一次函数专题复习考点归纳经典例题练习

一次函数专题复习考点归纳经典例题练习
一次函数专题复习考点归纳经典例题练习

一次函数知识点复习与考点总结

考点1:一次函数的概念.

相关知识:一次函数是形如y kx b =+(k 、b 为常数,且0k ≠)的函数,特别的当0=b 时函数为)0(≠=k kx y ,叫正比例函数.

1、已知一次函数k

x k y )1(-=+3,则k = . 2、函数n m x

m y n +--=+1

2)2(,当m= ,n= 时为正比例函数;当m= ,

n 时为一次函数.

考点2:一次函数图象与系数

相关知识:一次函数)0(≠+=k b kx y 的图象是一条直线,图象位置由k 、b 确定,0>k 直线要经过一、三象限,0b 直线与y 轴的交点在正半轴上,

0

1. 直线y=x -1的图像经过象限是( )

A.第一、二、三象限

B.第一、二、四象限

C.第二、三、四象限

D.第一、三、四象限 2. 一次函数y=6x+1的图象不经过( ) A .第一象限

B .第二象限

C .第三象限

D .第四象限

3. 一次函数y = -3 x + 2的图象不经过第 象限.

4. 一次函数2y x =+的图象大致是( )

5. 关于x 的一次函数y=kx+k 2+1的图像可能是( )

6.已知一次函数y =x +b 的图像经过一、二、三象限,则b 的值可以是( ). A.-2 B.-1 C.0 D.2

7.若一次函数m x m y 23)12(-+-=的图像经过 一、二、四象限,则m 的取值范围

是 .

8. 已知一次函数y=mx +n -2的图像如图所示,则m 、n 的取值范围是( )

A.m >0,n <2

B. m >0,n >2

C. m <0,n <2

D. m <0,n >2

9.已知关于x 的一次函数y mx n =+的图象如图所示,则2||n m m --可化简为__ __.

10. 如果一次函数y=4x +b 的图像经过第一、三、四象限,那么b 的取值范围是_ _。

考点3:一次函数的增减性

相关知识:一 次函数)0(≠+=k b kx y ,当0>k 时,y 随x 的增大而增大,当0

规律总结:从图象上看只要图象经过一、三象限,y 随x 的增大而增大,经过二、四象限,y 随x 的增大而减小.

1.写出一个具体的y 随x 的增大而减小的一次函数解析式_ _

2.一次函数y=-2x+3中,y 的值随x 值增大而____ ___.(填“增大”或“减小”)

3.已知关于x 的一次函数y=kx+4k-2(k≠0).若其图象经过原点,则k=_____;若y 随x 的增大而减小,则k 的取值范围是________.

4.若一次函数()22--=x m y 的函数值y 随x 的增大而减小,则m 的取值范围是( )

A. 0

B. 0>m

C. 2

D. 2>m

5. (2011内蒙古赤峰)已知点A (-5,a ),B (4,b)在直线y=-3x+2上,则a b 。(填“>”、“<”或“=”号)

6.当实数x 的取值使得x -2有意义时,函数y =4x +1中y 的取值范围是( ).

A .y ≥-7

B .y ≥9

C .y >9

D .y ≤9

7.已知一次函数的图象经过点(0,1),且满足y 随x 增大而增大,则该一次函数的解析式可以为_________________(写出一个即可).

考点4:函数图象经过点的含义

相关知识:函数图象上的点是由适合函数解析式的一对x 、y 的值组成的,因此,若已知一个点在函数图象上,那么以这个点的横坐标代x ,纵坐标代y ,方程成立。 1.已知直线y kx b =+经过点(,3)k 和(1,)k ,则k 的值为( ).

A .3

B .3±

C .2

D .2±

2. 坐标平面上,若点(3, b )在方程式923-=x y 的图形上,则b 值为何?

A .-1

B . 2

C .3

D . 9

3. 一次函数y =2x -1的图象经过点(a ,3),则a = .

4.在平面直角坐标系xOy 中,点P(2,

a )在正比例函数1

2

y x =的图象上,则点Q( 35a a -,)位于第_____象限.

5.直线y =kx -1一定经过点( ).

A .(1,0)

B .(1,k )

C .(0,k )

D .(0,-1)

7. 如图所示的坐标平面上,有一条通过点(-3,-2)的直线L 。若四点(-2 , a )、(0 , b )、(c , 0)、(d ,-1)在L 上,则下列数值的判断,何者正确? ( )

A .a =3

B 。b >-2

C 。c <-3

D 。d =2

考点5:函数图象与方程(组)

相关知识:两个函数图象的交点坐标就是两个解析式组成的方程组的解。 1. 点A ,B ,C ,D 的坐标如图,求直线AB 与直线CD 的交点坐标.

2. 如表1给出了直线l 1上部分点(x ,y )的坐标值,表2给出了直线l 2上部分(x ,y )的坐标值.那么直线l 1和直线l 2交点坐标为___ __.

