考虑下列整数非线性规划问题使用动态规划解这个问题

考虑下列整数非线性规划问题使用动态规划解这个问题
考虑下列整数非线性规划问题使用动态规划解这个问题

第五章 整数规划练习题答案教程文件

第五章整数规划练习 题答案

精品资料 仅供学习与交流,如有侵权请联系网站删除 谢谢2 第五章 整数规划练习题答案 一. 判断下列说法是否正确 1. 用分枝定界法求解一个极大化的整数规划问题时,任何一个可行整数解的目标函数值是 该问题目标函数值的下界。( ) 2. 用割平面法求解整数规划时,构造的割平面有可能切去一些不属于最优解的整数解。( ) 3. 用割平面法求解纯整数规划时,要求包括松弛变量在内的全部变量必须取整数值。( ) 4. 指派问题数学模型的形式与运输问题十分相似,故也可以用表上作业法求解。( ) 二. 设有五项工作要分派给五个工人,每人的作业产值如下表所示,为了使总产值最大,问 应如何分配这五项工作,并求得最大产值。 答案: 设原矩阵为A ,因求极大问题,令B=[M-a ij ],其中M=Max {a ij }=10,则: 16425105 3140 42132 510425 1042 4003B 13752102641015406241515130450203057470574704646111 -???? ?? ? ? ? ? ? ? ? ? ? =→→- ? ? ?- ? ? ? ? ? ??????? --- m 4n 5 l m 44213421324324315415452352346464646=<===???? ? ??? ? ? ? ?→→????→?? ? ? ?? ? ? ? ???????0 3102340031 15406020303535?? ? ? ? ? ? ??? 31234311546233535??? ?? ? ?→ ?? ? ??? m=5=n ,得最优解。解矩阵*00 01000100X 00 0010100010000?? ? ? ?= ? ? ??? 。

整数规划割平面法

割平面法 求解整数规划问题: Max Z=3x 1+2x 2 2x 1+3x 2?14 4x 1+2x 2?18 x 1,x 2?0,且为整数 解:首先,将原问题的数学模型标准化,这里标准化有两层含义:(1)将不等式转化为等式约束,(2)将整数规划中所有非整数系数全部转化为整数,以便于构造切割平面。从而有: Max Z=3x 1+2x 2 2x 1+3x 2+x 3=14 2x 1+x 2+x 4=9 x 1,x 2?0,且为整数 利用单纯形法求解,得到最优单纯形表,见表1: 表1

最优解为:x 1=13/4, x 2=5/2, Z=59/4 根据上表,写出非整数规划的约束方程,如: x 2+1/2x 3-1/2x 4=5/2 (1) 将该方程中所有变量的系数及右端常数项均改写成“整数与非负真分数之和”的形式,即: (1+0)x 2+(0+1/2)x 3+(-1+1/2)x 4=2+1/2 把整数及带有整数系数的变量移到方程左边,分数及带有分数系数的变量称到方程右边,得: x 2 - x 4-2 =1/2-(1/2x 3+1/2x 4) (2) 由于原数学模型已经“标准化”,因此,在整数最优解中,x 2和x 4也必须取整数值,所以(2)式左端必为整数或零,因而其右端也必须是整数。又因为x 3,x 4?0,所以必有:

由于(2)式右端必为整数,于是有: 1/2-(1/2x 3+1/2x 4)?0 (3) 或 x 3+x 4?1 (4) 这就是考虑整数约束的一个割平面约束方程,它是用非基变量表示的,如果用基变量来表示割平面约束方程,则有: 2x 1+2x 2?11 (5) 从图1中可以看出,(5)式所表示的割平面约束仅割去线性规划可行域中不包含整数可行解的部分区域,使点E(3.5,2)成为可行域的一个极点。 图1 在(3)式中加入松弛变量x 5,得: -1/2x 3-1/2x 4+x 5=-1/2 (6) 将(6)式增添到问题的约束条件中,得到新的整数规划问题: Max Z=3x 1+2x 2 2x 1+3x 2+x 3=14 2x 1+x 2+x 4=9

利用修正单纯形法解线性规划问题精

利用修正单纯形法解线性规划问题一软件示意:

二代码说明: Dim A(1 To 3, 1 To 6) As Double '矩阵A Dim a1(1 To 3) As Double '矩阵A的第一列向量 Dim a2(1 To 3) As Double '矩阵A的第二列向量 Dim a3(1 To 3) As Double '矩阵A的第三列向量 Dim a4(1 To 3) As Double '矩阵A的第四列向量 Dim a5(1 To 3) As Double '矩阵A的第五列向量 Dim a6(1 To 3) As Double '矩阵A的第六列向量 Dim B_(1 To 3, 1 To 3) As Double '基矩阵B的逆矩阵 Dim XB(1 To 3) As Double '基本可行解 Dim b(1 To 3) As Double '右端向量b Dim C(1 To 6) As Double '检验数 Dim CB(1 To 3) As Double '基本可行解对应的检验数 Dim π(1 To 3) As Double '单纯形乘子矢量 Dim r(1 To 6) As Double '检验矢量r Dim r_min As Double '检验矢量最小值 Dim k_sign As Integer '检验矢量最小值对应的位置 Dim Y(1 To 3, 0 To 6) As Double '矩阵y Dim just_vector(1 To 3) As Double Dim liji_min As Double '用于判断离基变量所用值 Dim r_sign As Integer '用于记录离基变量对应的位置 Dim main_yuan As Double '用于存放主元 Dim Erk(1 To 3, 1 To 3) As Double Dim Exchange_B(1 To 3, 1 To 3) '在矩阵Erk与矩阵B_进行乘法运算时,作为矩阵B_的替换矩阵

