光子晶体滤波器

光子晶体滤波器
光子晶体滤波器

光子晶体滤波器理论基础

2.1 光子晶体概述

2.1.1光子晶体概念

光子晶体也叫光子带隙材料(PBG ),它的概念是在1987年分别由S .John 和E .Yablonovitch 等人提出来的。经过几十年的发展,光子晶体已成为人们非常关注的领域。所谓光子晶体,是一种介电常量呈空间周期性分布的人工介质结构,它具有光子禁带,频率和能量处于禁带内的光子无法进入光子晶体内部,在光子晶体内部完全被禁止存在[12-14]。在固体物理研究发现,晶体中的周期性排列的原子所产生的周期性电势场中的电子有一个特殊的约束作用。在这样的空间周期性电势场中的电子运动是由如下的薛定谔方程决定的:

(2.1) 其中)(r V →是电子的势能函数,它有空间周期性。我们求解以上方程(2.1) 可以发现,电子能量E只能取某些特殊值,在某些能量区间内方程无解―― 即电子能量不能落在在这样的能量区间,通常称之为能量禁带。研究发现, 电子在这种周期性结构中的德布罗意波长与晶体的晶格常数有大致相同数 量级。

从电磁场理论知道,在介电系数呈空间周期性分布的介质中,电 磁场所服从的规律是如下所示的Maxell 方程:

其中,0ε为平均相对介电常数,?? ?→r ε为相对介电常数的调制部分,他 =0,- E 2m + 2??? ??ψ?????

????? ????? ???→→t V r r =0,-+C+??? ??→????????????? ????? ???→t r E r εεω0222(1.2)

随空间位置作周期性变化,C为真空中的光速,ω为电磁波的频率, ()t r E , 是电磁波的电矢量,可以看到方程式 1.1)和(1.2)具有一定的相似性。事实上,通过对方程式(2)的求解可以发现,该方程式只有在某些特定的频率ω处才有解,而在某些频率ω取值区方程无解。这也就是说,在介电常数呈周期性分布的介质结构中的电磁波的某些频率是被禁止的,通常

图2.1光子禁带示意图

称这些被禁止的频率区间为"光子频率禁带"(Photonic Band Gap ),如图2.1所示,而将具有"光子频率禁带"的材料称作为光子晶体。

而我们正是利用光子晶体的“光子频率禁带”这一特点来制作滤波器,使其满足我们需要的波段要求,具有较大的实际意义。

2.1.2光子能带理论

错误!未找到引用源。 由电子的能带理论知道,当把电子的运动近似地看成单个电子在一个等效的周期性势场中运动时,电子的波函数Ψ满足薛定谔方程,即

2

2()2e h V r E m ψψ??-?+=??????

(2-3) 禁带

波矢

()()n V r V r R =+ (2-4)

其中h 为普朗克常数,e E 为电子能量,式(1-2)表示位能)(r V 具有周期性,其周期为晶格矢量n R 。

另一方面,一束频率为ω的光在不均匀的无损耗介质中传播时,它的电矢量E 所满足的麦克斯韦方程可写成

2

2

21022()()E E r E E c c ωωεε-?+???-= (2-5)

其中0ε是常数,为介质的平均介电常数; 1()r ε是扰动介电常数,c 为真空

中的光速。而当光子是在一个介电常数作周期性变化的介质中传播时,令'n

R 为变化的周期,则 '11()()n r r R εε=+ (2-6)

比较式(1-1)和式(1-3),可以看出它们的形式有某种相似之处,从而建立如下的类比关系

2

12()()r V r c ωε-- (2-7)

即介电常数的变化相当于位能的变化。 0ε相当于电子的能量本征值。

从光子及电子运动方程的可类比性得出:在一个折射率周期变化的结构中,光子的运动将类似于在周期性势能变化下电子的运动。因此,折射率周期变化的结构应具有光子的能带结构及相应的光子能隙。所谓能带、

电子能隙

ω

ω

k

光子能隙

k

能隙是指光子的频率ω与波矢k的某种关系,如图1-1所示。

由此可见,光子的k-ω曲线是线性的,而电子的k-ω曲线是抛物线型的。这里可用描述电子能带结构的布里渊区来描述光子的能带结构。布里渊区是在波矢空间中的一些特定区域,在每个布里渊区内部,频率随波矢连续变化,属于一个布里渊区的能级构成一个能带。在布里渊区的边界上频率作为波矢的函数发生突变,即出现能隙。这样对于存在光子能隙的介质来说,不是所有频率的光都能在其中传播的,相应于光子能隙区域的那些频率的光将不能通过介质,而是被全部反射出去[15]。这些被禁止的频率区间通常被称为“光子带隙”(Photonic Band Gap)。通常称具有光子带隙(PBG)的空间结构材料为光子晶体,这一概念最先是在1987年分别由S.John和E.Yablonovitch等人提出来的。

进一步研究可以发现,随着光在晶体中的传播方向的改变,光子带隙的位置也会改变,可能在某一个方向被禁止的光线在其他的方向却能传播,这种光子带隙被称为不完全光子带隙。在考虑到作为玻色子的光子和费米子的电子的不同以后,发现对于二维的密堆积排列和三维面心立方结构,通过改变晶格常量和对称性,可以使所有方向上的能隙重合,也就是说可以存在完全光子带隙。后来的研究表明,要得到完全光子带隙,晶体的电容率对比值还要大于 2.0。事实上影响光子带隙产生的因素还有很多。由于在光子晶体中频率落在光子带隙内的电磁波不能传播,因此它具有许多特殊的物理现象,例如:抑制自发辐射、能量转移、光子压缩态、光双稳和光开关等。此外,光子晶体的应用价值很大程度上还在于缺陷态的存在。类似普通晶体中的掺杂或缺陷会在电子禁带中造成允许能级,同样的在一定程度上破坏了光子晶体的对称性(加入或取出一部分物质),可以在光子带隙中产生很窄的允许频带,也就是说可以做出对某一特定波长透明的窗口,频率与之吻合的光波被局域在该窗口,一旦偏离,强度会迅速衰减。

2.1.3光子晶体的结构

一维光子晶体把在一维一个方向上具有光子频率禁带的材料称为一维光子晶体。图2-3(a)给出的是一种简单一维的光子晶体结构,它是有两种介质交替叠层而成的,其中的黑色部分为一种介质,黑色与黑色之间为

另一种介质所填充。这种结构在垂直于介质片的方向上介电常数是空间位置的周期性函数,而在平行于介质片平面的方向上介电常数不随空间位置而变化。这种结构的光子晶体在光纤和半导体激光器中己得到了应用。所谓的布拉格光纤和半导体激光器的分布反馈式谐振腔实际上就是一维光子晶体。

二维光子晶体把在二维空间各方向上具有光子频率禁带特性的材料称为二维光子晶体。图2-3(b)给出的是一种典型的二维光子晶体结构,它是由许多介质杆平行而均匀地排列而成的。这种结构在垂直于介质柱的方向上介电常数是空间位置的周期性函数,而在平行于介质柱的方向上介电常数不随空间位置而变化。长波长二维光子晶体多通过上下两个带孔的薄片将细小的介质杆或金属杆固定住,薄片孔的排列决定该光子晶体的结构。而短波长二维光子晶体多采用在半导体基片上打孔的方法来制造,这时图2-3(b)中的圆柱介质变成了空气柱或真空圆柱,而其中圆柱体之间的空间则变成了半导体材料。

三维光子晶体三维光子晶体是指在三维空间各方向上都具有光子频率禁带特性的材料。图2-3(c)是一种典型的三维光子晶体结构。美国贝尔通讯研究所的E.Yablonovitch创造出了世界上第一个具有完全光子频率禁带的三维光子晶体,它是一种由许多面心立方体构成的空间周期性结构,也称为钻石结构[16]。

(a)(b)(c)

图2-3 光子晶体的结构

Fig.2-3 The structure of photonic crystal

2.1.4 光子晶体的理论研究方法

在设计和分析光子晶体时,人们最关心的是它的透射系数随入射波长的变化,这就涉及到分析光子晶体的带隙结构,最早使用的方法是标量波

法,虽然它能推算出能带结构,但它不能很好地解释实验现象:面心立方结构的光子晶体具有光子带隙。随后,人们意识到光波是矢量波,它应该满足麦克斯韦方程。因此出现了矢量波法。随着研究的深入,运用的方法也越来越多,它们的核心都是解麦克斯韦方程。下面介绍几种最常用的计算方法。

(1)频域法

平面波展开法 这是在光子晶体能带研究中用得比较早和用得最多的一种方法。主要是将电磁场以平面波的形式展开,何启明等人在预言光子禁带的存在的文章中便是用的这种方法。电磁场在倒格矢空间以平面波叠加的形式展开,可以将麦克斯韦方程组化成一个本征方程,求解本征值便得到传播的光子的本征频率。但是,这种方法有明显的缺点:计算量与平面波的波数有很大关系,几乎正比于所用波数的立方,因此会受到较严格的约束,对某些情况显得无能为力。如当光子晶体结构复杂或处理有缺陷的体系时,需要大量平面波,可能因为计算能力的限制而不能计算或者难以准确计算。如果介电常数不是恒值而是随频率变化,就没有一个确定的本征方程形式,而且有可能在展开中出现发散,导致根本无法求解。

转移矩阵方法 由磁场在实空间格点位置展开,将麦克斯韦方程组化成转移矩阵形式,同样变成本征值求解问题。转移矩阵表示一层(面)格点的场强与紧邻的另一层(面)格点场强的关系,它假设在构成的空间中在同一个格点层(面)上有相同的态和相同的频率,这样可以利用麦克斯韦方程组将场从一个位置外推到整个晶体空间。这种方法对介电常数随频率变化的金属系统特别有效,由于转移矩阵小,矩阵元少,计算量较前者大大降低,只与实空间格点数的平方成正比,精确度也非常高,而且还可以计算反射系数及透射系数。

