飞机气动及飞行性能计算

飞机气动及飞行性能计算
飞机气动及飞行性能计算

飞机气动及飞行性能计算

------ 课程设计报告

专业:飞行器设计与工程

班号:01011203

精品

学号:2012300048 姓名:李少逸

2016.3

目录

第一章预备知识 (1)

1.1 翼型的几何特性 (1)

1.2 机翼的几何特性 (2)

1.3 机身的几何特性 (4)

第二章飞机的基本情况和本文计算方案 (5)

2.1 飞机基本情况简介 (5)

2.2 本文计算方案 (11)

第三章飞机气动特性估算 (12)

3.1 升力特性估算 (12)

3.1.1 单独机翼升力估算 (13)

3.1.2 机身升力估算 (16)

3.1.3 翼身组合体的升力估算 (18)

3.1.4 尾翼升力估算 (20)

3.1.5 合升力线斜率计算 (24)

3.2 升阻极曲线的估算 (26)

3.2.1 亚音速零升阻力估算 (27)

3.2.1.1 全机摩擦阻力估算 (27)

3.2.1.2 亚音速压差阻力估算 (31)

3.2.2 超音速零升波阻估算 (33)

3.2.2.1 临界马赫数的确定 (33)

3.2.2.2 M>1时零升阻力系数 (36)

3.2.3 亚音速升致阻力估算 (42)

3.2.4 超音速升致阻力估算 (44)

3.2.5 不同马赫数下的升阻极曲线 (46)

3.3 结果汇总 (50)

第四章飞机基本飞行性能计算 (52)

4.1 速度-高度范围 (52)

4.2 定常上升性能 (59)

4.3 爬升方式 (65)

4.3.1 亚音速等表速爬升 (66)

4.3.2 超音速等马赫数爬升 (69)

4.3.3 平飞加速段的求解方法 (70)

4.3.4 总用时 (72)

第五章自主编写的Matlab代码 (73)

5.1 RBF径向基函数插值方法实现 (73)

5.2 气动计算及性能计算 (76)

第六章心得体会 (77)

第一章 预备知识

1.1 翼型的几何特性

参见上图:

中弧线 翼型内切圆中心的轨迹,在最前部内切圆(即决定前缘半径的圆)中 心之前,则是由该内切圆中心至切点的半径线段

前缘 翼型中弧线的最前点

后缘 翼型中弧线的最后点

弦线 连接前缘与后缘的直线

弦长b(m) 前缘与后缘之间的直线线段长度

厚度c(m) 翼型最大内切圆的直径 相对厚度c b c c /=

最大厚度位置c x (m) 翼型最大内切圆的中心在翼型弦线上的投影至翼型前缘 的距离 最大厚度相对位置c x b x x c c /=

弯度f(m) 中弧线与弦线之间垂直于弦线的最大线段长度 相对弯度f b f f /=

最大弯度位置f x (m) 中弧线与弦线之间垂直于弦线的最大线段至翼型前缘的

飞行计划基础算法

1飞行计划算法 1.1燃油政策 CCAR在121部中关于备降场和加油量作了相关规定,下表是对相关规定的简要描述: 一)国内航线备降场规定和燃油政策 二)国际航线备降场规定和燃油政策

1.2 基本算法 根据 CCAR 的燃油政策,国内和国际航线正常飞行计划的飞行剖面如下图所示: 国内航线: 国际航线:

根据飞行剖面,可以将飞行计划的计算过程分为几个主要的阶段,下面分别对各阶段的计算方法进行描述: 1.2.1爬升计算 通过波音Inflt/Report程序能够生成飞机爬升性能数据,爬升性能和飞机松刹车重量、温度与ISA的偏差、爬升高度等因素有关。爬升计算就是根据飞机松刹车重量、爬升高度、温度偏差,查询性能表,进行插值,计算出飞机爬升到指定高度所需要的油量、时间、及飞过的水平距离。 航路爬升通常是一种等表速/等M数(如280/0.78)的爬升。对于最小成本飞行计划,可以通过Inflt生成指定成本指数的爬升性能数据(如CI50)。若考虑10000英尺以下表速250knot的限制,可以生成相应的有低空限速的爬升性能数据(如250/280/0.78、250/CI50)。 1.风速修正 由于爬升性能表给出的是在静风条件下的数据,而实际情况是有

风的,因此需要对风速进行修正。从开始爬升到爬升顶点,风向和风速都是在不断变化的,计算时,风速取爬升顶点航路风分量的2/3。 设从爬升性能表查得无风时的空中距离为DA ,时间为t ,爬升顶点巡航高度上的风速为W ,则飞机在爬升过程中的平均空速=t DA ,地速= W t DA ?±32,飞过的地面距离D=t W t DA ??? ? ???±32 =t W DA ??±32。(注:顺风为+,逆风为-) 2. 机场标高修正 飞机性能使用手册中的爬升性能表都是针对机场气压高度为零的情况给出的,即给出的是由海平面机场起飞爬升到某一高度层所需要的油量、时间及飞过的水平距离。当机场的气压高度不为零时,需进行修正。 设机场的标高为ELE ,飞行高度为FL 。可以由下面的公式计算从标高为ELE 的机场起飞爬升到巡航高度FL 所需的油量F(ELE →FL)、时间T(ELE →FL)及飞过的水平距离D(ELE →FL): F(ELE →FL) = F(0→FL) – F(0→ELE+1500') + F(0→1500') T(ELE →FL) = T(0→FL) – T(0→ELE+1500') + T(0→1500') D(ELE →FL) = D(0→FL) – D(0→ELE+1500') + D(0→1500') 1.2.2 巡航计算 通常采用的巡航方式有等M 数、等表速、LRC 、经济巡航等,通过波音Inflt/Report 程序能够生成对应各种巡航方式的飞机巡航