MATLAB求解线性规划含整数规划和01规划问题.pdf

MATLAB 求解线性规划(含整数规划和0-1规划)问题 线性规划是数学规划中的一类最简单规划问题,常见的线性规划是一个有约束的,变量范围为有理数的线性规划。如: max 712z x y =+ 9430045200s.t 310300,0 x y x y x y x y +≤??+≤??+≤??≥? 对于这类线性规划问题,数学理论已经较为完善,可以有多种方法求解此类问题。但写这篇文章的目的并不是为了介绍数学理论,我们这里主要讲解如果利用工具求解这一类线性规划问题。 最著名,同时也是最强大的数学最优化软件是LINGO/LINDO 软件包,它能够求解多种的数学规划问题,同时还提供了多种的分析能力。但LINGO 软件并不容易上手,同时,应用LINGO 的场合一般是大规模的线性规划问题,小小的线性规划完全可以不使用它。一个更受科研人员欢迎的数学软件是MATLAB ,它以功能强大而称著,并有数学软件中的“航空母舰”之称。我们这里就是要学习使用MATLAB 软件求解线性规划(含整数规划和0-1规划)问题。 为了使得不熟悉MATLAB 的人员也能够使用MATLAB 进行线性规划问题求解,本文将对MATALB 中使用到的函数和过程以及结果进行详细的分析,最后会对每一个问题都给出一个可以完全“套用”的MATLAB 程序。 我们首先从上面的线性规划问题开始,为了便于表达,将上面的式子写成矩阵形式: max 712z x y =+ 9430045200s.t 310300,0x y x y ???????? ? ??≤? ? ? ???? ? ???????≥? 于是约束就表达为了一个Ax b ≤不等式。 求解MATLAB 线性规划时,最常用的函数是linprog 函数,下面来介绍一下这个函数的使用。 打开MATLAB 帮助文档(PS:帮助文档的内容是最全的,只要你的英文过了专业8级),可以看到linprog 函数求解的是具有如下标准形式的线性规划:

割平面法

题目:割平面法及其数值实现 院系:数理科学与工程学院应用数学系 专业:数学与应用数学 姓名学号:*** 1****** *** 1****** *** 1****** *** 1****** 指导教师:张世涛 日期:2015 年 6 月11 日

整数规划与线性规划有着密不可分的关系,它的一些基本算法的设计都是从相应的线性规划的最优解出发的。整数规划问题与我们的实际生活有着密切的联系,如合成下料问题、建厂问题、背包问题、投资决策问题、旅行商问题、生产顺序表问题等都是求解整数模型中的著名问题。所以要想掌握生活中这些解决问题的方法,研究整数规划是必然的路径。用于解决整数规划的方法主要有割平面法,分支定界法,小规模0-1规划问题的解法,指派问题和匈牙利法。本文重要对整数规划中经常用的割平面法加以介绍及使用Matlab 软件对其数值实现。 割平面法从线性规划问题着手,在利用单纯型法的时候,当约束矩阵中出现分数,给出一种"化分为整"的方法。然后在割平面方法来解决整数线性规划的理论基础上,把"化分为整"的方法进行到底,直到求解出最有整数解。 关键词:最优化;整数规划;割平面法;数值实现;最优解;Matlab软件。 Abstract The integer programming are closely related to the linear programming. Some of the basic algorithms of the former are designed from the optimal solution of the corresponding linear programming. What’s more, our daily life has a close relationship with it as well, such as synthesis problem, plant problem, knapsack problem, investment decision problem, traveling salesman problem and production sequence table problems. They are famous questions in solving integer model. So, to study the integer programming is the inevitable way to master the methods of solving these problems in life. The methods used in solving the integer programming include cutting plane method, branch and bound method, and solving the problem of small-scale 0-1 programming, assignment problem and Hungarian method. In this paper, we introduce the cutting plane method and use Matlab to get its numerical implementation in the integer programming. Cutting plane method, giving us a "integrated" method when we meet the constraint matrix scores in the use of simplex method, starts from the linear programming problem. Then, based on the theory of cutting plane method to solve the integer linear programming, we use “integrated” method until the most integer solution is solved. Keywords:Optimization; Integer programming; Cutting plane method; Numerical implementation; Optimal solution; Matlab software.