(2)时域法

时域法是解麦克斯韦方程的时域形式

D H J t ???=

+? (2-8)B E t

???=? (2-9) FDTD (finite-difference time-domain )时域有限差分法

1966年由Yee 首先提出,其基本做法是:将问题空间沿3个坐标轴分成很多网格单元(Δx ,Δy ,Δz ),用中心有限差分式来表示函数对空间和时间的偏导数,然后带入麦克斯韦方程,再利用布里渊区边界的周期条件,求出结果。在执行FDTD 算法时,随着时间的增长,保证算法的稳定性是一个重要问题,应选择

min min min min(,,)2x y z t c

????= (2-10) 但是,有限差分法没有考虑晶格格点的形状,如果遇到具有特殊格点形状的光子晶体,就很难得到精确解。

此外,在研究有缺陷的光子晶体时,还可用超元胞法和格林函数法,在此就不一一列举了[17]。

上述的理论计算方法只是在给定光子晶体的结构组成后才能定量定性地得出准确的结论。虽然我们知道有几个参数(如介电常数比、填充比、晶格结构等)对光子禁带有影响,但到底是什么物理机制在光子禁带的形成中起了决定作用,尚无明确的结论。例如,如果要得到一定频率范围的光子禁带,我们应该采用何种光子晶体结构尚不能准确把握。由于这方面的研究仅有十几年历史,还有大量的工作需要去做。

2.1.5 光子晶体制备的实验方法

目前实验和实际应用的光子晶体都是人工制备的。自然界中也有极少光子晶体材料存在,例如蛋白石。光子晶体的晶格尺寸与光波波长相当,因此波长越长的光子晶体越易制造。微波波段的光子晶体晶格常量在毫米量级,用机械加工的办法即可实现。把直径为毫米量级的介质柱相互平行地排成阵列,或者在介质基底上打孔形成相互平行的空气柱,当微波在平行于圆柱轴线的平面上传播时,就会形成光子带隙。最早的二维和三维光子晶体就是这样制作的。

第一个具有完全光子带隙的光子晶体结构是E.Yablonovitch 研究小组于1991年设计出来的。他们在特殊制备的面心立方晶体结构中,从一定方向观察到了不完全的光子带隙的存在。随后,他们用活性离子束依次从3个相差120°的方向在介质基底材料上打出近似椭圆圆柱形的空间空洞,

消除了空间对称性引起的能级简并,最终得到了真正具有完全光子带隙的三维光子晶体(如图2-4和图2-5所示)。Yablonovitch 得到的光子带隙的位置处在微波波段,能隙中心频率为1.45GHz 。

如果采用激光刻蚀、粒子束刻蚀、反应粒子束刻蚀等先进的半导体加工技术,可以比较容易的得到远红外波段的二维光子晶体,甚至可以将频率提高到红外和可见光波段。但是,由于加工工艺水平的局限,即使是红外波段的三维光子晶体,制备上也有很大的困难,较为可能的是,在半导体基片上通过镀膜、光刻、腐蚀这几个过程反复循环形成方形电介质柱周期堆积,有可能构成工作在光学波段的光子晶体。

机械加工困难使人们把目光投向其他的方面。这时,具有自组织特性的胶体晶体引起了人们的注意。早在60年代,人们就发现,悬浮在水中的分散聚苯乙烯乳胶球由于吸附了离子带有负电荷,相互排斥而自发排列成与晶体类似的有序结构,其周期由胶体颗粒浓度决定。

研究人员在胶体溶液中放入基片,胶体颗粒和基片带不同的电荷,一

图2-4第一块光子晶体结构图

Fig.2-4The structure of the first

3-D photonic crystal

图2-5第一块光子晶体生成图 Fig.2-5 The creation of the first 3-D photonic crystal

定浓度和电荷密度的胶体颗粒在静电作用下自组织成有序结构并吸附到基片表面,形成面心立方(FCC)和体心立方(BCC)结构的胶体晶体,晶体的密排面平行于基片表面。不通过静电力的作用,而采用加速度力场,如用重力场或者离心力把胶体颗粒沉积在基片上、容器底,也可以得到胶体晶体。由于胶体颗粒的尺寸在微米量级以下,因此可以用之制备近红外和可见光波段的光子晶体。然而,这样得到的晶体在平行于基底表面方向虽然是密排的有序结构,但在垂直方向上却是无序的,其光子带隙一般出现在某些特定的方向,不能称之为真正光子晶体。如果利用激光干涉光场的局限作用或者外加电场在垂直生长层面方向排列胶体颗粒使之更加有序,能够得到品质较好的晶体,但这样制备的晶体体积一般较小。此外,由于化学成分的限制,胶体生长的光子晶体多为聚苯乙烯体系和二氧化硅胶体体系,其电容率对比值不能太大,这也决定了胶体光子晶体的光子能带比较窄。

目前,实际应用研究较多的还有反蛋白石法制备光子晶体。蛋白石是一种常见宝石,其结构为可见光波段的二氧化硅小球的最紧密堆积或者面心立方点阵。反蛋白石结构就是指空气小球或其他低电容率小球以密堆积排列在高电容率的连续介质中,制备的方法是在具有蛋白石结构的模版缝隙中填充高折射率介质,如Si,Ge,TiO2等,然后用腐蚀、煅烧的办法去掉原来的模版材料,形成的光子晶体,并满足材料互联和折射率周期性变化至少为2倍的宽能隙要求。用这种方法已经制备出了可见光波段和近红外波段的光子晶体,现在研究的重点和难点主要集中在模版的选择、填充上。反蛋白石法制备光学波段特别是可见光波段的光子晶体有简单、廉价的优点,比较机械和刻蚀制作的光子晶体,也存在尺寸小、机械强度低的缺点[17]。

2.2 光波分复用技术

2.2.1光波分复用技术概述

随着通讯容量的不断增加,通讯系统面临着急需扩容的问题。目前扩容的方法主要有:空分复用(SDM),时分复用(TDM)和波分复用(WDM)等。

SDM必须铺设新的光缆线路,无疑成本高,耗时长。

TDM则是通过时间分割来提高每秒钟传输的信息量,即以扩大单根光纤的传输容量实现更高的比特率。TDM有三个主要的问题:一是必须采用高速率的设备来替换原来的光传输设备;二是高的数据速率受到光纤色散和非线性的限制;三是因为受到电子器件物理极限的限制,一般认为传输速率高于40Gbit/s是困难的。

近年来,WDM的应用使光纤带宽资源得到进一步的利用,尤其是密集波分复用(DWDM)技术。这种技术采用原来铺设的光纤,使单根光纤的传输容量在高速率的TDM的基础上按信道数成倍数增加。WDM既不要铺设新光缆,又不必废弃原有的光传输设备,可迅速达到扩容的目的,所以许多人认为,直至10Gbit/s或者甚至40Gbit/s尚可采用TDM扩容方法,速率再高,必须考虑采用WDM方式。可见,WDM具有巨大的应用潜力。

波分复用(WDM)的实质是频分复用(FDM),只是光波通常更多采用波长而不用频率来描述而已。目前,广泛应用的光纤通讯窗口为1310nm 和1550nm两个波段,其中1310nm窗口的低损耗区波长约为1260nm~1360nm;1550nm窗口的低损耗区波长为1480nm~1580nm。两个波段共有大约200nm的工作区,相当于光纤30THz的常宽资源。若用100GHz 滤光片来进行波分复用,则可有250个信道数。显然,迄今远没有开发运用光纤的带宽资源。也说明波分复用还有很大的潜力,还有许多研发工作要做。

早期,人们把1310nm和1550nm两个波段的复用叫WDM;后来随着EDFA的应用,把1550nm波段分成许多个波长的复用,叫做DWDM,其相邻信道波长间隔一般小于2nm。今天,实际上光纤通讯系统都在向着DWDM系统发展,但人们仍习惯于统称WDM系统,或者说DWDM只是WDM的一种特殊形式。

2.2.2 波分复用基本原理

图2-6是波分复用系统示意图。由图可以看出,在发送端,波分复用器(MUX)把激光分成n个光载波长(信道),并复用至一根光纤。由于光波在光纤中传输时会不断衰减,所以传输信号需要用波长980nm或1480nm半导体激光泵浦的EDFA光纤放大器放大。最后到达接收端,再将复用的各个信道分开,即所谓解复用(DEMUX)。信道波长可以是等间隔的,也可以是不等间隔的。信号在传输过程中需要上下(Add/Drop),

故有光插分复用器。此外还有色散补偿、光学特性监控等等。

通常,WDM系统主要包括以下技术:第一是分波合波(Mux/Demux)技术。目前大量使用的是薄膜干涉滤光片。这主要是因为薄膜干涉滤光片具有较好的光学性能、较高的稳定性和较低的生产成本。第二是光放大,主要采用在1550nm附近工作带宽为30nm~40nm的EDFA。第三是克服色散和非线性技术。第四是节点技术,即光交叉连接(OXC)和光分插(ODAM)。第五网络监测、控制和管理技术。[18]

2.2.3 波分复用技术的特点

1.光波分复用器是一个无源纤维光学器件,不含有电子电源,因而器件具有结构简单、体积小、可靠,易于和光纤耦合等特点;

2.由于每个不同波长信道的光信号在同一光纤中是独立传输的,不互相调制,因而光波复用通信能实现同时在一根光纤中传输多种信息,包括声音、视频、图象、数据、文字、图形等,实现多媒体传输;

3.波分复用器件具有互易性,即一个器件既可合波又可分波,因此可以在一根光纤上实现全双工通信(双向传输)。

4.利用光纤的低损耗波段,大大增加光纤的传输容量,降低成本;

5.对各信道传输的信号的速率、格式具有透明性,有利于数字信号和模拟信号的兼容;