使用STAR-CCM+计算二维翼型气动性能

使用STAR-CCM+计算二维翼型气动性能 Andrew Moa STAR-CCM+是CD-adapco公司开发的通用CFD软件,采用先进的连续介质力学数值技术,支持非结构网格,集成了高效的CFD求解器及前、后处理单元。STAR-CCM+支持导入复杂形状的几何数据,可进行表面修复,根据导入的几何自动生成高质量的非结构网格。 本文采用STAR-CCM+ 9.02.005 R8,以NACA 63(3)-218翼型为例,简单介绍使用STAR-CCM+进行二维翼型气动性能计算的一般步骤。 1、建立翼型几何 在多数情况下,翼型的气动性能计算一般采用二维网格模型。二维网格能够满足计算的需求,同时又不至于消耗过多的计算资源,一定程度上了提高计算的效率。STAR-CCM+虽然支持对二维网格模型的求解,但不支持导入二维几何实体,也无法生成二维网格。该软件可以导入二维网格,同时也提供了三维网格到二维网格的转换。本文利用STAR-CCM+三维网格转换成二维网格的功能,先在STAR-CCM+中生成三维的翼型绕流网格,在将该三维网格转换成二维网格,最后利用二维网格进行求解。 A、生成翼型三维模型 打开STAR-CCM+,软件界面如下: 点击File->New Simulation,OK确认建立新的模拟器。

右键单击树状图中Geometry下的3D-CAD Models,选择New,在3D设计模式中建立三维翼型实体。右键点击3D-CAD Model 1,选择Import->3D Curve,选择翼型数据文件。必须确保翼型数据文件为以下形式: 翼型数据应为.CSV格式文件,每行依次为各数据点的x、y、z三点坐标,中间以英文半角逗号分隔。

《飞行性能与计划》习题汇总

《飞行性能与计划》 题型:1、名词解释2、单选题3、多选题4、判断题5、简答题6、查图计算题 第一章 一、名词解释 气动效率-飞行马赫数与飞机升阻比的乘积,高速飞行时,常常使用气动效率来衡量飞机气动性能的好坏。低速时常用升阻比。 二、掌握以下结论 2、国际标准大气海平面标准温度和平流层的标准温度分别为多少? 国际标准大气海平面标准温度为15℃,气压高度37000英尺处的标准温度为-56.5℃。 3、非标准大气如何表示成ISA偏差的形式? 场气压高度1500ft,气温30℃,则温度可以表示为ISA+18℃。气压高度3000英尺处的气温为20℃,则该大气温度可表示为ISA+ ? 11℃。 第二章 一、名词解释 1、中断起飞距离(教材P29):是指飞机从0开始加速滑跑到一台发动机停车,飞行员判断并采用相应的制动程序使飞机完全停下来所需的距离 2、空中最小操纵速度(教材P18):指在飞行中在该速度关键发动机突然停车和继续保持停车的情况下,使用正常的操纵技能,能保持向可工作发动机一侧的坡度不大于5度的直线飞行,为保持操纵的方向舵蹬力不超过150磅,也不得用减小工作发动机推力的方法来维持方向控制。 3、起飞平衡速度(教材P36):在同一起飞重量下的中断起飞所需距离与继续起飞所需距离的两条曲线的交点所对应的速度,在此速度下,中断起飞距离与继续起飞距离相等。 4、继续起飞最小速度(教材P35):是指如果发动机在此速度上停车,飞行员采用继续起飞标准程序,可以使飞机在净空道外侧完成起飞场道阶段的最小速度。 5、起飞决断速度(教材P19):指飞机在此速度上被判定关键发动机停车等故障时,飞行员可以安全地继续起飞或中断起飞,中断起飞的距离和继续起飞的距离都不会超过可用的起飞距离。 6、净空道(教材P22):是指在跑道头的一段宽度不小于500尺,其中心线是跑道中心延长线,并受机场相关管制的区域。 7、污染道面(教材P65):湿滑道面或跑道上有积水积冰积雪以及其他沉积物的跑道统称污染道面 二、掌握以下结论 11)中断起飞中,开始执行中断程序的最迟速度为V1。 2)使用假设温度法减推力起飞,假设温度与当前实际温度的关系是前者比后者高

航空指标定义

运输业务量相关指标 ●航线:飞机飞行的空中路线称为航线。其中,各航段的起讫点(技术经停点除外)都在国内的航线称为国内航线;航线中任意一个航段的起讫点(技术经停的除外)在外国领土上的航线称为国际航线;航线中任意一个航段的起讫点在香港或澳门地区的航线称为港澳航线(经港澳地区飞往外国的航线统计为国际航线)。 ●航段:飞机从起飞到下一个着陆之间的飞行。一条航线可以是一个或多个航段。凡航段的两端都在国内的称为国内航段,两端或有一端在国外的称为国际航段,两端或有一端在香港或澳门的称为港澳航段。 ●城市对:指客票或客票的一部分所规定的可以在其间旅行的两个城市,或者根据货运舱单或货运舱单的一部分在其间进行货运的两个城市。 ●定期航班:习惯上称正班,是指按向社会公布的班期和时刻运营的航班。 ●加班:加班是指按定期航班的航线和航班号临时增加的航班。 ●包机:包机是指承运人根据与包机人所签定的包机合同,按约定的起飞时间、航线所进行的运输飞行(包机按包用形式划分,可分为整机包用、全座舱包用和部分舱位、部分座位包用等。包机架次的统计是指整机包用的架次)。承运人利用包机的回程(或去程)运载客货,称为回程(或去程)利用。 ●旅游包机:是指为方便旅游有旅游部门包用的包机飞行此类飞