整数规划(割平面法)

割平面法 求解整数规划问题: Max Z=3x1+2x2 2x1+3x2?14 4x1+2x2?18 x1,x2?0,且为整数 解:首先,将原问题的数学模型标准化,这里标准化有两层含义:(1)将不等式转化为等式约束,(2)将整数规划中所有非整数系数全部转化为整数,以便于构造切割平面。从而有:Max Z=3x1+2x2 2x1+3x2+x3=14 2x1+x2+x4=9 x1,x2?0,且为整数 利用单纯形法求解,得到最优单纯形表,见表1: 表1

最优解为:x1=13/4, x2=5/2, Z=59/4 根据上表,写出非整数规划的约束方程,如:x2+1/2x3-1/2x4=5/2 (1) 将该方程中所有变量的系数及右端常数项均改写成“整数与非负真分数之和”的形式,即:(1+0)x2+(0+1/2)x3+(-1+1/2)x4=2+1/2 把整数及带有整数系数的变量移到方程左边,分数及带有分数系数的变量称到方程右边,得:x2 - x4-2 =1/2-(1/2x3+1/2x4) (2) 由于原数学模型已经“标准化”,因此,在整数最优解中,x2和x4也必须取整数值,所以(2)式左端必为整数或零,因而其右端也必须是整数。又因为x3,x4?0,所以必有: 1/2-(1/2x3+1/2x4)<1 由于(2)式右端必为整数,于是有: 1/2-(1/2x3+1/2x4)?0 (3) 或 x3+x4?1 (4) 这就是考虑整数约束的一个割平面约束方程,它是用非基变量表示的,如果用基变量来表示割平面约束方程,则有: 2x1+2x2?11 (5)

从图1中可以看出,(5)式所表示的割平面约束仅割去线性规划可行域中不包含整数可行解的部 分区域,使点E,2)成为可行域的一个极点。 图1 在(3)式中加入松弛变量x5,得: -1/2x3-1/2x4+x5=-1/2 (6) 将(6)式增添到问题的约束条件中,得到新的整数规划问题: Max Z=3x1+2x2 2x1+3x2+x3=14 2x1+x2+x4=9 -1/2x3-1/2x4+x5=-1/2 x i?0,且为整数,i=1,2,…,5 该问题的求解可以在表1中加入(6)式,然后运用对偶单纯形法求出最优解。具体计算过程见表2: 表2

第五章 整数规划练习题答案

第五章 整数规划练习题答案 一. 判断下列说法是否正确 1. 用分枝定界法求解一个极大化的整数规划问题时,任何一个可行整数解的目标函数值是 该问题目标函数值的下界。() 2. 用割平面法求解整数规划时,构造的割平面有可能切去一些不属于最优解的整数解。() 3. 用割平面法求解纯整数规划时,要求包括松弛变量在内的全部变量必须取整数值。() 4. 指派问题数学模型的形式与运输问题十分相似,故也可以用表上作业法求解。() 二. 设有五项工作要分派给五个工人,每人的作业产值如下表所示,为了使总产值最大,问 应如何分配这五项工作,并求得最大产值。 工作 工人 A & B C D E 甲 9 4 6 8 5 \ 乙 8 5 9 10 6 丙 9 7 3 ' 5 8 丁 4 8 6 9 5 戊 10 ; 5 3 6 3 答案: 设原矩阵为A ,因求极大问题,令B=[M-a ij ],其中M=Max {a ij }=10,则: 16425105 3140 42 13251042510424003B 1 3752102 64 10 154062415151 3045 020305 7470574704646111-?????? ? ? ? ? ? ? ? ? ? =→→- ? ? ?- ? ? ? ? ? ??????? --- m 4n 5l m 4 4 21342132432431541545235234 6 4 64 6 4 6=<===? ??? ? ??? ? ? ? ?→→????→?? ? ??? ? ? ? ???? ? ? ? 031023 4003115406020303535?? ? ? ? ? ? ?? ? 31234311546233 5 3 5? ?? ?? ? ?→ ?? ? ?? ? m=5=n ,得最优解。解矩阵*0001000100X 0000101 00010000?? ? ? ?= ? ? ??? 。