6.节省光纤和光中继器,由于采用光波分复用技术可以在不改变光缆设施的条件下改变通信系统的组态,因此在光纤通信组网设计中有很大灵活性和自由度,便于对已建成系统的扩容;

7.可提供波长选路,使建立透明的、具有高度生存性的WDM 全光网通信成为可能。

2.2.4 波分复用/解复用器

2.2.4.1 波分复用器概述

光波分复用器(Wavelength-Division-Multiplexer ,简称WDM )属于波长选择性耦合器,是用来合成不同波长的光信号或者分离不同波长的光信号的无源器件,又称前者是“复用器”;后者为“解复用器”。在高速光通信系统、接入网、全光网络等领域中,光纤频带资源有着广阔的应用前景。同时,在构成光纤网络中的光纤、光缆动态状况监测也必须利用WDM 技术。光波分复用的一个端口,作为器件的输入/输出端;N 个端口作为器件的输出/输入端。

当器件用作解复用时,注入到入射端(单端口)的各种光波信号,分别按波长传输到对应的出射端(N 个端口之一),如图2-7所示。对于不同的工作波长其输出端口是不同的。在给定的工作波长的光信号从输入单端 图2-7 波分复用中的解复用器 口传输到对应的输出端口时,器件具有最低的插入损耗。而其他输出端口对该输入信号具有理想的隔离。当器件用作复用器时,其作用同上述情况相反如图2-8所示。在给定的工作波长的光信号从对应输入端口(N 个端口之一)被传输到单端口时,具有最低的插入损耗。而其他输入端口对该P 0 (0#端口)

λ1λ2┉λn λ1 P 1 1#端口 λ

2 P 2 2#端口 λ

n P n n#端口

Demultiplexer

输入光则有理想的隔离。

图2-8 波分复用中的复用器

2.2.4.2 光波分复用器的性能指标

复用中心波长:例如1310/1550nm 。

信道通道带宽:指允许的中心波长范围的变化。

插入损耗Li :指器件输入端和对应的输出端光功率的减小值。

010log i i i

P L P =- 隔离度Lc :指器件输出端口的光进入非指定输出端口能量大小。 '10log

m mn n P L P =- 光回波损耗:指光信号从指定的端口输入时,由于器件引起反向回传的光能量。

偏振相关损耗:指光信号以不同的偏振状态输入时,对应输出端口插入损耗最大变化量。

此外还包括温度稳定性、温度波长漂移、工作温度、储存温度等。 据(OFC2000)报道,Tyco sys 已做到180信道,速率10Gb/s ,传输7000km 。日本NTT(OFC2001)研制出400波长,间隔为25GHz 的AWG 滤波器。由于WDM 技术发展,光纤通信容量从1976年45Mb/s 到2000年增加到640Gb/s 增长256倍[19]。

2.2.4.3 波分复用器的分类

波分复用器可分为无源和有源两种。无源的有角色散型的(如棱镜、

P 0 (0#端口) λ1λ2┉λn λ

1 P 1 1#端口 λ

2 P 2 2#端口 λn P n n#端口

Multiplexer

光栅);滤波器型;耦合器型(如单模光纤型)和混合型。有源的包括集成多重光源和检测器;波长可调激光器;波长可调滤波器和波长选择光放大器。

2.2.4.4 主要的波分复用器简述

(1)角色散型光波分复用器件在波分复用技术中,色散元件的作用是把不同波长信道的光信号分开使之成为空间取向不同的光束,因此,在一根光纤中传输的含有若干不同波长的复用信道的光信号,通过角色散器件就能把不同波长信道光信号分开。但这类器件出射的不同波长的光的空间间距不是相等的,这会导致某些波长的出射光由于空间间隔过大而无法应用。

(2)干涉滤波片当一束具有多个波长的光射入该器件后能滤出所需波长的光学器件称滤光片。多层电介质滤光片实际上就是一个法布里-珀罗标准具。这种结构和我们的一维光子晶体滤波器结构相似,它能够起滤波

的光,而对其它波长的光,由于透射率迅速下作用,即它能透过波长为

降而无法透过。但这种器件其理想的透射率范围比较小,使其只可应用于短波长光纤通信波分复用的通带滤波器[20]。

2.3 一维光子晶体滤波器的研究

2.3.1 光子晶体滤波器概述

光滤波器是光子技术的基本元件之一,在光纤传感、光通信和光学信息处理方面有着广泛的应用。作为一种波长选择器件,光滤波器可以用于半导体激光器或光纤激光器的反射腔镜和窄带滤波、复用/解复用器、光放大器中的噪声抑制、波长选择器、波长转换器、色散补偿器以及延时器等。近年来,滤波器的研究发展十分迅速,受到了人们的普遍关注。光滤波器的种类繁多,性能各异,功能也各不相同。光滤波器的质量和体积等参数直接影响到它的应用价值。目前实现波长选择的方法主要有干涉滤波法、棱镜和光栅的色散分光法、光纤布喇格光栅(FBG)光谱滤波法、声光滤波法、集成纤维或集成波导滤波法等等。目前在高速率光纤通信系统和网络中广泛应用的光滤波器有法布里-珀罗谐振腔滤波器、马赫-陈德尔干涉型光滤波器、基于光栅的滤波器、介质膜滤波器、有源光滤波器、原子共振

滤波器等[21]。

随着越来越多的研究者对光子晶体这种新型的人工结构材料认识与研究的深入,人们发现光子晶体能够为新型光滤波器的设计和制造提供崭新的思路。这主要是基于光子晶体具有光子频率禁带,频率在禁带区内的光子是不能在光子晶体中存在的。因此,一块光子晶体就是一个自然的理想带阻滤波器。以此为基础,人们已经研究出多种能够满足不同需要的,性能优良的光子晶体滤波器:

宽带带阻滤波器这是由于和传统的滤波器相比,光子晶体滤波器的滤波带宽可以做的比较大,实现大范围的滤波作用。钻石结构的光子晶体的滤波带宽可以做到中心工作频率的20%,而由S.Gupta等人所提出的金属-介质复合型光子晶体可以将从低频(频率接近0Hz)直到红外波段的电磁波完全滤掉。这种大范围的滤波作用利用传统的滤波器是难以实现的。

极窄带选频滤波器当光子晶体中的某些单元被取消而造成缺陷时,就会使得光子晶体的光子频率禁带出现一些“可穿透窗口”,即光子频率禁带内的某些频率会毫无损失地穿过光子晶体。光子晶体的这一特性可以用来制作高品质的极窄带选频滤波器,对于发展超高密度波分复用光通信技术和超高精度光学信息测量仪器具有重要应用价值。

此外,使光子晶体形成非寻常形状的晶格还可使线宽进一步压窄,因此可以制成可调节带宽的极窄带选频滤波器。

光子晶体滤波器的特点在于其滤波性能远优于普通的光滤波器,其阻带区对透过光的抑制可以容易地达到30dB以上,而且光子晶体滤波器的带阻边沿的陡峭度可以容易做到接近于90°。另外,由于光子晶体都是使用对光波几乎没有损耗的介质材料制成的,所以光子晶体滤波器对通过波段的光波的损耗非常小。这些都是理想滤波器的典型特征。

2.3.2 一维光子晶体滤波器的理论基础

一维光子晶体是光子晶体的最简单形式,通过对它的研究,可以发现并总结出一系列规律,指导我们对光子晶体进行深入研究。

由于一维光子晶体是一种具有周期性结构的复合材料,因而从结构上看和传统的光学膜系没有本质区别(如图2-9所示)。

一维光子晶体的理想模型是一种分层媒质(与某一固定方向垂直的所

有平面上的性质都相同的媒质),下面首先讨论平面电磁波在分层媒质中的传播规律。

2.3.2.1 基本微分方程

考虑一个平面时谐电磁波从一分层媒质内传播通过。在特别情况下,当波是线偏振波并且电矢量垂直于入射面时,称之为横电波(用TE 代表);当波是线偏振波,而磁矢量垂直于入射面时,称之为横磁波(以TM 代表)。任何平面波,不论其偏振如何,都可以分解成TE 和TM 二个波。因为,垂直分量和平行分量在突变面处的边界条件是相互独立的,所以这两个波将亦彼此无关.此外,如果把麦克斯韦方程中E 和H 、ε和-μ同时相互对调,则方程保持不变。这样,有关TM 波的任何定理,均可由TE 波的相应结果经此置换而立即导出.因此,只要详细研究TE 波即可.

取入射面为yz 平面,z 是分层层次方向。对于TE 波,E y =E z =0,Maxwell 方程化为下列六个标量方程[设时间因子为)exp(t i ω-]:

0y zx x H H i E y z c

εω??-+=?? (2-11) 0x z H H z x

??-=?? (2-12) 0y

x H H x y

??-=?? (2-13) 0x i H c

ωμ= (2-14) 图2-9 一维光子晶体的结构 Fig.2-9 The structure of 1-D photonic crystal

0x y E i H z c

ωμ?-=? (2-15) 0x z E i H y c

ωμ?+=? (2-16) 这些方程表明,H y ,H z 和E x 只是y 和z 的函数.从(2-11),(2-15)和(2-16)中消去H y 和H z ,得到

2222022(log )x x x x E E E d n k E y z dz z

μ???++=??? (2-17) 其中:

2n εμ= (2-18)

002k c ω

π

λ== (2-19)

为解(2-17)式,我们取两个函数——一个只含y ,另一个只含z ——之积作为试探解:

(,)()()x E y z Y y U z = (2-20)

这时方程(2-17)变成

222202211(log )1d Y d U d dU n k Y dy U dz dz U dz

μ=--+ (2-21) 左边一项只是y 的函数,而右边各项仅与z 有关。因此只有当两边同等于其一常数(比如-K 2)时,(2-21)式才能成立:

2221d Y K Y dy

=- (2-22) 222202(log )d U d dU n k U K U dz dz dz

μ+-= (2-23) 方便的做法是令

2220K k α= (2-24)

于是由(2-22)式得到 Y=常数0ik y e α?