表1 表2

x y B

A O

考点5:图象的平移

1. 在平面直角坐标系中,把直线y=x 向左平移一个单位长度后,其直线解析式为( )

A .y=x+1 B.y=x-1 C.y=x D. y=x-2

2. 将直线2y x =向右平移1个单位后所得图象对应的函数解析式为 ( ) A. 21y x =- B. 22y x =- C. 21y x =+ D. 22y x =+

3. 如图,把Rt △ABC 放在直角坐标系内,其中∠CAB=90°,BC=5,点A 、B 的坐标分别为(1,0)、(4,0),将△ABC 沿x 轴向右平移,当点C 落在直线y=2x -6上时,线段BC 扫过的面积为( ) A .4

B .8

C .16

D .82

考点6:函数图象与不等式(组)

相关知识:函数图象上的点是由适合函数解析式的一对x 、y 的值组成的(x 、y ),x 的值是点的横坐标,纵坐标就是与这个x 的值相对应的y 的值,因此,观察x 或y 的值就是看函数图象上点的横、纵坐标的值,比较函数值的大小就是比较同一个x 的对应点的纵坐标的大小,也就是函数图象上的点的位置的高低。 1. 如图所示,函数x y =1和3

4

312+=x y 的图象相交于(-1,1),(2,2)两点.当21y y >时,x 的取值范围是( )

A .x <-1

B .—1<x <2

C .x >2

D . x <-1或x >2

2. 已知一次函数3+=kx y 的图象如图所示,则不等式03<+kx 的解集是 。

A B C

O y x

3. (2011吉林长春)如图,一次函数()0y kx b k =+<的图象经过点A.当3y <时,x 的取值范围是 .

4. (2011青海西宁)如图,直线y =kx +b 经过A (-1,1)和B (-7,0)两点,则不等式0<kx +b <-x 的解集为_ .

考点7:一次函数解析式的确定

常见题型归类

第一种情况:不已知函数类型(不可用待定系数法),通过寻找题目中隐含的自变量和函数变量之间的数量关系,建立函数解析式。(见前面函数解析式的确定) 1.已知y+m 与x+n 成正比例(m ,n 为常数)。 (1) 试说明y 是x 的一次函数

(2) 当x=-3时,y=5,当x=2时,y=2,求y 与x 之间的函数关系式。

2.已知Y 与X 成正比例,Z 与X 成正比例,当Z=3时,Y=-1;当X=2/3时,Z=4,则Y 与X 的函数关系式为?

第二种情况:已知函数是一次函数(直接或间接),采用待定系数法。(已知是一次函数或已知解析式形式y kx b =+或已知函数图象是直线都是直接或间接已知了一次函数)

一、定义型 一次函数的定义:形如y kx b =+,k 、b 为常数,且k ≠0。 二. 平移型 两条直线1l :11y k x b =+;2l :22y k x b =+。 当12k k =,12b b ≠时,1l ∥2l ,

解决问题时要抓住平行的直线k 值相同这一特征。 三. 两点型

从几何的角度来看,“两点确定一条直线”,所以两个点的坐标确定直线的解析式; 从代数的角度来说,一次函数的解析式y kx b =+中含两个待定系数k 和b ,所以两个方程确定两个待定系数,因此想方设法找到两个点的坐标是解决问题的关键。

解题策略:想方设法通过各种途径找到两个点的坐标,代入函数解析式中用待定系数法求出待定系数从而求出函数解析式。这类问题是见得最多的问题。

四、探索型 不直接已知函数类型,但可通过探索知其类型,再用待定系数法求解析式

1.如图,直线l过A、B两点,A(0,1-),B(1,0),则直线l的解析式为.

2. 已知一次函数y=kx+b的图像经过两点A(1,1),B(2,-1),求这个函数的解析式.

1. 一个矩形被直线分成面积为x,y的两部分,则y与x之间的函数关系只可能是()

2. 设min{x,y}表示x,y两个数中的最小值,例如min{0,2}=0,min{12,8}=8,则关于x的函数y=min{2x,x+2},y可以表示为()

A.

()

()

22

22

x x

y

x x

<

??

=?

+≥

??

B.

()

()

22

22

x x

y

x x

+<

??

=?

??

C. y =2x

D. y=x+2

5.已知:一次函数y kx b

=+的图象经过M(0,2),(1,3)两点.

(l) 求k、b的值;

(2) 若一次函数y kx b

=+的图象与x轴的交点为A(a,0),求a的值.

6.如图,在平面直角坐标系中,A、B均在边长为1的正方形网格格点上.

(1)求线段AB所在直线的函数解析式,并写出当02

y

≤≤时,自变量x的取值范围;

(2)将线段AB绕点B逆时针旋转90,得到线段BC,请画出线段BC.若直线BC的函数解析式为y kx b

=+,则y随x的增大而(填“增大”或“减小”).