整数线性规划理论

整数线性规划理论 §1 概论 1.1 定义 规划中的变量(部分或全部)限制为整数时,称为整数规划。若在线性规划模型整数线性规划。目前所流行的求解整数规划的方法,往 1.2 如不加特殊说明,一般指整数线性规划。对于整数线性规划模型大致可分为两类: 1o 变量全限制为整数时,称纯(完全)整数规划。 2o 变量部分限制为整数的,称混合整数规划。 1.3 整数规划特点 (i ) 原线性规划有最优解,当自变量限制为整数后,其整数规划解出现下述情况: ①原线性规划最优解全是整数,则整数规划最优解与线性规划最优解一致。 ②整数规划无可行解。 例1 原线性规划为 21min x x z += 0,0,5422121≥≥=+x x x x 其最优实数解为:4 5min ,4 5,021===z x x 。LINGO1.lg4 LINGO11.lg4 ③有可行解(当然就存在最优解),但最优解值变差。 例2 原线性规划为 21m i n x x z += 0,0,6422121≥≥=+x x x x 其最优实数解为:2 3min ,23,021===z x x 。 若限制整数得:2min ,1,121===z x x 。LINGO2.lg4 LINGO21.lg4 (ii ) 整数规划最优解不能按照实数最优解简单取整而获得。 1.4 求解方法分类: (i )分枝定界法—可求纯或混合整数线性规划。 (ii )割平面法—可求纯或混合整数线性规划。 (iii )隐枚举法—求解“0-1”整数规划: ①过滤隐枚举法; ②分枝隐枚举法。 (iv )匈牙利法—解决指派问题(“0-1”规划特殊情形)。 (v )蒙特卡洛法—求解各种类型规划。 下面将简要介绍常用的几种求解整数规划的方法。 §2 分枝定界法 对有约束条件的最优化问题(其可行解为有限数)的所有可行解空间恰当地进行

单纯形法典型例题

科学出版社《运筹学》教材 第一章引言 第二章线性规划,姜林 第三章对偶规划,姜林 第四章运输问题,姜林 第五章整数规划,姜林 第六章非线性规划,姜林 第七章动态规划,姜林 第八章多目标规划,姜林 第九章图与网络分析,熊贵武 第十章排队论,熊贵武 第十一章库存论,王勇 第十二章完全信息博弈,王勇 第十三章不完全信息博弈,王勇 第十四章决策论与影响图 第十五章运筹学模型的计算机求解 成年人每天需要从食物中摄取的营养以及四种食品所含营养和价格见下表。问 如何选择食品才能在满足营养的前提下使购买食品的费用最小? 食品名称热量(kcal) 蛋白质(g) 钙(mg)价格(元)猪肉1000 50 400 14 鸡蛋800 60 200 6

大米900 20 300 3 白菜200 10 500 2 营养需求量 2000 55 800 解:设需猪肉、鸡蛋、大米和白菜各需 x1,x2,x3,x4斤。则热量的需求量为: 2000 20090080010004 3 2 1 x x x x 蛋白质 某工厂要做100套钢架,每套有长 3.5米、2.8米和2根2.4米的圆钢组成(如右图)已知原 料长12.3米,问应如何下料使需用的原材料最省。 解:假设从每根 12.3米的原材料上截取 3.5米、2.8米和2根2.4 米,则每根原材料需浪费 1.2米,做100套需浪费材料 120米,现 采用套裁的方法。 方案一二三四五六3.5 2.8 2.4 0 0 5 0 4 0 1 2 1 1 3 0 2 0 2 2 1 1 合计剩余 12 0.3 11.2 1.1 11.5 0.8 11.9 0.4 11.8 0.5 12.2 0.1 现在假设每种方案各下料x i (i=1、2、3、4、5、6),则可列出方程: minZ=0.3x 1+1.1x 2+0.8x 3+0.4x 4+0.5x 5+0.1x 6 约束条件: x 3+x 4+2x 5+2x 6=100 4x 2+2x 3+3x 4+x 6=100 5x 1+x 3+2x 5+x 6=200 ,,,800 50030020040055 102060503000 2009008001000. .23614min 4 3214 3 2 1 4 32 14 32 14321x x x x x x x x x x x x x x x x t s x x x x z

整数规划例题

〈运筹学〉补充例题 例题 1.1 某工厂可以生产产品A和产品B两种产品。生产单位产品A和B所需要的机时、人工工时的数量以及可利用资源总量由下表给出。这两种产品在市场上是畅销产品。该工厂经理要制订季度的生产计划,其目标是使工厂的销售额最大。 产品A 产品B 资源总量 机器(时) 6 8 120 人工(时) 10 5 100 产品售价(元) 800 300 MAX 800X1 +300X2 ST 6X1 +8X2 <= 120 10X1 +5X2 <= 100 X1, X2 >=0 例题 1.2该工厂根据产品A和产品B的销售和竞争对手的策略,调整了两种产品的售价。产品A和B的价格调整为600元和400元。假设其它条件不变,请你帮助该工厂经理制订季度的生产计划,其目标仍然是使工厂的销售额最大。 X 600X1 +400X2 ST 6X1 +8X2 <= 120 10X1 +5X2 <= 100 X1, X2 >=0 例题 1.3由于某些原因,该工厂面临产品原料供应的问题。因此,工厂要全面考虑各种产品所需要的机时、人工工时、原材料的资源数量及可用资源的总量、产品的售价等因素。有关信息在下表中给出。 产品A 产品B 资源总量 机器(时) 6 8 120 人工(时) 10 5 100 原材料(公斤) 11 8 130 产品售价(元) 600 400 MAX 600X1 +400X2 ST 6X1 +8X2 <= 120 10X1 +5X2 <= 100 11X1 +8X2 <= 130 X1, X2 >=0 例题 1.4随着企业改革的不断深化,该企业的经理的管理思想产生了变化,由原来的追求销售额变为注重销售利润,因此,要考虑资源的成本。工厂的各种产品所需要的机时、人