因而E x 的形式为

0()()i k y t x E U z e αω-= (2-25)

式中U (z )是z 的函数(可能是复的).由(2-15)和(2-16)式可以看

出,H y 和H z 的表达式和(2-25)式形式相同:

0()()i k y t y H V z e αω-= (2-26)

0()()i k y t z H W z e αω-= (2-27)

由于(2-11),(2-15)和(2-16),U ,V 和W 这三个振幅函数有下列方程关系:

[]0'V ik W U αε=+ (2-28)

0'U ik V μ= (2-29)

0U W αμ+= (2-30) 把(2-30)式的W 代入(2-28)式,和(2-29)式组成一对UV 的一阶联立微分方程

020''()U ik V

V ik U μαεμ=???=-??

(2-31) 从这两个方程分别消去U 和V .最后得到U 、V 的二阶线性微分方程如下

222202(log )()0d U d dU k n U dz dz dz μα-+-= (2-32) 2222202log ()0d d U dV k n V dz dz dz

αεμα????-?? ?????-+-= (2-33)

按照代换规则(它是麦克斯韦方程对称性的一个结果),可立即获得TM 波(Hy =Hz =0)场矢量的非零分量,其形式为

0()()i k y t x H U z e αω-= (2-34)

0()()i k y t y H V z e αω-=- (2-35)

0()()i k y t z E W z e αω-=- (2-36)

式中 02

0''()U ik V

V ik εαμε=???=-??

(2-37) 而W 和U 有下列方程关系:

0U W αε+= (2-38) U 和V 这时满足下面的二阶线性微分方程

222202(log )()0d U d dU k n U dz dz dz

εα-+-= (2-39) 2222202log ()0d d V dV k n V dz dz dz

αμεα????-?? ??????-+-= (2-40) U 、V 和W 一般是z 的复函数。E x 的等幅面由

U(z)=常数 (2-41)

给出,而等相面的方程为

0()z k y φα+=常数 (2-42)

式中φ(z )是U 的位相.一般,这两组面不重合,所以(同样和H z )是一个非均匀波.若沿某等相面作一很小位移(dy ,dz ),则0'()0z dz k dy φα+=;因此如果以θ代表等相面法线与OZ 的夹角、则

0tan '()

k dz dy z αθφ=-= (2-43) 在特别情况下,当波是均匀平面波时,

0()cos sin z k nz n φθαθ

=??=?

(2-44) 因此(2-24)式所附加的关系α=常数,可以看作是斯涅尔折射定律对分层媒质的推广 [12~14]。 2.3.2.2 均匀介质膜特性矩阵 对于均匀介质,,n εμεμ=和都是常数,如果以θ代表波法线与z 轴夹角,则α=nsinθ,对于TE 波,由上面两式(2-39)(2-40)得到

()222202cos 0d U k n U dz

θ+= (2-45) ()222202cos 0d V k n V dz

θ+= (2-46) 很容易看出,这些方程的解,满足要求的是

()()()

()()(){}0000cos cos sin cos 1cos cos cos sin cos U z A k nz B k nz V z B k nz A k nz i θθεθθθμ=+???=-??

(2-47) 因此满足边界条件f (0)=G (0)=0和F (0)=g (0)=1的特别解是

()()()()

()()

()()10102020sin cos cos cos cos cos cos cos sin cos i U f z k nz V g z k nz U F z k nz V G z i k nz μθθε

θθεθθμ

?==???==??==???==?? (2-48) 令cos p εθμ

=,则其特性矩阵是 ()()()()()0000cos cos sin cos sin cos cos cos i k nz k nz p M z ip k nz k nz θθθθ??-??=??-????

(2-49) 对于TM 波,上面这些方程仍然适用,只要把其中P 换成cos q μθε

=。 考虑两个接邻的分层媒质,第一个的区域从z=0到z=z 1,第二个从z=z 1到z=z 2 如果M 1(z )和M 2(z )是这两个媒质的特性矩阵,则

011112212()()

()()()Q M z Q z Q z M z z Q z =??=-?

(2-50) 所以

022()()Q M z Q z = (2-51)

其中

微波滤波器

12 1. 滤波器简介 2.滤波器的典型结构 2.1 低通滤波器(Low Pass Filter) 摘要:本文介绍了广播电视发射系统中常用的低通滤波器、高通滤波器、带通滤波器以及带阻滤波器的基本原理、典型结构及性能指标。 Abstract: Basic theory and typical structures of low pass filter, high pass filter,band pass filter and band stop filter are presented in this paper, the main specifications of these filters are introduced. 射频滤波器是用来分离不同频率射频信号的一种器件。它的主要作用是抑制不需要的信号,使其不能通过滤波器,而只让需要的信号通过。在广播电视发射天馈线系统中,滤波器是必不可少的设备。为了对发射机产生的带外信号进行抑制,规范输出信号的频谱,一般在发射机的输出端和天线之间加接输出滤波器。滤波器还是构成多工器必不可少的设备。 滤波器按频率的通带范围可分为低通、高通、带通和带阻四个类型。这四种滤波器在广播电视发射系统中都有应用,其中以带通滤波器的应用最为广泛。 滤波器设计的基本思路是根据滤波器的指标要求(如中心频率、通带带宽、通带损耗、阻带衰减以及输入输出阻抗等),选定低通原型滤波器(常用的包括巴特沃斯函数、切比雪夫函数和椭圆函数等)及谐振腔的数目;然后通过频率变换得到所需滤波器的理论模型;最后通过实际结构或电路来实现滤波器。调频和电视的发射频率为50MHz—862MHz,即VHF和UHF波段,如果在这么高的频率上用集中参数元件实现滤波功能,那么器件的损耗很大,功率容量受到限制,而且性能不稳定。因此,一般情况下,高频率范围内的滤波器都是用分布电感和分布电容来实现的。同轴传输线和波导是两种最常用的微波滤波器实现结构。 低通滤波器的典型结构是高、低阻抗传输线交替级联组成的糖葫芦式滤波器。它用高阻抗线来等效串联电感,用低阻抗线来等效并联电容,通过调整高低阻抗值及其长度可以制造出结构简单性能优良的低通滤波器。 图1是一个典型的低通滤波器的内部结构,图2是该结构的等效电路,图3为该结构的仿真结果。隋强Qiang Sui /金梅珍Meizhen Jin 微波滤波器Microwave Filter 第一部分:技术资料 Part A: Technical Papers

THz波段的F_P光子晶体滤波器

THz 波段的F -P 光子晶体滤波器 * 周 梅 1) 陈效双 2)- 王少伟 2) 张建标 2) 陆 卫 2) 1)(中国农业大学理学院应用物理系,北京 100083) 2)(中国科学院上海技术物理研究所红外物理国家重点实验室,上海 200083) (2005年11月23日收到;2005年12月11日收到修改稿) 理论上设计了一系列一维非周期光子晶体,这些光子晶体具有超窄带滤波的特性.并利用成熟的半导体工艺制备出了具有此性能的滤波器.通过比对理论和实验上的透射光谱,得到了两者符合较好的结果. 关键词:THz 波段,F -P 滤波器,非周期,光子带隙 PACC :7820P,4270Q *国家重点基础研究发展规划(973)(批准号:2001CB61040),中国科学院/百人计划0基金(批准号:200012),国家自然科学基金重点项目(批准号:10234040),上海科学技术委员会重点基金项目(批准号:02DJ14066)和上海市自然科学基金(批准号:03ZR14023)资助的课题.-E -mail:xschen@mail.si https://www.360docs.net/doc/a713718063.html, 11引言 THz(Terahertz)波段是介于红外与微波之间的一个波段,其频率范围一般在011)10THz(1THz=1012 Hz),具有广泛的应用前景,而以往却是研究得最少.由于最近发现THz 波段在医学影像、化学检测与分析、天文学甚至无线通讯等领域有着巨大的应用潜力 [1)3] ,使得人们对该领域产生了很大的兴趣. 最近THz 波段激光器(414THz)的研制成功[1] ,无疑 将对该领域起到极大的促进作用.众所周知,对于任何波段电磁波的应用都有三个重要环节:光源、传输和探测,只有对这三个重要环节的研究都有所突破,才能真正实现THz 波段的应用.目前对THz 波段的研究主要集中在THz 光源和探测上,控制其传输方面的研究相对较少. 光子带隙作为光子晶体的一个基本特性,具有控制电磁波传输的能力 [4)6] ,可应用于如滤波器、偏 振器及反射器等许多光学元件[7)10] ,因此对THz 波 段光子晶体的研究有利于人们对THz 波段电磁波传输的调控.尽管大部分光子晶体材料的实验研究都集中在微波 [9,11,12] 、红外 [13,14] 及可见 [15,16] 波段,但 是最近,人们也通过微机械加工[17] 、激光快速原位 成形(laser rapid prototyping )等方法[8,18,19] 制备出了 THz 波段的光子晶体,这些对THz 波段光子晶体的 研究和应用都具有相当重要的意义. 作为最简单的一维光子晶体,其理论研究和实验研究都已经比较成熟 [20] ,而且早在光子晶体的概 念提出之前就已经得到广泛应用.比如光学薄膜中的K P 4高反膜就属于一种特殊结构的一维光子晶体,在激光和光学设备中应用广泛.然而,这种多层膜的高反区(反射率高于95%的区域,high refractive region,HRR)较窄,除了增大高、低折射率层的折射率反差外[21] ,如果适当地引入无序,也可以使HRR 变宽[6,22] .当前对一维系统光局域的理论[23)30] 和实 验 [31] 研究表明,如果在一维多层周期膜系(一维光 子晶体)中引入无序,光就会被局域起来.因此,可以利用这种特性,来实现光子晶体的一些特殊用途.本文就是利用这样的特性,在理论上设计了THz 波段的F -P 光子晶体滤波器,并借助于成熟的半导体工艺制备出具备此性质的样品. 21THz 波段F -P 滤波器的设计 常规的超窄带通滤光片多采用类似于F -P 干涉仪的结构,即在两个K P 4膜系构造的高反射层间夹共振腔的设计.这种设计可以给出带宽非常窄的滤光片,但它对膜系中厚度的涨落非常敏感.只要膜层厚度出现微小的涨落,就会使滤光片的性能明显退化.为此,我们提出用非周期型的膜系替代常规的两 第55卷第7期2006年7月1000-3290P 2006P 55(07)P 3725-05 物 理 学 报 AC TA PHYSIC A SINICA Vol.55,No.7,July,2006 n 2006Chin.Phys.Soc.