行的票价有时还包括食宿以及其他服务费用。 ●专机:专机飞行是指符合国家规定的重要包机飞行。 ●起飞架次:指航空器(以下均称飞机)在航空运输飞行过程中的起飞次数。其中,航空运输是指利用飞机从事民用商业航空运输。民用商业航空运输指为取酬而向社会公众提供的定期或不定期的运送旅客货邮的运输飞行。起飞次数等于飞机的着陆次数或飞行的航段数。 ●飞行小时:指从飞机滑动前撤轮档起至飞机着陆停稳后安放轮档止的全部时间,即为飞机地面滑动时间和飞行时间之和。如某个航段的飞行时间应等于飞机在该航段的空中飞行时间与地面起飞、降落时的滑行时间相加。统计时,原始数据以时、分为计算单位,汇总以小时为计算单位取整填报。 ●飞行里程:运输飞行完成的公里数。计算方法为航段距离与在该航段上完成的航班数的乘积之和,航段距离按收费距离计算。原始数据以“公里”为计算单位,汇总时以“万公里”为计算单位。计算公式:飞行里程(万公里)=(∑航段里程(公里)×航班数)/10000 ●旅客运输量:运输飞行所载运的旅客人数。成人和儿童各按一人计算,婴儿因不占座位不计人数。原始数据以人为计算单位。汇总时,以万人为计算单位填报,保留两位小数。一个航班的旅客运量表现为飞机沿途各机场旅客的始发运量之和。其中,机场旅客始发运量是指客票确定的以本机场为起点,始发乘机的旅客。统计时每一特定航班(同一航班)的每一旅客只应计算一次,不能按航段

航空空气动力高性能计算解决方案

航空航天空气动力学高性能计算解决方案 摘要: CFD高性能计算技术正在成为航空航天飞行器空气动力学设计过程中除风洞试验以外最重要的方法,曙光公司在高性能计算领域的深厚积累能够为用户提供多种规模的集群系统解决方案。最新推出的TC2600刀片集群系统具有高性能、高可靠性、低能耗和低占地面积的优势、是符合“高效能计算”思想的最佳解决方案。

1.概述 传统的飞行器气动布局设计主要依赖理论研究估算、设计师的经验以及大量的风洞试验结果,风洞试验是主要设计工具。计算机技术的迅猛发展推动了航空空气动力学的革命。目前正在大力发展的计算流体力学将以突破对黏流流场物理现象的模拟能力为重点,尤其是精确预测流动分离点和转捩过程以及湍流流动。 1.1.国外发展概况 美国 美国在空气动力学研究与发展领域一直处于世界领先地位,在探索新概念飞行器、航空新技术、新研究和试验方法上也具有明显优势。美国对空气动力学技术的投资堪称世界第一,为促进气动技术的发展,先后建造了一大批用于各类飞行器研制的气动力地面试验设施,现有高、低速搭配、尺寸配套的科研生产型风洞70多座。 长期以来,美国充分利用其处于世界先进水平的计算机软硬件技术优势,大力开展计算流体力学(CFD)技术研究,投资建立数值模拟中心,推广CFD技术的工程应用。特别是航空、航天飞行器的气动设计中,采用先进的CFD技术使设计周期和成本大幅度降低,设计质量迅速提高,飞机气动性能不断改进。 欧洲 总体上讲,欧洲,主要是德国、法国和英国在空气动力学发展研究方面稍逊于美国。由于经济原因,在高超声速飞行器研究上,欧洲明显落后于美国,但欧洲的气动试验设施在某些方面比美国先进,比如欧洲的跨声速风洞,其试验能力和试验效率明显高于美国现有的风洞。 英国航空航天界人士认为,目前空气动力学已达到非常先进的阶段,但还不成熟,业界未来的目标应该在于开发未来先进的、快速的和适用的方法,用于设计可显著改善气动效率和降低成本的机翼,为应用行业带来显著的效益。CFD方法的研究进展在其中应保持优先性,