《运筹学》习题线性规划部分练习题及答案

《运筹学》线性规划部分练习题 一、思考题 1.什么是线性规划模型,在模型中各系数的经济意义是什么? 2.线性规划问题的一般形式有何特征? 3.建立一个实际问题的数学模型一般要几步? 4.两个变量的线性规划问题的图解法的一般步骤是什么? 5.求解线性规划问题时可能出现几种结果,那种结果反映建模时有错误? 6.什么是线性规划的标准型,如何把一个非标准形式的线性规划问题转化成标准形式。 7.试述线性规划问题的可行解、基础解、基础可行解、最优解、最优基础解的概念及它们之间的相互关系。 8.试述单纯形法的计算步骤,如何在单纯形表上判别问题具有唯一最优解、有无穷多个最优解、无界解或无可行解。 9.在什么样的情况下采用人工变量法,人工变量法包括哪两种解法? 10.大M 法中,M 的作用是什么?对最小化问题,在目标函数中人工变量的系数取什么?最大化问题呢? 11.什么是单纯形法的两阶段法?两阶段法的第一段是为了解决什么问题?在怎样的情况下,继续第二阶段? 二、判断下列说法是否正确。 1.线性规划问题的最优解一定在可行域的顶点达到。 2.线性规划的可行解集是凸集。 3.如果一个线性规划问题有两个不同的最优解,则它有无穷多个最优解。 4.线性规划模型中增加一个约束条件,可行域的范围一般将缩小,减少一个约束条件,可行域的范围一般将扩大。 5.线性规划问题的每一个基本解对应可行域的一个顶点。 6.如果一个线性规划问题有可行解,那么它必有最优解。 7.用单纯形法求解标准形式(求最小值)的线性规划问题时,与 > j σ 对应的变量都 可以被选作换入变量。 8.单纯形法计算中,如不按最小非负比值原则选出换出变量,则在下一个解中至少有一个基变量的值是负的。 9.单纯形法计算中,选取最大正检验数k σ对应的变量k x作为换入变量,可使目标函数值得到最快的减少。 10.一旦一个人工变量在迭代中变为非基变量后,该变量及相应列的数字可以从单纯形表中删除,而不影响计算结果。 三、建立下面问题的数学模型 1.某公司计划在三年的计划期内,有四个建设项目可以投资:项目Ⅰ从第一年到 第三年年初都可以投资。预计每年年初投资,年末可收回本利120% ,每年又可以重新将所获本利纳入投资计划;项目Ⅱ需要在第一年初投资,经过两年可收回本利150% ,又可以重新将所获本利纳入投资计划,但用于该项目的最大投资额不得超过20万元;项目Ⅲ需要在第二年年初投资,经过两年可收回本利160% ,但用于该项目的最大投资额不得超过15万元;项目Ⅳ需要在第三年年初投资,年末可收回本利140% ,但用于该项目的最大投资额不得超过10万元。在这个计划期内,该公司第一年可供投资的资金有30万元。问怎样的投资方案,才能使该公司在这个计划期获得最大利润? 2.某饲养场饲养动物,设每头动物每天至少需要700克蛋白质、30克矿物质、100克维生素。现有五种饲料可供选用,各种饲料每公斤营养成分含量及单 价如下表2—1所示:

使用单纯形法解线性规划问题

使用单纯形法解线性规划问题 要求:目标函数为:123min 3z x x x =-- 约束条件为: 123123 1312321142321,,0 x x x x x x x x x x x -+≤??-++≥?? -+=??≥? 用单纯形法列表求解,写出计算过程。 解: 1) 将线性规划问题标准化如下: 目标函数为:123max max()3f z x x x =-=-++ s.t.: 123412356 1371234567211 42321,,,,,,0 x x x x x x x x x x x x x x x x x x x -++=??-++-+=??-++=??≥? 2) 找出初始基变量,为x 4、x 6、x 7,做出单纯形表如下: 表一:最初的单纯形表 变量 基变量 x 1 x 2 x 3 x 4 x 5 x 6 x 7 b i x 4 1 -2 1 1 0 0 0 11 x 6 -4 1 2 0 -1 1 0 3 x 7 -2 0 1 0 0 0 1 1 -f -3 1 1 3) 换入变量有两种取法,第一种取为x 2,相应的换出变量为x 6,进行第一次迭代。迭代后新的单纯形表为: 表二:第一种换入换出变量取法迭代后的单纯形表 变量 基变量 x 1 x 2 x 3 x 4 x 5 x 6 x 7 b i x 4 -7 5 1 -2 2 3