新型宽带大动态毫米波器件及应用中的微波光子学基础研究论文已处理

新型宽带大动态毫米波器件及应用中的微波光子学基 础研究论文 项目名称: 新型宽带大动态毫米波器件及应用中的微波光子学基础研究 首席科学家: 起止年限: 依托部门: 一、研究内容 围绕三个关键科学问题,对六项内容展开研究: 1.基于全光频域信号变换的复杂宽带毫米波信号的产生 (1)光频梳新原理与新方法研究 研究以较低频率的微波调制信号通过电光调制变换产生宽带光谱的新方法。研究激光器相位噪声与微波信号的相互作用机理,揭示光源相位噪声对输出谱线相位影响的内在规律;探索进一步增大输出光谱可利用带宽的新方法。 (2)光学非线性光频谱扩展与光频梳稳定的机制研究 将基于非线性光学理论,研究多谱线光谱扩展与稳定的方法。研究高功率密度的多光频分量在高非线性器件中的相互作用机理,揭示非线性过程对频谱相位噪声影响的内在规律;研究高转换效率的非线性光谱展宽技术和相关器件的实现方法;研究反馈控制回路特性、光腔稳定方法等对频谱噪声、抖动等特性的影响,探索获得高稳定度带宽光谱输出的新方法。 (3)全光频域信号变换机制对光生毫米波信号保真度的作用研究 研究全光频域信号变换中的信号失真与混叠机理;研究空域光束分布及

变换方式等对波形失真影响的机理。 2. 光波相位控制机理与毫米波稳相传输 (1)毫米波光纤传输中相位噪声的形成与演化过程研究 研究光纤色散、非线性、偏振效应与毫米波相位噪声之间的物理关联性,揭示毫米波光纤传输中相位噪声的形成与演化机理,为毫米波传输相位噪声的控制提供依据。 (2)光纤传输的时域非互易性规律及其对稳相精度的影响研究 探索基于时域非互易的光纤传输稳相理论,研究非互易性控制方法。重点研究光纤相位扰动互易性与光纤物理参数之间的规律;研究高精度、大范围的光波相位误差检测理论和方法,创建基于光波相位误差检测的光纤传输相位测量系统;探索新型的相位校正理论和方法。 (3)毫米波相位控制机制与毫米波光子移相器的研究 光波相位与毫米波相位之间的相互作用和控制机制,研究基于光波相位控制的毫米波光子相位控制方法;研制相应的毫米波光子移相器。 (4)相位误差检测机制与光波、毫米波鉴相器的研究 研究毫米波鉴相精度与非线性混频效率和激光相位噪声之间的物理关联性,研究基于光学非线性效应的毫米波相位误差检测机制;研制高精度的毫米波光子鉴相器。 3.光-毫米波频谱转换理论与宽带毫米波的动态可重构信号处理 (1)光载毫米波信道化滤波器的原理与方法 研究PS-FBG的结构、提高PS-FBG通带和截止带之间过渡带斜率的工艺。面向频率覆盖至300GHz及以上频段,研究增强PS-FBG透过谱带宽的理论与工艺。

光子晶体传感器——开题报告重点

1.研究的背景和意义 1.1光子晶体的发展背景及意义 微波波段的逞隙常称为电磁带隙(ElectromagneticBand-Gap,简称为EBG),光子晶体的引入为微波领域提供了新的研究方向。光子晶体完全依靠自身结构就可实现带阻滤波,且结构比较简单,在微波电路、微波天线等方面均具有广阔的应用前景。国外在这一方面的研究已经取得了很多成果,而国内的研究才刚刚起步,所以从事光子晶体的研究具有重要的意义。光子晶体是指具有光子带隙(Photonic Band-Gap,简称为PBG)特性的人造周期性电介质结构,有时也称为PBG结构。所谓的光子带隙是指某一频率范围的波不能在此周期性结构中传播,即这种结构本身存在“禁带”。这一概念最初是在光学领域提出的,现在它的研究范围已扩展到微波与声波波段。由于这种结构的周期尺寸与“禁带”的中心频率对应的波长可比拟,所以这种结构在微波波段比在光波波段更容易实现。微波波段的逞隙常称为电磁带隙(Electromagnetic Band-Gap,简称为EBG),光子晶体的引入为微波领域提供了新的研究方向。光子晶体完全依靠自身结构就可实现带阻滤波,且结构比较简单,在微波电路、微波天线等方面均具有广阔的应用前景。国外在这一方面的研究已经取得了很多成果,而国内的研究才刚刚起步,所以从事光子晶体的研究具有重要的意义。 1.2光子晶体传感器的优点 光子晶体传感器是利用光子晶体的特性做城的传感器。光传感器由于具有不受电磁干扰、灵敏度高等优点,已引起人们的广泛兴趣。新型光学微传感器能够准确测定周围介质的物理、化学、生物性质,它的设计对于实际应用和科学研究具有重要意义。 2.国内外研究的现状: 3.拟采取的解决方案; 与半导体晶格对电子波函数的调制相类似,光子带隙材料能够调制具有相应波长的电磁波---当电磁波在光子带隙材料中传播时,由于存在布拉格散射而受到调制,电磁波能量形成能带结构。能带与能带之间出现带隙,即光子带隙。所具能量处在光子带隙内的光子,不能进入该晶体。因而光子带隙的变化可以从光的频率的变化上反映出来,从而反映出外界环境的变化。 4.预期得到的结果、 我们希望通过一系列的调查研究探索,能够选择合适的材料,通过软件和合适的算法来分析出材料的光子晶体带隙结构及其受到外界环境影响时的变化规律,根据此规律提出一种理论上可行的光子晶体传感器的方案。并通过软件仿真等手段,验证此方案的准确性。5.课题进度计划 三月份:确立研究方向,根据以前所搜集的资料,研究内容,目标方法,步骤和进度做出开题报告。 四月份:分析材料结构,根据调查、分析所得的数据作出以后研究、设计的流程图。

晶体管电子滤波器

直流电源滤波电路及电子滤波器原理分析 整流电路是将交流电变成直流电的一种电路,但其输出的直流电的脉动成分较大,而一般电子设备所需直流电源的脉动系数要求小于0.01.故整流输出的电压必须采取一定的措施.尽量降低输出电压中的脉动成分,同时要尽量保存输出电压中的直流成分,使输出电压接近于较理想的直流电,这样的电路就是直流电源中的滤波电路。 常用的滤波电路有无源滤波和有源滤波两大类。无源滤波的主要形式有电容滤波、电感滤波和复式滤波(包括倒L型、LC滤波、LCπ型滤波和RCπ型滤波等)。有源滤波的主要形式是有源RC滤波,也被称作电子滤波器。 直流电中的脉动成分的大小用脉动系数来表示,此值越大,则滤波器的滤波效果越差。 脉动系数(S)=输出电压交流分量的基波最大值/输出电压的直流分量 半波整流输出电压的脉动系数为S=1.57,全波整流和桥式整流的输出电压的脉动系数S≈O.67。对于全波和桥式整流电路采用C型滤波电路后,其脉动系数S=1/(4(RLC/T-1)。(T为整流输出的直流脉动电压的周期。) RC-π型滤波电路,实质上是在电容滤波的基础上再加一级RC滤波电路组成的。如图1虚线 框即为加的一级RC滤波电路。若用S'表示C1两端电压的脉动系数,则输出电压两端的脉动系数S=(1/ωC2R')S'。 由分析可知,在ω值一定的情况下,R愈大,C2愈大,则脉动系数愈小,也就是滤波效果就越好。而R值增大时,电阻上的直流压降会增大,这样就增大了直流电源的内部损耗;若增大C2的电容量,又会增大电容器的体积和重量,实现起来也不现实。 为了解决这个矛盾,于是常常采用有源滤波电路,也被称作电子滤波器。电路如图2。它是由C1、R、C2组成的π型RC滤波电路与有源器件--晶体管T组成的射极输出器连接而成的电路。由图2可知,流过R的电流IR=IE/(1+β)=IRL /(1+β)。流过电阻R的电流仅为负载电流的1/(1+β).所以可以采用较大的R,与C2配合以获得较好的滤波效果,以使C2两端的电压的脉动成分减小,输出电压和C2两端的电压基本相等,因此输出电压的脉动成分也得到了削减。 从RL负载电阻两端看,基极回路的滤波元件R、C2折合到射极回路,相当于R减小了(1+β)倍,而C2增大了(1+β)倍。这样所需的电容C2只是一般RCπ型滤波器所需电容的1/β,比如晶体管的直流放大系数β=50,如果用一般RCπ