考点8:与一次函数有关的几何探究问题

.1.如图6,在平面直角坐标系中,直线

4

:4

3

l y x

=-+分别交x轴、y轴

于点A B 、,将

AOB △绕点O 顺时针旋转90°后得到A OB ''△. (1)求直线A B ''的解析式;

(2)若直线A B ''与直线l 相交于点C ,求A BC '△的面积.

2.(2010绍兴)在平面直角坐标系中,一次函数的图象与坐标轴围成的三角形,叫做此一次函数的坐标三角形.例如,图中的一次函数的图象与x ,y 轴分别交于点A ,B ,则△OAB 为此函数的坐标三角形.

(1)求函数y =43

-x +3的坐标三角形的三条边长; (2)若函数y =4

3

-x +b (b 为常数)的坐标三角形周长为16, 求此三角形面积.

3.(20XX 年莆田)如图1,在矩形MNPQ 中,动点R 从点N 出发,沿N →

P →Q →M 方向运动至点M 处停止.设点R 运动的路程为x ,MNR △的面积为y ,如

果y 关于x 的函数图象如图2所示,则当9x =时,点R 应运动到( ) A .N 处 B .P 处

C .Q 处

D .M 处

4.(2011湖南衡阳)如图所示,在矩形ABCD 中,动点P 从点B 出发,沿BC ,CD ,DA 运动至点A 停止,设点P 运动的路程为x ,△ABP 的面积为y ,如果y 关于x 的函数图象如图所示,那么△ABC 的面积是 .

Q

P R

M

N

(图1)

(图2)

4 9 y

x O

A

y O

B

x

图6 C A

y x

O l A 'B '

考点9:一次函数图象信息题(从图像中读取信息。利用信息解题)

思路点拨::一次函数在实际中的应用是先根据条件求出一次函数的解析式,然后根据一次函数的性质解决相关问题.

规律总结:先求一次函数解析式,再利用一次函数的性质,对于图象不是一条线而是由多条线段组成的,要根据函数的自变量的取值范围分别求.

1. 甲、乙两组工人同时开始加工某种零件,乙组在工作中有一次停产更换设备后,乙组的工作效率是原来的2倍.两组各自加工数量y(件)与时间x(时)之间的函数图象如图所示.

(1)求甲组加工零件的数量y与时间x之间的函数关系式.

(2)求乙组加工零件总量a的值.

(3)甲、乙两组加工出的零件合在一起装箱,每够300件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?再经过多长时间恰好装满第2箱?

2. 小李师傅驾车到某地办事,汽车出发前油箱中有油50升,行驶若干小时后,途中在加油站加油若干升,油箱中剩余油量y(升)与行驶时间t(小时)之间的关系如图所示.(1)请问汽车行驶多少小时后加油,中途加油多少升?

(2)求加油前油箱剩余油量y与行驶时间t的函数关系式;

(3)已知加油前后汽车都以70千米/小时的速度匀速行驶,如果加油站距

目的地210千米,要到达目的地,问油箱中的油是否够用?请说明理由.

考点10:一次函数的实际应用题

3.(2011江苏泰州)小明从家骑自行车出发,沿一条直路到相距2400m 的邮局办事,小明出发的同时,他的爸爸以96m/min 的速度从邮局沿同一条道路步行回家,小明在邮局停留2min 后沿原路以原速返回,设他们出发后经过t min 时,小明与家之间的距离为 S 1 m ,小明爸爸与家之间的距离为S 2 m,,图中折线OABD ,线段EF 分别是表示S 1、S 2与t 之间函数关系的图像.

(1) 求S 2与t 之间的函数关系式:

(2) 小明从家出发,经过多长时间在返回途中追上爸爸?这时他们距离家还有多远?

4.鞋子的“鞋码”和鞋长(cm )存在一种换算关系,下表是几组“鞋码”与鞋长换算的对应数值:[注:“鞋码”是表示鞋子大小的一种号码]

1)设鞋长为x ,“鞋码”为y ,试判断点(x ,y )在你学过的哪种函数的图象上? (2)求x 、y 之间的函数关系式;

(3)如果某人穿44号“鞋码”的鞋,那么他的鞋长是多少?

5.如图,在边长为2的正方形ABCD 的一边BC 上,一点P 从B 点运动到C 点,设BP=x ,

四边形APCD 的面积为y .

⑴ 写出y 与x 之间的函数关系式及x 的取值范围; B

P

⑵ 说明是否存在点P ,使四边形APCD 的面积为1.5?

6.(20X X 年浙江省绍兴市)在平面直角坐标系中,一次函数的图象与坐标轴围成的三角形,叫做此一次函数的坐标三角形.例如,图中的一次函数的图象与x ,y 轴分别交于点A ,B ,则△OAB 为此函数的坐标三角形.