x2-4120-1103 x7-20100011 -f10-101-10-3 由于x1和x5对应的系数不是0就是负数,所以此时用单纯形法得不到最优解。 表一中也可以把换入变量取为x3,相应的换出变量为x7,进行一次迭代后的单纯形表为: 表三:第二种换入换出变量取法迭代后的单纯形表 变量 基变量x1x2x3x4x5x6x7 b i x43-20100-110 x60100-11-21 x3-20100011 -f-110000-1-1 4)表三中,取换入变量为x2,换出变量为x6,进行第二次迭代。之后的单纯形 表为: 表四:第二次迭代后的单纯形表 变量 基变量x1x2x3x4x5x6x7 b i x43001-22-512 x20100-11-21 x3-20100011 -f-10001-11-2 5)表四中,取换入变量为x7,换出变量为x3,进行第三次迭代。之后的单纯形 表为: 表五:第三次迭代后的单纯形表 变量 基变量x1x2x3x4x5x6x7 b i x4-7051-22017 x2-4120-1103 x7-20100011 -f10-101-10-3可以看出,此时x1,x5对应的系数全部非零即负,故迭代结束,没有最优解。 结论: 综上所述,本线性规划问题,使用单纯形法得不到最优解。

运筹学整数规划例题

练习4.9 连续投资问题 某公司现有资金10万元,拟在今后五年考虑用于下列项目的投资: 项目A:从第一年到第四年每年年初需要投资,并于次年收回本利115%,但要求第一年投资最低金额为4万元,第二.三.四年不限. 项目B:第三年初需要投资,到第五年末能收回本利128%,但规定最低投资金额为3万元,最高金额为5万元. 项目C:第二年初需要投资,到第五年末能收回本利140%,但规定其投资金额或为2万元,或为4万元,或为6万元,或为8万元. 项目D:五年每年年初都可购买公债,于当年末归还,并获利6%,此项目投资金额不限. 试问该公司应图和确定这些项目的每年投资金额,使到第五年末拥有最大的资金收益. (1) x 为项目各年月初投入向量。 (2) ij x 为 i 种项目j 年的月初的投入。 (3) 向量c 中的元素 ij c 为i 年末j 种项目收回本例的百分比。 (4) 矩阵A 中元素 ij a 为约束条件中每个变量ij x 的系数。 (5) Z 为第5年末能拥有的资金本利最大总额。 因此目标函数为 4325max 1.15 1.28 1.40 1.06A B C D Z x x x x =+++ 束条件应是每年年初的投资额应等于该投资者年初所拥有的资金. 第1年年初该投资者拥有10万元资金,故有 11100000A D x x +=. 第2年年初该投资者手中拥有资金只有()116%D x +,故有 22211.06A C D D x x x x ++=. 第3年年初该投资者拥有资金为从D 项目收回的本金: 21.06D x ,及从项目A 中第1年投资收回的本金: 11.15A x ,故有 333121.15 1.06A B D A D x x x x x ++=+ 同理第4年、第5年有约束为 44231.15 1.06A D A D x x x x +=+, 5341.15 1.06D A D x x x =+

探讨线性规划整数最优解的调整

探讨线性规划整数最优解的调整 对于高中的二元一次不等式(组)与平面区域这个知识点是不难的,不过对于解题的规范性学生还是要加强的。在这里就和大家探讨必修五课本当中的一道关于线性规划要求整数解的问题。 例1:某工厂用A ,B 两种配件生产甲,乙两种产品,每生产一件甲产品使用4个A 配件耗时1h ,每生产一件乙产品使用4个B 配件耗时2h ,该厂每天最多可以从配件厂获得16个A 配件和12个B 配件,按每天工作8h 计算,该厂所有可能的日生产安排是什么?若生产一件甲产品获利2万元,生产一件乙产品获利3万元,问哪种生产安排利润最大? 分析:这是一道典型的线性规划的问题,首先可以设甲,乙两种产品分别为x,y 件,从而列出约束条件。在这道题目中,所设的是产品个数的问题,那就要注意x,y ∈N +。 解:设甲,乙两种产品分别为x,y 件,由题意可得: ???????????∈≥≥≤≤≤++ N y x,0y 0x 164y 164x 8 2y x 接着还要求解第二问,这就涉及到了目标函数,设利润为Z ,则Z=2x+3y 。 当目标函数刚好与可行域交于点M (4,2)时,能使获得的利润最大,Z max =14(万元) M(4,2)

此题中的点M 是刚好为整数点,而假设M 不是为整数点时,那又应该如何寻找其最优解?接下来再以必修五课本的一道为例题. 评析:对于此道类型的题目求出来的最优解恰好能符合条件,难度没那么大,但是有些题目对于最优解还要再进一步进行讨论。 例2:要将两种大小不同的钢板截成A ,B ,C 三种规格,每张钢板可同时截得三种规格的小钢板的块数如下表所示: 问题1:今需要A ,B ,C 三种规格的成品分别15,18,27,用数学关系式和图形表示上述要求。 问题2:各截这两种干板多少张可得所需A ,B ,C 三种规格成品,且使所用钢板张数最少? 分析:这种也是典型的线性规划的题目,问题1难度就是读懂题目,然后根据题意列出约束条件;而对于问题2即是求最优解,而此题的最优解也是要取整数,而这个整数最优解相对上一题就较难点。 解:设需截第一种钢板x 张,第二种钢板y 张,则 ?????????? ?∈≥≥≥+≥+≥++ N y x,0y 0x 27 3y x 182y x 15y 2x 则图形中的阴影部分的所有整数点就是可截的方法。接着还要求解问题 规格类型 钢板类型 A 规格 B 规格 C 规格 第一种钢板 2 1 1 第二种钢板 1 2 3