微波带通滤波器设计

文章编号:1009-8119(2005)12-0036-02 基于SERENADE软件的微波带通滤波器的设计和仿真 张磊夏永祥 (北京理工大学信息科学技术学院,北京 100081) 摘要论述了应用Ansoft 公司的Serenade 8.7 微波仿真软件设计微波带通滤波器的方法,并给出了优化仿真结果。试验结果表明,利用此软件的优化结果设计出的滤波器具有良好的滤波性能,而且无需调试,一致性好,适用于工程设计。 关键词带通滤波器,Ansoft, 耦合微带线 Design and Simulation of Microwave Band-pass Filter Based on SERENADE Zhang Lei Xia Yongxiang (School of Information and Science,Beijing Institute of Technology,Beijing 100081) Abstract In this paper,the method of design and simulation of microwave band-pass filter based on Serenade8.7 was introduced,and one specific design and simulation is given too. Through the result of the test, we can see that the filter designed based on Serenade8.7 has very good performance and consistency. Keywords Microwave filter,Ansoft, Microstrip line 1 引言 在设计模拟电路时,对高频信号在特定频率或频段内的频率分量做加重或衰减处理是个十分重要的任务,因此,微波带通滤波器便成为现代电子系统中的一种关键部件,它的好坏直接决定系统的整体性能。微带平行耦合带通滤波器是工程上较为常见的一种微波带通滤波器,它是根据反对称原型滤波器设计的,这样构成的平行耦合滤波器是关于其中心对称的。它由N节平行耦合微带线组成,两个微带线之间通过平行耦合线进行耦合,这些耦合线的两端开路,长度在中心频率上为半个波长,这种滤波器可看作由N+1个平行耦合节组合而成,这些耦合节在中心频率上是1/4波长。它的输入、输出由微带T型接头与之相连接,输入、输出阻抗为50欧姆。具有结构简单,易于实现微波部件和系统的集成化等优点。 传统的滤波器设计计算方法比较复杂,而且工作量十分大,而由于现在软件技术的飞速发展,设计手段也变得越来越多,工作效率也越来越高。本设计就是利用ANSOFT公司的SERENADE软件来进行设计和优化。 2 设计步骤 本文所述的微波带通滤波器的设计方法主要包括两个部分: 1.将标准切比雪夫低通滤波器变换为符合要求的特定带通滤波器。 ①首先建立归一化低通切比雪夫滤波器的结构; ②利用频率变换将其低通频率特性变换为带通滤波器频率特性。 2.根据将集总参数元件变为分布参数元件的Richards变换和Kuroda规则用分布参数元件实现这些滤波器。 3 设计实例 滤波器设计要求如下。 信号带宽:1638~1658MHz。 插入损耗:小于1.5dB。 带内波动:小于±0.2dB。

晶体滤波器

晶体滤波器 百科名片 晶体滤波器crystal filte,用晶体谐振器组成的滤波器。与LC谐振回路构成的滤波器相比,晶体滤波器在频率选择性、频率稳定性、过渡带陡度和插入损耗等方面都优越得多,已广泛用于通信、导航、测量等电子设备。 目录 简介 革新 分类 1. 分立式晶体滤波器 2. 集成式晶体滤波器 简介 革新 分类 1. 分立式晶体滤波器 2. 集成式晶体滤波器 展开 编辑本段简介 1921年W.G.凯地将晶体谐振器用于各种调谐电路,形成了晶体滤波器的雏形。1927年L.艾斯本希德把晶体谐振器用于真正的滤波电路。1931年W.P.梅森又把它用于格型滤波器。60年代中期,集成式晶体滤波器研制成功,晶体滤波器在小型化方面有了很大发展。石英晶体谐振器是最常用的晶体谐振器之一,它在滤波器中主要用作窄带通滤波器。钽酸锂或铌酸锂晶体谐振器的耦合系数和频率常数较大,适用于制做高频宽带通滤波器。其他压电材料因温度稳定性较差,很少采用。 编辑本段革新 石英晶体谐振器是最常用的晶体谐振器之一,它在滤波器中主要用作窄带通滤波器。钽酸锂 ?? 图1a 或铌酸锂晶体谐振器的耦合系数和频率常数较大,适于制做高频宽带通滤波器。其他压电材料因温度稳定性较差,很少采用。(见压电器件)。当作用于晶体谐振器的电信号频率等于晶体的固有频率时,电能通过晶体的逆压电效应在晶体中引起机械谐振产生机械能;在输出端,正压电效应又将这种机械能转换为电信号。晶体谐振器及其等效电路和阻抗特性如图1。其中,L1、C1和R1分别代表晶体谐振器的动态电感、动态电容和动态电阻;C0为晶体支架和电极间的静态电容。R1通常很小,可忽略不计。这样,图1a的等效电路可视为纯电抗二端网络。谐振器的串联、并联谐振频率f1、f2以 ?? 比值公式 及比值f2/f1分别为 ?? 相关公式 比值 f2/f1随比值C1/C0而异。这个特性可以用来调节晶体滤波器的通频带。例如,谐振器外接一个串联电容器,等效于C1减小、f1升高;而外接一个并联电容器,则等效于C0

光子晶体滤波器

光子晶体滤波器理论基础 2.1 光子晶体概述 2.1.1光子晶体概念 光子晶体也叫光子带隙材料(PBG ),它的概念是在1987年分别由S .John 和E .Yablonovitch 等人提出来的。经过几十年的发展,光子晶体已成为人们非常关注的领域。所谓光子晶体,是一种介电常量呈空间周期性分布的人工介质结构,它具有光子禁带,频率和能量处于禁带内的光子无法进入光子晶体内部,在光子晶体内部完全被禁止存在[12-14]。在固体物理研究发现,晶体中的周期性排列的原子所产生的周期性电势场中的电子有一个特殊的约束作用。在这样的空间周期性电势场中的电子运动是由如下的薛定谔方程决定的: (2.1) 其中)(r V →是电子的势能函数,它有空间周期性。我们求解以上方程(2.1) 可以发现,电子能量E只能取某些特殊值,在某些能量区间内方程无解―― 即电子能量不能落在在这样的能量区间,通常称之为能量禁带。研究发现, 电子在这种周期性结构中的德布罗意波长与晶体的晶格常数有大致相同数 量级。  =0,- E 2m + 2??? ??ψ?????????? ????? ???→→t V r r

从电磁场理论知道,在介电系数呈空间周期性分布的介质中,电 磁场所服从的规律是如下所示的Maxell 方程: 其中,0ε为平均相对介电常数,??? ??→r ε为相对介电常数的调制部分,他 随空间位置作周期性变化,C为真空中的光速,ω为电磁波的频率, ()t r E , 是电磁波的电矢量,可以看到方程式 1.1)和(1.2)具有一定的相似性。事实上,通过对方程式(2)的求解可以发现,该方程式只有在某些特定的频率ω处才有解,而在某些频率ω取值区方程无解。这也就是说,在介电常数呈周期性分布的介质结构中的电磁波的某些频率是被禁止的,通常 图2.1光子禁带示意图 称这些被禁止的频率区间为"光子频率禁带"(Photonic Band Gap ),如图2.1所示,而将具有"光子频率禁带"的材料称作为光子晶体。 而我们正是利用光子晶体的“光子频率禁带”这一特点来制作滤波器,使其满足我们需要的波段要求,具有较大的实际意义。 =0,-+C+??? ??→????????????? ????? ???→t r E r εεω0222(1.2)

【CN209299241U】基于微波光子转换和平衡零拍探测的微波接收机【专利】

(19)中华人民共和国国家知识产权局 (12)实用新型专利 (10)授权公告号 (45)授权公告日 (21)申请号 201920379897.1 (22)申请日 2019.03.25 (73)专利权人 安徽问天量子科技股份有限公司 地址 241000 安徽省芜湖市高新区漳河路 14号 (72)发明人 韩正甫 安雪碧 石英亮 周胜  郝鹏磊 宋红岩 丁禹阳 章丽  王春生 秦武  (74)专利代理机构 江苏斐多律师事务所 32332 代理人 王纯洁 王长征 (51)Int.Cl. H04B 1/18(2006.01) H04B 10/61(2013.01) G01S 7/285(2006.01) G01S 7/35(2006.01) (54)实用新型名称 基于微波光子转换和平衡零拍探测的微波 接收机 (57)摘要 本实用新型公开了一种基于微波光子转换 和平衡零拍探测的微波接收机,包括微波天线及 信号预处理系统、微波光子转换单元和平衡零拍 探测器,微波天线及信号预处理系统与微波光子 转换单元连接,微波光子转换单元与平衡零拍探 测器连接;微波天线及信号预处理系统用于探测 待测物体反馈的回波信号并对回波信号进行预 处理;微波光子转换单元用于将预处理后的微波 信号转换为光子信号;平衡零拍探测器用于接收 微波光子转换单元转换的光子信号和与光子信 号具有固定相位差的本振光并对光子信号和本 振光进行处理从而得到输出信号。本实用新型先 将微波转换为光子,后利用平衡零拍探测器对光 子信号进行探测,可大幅提高微波接收机探测的 灵敏度。权利要求书1页 说明书5页 附图3页CN 209299241 U 2019.08.23 C N 209299241 U

晶体滤波器设计

晶体滤波器设计 图5.1-9 几种切型的频率温度特性曲线由图可知AT切型在-55~+85度之间频率变化都很小,特别是在-20~+40度范围内,频率基本上与温度无关。2、石英谐振器等交电路 及电抗频率特性(1)石英谐振器等效电路模拟晶体谐振点附近情况,它相当于一个串联谐振电路,因此可用集中参数LS、CS、RS来等效,LS称之动态电感,CS称之动态电容,RS称之动态电阻,其基频等效电路见图5.1-10图5.1-10 石英谐振器基频等效电路图中右边支路的电容C0称为石英谐振器的静电容。它是以石英为介质在两极板间形成的电容,其容量主要决定于石英片尺寸和电极面积,可用下式表示;式中E为石英的介电常数;S为极板面积;D为石英片厚度。C0一般在几皮法到几十皮法之间。石英晶体的Q值非常高,是一般LC振荡回路远所不及,Q值与动态参数关系为目前广泛使用的AT切型密封谐振器Q值,一般为(50~300)*10的3次方,而精密型的Q值可达(1~5)*10的8次方。(2)石英谐振器等效电路电抗频率特性由等效电路可知,有两 个谐振角频率,一为左支路的串联谐振角频率WS,即石英片本身自然角频率另一石英谐振器的并联谐振角频率当忽 略动态电阻RS的影响时,由石英晶体和等效电路可求其效电抗X。其电抗频率特性曲线示于图5.1-11。图5.1-11 石