(1)求函数y =43

-

x +3的坐标三角形的三条边长; (2)若函数y =4

3

-x +b (b 为常数)的坐标三角形周长为16, 求此三角形面

积.

7.某医药研究所开发一种新药,如果成人按规定的剂量服用,据监测:服药后每毫升血液中含药量y 与时间t 之间近似满足如图所示曲线: (1)分别求出21≤t 和2

1

≥t 时,y 与t 之间的函数关系式;

(2)据测定:每毫升血液中含药量不少于4微克 时治疗疾病有效,假如某病人一天中第一次服药 为7:00,那么服药后几点到几点有效?

8.(20XX 年新疆)某公交公司的公共汽车和出租车每天从乌鲁木齐市出发往返于乌鲁木齐市和石河子市两地,出租车比公共汽车多往返一趟,如图表示出租车距乌鲁木齐市的路程y (单位:千米)与所用时间x (单位:小时)的函数图象.已知公共汽车比出租车晚1小时出发,到达石河子市后休息2小时,然后按原路原速返回,结果比出租车最后一次返回乌鲁木齐早1小时.

(1)请在图中画出公共汽车距乌鲁木齐市的路程y (千米)与所用时间x (小时)的函数图象.

(2)求两车在途中相遇的次数(直接写出答案)

(3)求两车最后一次相遇时,距乌鲁木齐市的路程.

)

9.(2011江苏扬州)如图1是甲、乙两个圆柱形水槽的轴截面示意图,乙槽中有一圆柱形块放其中(圆柱形铁块的下底面完全落在水槽底面上)现将甲槽中的水匀速注入乙槽,甲、乙两个水槽中水的深度y(厘米)与注水时间x(分钟)之间的关系如图2所示。根据图象提供的信息,解答下列问题:

(1)图2中折线ABC表示槽中的深度与注水时间之间的关系,线段DE表示槽中的深度与注水时间之间的关系(以上两空选填“甲”、或“乙”),点B的纵坐标表示的实际意义是

(2)注水多长时间时,甲、乙两个水槽中的水的深度相同?

(3)若乙槽底面积为36平方厘米(壁厚不计),求乙槽中铁块的体积;

(4)若乙槽中铁块的体积为112立方厘米(壁厚不计),求甲槽底面积(直接写结果)。

10.(2011江苏南京)小颖和小亮上山游玩,小颖乘会缆车,小亮步行,两人相约在山顶的缆

车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍,小颖在小亮出发后50 min才乘上缆车,缆车的平均速度为180 m/min.设小亮出发x min后行走的路程为y m.图中的折线表示小亮在整个行走过程中y与x的函数关系.

⑴小亮行走的总路程是____________㎝,他途中休息了________min.

⑵①当50≤x≤80时,求y与x的函数关系式;

②当小颖到达缆车终点为时,小亮离缆车终点的路程是多少?

11. (2011 浙江湖州)如图1.已知正方形OABC 的边长为2,顶点A 、C 分别在x 、y 轴的正半轴上,M 是BC 的中点.P (0,m)是线段OC 上一动点(C 点除外),直线PM 交AB 的延长线于点D .

(1) 求点D 的坐标(用含m 的代数式表示); (2) 当△APD 是等腰三角形时,求m 的值;

30 50 1950

3000 80 x/min

y/m O

(第22题)

二次函数专项复习经典试题集锦(含答案)

二次函数专项复习经典试题集锦(含答案) 一、选择题: 1. 抛物线3)2(2+-=x y 的对称轴是( ) A. 直线3-=x B. 直线3=x C. 直线2-=x D. 直线2=x 2. 二次函数c bx ax y ++=2的图象如右图,则点 ),(a c b M 在( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 3. 已知二次函数c bx ax y ++=2,且0+-c b a ,则一定有( ) A. 042>-ac b B. 042=-ac b C. 042<-ac b D. ac b 42-≤0 4. 把抛物线c bx x y ++=2向右平移3个单位,再向下平移2个单位,所得图象的解析式 是532+-=x x y ,则有( ) A. 3=b ,7=c B. 9-=b ,15-=c C. 3=b ,3=c D. 9-=b ,21=c 5. 下面所示各图是在同一直角坐标系,二次函数c x c a ax y +++=)(2与一次函数 c ax y +=的大致图象,有且只有一个是正确的,正确的是( ) B D 6. 抛物线322+-=x x y 的对称轴是直线( ) A. 2-=x B. 2=x C. 1-=x D. 1=x

7. 二次函数2)1(2+-=x y 的最小值是( ) A. 2- B. 2 C. 1- D. 1 8. 二次函数c bx ax y ++=2的图象如图所示,若 c b a M ++=24c b a N +-=,b a P -=4,则( ) A. 0>M ,0>N ,0>P B. 0N ,0>P C. 0>M ,0P D. 0N ,0

x 时,求使y ≥2的x 的取值围.