第章整数规划割平面法

第章整数规划割平面法 This manuscript was revised on November 28, 2020

割平面法 求解整数规划问题: Max Z=3x1+2x2 2x1+3x214 4x1+2x218 x1,x20,且为整数 解:首先,将原问题的数学模型标准化,这里标准化有两层含义:(1)将不等式转化为等式约束,(2)将整数规划中所有非整数系数全部转化为整数,以便于构造切割平面。从而有:Max Z=3x1+2x2 2x1+3x2+x3=14 2x1+x2+x4=9 x1,x20,且为整数 利用单纯形法求解,得到最优单纯形表,见表1: 表1

最优解为:x1=13/4, x2=5/2, Z=59/4 根据上表,写出非整数规划的约束方程,如:x2+1/2x3-1/2x4=5/2 (1) 将该方程中所有变量的系数及右端常数项均改写成“整数与非负真分数之和”的形式,即:(1+0)x2+(0+1/2)x3+(-1+1/2)x4=2+1/2 把整数及带有整数系数的变量移到方程左边,分数及带有分数系数的变量称到方程右边,得: x2 - x4-2 =1/2-(1/2x3+1/2x4) (2)由于原数学模型已经“标准化”,因此,在整数最优解中,x2和x4也必须取整数值,所以(2)式左端必为整数或零,因而其右端也必须是整数。又因为x3,x40,所以必有: 1/2-(1/2x3+1/2x4)<1 由于(2)式右端必为整数,于是有: 1/2-(1/2x3+1/2x4)0 (3) 或 x3+x41 (4)

这就是考虑整数约束的一个割平面约束方程,它是用非基变量表示的,如果用基变量来表示割平面约束方程,则有: 2x1+2x211 (5) 从图1中可以看出,(5)式所表示的割平面约束仅割去线性规划可行域中不包含整数可行解的部分区域,使点E,2)成为可行域的一个极点。 图1 在(3)式中加入松弛变量x5,得: -1/2x3-1/2x4+x5=-1/2 (6) 将(6)式增添到问题的约束条件中,得到新的整数规划问题: Max Z=3x1+2x2 2x1+3x2+x3=14 2x1+x2+x4=9 -1/2x3-1/2x4+x5=-1/2 x i 0,且为整数,i=1,2,…,5 该问题的求解可以在表1中加入(6)式,然后运用对偶单纯形法求出最优解。具体计算过程见表2: 表2

第五章 整数规划练习题答案

第五章 整数规划练习题答案 一. 判断下列说法是否正确 1. 用分枝定界法求解一个极大化的整数规划问题时,任何一个可行整数解的目标函数值是 该问题目标函数值的下界。() 2. 用割平面法求解整数规划时,构造的割平面有可能切去一些不属于最优解的整数解。() 3. 用割平面法求解纯整数规划时,要求包括松弛变量在内的全部变量必须取整数值。() 4. 指派问题数学模型的形式与运输问题十分相似,故也可以用表上作业法求解。() 二. 设有五项工作要分派给五个工人,每人的作业产值如下表所示,为了使总产值最大,问 应如何分配这五项工作,并求得最大产值。 工作 工人 A B C D E 甲 9 4 6 8 5 乙 8 5 9 10 6 丙 9 7 3 5 8 丁 4 8 6 9 5 戊 10 5 3 6 3 答案: 设原矩阵为A ,因求极大问题,令B=[M-a ij ],其中M=Max {a ij }=10,则: 16425105 3140 42 13251042510424003B 1 3752102 6410 1540 62 415151 3045 020305 7470574704646111-?????? ? ? ? ? ? ? ? ? ? =→→- ? ? ?- ? ? ? ? ? ??????? --- m 4n 5l m 4 4 21342132432431541545235234 6 4 64 6 4 6=<===? ??? ? ??? ? ? ? ?→→????→?? ? ??? ? ? ? ???? ? ? ? 031023 4003115406020303535?? ? ? ? ? ? ???