英谐振器电抗频率特性由图5.1-11可见当W大于WPW、W小于WS时电抗JX为容性;当W在WS、WP之间时,电抗JX为感性。石英晶体滤波器工作时,石英晶体两个谐振频率之间的宽度,通常决定滤波器的通带宽度。为要加宽滤波器的通带宽度,则必须加宽石英晶体两谐振频率之间的宽度,这通常可用外加电感与石英晶体串联或并联的方法来实现。表5.1-8示出部分石英晶体的主要性能。差接桥型带通晶体滤波器设计晶体滤波器也有两种方法:一是影象参数法;另一是有效参数法(即综合法)。综合法是目前广泛采用的有效方法。在许多现代电子设备中应用最多的是带通晶体滤波器,按其频带分类有察窄带、中等带宽、宽带三类,其相对带宽分别为小于0.1%以下、0.1%~1%和大于1%。带通晶体滤波器中,以差接桥型或称之格型应用最为普遍,差接桥型电路实际上是惠斯登电桥电路。其典型形式有以下两种:1、窄带差接桥型带通晶体滤波器此种滤波器的零件参数是由网络综合法设计计算得出的。先将全极点归一化低通LC梯型电路转换成带通梯型电路,然后再由巴尔特勒特中剖定理,将梯型电路变换差接型电路或桥型电路或桥型电路,并用晶体谐振器等效来实现。窄带差接桥型带通晶体滤波器电路的设计请参阅文献(7)。2、宽带差接桥型带通晶体滤波器的设计表5.1-9列出了个设计公式和例子。晶体滤波器定型产品的选用目前,国内外都已经生产出具有一定

微波光子信号处理技术

I 光纤布拉格光栅FBG 1、光纤布拉格光栅简述 光纤Bragg 光栅是掺锗单模石英光纤经紫外光照射成栅技术形成的全新光纤型光栅,其结构如图1-1所示。成栅后的光纤纤芯折射率呈现周期性分布条纹并产生Bragg 光栅效应。这种光栅的基本光学特性就是以共振波长为中心的窄带光学滤波器,像镜子一样工作,它只反射Bragg 中心波长B λ的光,而对所有其 它的波长进行传输 。图1-2用输入光波的反射谱和透射谱很直观地说明了这个问题。布拉格波长为 2B eff B n λ=Λ (1-1) 其中eff n 为有效折射率,B Λ为光栅的布拉格周期。 图1-1 光纤布拉格光栅结构示意图 图1-2 光纤布拉格光栅光谱特性说明

2、光纤布拉格光栅的分类 光纤Bragg光栅的周期一般在100nm数量级,按照折射率调制的周期和幅度的不同,可以分为均匀光纤Bragg光栅、啁啾光纤Bragg光栅、相移光纤Bragg 光栅和取样光纤Bragg光栅等等。 均匀光纤Bragg光栅的特点就是光栅的周期和折射率调制度大小均为常数,是最常见的一种光纤光栅。 啁啾光纤Bragg光栅就是在普通的均匀光栅中引入啁啾量,即光栅周期不再是一个恒定值,而是随位置而改变。光栅的Bragg反射波长是关于光栅周期的一个函数,因此它也随位置而改变。图1-3所示为啁啾光纤光栅的结构示意图。 图1-3 啁啾光纤光栅的结构图 相移光纤光栅的特点是光栅在某些位置发生相位跳变,通常是P相位跳变,从而改变光谱的分布。相移的作用是在相应的反射谱中打开一个缺口,相移的大小决定了缺口在反射谱中的位置,而相移在光栅波导中出现的位置决定缺口的深度,当相移恰好出现在光栅中央时缺口深度最大,因此相移光纤光栅可用来制作窄带通滤波器,也可用于分布反馈式光纤激光器。 采样光纤光栅的特点是光栅由许多小段光栅构成,折变区域不连续,如果这种不连续区域的出现有一定周期性则又称为超结构光栅,其反射谱出现类似梳状滤波的等间距尖峰,且光栅长度越长则每个尖峰的带宽越窄,反射率越高;采样光栅结构示意图如图1-4所示。

450KHZ--150MHZ的晶体滤波器简介

深圳市格利特电子有限公司是石英晶体系列产品的专业供应商,是日本SORACHI公司的中国代理商,能提供频率范围从450KHZ--150MHZ的晶体滤波器系列型号。 代理商,能提供频率范围从450KHZ 150MHZ的晶体滤波器系列型号。*产品广泛用于:无线通信、对讲机、基站、载波通信、卫星通信、广播、邮电、导航、数传、数控、 遥控、遥测、电子仪器、视频控制系统等通讯设备。 封 装HC-49U/T UM-1 UM-5 5*7mm 3.8*3.8mm 53*15*15mm 极 数带 宽 455KHZ 456KHZ 486KHZ 518KHZ 7.8MHZ 8MHZ 8.9MHZ 10.7MHZ 169MHZ 179MHZ 214MHZ 217MHZ 2305MHZ 24349MHZ 2 Pole 4 Pole 6 Pole 8 Pole 3.75KHz 4KHz 5KHz 6KHz 7.5KHz 12.5KHz 15KHz 16.9MHZ 17.9MHZ 21.4MHZ 21.7MHZ 23.05MHZ 24.349MHZ 24.555MHZ 25MHZ 25.655MHZ 25.550MHZ 26.450MHZ 29.25MHZ 30.850MHZ 30.875MHZ 31.050MHZ 32.768MHZ 35.40MHZ 38.4MHZ 38.850MHZ 44.850MHZ 45.000MHZ 46.300MHZ 46.350MHZ 47.20MHZ 45.1MHZ 49.950MHZ 50.720MHZ 70-70.05MHZ 55.025-55.1MHZ 55.00MHZ 55845MHZ 581125MHZ 59850MHZ 95700MHZ 73350MHZ 82200MHZ 频 率 55.845MHZ 58.1125MHZ 59.850MHZ 95.700MHZ 73.350MHZ 82.200MHZ 85.380MHZ 78.450MHZ 86.5125MHZ 90.00MHZ 106.95MHZ 110.52MHZ 112.32MHZ 128.45MHZ 130-130.05MHZ 135MHZ 183.6MHZ 243.96MHZ 通用频率长期备有现货,可为客户订制各种特殊功能、特殊用途的晶体滤波器。 具体型号请浏览网站 *具体型号请浏览网站:https://www.360docs.net/doc/a713718063.html,/chn/products2.asp?FactureID=38 如有兴趣,随时欢迎您的查询,我公司可免费提供样板及相关的产品规格资料! https://www.360docs.net/doc/a713718063.html, 我们的信念:专业、专注、以最合理的价格为您奉上最高性能、最佳品质的石英晶体元器件,将竭诚为中外客户服务!感谢有您的支持! 石英晶体系列产品专业供应商 如需了解更多信息敬请联系: 深圳市格利特电子有限公司 Tel : +86-755-83476790 Fax : +86-755-82523601 E-mail : sales@https://www.360docs.net/doc/a713718063.html, QQ :598306447 Http//:https://www.360docs.net/doc/a713718063.html,

光子晶体及其器件的研究进展

深圳大学研究生课程论文题目光子晶体及其器件的研究进展成绩 专业 课程名称、代码 年级姓名 学号时间2016年12月 任课教师

子晶体及其器件的研究进展 摘要:光子晶体是一种具有光子带隙的新型材料,通过设计可以人为调控经典波的传输。由 于光子晶体具有很多新颖的特性,使其成为微纳光子学和量子光学的重要研究领域。随着微加工技术的进步和理论的深入研究,光子晶体在信息光学以及多功能传感器等多个学科中也得到了广泛应用。本文介绍了光子晶体及其特征,概述了光子晶体器件的设计方法和加工制作流程,论述现阶段发展的几种光子晶体器件,并对光子晶体器件的发展趋势做了展望。 关键词:光子晶体;光子晶体的应用;发展趋势 Research progress of photonic crystals and devices Abstract:Photonic crystal is a new material with photonic band gap, which can regulate the transmission of classical wave artificially. Because it has many novel properties of photonic crystal, which is becoming an important research field of micro nano Photonics and quantum optics. With the progress of micro machining technology and theoretical research, photonic crystals have been widely used in many fields such as information optics and multifunction sensors. This paper introduces the photonic crystals and its characteristics, summarizes the design method and process of the photonic crystal devices in the production process, discusses several kinds of photonic crystal devices at this stage of development, and the development trend of photonic crystal devices is prospected. Key words:Photonic crystal; application of photonic crystal; development trend 1引言 在过去的半个世纪里,随着人们对电子在物质尤其是半导体中运动规律的研究,使得对电子控制能力的增加,从而产生了各种微电子器件以及大规模的集成电路,推动了电子工业和现代信息产业的迅猛发展,半导体技术在人们生活中扮演着越来越重要的角色。目前半导体技术正向着高速化和高集成化方向的发展,不可避免地引发了一系列问题。当信息处理的频率和信号带宽越来越高时,通过金属线传输电子会带来难以克服的发热问题和带宽限制;而线宽减小到深纳米尺度时,相邻导线的量子隧穿效应成为电子器件发展的重要瓶颈。这迫使人们越来越关注光信息处理技术,并尝试用光器件来替代部分传统电子器件,以突破上述瓶颈限制。实现这一目标的关键在于如何将光子器件尺寸降低至微纳米量级,并能与微电子电路集成在同一芯片上。 目前比较有效的方法有三种:纳米线波导,表面等离子体和光子晶体。其中,光子晶体具有体积小、损耗低和功能丰富等多种优点,被认为是最有前途的光子集成材料,称为光子半导体[1],它是1987年才提出的新概念和新材料。这种材料有一个显著的特点是它可以如人所愿地控制光子的运动。由于其独特的特性,光子晶体可以制作全新原理或以前所不能制作的高性能光学器件,在光通讯上也有重要的用途,如用光子晶体器件来替代传统的电子器件,信息通讯的速度快得