2MW风电机组叶片气动性能计算方法的研究_刘勋

新能源专题 2009年第8期 68 2MW 风电机组叶片气动性能计算方法的研究 刘 勋 鲁庆华 訾宏达 孙伟军 (北京北重汽轮电机有限责任公司,北京 100040) 摘要 本文以某2MW 风电机组的叶片为实例,总结出一套工程上实用的叶片气动性能分析的方法。使用XFOIL 和Fluent 软件,对叶片不同截面的翼型计算了小攻角范围内的气动性能,并对两种计算结果进行对比分析;在翼型小攻角气动性能的基础上,利用Viterna-Corrigan 修正将翼型的气动性能扩展到±180°全攻角范围。使用这些全攻角翼型气动性能数据,在Bladed 软件中建立风电机组的叶片模型,分析计算该叶片的气动性能、整机功率曲线等性能。通过最终计算结果与原设计值对比,表明采用该方法分析风电机组叶片的气动性能是可行的。 关键词:风力发电机;叶片;气动性能 The Research of Aerodynamics Performance Calculation Method of 2MW Horizontal Wind Turbine Blades Liu Xun Lu Qinghua Zi Hongda Sun Weijun (Beijing Beizhong Steam Turbine Generator Co., Ltd, Beijing 100040) Abstract A suit of aerodynamics performance analyses method in the practical engineering calculation is obtained by research the blade of a 2MW horizontal axis wind turbine. With the software of XFOIL and Fluent, the aerodynamic performances of airfoil in the small angle of attack arrange are calculated in the different radial location. The XFOIL and Fluent calculation results are compared. On the base of the small angle of attack arrange, using the Viterna-Corrigan post stall modified, the aerodynamic performances of the airfoil are extended from -180°to +180°angle of attack range. With the XFOIL calculation data of all angle of attack range, the blade models of this wind turbine are founded in the software of bladed. The simulation results of the blade root load and the power curve of aerodynamic performance on the wind turbine are obtained. The Comparison between simulation results and original design shows the aerodynamics performance analyses method is viable. Key words :wind turbine ;blade ;aerodynamics performance 1 引言 风能是一种清洁、用之不竭的能源。风能不仅储量丰富,而且分布广泛。2006年国家气候中心对我国风能资源进行评价,得到的结果是:在不考虑青藏高原的情况下,全国陆地上离地面10m 高度层风能资源技术可开发量为25.48 亿kW [1] 。此外,风能的开发相较与其他新能源也更为容易。因此,近年来,风力发电得到了国家、社会、各投资研发机构的高度关注,而风电产业也进入了高速发展的时期。 风力发电机组通过叶片吸收风能,将其转化为传动链的机械能。风机叶片的设计是兆瓦级大型风电机组的最为重要的关键技术之一。而叶片气动性能计算是风机叶片及风电机组设计和校核中的重要环节。目前比较成熟叶片气动分析方法是基于叶素动量理论(BEM ),并针对风机叶片特点在该理论 上作了相应的经验修正。而Bladed 软件正是以该方 法为基础开发的风机性能计算商用软件,已广泛用于风机叶片及风机机组的设计、认证。 通过这些方法及软件作风机叶片的气动性能分析,都需要获得叶片所用翼型的气动特性曲线,如 升力、阻力系数曲线等。通常,各类翼型的这些气动特性都是在风洞中实验获得,其实验过程需要专业的设备,且周期长费用高。此外,风机专用低速翼型,如DU 系列、FFA-W 系列、Ris?-A1系列, 其气动特性通常是不公开的。 本文以某2MW 变速变桨风电机组为实例,通过数值模拟的方法得到该机组叶片所用翼型的气动特性曲线,弥补了实验方法的不足。在此计算结果的基础上,通过Bladed 软件建模分析,获得该风电

风力机组气动特性分析与载荷计算-1

目录 1前言错误!未定义书签。 2风轮气动载荷............................................... 错误!未定义书签。 2.1动量理论.................................................................................................. 错误!未定义书签。 2.1.1不考虑风轮后尾流旋转 .................................................................. 错误!未定义书签。 2.1.2考虑风轮后尾流旋转...................................................................... 错误!未定义书签。 2.2叶素理论.................................................................................................. 错误!未定义书签。 2.3动量──叶素理论.................................................................................. 错误!未定义书签。 2.4叶片梢部损失和根部损失修正 .............................................................. 错误!未定义书签。 2.5塔影效果.................................................................................................. 错误!未定义书签。 2.6偏斜气流修正.......................................................................................... 错误!未定义书签。 2.7风剪切...................................................................................................... 错误!未定义书签。3风轮气动载荷分析........................................... 错误!未定义书签。 3.1周期性气动负载...................................................................................... 错误!未定义书签。 4.1载荷情况DLC1.3..................................................................................... 错误!未定义书签。 4.2载荷情况DLC1. 5..................................................................................... 错误!未定义书签。 4.3载荷情况DLC1.6..................................................................................... 错误!未定义书签。 4.4载荷情况DLC1.7..................................................................................... 错误!未定义书签。 4.5载荷情况DLC1.8..................................................................................... 错误!未定义书签。 4.6载荷情况DLC6.1..................................................................................... 错误!未定义书签。 风力发电机组气动特性分析与载荷计算 1前言 风力发电机是靠风轮吸取风能的,将气流动能转为机械能,再转化为电能输送电网,风力机气动力学计算是风力机设计中的一项重要工作。特别是对于大、中型风机,其意义更为重大。风力机处于自然大气环境中,大气紊流、风剪切、风向的变化(侧偏风)和塔影效应等,这些现象使叶片受到非常复杂气动载荷的作用,对风力机的气动性能和结构疲劳寿命产生很大的影响。对一台大型风力发电机组来说,除风轮叶片产生机组的气动载荷外,机舱和支撑风轮和机舱的塔筒也产生气动载荷,这些都对机组的载荷产生影响。 2风轮气动载荷 目前计算风力发电机的气动载荷有动量—叶素理论、CFD等方法。动量—叶素理论是将风轮叶片沿展向分成许多微段,称这些微段为叶素,在每个叶素上的流动相互之间没有干扰,叶素可以认为是二元翼型,在这些微段上运用动量理论求出作用在每个叶素上的力和力矩,然后沿叶片展向积分,进而求得作用在整个风轮上的力和力矩,算得旋翼的拉力和功率。动量—叶素理论形式比较简单,计算量小,便于工程应用,估算机组初始设计时整机的气动性能,被广泛用于风力机的设计和性能计算,而且还用来确定风力机的动态载荷,不断地被进一步改进和完善。CFD数值计算不需要对数学模型作近似处理,直接对流体运动进行数值模拟,从物理意义上说,数值求解N-S方程的CFD方法应该是最全面准确计算风力机气动特性的方法。但是,由于极大的计算工作量,数值计算的稳定性等原因,目前CFD求解N-S方程方法还远不能作为风力机气动设计和研究的日常工具。作为解决工程问题的工具还不太实际。为此在计算中应用动量—叶素理论方法来计算机组的气动载荷。 2.1 动量理论 动量理论是经典的风力机空气动力学理论。风轮的作用是将风的动能转换成机械能,但是它究竟能够吸收多大的风的动能就是动量理论回答的问题。下面分不考虑风轮后尾流旋转和考虑风轮后尾流旋转两种情况应用动量理论。 2.1.1不考虑风轮后尾流旋转 首先,假设一种简单的理想情况:

如何计算有关飞机飞行中的时间-精选资料

如何计算有关飞机飞行中的时间 时间计算是高中地理学习的重点和难点,也是高考的常考 点,在时间计算方面可以说最难的部分就是飞机飞行方面的计算。有关这方面的时间计算主要有以下几种类型。 飞机飞行中的地方时、区时的计算 例l (2005 年高考文综天津卷)2001 年中国东方航空公司穿越北极的国际航线试飞成功,从上海(31° N 121° E至芝 加哥(42° N 88° W仅用15小时35分钟。读右图及相关材料, 回答: 1)若飞机于北京时间5 月20日5 时55 分从上海飞往芝 加哥() A.一路上都是白天 B.伦敦会位于飞机的正北方向 C.北极星的高度保持不变 D.极点附近飞机罗盘不受干扰 解析:该题综合性较强,涉及的内容较多,有昼夜长短的变 化,晨昏圈的移动,方向的判断,以及地球磁场的内容。 5 月20 日北半球昼长夜短,纬度越高,昼越长。当上海为5:55 分时,上海所在纬度以北地区都处于晨线以东地区,都应该是白昼,飞机从上海飞至北极,一直处于晨线以东,所以一直是白天。由已知的北京时间计算出芝加哥的地方时,是地方时方面的计算。先

2) 从A 机场飞行到B 机场经历的时间是() 计算出飞机从上海出发时的芝加哥时间,再加上路途中飞行时 间,就是到达芝加哥的时间。上海使用的是北京时间,也就是 120°E 的地方时,芝加哥为88° W 两地的经度差为 208°,时 间差为 13小时 52分,飞机经 15小时 35分飞行后,到达芝加哥 的地方时为: X=( 5:55- 1 3:52 )+ 1 5:35=7:22 ,到达芝加哥也是 白昼,所以一路是白天。B 项伦敦位于飞机的正北方向,必须有 一个时间飞机飞行在伦敦所在经线且在伦敦的正南方。 在飞行中 从大圆角度考虑,不可能出现这种情况。 C 项北极星的高度随观 察者所处纬度不同而不同, 纬度有多高, 我们的仰视北极星的角 度就多大。D 项极点附近的磁力线指向磁极, 指南针会受到干扰。 答案:A 技巧归纳: 关于地方时的计算按照“东大西小, 东加西减” 的方法,首先计算出两地的经度差,按照经度相差 15°时间相 差,由经度差计算时间差, 再由已知时间计算出所求地点的时间。 飞机飞行经历时间的计算 例2有一架飞机在当地时间7月1日5时从旭日东升的A 机 日落。 降落到B 机场时,当地时间为() 月 2日 11 时 B. 7 月 1 日 21 时 场起飞,沿纬线向东飞行,一路上阳光普照,降落到 B 机场正值 A. 7 C. 7 月 1 日 19时 D. 6 月 30日 19时

风力发电机组气动特性分析与载荷计算

风力发电机组气动特性分析与载荷计算 目录 1前言 (2) 2风轮气动载荷 (2) 2.1 动量理论 (2) 2.1.1 不考虑风轮后尾流旋转 (2) 2.1.2 考虑风轮后尾流旋转 (3) 2.2 叶素理论 (4) 2.3 动量──叶素理论 (4) 2.4 叶片梢部损失和根部损失修正 (6) 2.5 塔影效果 (6) 2.6 偏斜气流修正 (6) 2.7 风剪切 (6) 3风轮气动载荷分析 (7) 3.1周期性气动负载................................................................................... 错误!未定义书签。 4.1载荷情况DLC1.3 (10) 4.2载荷情况DLC1.5 (10) 4.3载荷情况DLC1.6 (10) 4.4载荷情况DLC1.7 (11) 4.5载荷情况DLC1.8 (11) 4.6载荷情况DLC6.1 (11)