用“小范围搜索法”求“线性规划问题”的最优整数解

用“小范围搜索法”求“线性规划问题”的最优整数解 笔者对教科书中的全部7个线性规划的实际应用问题进行了研究和分类。其中1个问题(教科书第61页例3)的最优解不是整数解,最优解有且只有一个,最优解显然在边界折线的顶点处,此为第一类问题;有3个问题(教科书第64页练习第2题、第65页习题第3题,第66页研究课题与实习作业)的最优解为整数解,最优整数解有且只有一个,最优解整点显然在边界折线的顶点处,此为第二类问题;另有3个问题(教科书第63页例4、第65页习题第4题、第87页复习参考题七A组第16题)的最优解为整数解,最优整数解可能不止一个,最优解整点不在边界折线的顶点处,或虽在边界折线的顶点处但并不显然,此为第三类问题。第一、第二类问题的最优解可以通过解一个二元一次方程组直接得到,学生比较容易掌握。第三类问题的最优解不能通过解一个二元一次方程组直接得到,必须通过观察图形或计算检验去寻找,学生不容易掌握,学习困难比较大。 为了解决这类寻找最优整数解的困难,笔者采用“小范围搜索法”进行教学。该方法的优点在于,把在大范围同寻找最优整数解转化为在小范围内寻找最优整数解,而且在通过观察图形作出准确判断有困难的情况下,通过计算检验作出准确判断的工作量比较小。其步骤为(1)在边界折线顶点附近的小范围内搜索一个可行域内的年整点;(2)过该点作一条斜率为-(其中A,B分别为目标函数中变量x,y的系数)的直线,与可行域边界折线相交得到一个小范围的区域;(3)在这个小范围区域内继续搜索全部最优整数解。 用“小范围搜索法”成功解题的关键是分析,要把分析贯彻于解题的全过程,观察图形要分析,计算检验也要分析,通过分析充分发掘线性约束条件和线性目标函数的特殊性,使搜索范围缩到最小,计算的工作量减到最小。下面以教科书中的题目为例,说明“小范围搜索法”的运用。 例1教科书第65页习题题,题目略。 本题的线性约束条件 线性目标函数z=200x+150y,其中x,y分别为大房间与小房间的间数。作出可行域如图1。 (1)搜索一个可行域内邻近边界折线顶点的整点。 解方程组 得到点A(,),由于点A的坐标不是整数,故不是最优解。由于要使目标函数取最大值,因此要寻找可行域右上侧靠近边界或边界上的整点。与点A邻近的整点共有4个(2,8),(2,9),(3,8)与(3,9),显然点(2,8)是可行域内的整点,点(3,9)不是可行域内的整点。记点(a,b)处的目标函数的值为z(2,8),所以还应检验点(2,9)与(3,8)是否在可行域内。注意到目标函数z=200x+150y=150(x+y)+50x,而2+9=3+8,所以必有z (3,8)>z(2,9),所以应先检验点(3,8)是否在可行域内。观察与计算都表明该点在可行域内。记点(3,8)为B,B即为搜索到的可行域内邻近边界折线顶点的整点。 (2)作出可行域内的小范围搜索区域。 算出z(3,8)=1800,过B作直线200x+150y=18004x+3y=36.

线性规划化问题的简单解法

简单线性规划问题的几种简单解法 依不拉音。司马义(吐鲁番市三堡中学,838009) “简单的线性规划问题”属于高中数学新课程必修5,进入了高考试题,并且保持了较大的考察比例,几乎是每年高考的必考内容,也是高中数学教学的一个难点。 简单的线性规划是指目标函数只含两个自变量的线性规划。简单线性规划问题的标准型为: 1112220(0)0(0),(),0(0) m m m A x B y C A x B y C m N z Ax By A x B y C +++≥≤??++≥≤?∈=+???++≥≤?L 约束条件 目标函数 , 下面介绍简单线性规划问题的几种简单解法。 1. 图解法 第一步、画出约束条件表示的可行区域,这里有两种画可行区域的方法。 ⑴代点法:直线Ax+By+C=0(c 不为0)的某侧任取一点,把它的坐标代入不等式,若不等式成立,则不等式表示的区域在该点的那一侧;若不成立,则在另一侧。 ⑵B 判别法:若B>0(<0),则不等式Ax+By+C >0(<0)表示的区域在直 线Ax+By+C =0的上方;若B>0(<0),则不等式Ax+By+C <0(>0)表示的区域在直线Ax+By+C =0的下方。(即若B 与0的大小方向跟不等式的方向相同,则可行区域是边界线的上方;若B 与0的大小方向与不等式的方向相反,则可信分区域是边界线的下方) 用上面的两种方法画出可行区域是很简单,所以这里不必举例说明。 第二步、在画出的可行区域内求最优解(使目标函数取最大值或最小值的点),这 个可以用下面的两种办法解决。 ⑴y 轴上的截距法:若b >0,直线y a b x z b =- +所经过可行域上的点使其y 轴上的截距最大(最小)时,便是z 取得最大值(最小值)的点;若b <0,直线y a b x z b =-+所经过可行域上的点使其y 轴上的截距最大(最小)时,是z 取得最小值(最小值)的点(提醒:截距不是距离,截距可以取正负)。 例1.设x,y 满足约束条件x y y x y +≤≤≥???? ?10,,,求z x y =+2的最大值、最小值。 解:如图1作出可行域,因为y 的系数1大于0,目标函数z x y =+2表示直线 y x z =-+2在y 轴上的截距, 当直线过A (1,0)时,截距值最大z max =?+=2102,当直线过点O (0,0)时,截距值最小min 2000z =?+=。

相关文档
最新文档