=0,若直线y=kx ﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是 . 10、3.(5分)(2013江苏)双曲线 的两条渐近线方程为 . 11、12.(5分)(2013江苏)在平面直角坐标系xOy 中,椭圆C 的标准方程为(a >b >0),右焦点为F ,右准线为l ,短轴的一个端点为B ,设原点到直线BF 的距离为d 1,F 到l 的距离为d 2,若d 2= ,则椭圆C 的离心率为 . 12、9.(5分)(2014江苏)在平面直角坐标系xOy 中,直线x+2y ﹣3=0被圆(x ﹣2)2 +(y+1)2 =4截得的弦长为 . 13、10.(5分)(2015江苏)在平面直角坐标系xOy 中,以点(1,0)为圆心且与直线mx ﹣y ﹣2m ﹣1=0(m ∈R )相切的所有圆中,半径最大的圆的标准方程为 . 14、12.(5分)(2015江苏)在平面直角坐标系xOy 中,P 为双曲线x 2﹣y 2 =1右支上的一个动点,若点P 到直线x ﹣y+1=0的距离大于c 恒成立,则实数c 的最大值为 . 15、3.(5分)(2016江苏)在平面直角坐标系xOy 中,双曲线 ﹣ =1的焦距是 . 16、10.(5分)(2016江苏)如图,在平面直角坐标系xOy 中,F 是椭圆+=1(a >b >0)的右焦点,直线y=与椭圆交于B ,C 两点,且∠BFC=90°,则该椭圆的离心率是 .

高考数学全国卷分类汇总及分析

圆锥曲线 1.已知圆M :x 2+(y -2)2=1,直线l :y =-1,动圆P 与圆M 相外切,且与直线l 相切.设动圆圆心P 的轨迹为E . (1)求E 的方程; (2)若点A ,B 是E 上的两个动点,O 为坐标原点,且O A →·O B → =-16,求证:直线AB 恒过定点. (1)解 设P (x ,y ),则x 2+(y -2)2=(y +1)+1,∴x 2=8y .∴E 的方程为x 2=8y . (2)证明 设直线AB :y =kx +b ,A (x 1,y 1),B (x 2,y 2). 将直线AB 的方程代入x 2=8y 中得x 2-8kx -8b =0,所以x 1+x 2=8k ,x 1x 2=-8b . O A →·O B → =x 1x 2+y 1y 2=x 1x 2+x 21x 2264=-8b +b 2=-16,∴b =4,所以直线AB 恒过定点(0,4). 2.如图,已知点A (1,2)是离心率为22的椭圆C :y 2a 2+x 2 b 2=1(a >b >0)上的一点,斜率为2的直线BD 交椭圆C 于B 、D 两点,且A 、B 、D 三点互不重合. (1)求椭圆C 的方程; (2)求证:直线AB 、AD 的斜率之和为定值. (1)解 由题意,可得e =c a =22,将(1,2)代入y 2a 2+x 2b 2=1,得2a 2+1b 2=1,又 a 2= b 2+ c 2, 解得a =2,b =2,c =2, 所以椭圆C 的方程为y 24+x 2 2=1. (2)证明 设直线BD 的方程为y =2x +m ,又A 、B 、D 三点不重合,所以m ≠0.

相关文档
最新文档