1 前言 风力发电机是靠风轮吸取风能的,将气流动能转为机械能,再转化为电能输送电网,风力机气动力学计算是风力机设计中的一项重要工作。特别是对于大、中型风机,其意义更为重大。风力机处于自然大气环境中,大气紊流、风剪切、风向的变化(侧偏风)和塔影效应等,这些现象使叶片受到非常复杂气动载荷的作用,对风力机的气动性能和结构疲劳寿命产生很大的影响。对一台大型风力发电机组来说,除风轮叶片产生机组的气动载荷外,机舱和支撑风轮和机舱的塔筒也产生气动载荷,这些都对机组的载荷产生影响。 2 风轮气动载荷 目前计算风力发电机的气动载荷有动量—叶素理论、CFD 等方法。动量—叶素理论是将风轮叶片沿展向分成许多微段,称这些微段为叶素,在每个叶素上的流动相互之间没有干扰,叶素可以认为是二元翼型,在这些微段上运用动量理论求出作用在每个叶素上的力和力矩,然后沿叶片展向积分,进而求得作用在整个风轮上的力和力矩,算得旋翼的拉力和功率。动量—叶素理论形式比较简单,计算量小,便于工程应用,估算机组初始设计时整机的气动性能,被广泛用于风力机的设计和性能计算,而且还用来确定风力机的动态载荷,不断地被进一步改进和完善。CFD 数值计算不需要对数学模型作近似处理,直接对流体运动进行数值模拟,从物理意义上说,数值求解N-S 方程的CFD 方法应该是最全面准确计算风力机气动特性的方法。但是,由于极大的计算工作量,数值计算的稳定性等原因,目前CFD 求解N-S 方程方法还远不能作为风力机气动设计和研究的日常工具。作为解决工程问题的工具还不太实际。为此在计算中应用动量—叶素理论方法来计算机组的气动载荷。 2.1 动量理论 动量理论是经典的风力机空气动力学理论。风轮的作用是将风的动能转换成机械能,但是它究竟能够吸收多大的风的动能就是动量理论回答的问题。下面分不考虑风轮后尾流旋转和考虑风轮后尾流旋转两种情况应用动量理论。 2.1.1 不考虑风轮后尾流旋转 首先,假设一种简单的理想情况: (1)风轮没有偏航角、倾斜角和锥度角,可简化成一个平面桨盘; (2)风轮叶片旋转时不受到摩擦阻力; (3)风轮流动模型可简化成一个单元流管; (4)风轮前未受扰动的气流静压和风轮后的气流静压相等,即p 1 = p 2; (5)作用在风轮上的推力是均匀的; (6)不考虑风轮后的尾流旋转。 将一维动量方程用于风轮流管,可得到作用在风轮上的轴向力为 ()21V V m T -= (1) 式中 m 为流过风轮的空气流量 T AV m ρ= (2) 于是 ()21V V AV T T -=ρ (3) 而作用在风轮上的轴向力又可写成 () -+-=p p A T (4) 由伯努利方程可得 ++=+p V p V T 222121ρρ (5) -+=+p V p V T 22222ρρ (6) 根据假设,p 1 = p 2,(5)式和(6)式相减可得

《飞行性能与计划》综合复习提纲

《飞行性能与计划》复习要点 题型:1、名词解释2、单选题3、多选题4、判断题5、简答题6、查图计算题 第一章 一、名词解释 气动效率-飞行马赫数与飞机升阻比的乘积,高速飞行时,常常使用气动效率来衡量飞机气动性能的好坏。低速时常用升阻比。 二、掌握以下结论 2、国际标准大气海平面标准温度和平流层的标准温度分别为多少? 国际标准大气海平面标准温度为15℃,气压高度37000英尺处的标准温度为-56.5℃。 3、非标准大气如何表示成ISA偏差的形式? 场气压高度1500ft,气温30℃,则温度可以表示为ISA+18℃。气压高度3000英尺处的气温为20℃,则该大气温度可表示为ISA+ ? 11℃。 第二章 一、名词解释 1、中断起飞距离(教材P29):是指飞机从0开始加速滑跑到一台发动机停车,飞行员判断并采用相应的制动程序使飞机完全停下来所需的距离 2、空中最小操纵速度(教材P18):指在飞行中在该速度关键发动机突然停车和继续保持停车的情况下,使用正常的操纵技能,能保持向可工作发动机一侧的坡度不大于5度的直线飞行,为保持操纵的方向舵蹬力不超过150磅,也不得用减小工作发动机推力的方法来维持方向控制。 3、起飞平衡速度(教材P36):在同一起飞重量下的中断起飞所需距离与继续起飞所需距离的两条曲线的交点所对应的速度,在此速度下,中断起飞距离与继续起飞距离相等。 4、继续起飞最小速度(教材P35):是指如果发动机在此速度上停车,飞行员采用继续起飞标准程序,可以使飞机在净空道外侧完成起飞场道阶段的最小速度。 5、起飞决断速度(教材P19):指飞机在此速度上被判定关键发动机停车等故障时,飞行员可以安全地继续起飞或中断起飞,中断起飞的距离和继续起飞的距离都不会超过可用的起飞距离。 6、净空道(教材P22):是指在跑道头的一段宽度不小于500尺,其中心线是跑道中心延长线,并受机场相关管制的区域。 7、污染道面(教材P65):湿滑道面或跑道上有积水积冰积雪以及其他沉积物的跑道统称污染道面 二、掌握以下结论 11)中断起飞中,开始执行中断程序的最迟速度为V1。 2)使用假设温度法减推力起飞,假设温度与当前实际温度的关系是前者比后者高 3)在起飞航道阶段,FAR要求起飞净航迹需高于障碍物35英尺。