初中反比例函数经典例题

初中反比例函数习题集合(经典) (1)下列函数,① 1)2(=+y x ②. 11 += x y ③21x y = ④.x y 21-=⑤2 x y =-⑥13y x = ; 其中是y 关于x 的反比例函数的有:_________________。 (2)函数2 2 )2(--=a x a y 是反比例函数,则a 的值是( ) A .-1 B .-2 C .2 D .2或-2 (3)如果y 是m 的反比例函数,m 是x 的反比例函数,那么y 是x 的( ) A .反比例函数 B .正比例函数 C .一次函数 D .反比例或正比例函数 (4)如果y 是m 的正比例函数,m 是x 的反比例函数,那么y 是x 的( ) (5)如果y 是m 的正比例函数,m 是x 的正比例函数,那么y 是x 的( ) (6)反比例函数(0k y k x = ≠) 的图象经过(—2,5)和(2, n ), 求(1)n 的值;(2)判断点B (24,2-)是否在这个函数图象上,并说明理由 (7)已知函数12y y y =-,其中1y 与x 成正比例, 2y 与x 成反比例,且当x =1时,y =1; x =3时,y =5.求:(1)求y 关于x 的函数解析式; (2)当x =2时,y 的值. (8)若反比例函数2 2)12(--=m x m y 的图象在第二、四象限,则m 的值是( ) A 、 -1或1; B 、小于 1 2 的任意实数; C 、-1; D、不能确定 (9)已知0k >,函数y kx k =+和函数k y x =在同一坐标系内的图象大致是( ) (10)正比例函数2x y = 和反比例函数2 y x =的图象有 个交点. (11)正比例函数5y x =-的图象与反比例函数(0)k y k x =≠的图象相交于点A (1,a ), 则a = . (12)下列函数中,当0x <时,y 随x 的增大而增大的是( ) A .34y x =-+ B .123y x =-- C .4 y x =- D .12y x =. x y O x y O x y O x y O A B C D

二次函数经典例题及答案

二次函数经典例题及答案 1.已知抛物线的顶点为P (- 4,—2),与x轴交于A B两点,与y轴交于点C,其中B点坐标为(1 , 0)。 (1) 求这条抛物线的函数关系式; (2) 若抛物线的对称轴交x轴于点D,则在线段AC上是否存在这样的点Q,使得△ ADQ 1 2 9 . 135 y=2 x +4x - 2;存在点Q (-1 , -4 ) , Q (2^5-9,-%'5 ) , Q (--^, -4) ?析 一2 25 试题分析:(1)根据顶点坐标把抛物线设为顶点式形式y=a ( x+4) - 2,然后把点B的坐 标代入解析式求出a的值,即可得解; (2)先根据顶点坐标求出点D 的坐标,再根据抛物线解析式求出点A、C的坐标,从而得 到OA OC AD的长度,根据勾股定理列式求出AC的长度,然后根据锐角三角形函数求出/ OAC勺正弦值与余弦值,再分① AD=QD时,过Q作QE1丄x轴于点E,根据等腰三角形三线合一的性质求出AQ,再利用/ OAC勺正弦求出QE的长度,根据/ OAC勺余弦求出AE的长度,然后求出OE,从而得到点Q的坐标;②AD=AQ时,过Q作QE2丄x轴于点E>,利用/ OAC勺正弦求出QE2的长度,根据/ OAC勺余弦求出AE的长度,然后求出OE,从而得到点Q的坐标;③AQ=DQ时,过Q作QE3丄x轴于点已,根据等腰三角形三线合一的性质求出AE 的长度,然后求出OE,再由相似三角形对应边成比例列式求出QE3的长度,从而得到点Q 的坐标. 试题解析:(1 )???抛物线顶点坐标为( 25 -4 , - 2), ???设抛物线解析式为 2 25 y=a (x+4) - 2 为等腰三角形?若存在,请求出符合条件的点

二次函数的最值问题(典型例题)

二次函数的最值问题 【例题精讲】 题面:当1≤x ≤2时,函数y =2x 24ax +a 2+2a +2有最小值2, 求a 的所有可能取值. 【拓展练习】 如图,在平面直角坐标系xOy 中,二次函数23y x bx c = ++的图象与x 轴交于A (1,0)、B (3,0)两点, 顶点为C . (1)求此二次函数解析式; (2)点D 为点C 关于x 轴的对称点,过点A 作直线l :3333 y x =+交BD 于点E ,过点B 作直线BK AD l K :在四边形ABKD 的内部是否存在点P ,使得它到四边形ABKD 四边的距离都相等,若存在,请求出点P 的坐标;若不存在,请说明理由; (3)在(2)的条件下,若M 、N 分别为直线AD 和直线l 上的两个动点,连结DN 、NM 、MK ,求DN NM MK ++和的最小值.