第2章 光子晶体及光子晶体滤波器的理论基础

第2章 光子晶体及光子晶体滤波器理论基础 2.1 光子晶体概述 2.1.1光子晶体概念 光子晶体也叫光子带隙材料(PBG ),它的概念是在1987年分别由S .John 和E .Yablonovitch 等人提出来的。经过几十年的发展,光子晶体已成为人们非常关注的领域。所谓光子晶体,是一种介电常量呈空间周期性分布的人工介质结构,它具有光子禁带,频率和能量处于禁带内的光子无法进入光子晶体内部,在光子晶体内部完全被禁止存在[12-14]。在固体物理研究发现,晶体中的周期性排列的原子所产生的周期性电势场中的电子有一个特殊的约束作用。在这样的空间周期性电势场中的电子运动是由如下的薛定谔方程决定的: (2.1) 其中)(r V →是电子的势能函数,它有空间周期性。我们求解以上方程(2.1) 可以发现,电子能量E只能取某些特殊值,在某些能量区间内方程无解―― 即电子能量不能落在在这样的能量区间,通常称之为能量禁带。研究发现, 电子在这种周期性结构中的德布罗意波长与晶体的晶格常数有大致相同数 量级。 从电磁场理论知道,在介电系数呈空间周期性分布的介质中,电 磁场所服从的规律是如下所示的Maxell 方程:  =0,- E 2m + 2??? ??ψ????? ????? ????? ???→→t V r r

其中,0ε为平均相对介电常数,??? ??→r ε为相对介电常数的调制部分,他 随空间位置作周期性变化,C为真空中的光速,ω为电磁波的频率, ()t r E , 是电磁波的电矢量,可以看到方程式 1.1)和(1.2)具有一定的相似性。事实上,通过对方程式(2)的求解可以发现,该方程式只有在某些特定的频率ω处才有解,而在某些频率ω取值区方程无解。这也就是说,在介电常数呈周期性分布的介质结构中的电磁波的某些频率是被禁止的,通常 图2.1光子禁带示意图 称这些被禁止的频率区间为"光子频率禁带"(Photonic Band Gap ),如图2.1所示,而将具有"光子频率禁带"的材料称作为光子晶体。 而我们正是利用光子晶体的“光子频率禁带”这一特点来制作滤波器,使其满足我们需要的波段要求,具有较大的实际意义。 2.1.2光子能带理论 错误!未找到引用源。 由电子的能带理论知道,当把电子的运动近似地 =0,-+C+??? ??→????????????? ????? ???→t r E r εεω0222(1.2) 禁带 波矢

微波光子滤波器的研究进展及其在ROF系统中的应用

微波光子滤波器的研究进展及其在ROF系统中的应用 1微波光子滤波器概述 1.1微波光子滤波器的发展及应用 微波光子滤波器是一个利用光学方法处理微波信号并实现滤波功能的光学子系统。传统电子技术的滤波技术是直接将射频信号下变频后在电路中进行处理,相对缺少灵活性,系统易受电磁波的干扰;受到频带及采样频率等电子瓶颈的限制。而微波光子滤波技术是在光域上处理载有的电信号,利用光纤、光学链路、光电子器件等对信号采样、加权、相加等处理。由于微波光子滤波器是用光学的方法处理微波信号,它可以克服传统的电滤波器的“电子”瓶颈。传统的采样频率最高只能达到几千兆赫兹左右,而微波光信号处理则可以达到上千亿赫兹,这将给高速无线通信提供良好的基础。比起传统的电子滤波器,微波光子滤波器用光学的方法处理微波信号,这种方法利用了光纤延迟线损耗小、抗电磁干扰、体积小、重量轻、能提供较宽的工作带宽和高速的取样频率等优势;并且微波光子滤波器更容易实现可调和可重构。这些优点使得微波光子滤波器的应用非常广泛。 微波光子滤波器可以在现代高速光纤无线接入网中得到广泛的应用。既可以应用到地面雷达系统中,也可以应用到从通用移动通信系统(UMTS: universal Mobile Telecommunication system)到固定接入微蜂窝网络中的宽带无线接入网及相关标准中(例如无线局域网(WLAN: Wireless Local Area Network)、全球互操作性微波接入(WIMAx: world Interoperability for Microwave Access) 以及局域多点分布服务(LMDS: Local Multipoint Distribution Service),另外,由于重量轻的特点,微波光子滤波器的在数字卫星通信系统中也有广泛的应用。这些技术都希望通过提高微波频率,减小微波信号的覆盖范围来提高传输的信道容量,而利用ROF 系统技术提高系统的传输容量,它利用宽带光纤无线技术能实现大容量无线射频信号的有线传输和超宽带无线接入。 1.2微波光子滤波器的研究现状 微波光子滤波器的研究兴起于国外,早在1976年,wilter和V ander Heuvel第一次提出了把光纤作为色散介质应用在微波信号处理中,他们最早认识到光纤的低损耗和大带宽的特性使其在宽带延迟线方面有广阔的前景。在20世纪70年代,一些研究人员如C.Chang,H.F.Taylor:等人致力于研究如何用利用多模光纤实现基于离散时间微波信号的光处理。在20世纪80年代,美国斯坦福大学Goodman,Shaw等人进行了大量的理论和实验研究,集中在用单模光纤延迟线实现微波光子处理技术。此后,更多的抽样元件和色散机制被应用于微波滤波器的研究,使其能够在更复杂的时域和频域上进行信号处理。20世纪80年代末,随着光放大器、耦合器、调制器、电光开关等光电器件的发展,微波光子处理的方法更加灵活,但是大多数研究仍然是集中在光纤的延迟线基础上。然而,光纤布拉格光栅(FBG)和阵列波导光栅(A WG)的出现给全光微波信号处理的应用提供了更为广阔的前景,提高了微波光子信号处理的重构性以及可调节性。 此后,D.B Hunte和R.A.Minasian等人第一个提出了单光源的连续可调滤波器,实验中耦合器两个不同输入端分别连接长凋啾光栅,通过调节光源的波长,可以线性控制其在光栅中反射点,从而控制了两个反射波的时间延迟。2001年J.Mora等人研究了基于阵列激光器的多光源微波光子滤波器,它可以快速而独立的重构和调节滤波器,但是成本太高;而将光纤光栅(FBG)应用在基于光源切片的微波光子滤波器的方法不仅可以降低成本,而且使得滤波器具有更多的灵活性;由于微波光子滤波器频率响应的周期性使得它的实际应用受到了一定的限制,2005年,J.Capmany和J.Mora等人研究了单频响应的微波光子滤波器,文章中

综述光子晶体的研究进展

光子晶体的最新研究进展 (学号:SA12231016 姓名:陈飞虎) 摘要:光子晶体(Photonic Crystal)是在1987年由S.john[1]和E.Yablonovitch[2]分别独立提出,是由不同折射率的介质周期性排列而成的人工微结构。在这二十多年的发展当中,光子晶体已在光通信技术、材料科学和激光与光电子学等方面都取得了相应的进展。本文阐述了光子晶体在各方面所取得的相应进展,并探讨光子晶体在各个领域的最新研究状况。 关键词:光子晶体研究进展 1 引言 自光子晶体这一概念提出以来,它就成为各个学科领域的科学家们关注的热点。光子晶体(Photonic crystals)材料又称为光子带隙(Photonic band gap,PBG)材料,指介电常数(折射率)周期性变化的材料。电子在固态晶体的周期性势垒下能形成电子带隙,光子晶体的周期性晶格对光的布拉格散射可以形成光子带隙, 频率处在光子带隙中的光被禁止进入光子晶体。若光子晶体中某个地方不满足周期性,即引入了缺陷,禁带中就会出现缺陷态,缺陷态具有很高的光子态密度。采用各种材料,设计不同的光子晶体结构和引入不同的缺陷类型以及缺陷组合,可以制作出功能和特性各异的微纳光子器件。因光子晶体具有光子带隙和光子局域两大优越特点,所以它在发光二极管、多功能传感器、光通讯、光开关、光子晶体激光器等现代高新技术领

域[3-4]有着广泛应用。当前所制备的光子晶体大多不可调,但对于可调制光子晶体的带隙可以调控,电介质的折射率和光子晶体的晶格常数决定了光子带隙的宽度和位置,故改变外部环境,如加电场、磁场、压力或温度等,均能对光子禁带进行调制。因此可调控的光子晶体成为各个应用领域的研究热点和方向。 2 光通信技术方向的研究进展 传统波导利用的是全内反射原理,当波导弯曲较大时,电磁波在其中的传播不再符合全反射原理,以至于弯曲损耗较大。而光子晶体波导采用的是不同方向缺陷模共振匹配原理,因而光子晶体波导不受转角限制,有着极小的弯曲损耗。理论上,当波导弯曲 90°时,传统波导会有 30%的损失,而光子晶体波导的损耗只有 2%[5]。另外,光子晶体波导的尺度可以做得很小,达到波长量级;因此,光子晶体波导不仅在光通信中有着十分重要的应用,在未来大规模光电集成、光子集成中也将具有极其重要的地位。 光子晶体光纤(PCF) 由于它的包层中二维光子晶体结构能够以从前没有的特殊方式控制纤芯中的光波,使其具有诸多优异的光学特性,如无截止单模传输特性、可调节的色散特性、高双折射特性、大模面积和高非线性特性等,因此PCF的研究一直是光通信和光电子领域科学家们关注的热点。目前,世界各国对PCF的研究如火如荼,在PCF的色散、带隙、非线性特性及应用方面均有了长足进展。PCF的

相关文档
最新文档