整车气动性能分析与优化

整车气动性能分析与优化 周欣1,乔鑫2,孔繁华3,李飞4 (华晨汽车工程研究院,沈阳 110141) 摘要:本文应用计算流体软件STAR-CCM+对某车型进行外流场的仿真计算,并以提高整车气动性能为目的进行了增加前唇扰流板,前后轮扰流板以及对后扰流板加长并调整角度的组合优化,有效的起到了减小风阻系数,提高冷却模块有效流量的作用。 关键词:外流场;气动阻力;CFD;STAR-CCM+; Abstract: A CFD software STAR-CCM+ is used in this article to simulate the vehicle external flow of a certain vehicle type. In order to improve the aerodynamic performance of the whole vehicle, a front spoiler lip, spoiler lips of front and rear wheels are added, and the rear spoiler lip is lengthened which angle is also adjusted. Consequently, the drag coefficient is effectively reduced, and the effective flow of cooling module is increased. Keywords: V ehicle external flow; Aerodynamic drag; CFD; STAR-CCM+; 0前言 汽车空气动力学对于整车的经济性、动力性、舒适性和行驶安全的研究具有特殊重要的意义,它是车辆工程领域一个非常重要的研究方向。随着计算机技术和流体力学数值计算理论的发展,计算流体力学(Computational Fluid Dynamics ,CFD)已成为了汽车空气动力学研究的重要手段。传统的汽车空气动力学研究依赖与汽车风洞试验,但是现在应用CFD空气动力学数值模拟技术,可以在计算机上完成汽车风洞试验,使得对汽车空气动力学开展全面系统的科学研究更简便而有效。[1] 在国家战略政策的引导下,汽车工业逐渐开始走向自主开发的道路。随着能源问题的日益突出,节能减排也成为汽车设计的主要目的。整车气动性能是汽车空气动力学的核心问题[2],在造型阶段,气动性能主要关注车辆的阻力系数。当车速达到100km/h时发动机约80%的动力用来克服气动阻力,假如整车空气动力学性能提高10%,油耗就可降低4%~5%。 本文利用计算流体力学软件STAR-CCM+对某车型进行了整车外流场的计算,通过对整车近壁面速度场以及各截面速度场分析,对该车前唇扰流板,前后轮扰流板,以及后扰流板的组合优化进行评价。 1建立计算模型 1.1物理模型 流体流动要受物理守恒定律的支配,基本的守恒定律包括质量守恒定律、动量守恒定律、能量守恒定律。 (1)质量守恒方程(连续方程) d i v(1) (2)动量守恒方程(运动方程,Navier-Stokes方程)

飞行力学综合作业(一) 飞机飞行性能计算

飞行力学综合作业(一)飞机飞行性能计算 学生姓名:姜南 学号:11051136 专业方向:飞行器设计与工程 指导教师:王衍洋 (2014年5月4日)

摘要 在给出飞机基本飞行参数的情况下,研究飞机的基本飞行性能对于了解并且掌握该飞机的相关信息是相当必要的。飞机的飞行性能主要包含了平飞性能、上升性能、续航性能、起落性能和其它的机动性能。在该报告中主要研究平飞性能和上升性能。 用简单推力法计算飞机的基本飞行性能,包括各高度上的航迹倾角γ和上升率V V,最大航迹倾角γmax和最快上升率V V.max,最大、最小平飞速度,以及最短上升时间。用C语言编写相关的计算程序,利用所给的有关数据完成计算并结合所学习的飞行动力学对所得的计算结果作出分析,将合理的结果写到报告中。再对影响飞行性能的主要参数——飞机的起飞质量作原质量的0.90-1.10倍的步长为0.01的改变,并与原来的计算结果作比较,定量直观的认识相关参数对飞行性能的影响程度,为以后的设计工作提供一定的参考。

目录 一、计算目的与内容 (1) 1、计算目的 (1) 2、计算内容 (1) 二、计算原理与方法 (2) 1、飞机质量m (2) 2、发动机可用推力T a (2) 3、平飞需用推力T R (2) 4、剩余推力?T (2) 5、最小平飞速度V min和最大平飞速度V max (2) 6、航迹倾角γ和上升率V V (4) 7、理论静升限H max.a和实用静升限H max.s (4) 8、最短上升时间t c.min (4) 三、编程原理与方法 (5) 1、程序框架 (5) 2、函数调用 (5) 3、程序结构 (5) (1)航迹倾角γ和上升率V V (5) (2)最大航迹倾角γmax及对应速度Vγ和最快上升率V V.max及对应速度 V qc (6) (3)最短上升时间t c.min (6) (4)最小平飞速度V min和最大平飞速度V max (7) 四、计算过程与结果分析 (8) 1、原始数据 (8) 2、基本性能计算 (8) (1)飞机质量m (8) (2)可用推力T a (8)

飞机气动估算及飞行性能计算-课程设计

本科课程设计报告 题目飞机气动估算及飞行性能计算 学生姓名 班级 日期 目录 气动特性估算错误!未定义书签。

升力特性估算错误!未定义书签。 外露翼升力估算错误!未定义书签。 机身升力的估算错误!未定义书签。 尾翼的升力估算错误!未定义书签。 合升力线斜率的计算错误!未定义书签。 临界马赫数的计算错误!未定义书签。 阻力特性的估算错误!未定义书签。 全机摩擦阻力的估算错误!未定义书签。 亚音速压差阻力的估算错误!未定义书签。 亚声速升致阻力特性估算错误!未定义书签。 超音速零升波阻估算错误!未定义书签。 超声速升致阻力错误!未定义书签。 飞机基本飞行性能计算错误!未定义书签。 平飞需用推力的计算错误!未定义书签。 不同高度下的推力曲线图(15) 错误!未定义书签。 不同高度的马赫数分布错误!未定义书签。 飞行包线图(16) 错误!未定义书签。 定常上升性能错误!未定义书签。 不同高度下的Vy-Ma(最大上升率)图(17)错误!未定义书签。绘制图求解不同飞行高度下的最大爬升角错误!未定义书签。 升限的确定(读上图可得)错误!未定义书签。 爬升时间计算错误!未定义书签。 亚音速等表速爬升错误!未定义书签。 超音速等马赫数爬升错误!未定义书签。 平飞加速段的求解方法错误!未定义书签。 气动特性估算 升力特性估算 飞机上的升力可表示为: 其中:升力系数有: S 机翼参考面积

q 动压 外露翼升力估算 322,1/2(tan ,11,,)L wly C f Ma or Ma c αλχλλλξ=-- (1) 其中 机翼的展弦比 λ= 翼展 l= 机翼的根梢比 η=,即01/ 5.48b b = 机翼面积 S= 机翼的表面为一梯形,由梯形面积计算公式有:S= 可求得: 机身最大当量直径d=,外露机翼面积 =,由几何关系有: 00()/2wl wly b b d S S +?=- 解之得 = 所以,外露翼参数为:=== 展弦比 公式322,1/2(tan ,11,,)L wly C f Ma or Ma c αλχλλλξ=-- 的函数关系可由下面图1确 定: 图1:机翼升力线斜率计算图 其中: 外露翼根梢比 ===