练习一 【例题精讲】 若函数y=4x24ax+a2+1(0≤x≤2)的最小值为3,求a的值. 【拓展练习】 题面:已知:y关于x的函数y=(k1)x22kx+k+2的图象与x轴有交点. (1)求k的取值范围; (2)若x1,x2是函数图象与x轴两个交点的横坐标,且满足(k1)x12+2kx2+k+2= 4x1x2. ①求k的值;②当k≤x≤k+2时,请结合函数图象确定y的最大值和最小值. 练习二 金题精讲 题面:已知函数y=x2+2ax+a21在0≤x≤3范围内有最大值24,最小值3,求实数a的值. 【拓展练习】 题面:当k分别取1,1,2时,函数y=(k1)x2 4x+5k都有最大值吗请写出你的判断,并说明理由;若有,请求出最大值.

高中数学二次函数分类讨论经典例题

例1(1)关于x 的方程0142)3(22=++++m x m x 有两个实根,且一个大于1,一个小于1,求m 的取值范围; (2)关于x 的方程0142)3(22=++++m x m x 有两实根都在)4,0[内,求m 的取值范围; ⑶关于x 的方程0142)3(22=++++m x m x 有两实根在[]3,1外,求m 的取值范围 (4)关于x 的方程0142)3(22=++++m x m mx 有两实根,且一个大于4,一个小于4,求m 的取值范围. 例3已知函数3)12()(2--+=x a ax x f 在区间]2,2 3[-上的最大值为1,求实数a 的值。

解(1)令142)3(2)(2++++=m x m x x f ,∵对应抛物线开口向上,∴方程有两个实根,且一个大于1,一个小于1等价于0)1(?吗?),即.4 21-++++≥+????? ?????≥+-+<+-<≥≥m m m m m m m m m m f f (3)令142)3(2)(2++++=m x m x x f ,原命题等价于 ???<<0)3(0)1(f f 即? ??<++++<++++0142)3(690142)3(21m m m m 得.421-0)4(0g m 或,0 )4(0???>)(恒成立,求实数a 的取 值范围。 解:(1)0)()(恒成立?.)]([min a x f >又当]1,1[-∈x 时, 5)1()]([min -=-=f x f ,所以).5,(--∞∈a 【评注】“有解”与“恒成立”是很容易搞混的两个概念。一般地,对于“有解”与“恒成立”,有下列常用结论:(1)a x f >)(恒成立?a x f >min )]([;(2)a x f <)(恒成立?a x f )(有解?a x f >max )]([;(4)a x f <)(有解?.)]([min a x f < 分析:这是一个逆向最值问题,若从求最值入手,首先应搞清二次项系数a 是否为零,如果)(,0x f a ≠的最大值与二次函数系数a 的正负有关,也与对称轴

反比例函数经典编辑中考例题

反比例函数经典中考例题解析一 一、 填空题(每空3分,共36分) 1、任意写出一个图象经过二、四象限的反比例函数的解析式:__________ 2、若正比例函数y =mx (m ≠0)和反比例函数y =n x (n ≠0)的图象有一个交点为点(2,3),则m =______,n =_________ . 3、已知正比例函数y=kx 与反比例函数y= 3 x 的图象都过A (m ,1)点,求此正比例函数解析式为________,另一个交点的坐标为________. 4、已知反比例函数2k y x -=,其图象在第一、三象限内,则k 的值可为 。 (写出满足条件的一个k 的值即可) 5、已知反比例函数x k y = 的图象经过点)2 1 4(,,若一次函数1+=x y 的图象平移后经过该反比例函数图象上的点B (2,m ),求平移后的一次函数图象与x 轴的交点坐标为______________ 6、已知双曲线x k y = 经过点(-1,3),如果A (11,b a ),B (22,b a )两点在该双曲线上,且1a <2a <0,那么1b 2b . 7、函数y=x 2的图象如图所示,在同一直角坐标系内,如果将直线y=-x+1沿y 轴向上平 移2个单位后,那么所得直线与函数y= x 2 的图象的交点共有 个 8、已知函数y kx =- (k≠0)与y=4x -的图象交于A 、B 两点,过点A 作AC 垂直于y轴,垂足为点C ,则△BOC 的面积为____ (第9题)

9.如图,11POA V 、 212P A A V 是等腰直角三角形,点1P 、2P 在函数4 (0)y x x =>的图象上,斜边1OA 、12A A 都在x 轴上,则点2A 的坐标是____________. 10. 两个反比例函数x y 3= ,x y 6 =在第一象限内的图象如图 所示, 点P 1,P 2,P 3,…,P 2 005在反比例函数x y 6 = 图象上,它们的横坐标分别是x 1,x 2,x 3,…,x 2 005,纵坐标分别是1,3,5,…,共2 005个连续奇数,过点P 1, P 2,P 3,…,P 2 005分别作 y 轴的平行线,与x y 3 = 的图象交点依次是Q 1(x 1,y 1),Q 2(x 2,y 2),Q 3(x 3,y 3),…,Q 2 005(x 2 005,y 2 005),则 y 2 005= . 二、选择题(每题3分,共30分) 11、反比例函数k y x = 与直线2y x =-相交于点A ,A 点的横坐标为-1,则此反比例函数的解析式为( ) A .2y x = B .12y x = C .2y x =- D .12y x =- 12、如图所示的函数图象的关系式可能是( ). (A )y = x (B )y =x 1 (C )y = x 2 (D) y = 1x 13、若点(3,4)是反比例函数2 21m m y x +-=图象上一点,则此函数图象必须经过点 ( ). O x y (第12题) 第10

反比例函数经典中考例题解析二

反比例函数经典中考例题解析二 一、选择题(每小题3分,共30分) 1、反比例函数y = x n 5 图象经过点(2,3),则n 的值是( ). A 、-2 B 、-1 C 、0 D 、1 2、若反比例函数y = x k (k ≠0)的图象经过点(-1,2),则这个函数的图象一定经过点( ). A 、(2,-1) B 、(- 2 1 ,2) C 、(-2,-1) D 、( 2 1 ,2) 3、(08双柏县)已知甲、乙两地相距s (km ),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t (h )与行驶速度v (km/h )的函数关系图象大致是( ) 4、若y 与x 成正比例,x 与z 成反比例,则y 与z 之间的关系是( ). A 、成正比例 B 、成反比例 C 、不成正比例也不成反比例 D 、无法确定 5、一次函数y =kx -k ,y 随x 的增大而减小,那么反比例函数y = x k 满足( ). A 、当x >0时,y >0 B 、在每个象限内,y 随x 的增大而减小 C 、图象分布在第一、三象限 D 、图象分布在第二、四象限 6、如图,点P 是x 轴正半轴上一个动点,过点P 作x 轴的垂 线PQ 交双曲线y = x 1 于点Q ,连结OQ ,点P 沿x 轴正方向运动时, Rt △QOP 的面积( ). A 、逐渐增大 B 、逐渐减小 C 、保持不变 D 、无法确定 Q p x y o t /h v /(km/ O t /h v /(km/ O t /h v /(km/ O t /h v /(km/ O A . B . C . D .

7、在一个可以改变容积的密闭容器内,装有一定质量 m 的某种气体,当改变容积V 时,气体的密度ρ也随之改变. ρ与V 在一定范围内满足ρ= V m ,它的图象如图所示,则该 气体的质量m 为( ). A 、1.4kg B 、5kg C 、6.4kg D 、7kg 8、若A (-3,y 1),B (-2,y 2),C (-1,y 3)三点都在函数y =-x 1的图象上,则y 1,y 2,y 3的大 小关系是( ). A 、y 1>y 2>y 3 B 、y 1<y 2<y 3 C 、y 1=y 2=y 3 D 、y 1<y 3<y 2 9、已知反比例函数y = x m 21-的图象上有A (x 1,y 1)、B (x 2,y 2)两点,当x 1<x 2<0时,y 1<y 2,则m 的取值范围是( ). A 、m <0 B 、m >0 C 、m <2 1 D 、m > 2 1 10、如图,一次函数与反比例函数的图象相交于A 、B 两 点,则图中使反比例函数的值小于一次函数的值的x 的取值范围 是( ). A 、x <-1 B 、x >2 C 、-1<x <0或x >2 D 、x <-1或0<x <2 二、填空题(每小题3分,共30分) 11.某种灯的使用寿命为1000小时,它的可使用天数y 与平均每天使用的小时数x 之间的函数关系式 为 . 12、已知反比例函数 x k y = 的图象分布在第二、四象限,则在一次函数b kx y +=中,y 随x 的增大而 (填“增大”或“减小”或“不变”). 13、若反比例函数y =x b 3 -和一次函数y =3x +b 的图象有两个交点,且有一个交点的纵坐标为6,则b = . 14、反比例函数y =(m +2)x m 2 - 10的图象分布在第二、四象限内,则m 的值为 .