飞行性能复习资料

1.限制飞机起飞重量主要因素①场道条件②起飞航道Ⅱ的爬升梯度③轮胎速度限制④最大刹车能量限制⑤障碍物限制⑥最大着陆重量对最大起飞重量限制⑦航路最低安全高度限制 ⑧飞机结构强度限制 2.滑水分类①粘性滑水:道面与轮胎仍有接触的滑水,机轮转速下降。②动态滑水:轮胎与道面完全脱离的滑水,即机轮转速大大下降,甚至停转和反转。③橡胶还原滑水:轮胎停转时,摩擦产生的高温使橡胶变软发粘而还原,积水层受热产生的蒸汽将轮胎抬离道面的滑水。 3.假设温度法减推力起飞在使用灵活温度推力起飞时,通过一个比机场外界高的假设温度来确定需要的推力,用此推力和实际的起飞重量能够满足场地条件、爬升梯度、越障、轮胎速度、刹车能量及最小操纵速度的限制要求,这种确定推力的方法称为假设温度法,所确定的较实际温度高的温度称假设温度或灵活温度。减推力最大值不得超过25%①假设温度:把实际起飞重量看作最大起飞重量所对应的气温。②假设温度法减推力起飞:把实际起飞重量对应的温度来设定推力,而以实际温度起飞的方法。把与假设温度相对应的最大起飞推力设置值作为减推力起飞的起飞推力设置值。若以假设温度起飞,使用起飞推力,则实际起飞重量恰好为最大起飞重量,符合场道和航道爬升要求。 4.起飞航道阶段有哪些①起飞航道Ⅰ段:自基准零点开始,结束于起落架完全收上(收起落架动作可以开始于起飞航道Ⅰ段之前)。在该段襟翼处于起飞位置,发动机处于起飞工作状态(T O/G A),速度保持在V2到V2+20kt之间(根据发动机工作情况,以下同)。②起飞航道Ⅱ段:为等表速爬升段。从起落架完全收上到高度不低于400ft,发动机处于起飞工作状态(T O/G A),保持起飞襟翼,速度保持在V2到V2+20kt之间上升。如果在航道上有障碍物,则应该越过障碍物后才能进入航道Ⅲ段。③起飞航道Ⅲ段:减小上升角或改平使飞机增速,(空客绿点速度)根据规定的收襟翼速度分几次将襟翼全部收起,同时增速到襟翼全收的速度。在该段,考虑到发动机起飞工作状态的使用时间限制,这段通常使用最大上升工作状态(MCL)或最大连续工作状态(MCT)(该状态常用于一台发动机停车后的爬升) 5.优化起飞性能的方法(1)选择合适的起飞襟翼(2)改进爬升 1.三个航程范围①第一距离范围(最大商载):飞行距离小于或等于经济航程范围。该范围内,要增加航程,只需增燃油,不需减商载②第二距离范围(最大燃油):指距离大于经济航程,而且可以保持最大起飞重量的距离范围。该范围内,要增航程,只能减商载以增燃油。不能用CI 确定M 经济,一般用MRC 巡航③第三距离范围(转场航程):该范围内,要增航程,只能减商载以减起飞重量④结论:在第一、二距离范围内,随着航程增加,商载先保持不变,再减小;载油量一直增大,起飞总重量先增后减。航班飞行应在飞机经济航程以内进行。经济航程以内,可以用成本指数来确定经济马赫数大小。经济航程以外,选择MRC。(2到5问题) 2.飞机为什么要阶梯爬升:为了降低油耗,保持飞行性能,缓解发动机工作,飞得更远。增加上升梯度,增加最大起飞重量 3.一发失效的应对措施①立即把油门增加到最大连续状态②保持最有利的飘降速度改平。 4.什么叫经济马赫数:使直接营运费用(DOC)最小,即DOC曲线最低点对应的速度。 5.简述航路越障要求①高于障碍物2000英尺②改平点至少高于障碍物1000英尺。 1.刹车,反推对着陆距离有无影响①刹车是着陆中基本制动手段,尤其在低速滑跑时,它可以提供近70 %减速力。不仅能有效地减轻机组在着陆阶段工作负荷,还可缩短刹车启动延迟时间进而缩短着陆距离。延迟时间短,着陆距离缩短(手动,自动刹车启用时间间隔1.46 秒)②反推最佳减速效果是在高速滑跑阶段,随着滑跑速度减小,其减速作用也相应下降,一般要求在速度达到60kt 以下时解除反推。 2.快速过站飞行:相邻两次飞行间有短时间停留的连续短程飞行。在相邻两次航班任务之间有短时间的过站停留。特点:刹车使用频繁,且冷却不足,易导致过热; 3. 影响着陆距离的因素(1)进场速度和高度偏差的影响(2)着陆技术偏差的影响(3)制动系统的使用情况 (1-2)1.国际航线燃油规定:(对有备降场的情况,所加油量包括:)①航程燃油TF- -lTrip Fuel:飞到并在目的地机场着陆②应急燃油CF- -l Contingency Fuel:有两种规定,一种是

相关文档
最新文档