二次函数经典例题与解答

、中考导航图 顶点 对称轴 1. 二次函数的意义 ; 2. 二次函数的图象 ; 3. 二次函数的性质 开口方向 增减性 顶点式: y=a(x-h) 2+k(a ≠ 0) 4. 二次函数 待定系数法确定函数解析式 一般式: y=ax 2+bx+c(a ≠ 0) 两根式: y=a(x-x 1)(x-x 2)(a ≠0) 5. 二次函数与一元二次方程的关系。 6. 抛物线 y=ax 2+bx+c 的图象与 a 、 b 、 c 之间的关系。 三、中考知识梳理 1. 二次函数的图象 在 画二 次函数 y=ax 2+bx+c(a ≠ 0) 的图象 时通常 先通 过配 方配成 y=a(x+ b ) 2+ 2a 公式来求得顶点坐标 . 2. 理解二次函数的性质 抛物线的开口方向由 a 的符号来确定 , 当 a>0 时, 在对称轴左侧 y 随 x 的增大而减小 b 4ac-b 2 反之当 a0时,抛物线开口向上 ; 当 a<0时,?抛物线开口向 下 ;c 的符号由抛物线与 y 轴交点的纵坐标决定 . 当 c>0 时, 抛物线交 y 轴于正半轴 ; 当 c<0 时,抛物线交 y 轴于负半轴 ;b 的符号由对称轴来决定 .当对称轴在 y?轴左侧时 ,b 的符号与 a 二次函数 4ac-b 的形式 , 先确定顶点 4a (- 2b a 4ac-b 2 ), 然后对称找点列表并画图 ,或直接代用顶点 4a 在对称轴的右侧 ,y 随 x 的增大而增大 简记左减右增 , 这时当 x=- b 时 ,y 2a 最小值= 4ac-b 2 4a

反比例函数知识点归纳总结与典型例题(供参考)

反比例函数知识点归纳总结与典型例题 (一)反比例函数的概念: 知识要点: 1、一般地,形如 y = x k ( k 是常数, k = 0 ) 的函数叫做反比例函数。 注意:(1)常数 k 称为比例系数,k 是非零常数; (2)解析式有三种常见的表达形式: (A )y = x k (k ≠ 0) , (B )xy = k (k ≠ 0) (C )y=kx -1 (k ≠0) 例题讲解:有关反比例函数的解析式 (1)下列函数,① 1)2(=+y x ②. 11+= x y ③21x y = ④.x y 21 -=⑤2 x y =-⑥13y x = ;其中是y 关 于x 的反比例函数的有:_________________。 (2)函数2 2)2(--=a x a y 是反比例函数,则a 的值是( ) A .-1 B .-2 C .2 D .2或-2 (3)若函数1 1-= m x y (m 是常数)是反比例函数,则m =________,解析式为________. (4)反比例函数(0k y k x = ≠) 的图象经过(—2,52, n ), 求1)n 的值; 2)判断点B (24,2- (二)反比例函数的图象和性质: 知识要点: 1、形状:图象是双曲线。 2、位置:(1)当k>0时,双曲线分别位于第________象限内;(2)当k<0时, 双曲线分别位于第________象限内。 3、增减性:(1)当k>0时,_________________,y 随x 的增大而________; (2)当k<0时,_________________,y 随x 的增大而______。 4、变化趋势:双曲线无限接近于x 、y 轴,但永远不会与坐标轴相交 5、对称性:(1)对于双曲线本身来说,它的两个分支关于直角坐标系原点____________;(2)对于k 取互为相反数的两个反比例函数(如:y = x 6 和y = x 6 -)来说,它们是关于x 轴,y 轴___________。 例题讲解: 反比例函数的图象和性质: (1)写出一个反比例函数,使它的图象经过第二、四象限 . (2)若反比例函数 2 2 )12(--=m x m y 的图象在第二、四象限,则m 的值是( ) A 、 -1或1; B 、小于 1 2 的任意实数; C 、-1; D、不能确定 (3)下列函数中,当0x <时,y 随x 的增大而增大的是( ) A .34y x =-+ B .123y x =-- C .4 y x =- D .12y x =.

反比例函数知识点归纳和典型例题

反比例函数知识点归纳和典型例题 知识点归纳 (一)反比例函数的概念 1.()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件; 2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式; 3.反比例函数的自变量,故函数图象与x轴、y轴无交点. (二)反比例函数的图象 在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称). (三)反比例函数及其图象的性质 1.函数解析式:() 2.自变量的取值范围: 3.图象: (1)图象的形状:双曲线. 越大,图象的弯曲度越小,曲线越平直. 越小,图象的弯曲度越大. (2)图象的位置和性质: 与坐标轴没有交点,称两条坐标轴是双曲线的渐近线. 当时,图象的两支分别位于一、三象限; 在每个象限内,y随x的增大而减小; 当时,图象的两支分别位于二、四象限; 在每个象限内,y随x的增大而增大. (3)对称性:图象关于原点对称,即若(a,b)在双曲线的一支上, 则(,)在双曲线的另一支上.

图象关于直线对称,即若(a,b)在双曲线的一支上, 则(,)和(,)在双曲线的另一支上.4.k的几何意义 如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是(三角形PAO和三角形PBO的面积都是). 如图2,由双曲线的对称性可知,P关于原点的对称 点Q也在双曲线上,作QC⊥PA的延长线于C,则有三 角形PQC的面积为. 图1 图2 5.说明: (1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论. (2)直线 与双曲线的关系: 当 时,两图象没有交点; 当 时,两图象必有两个交点,且这两个交点关于原点成中心对称.

二次函数对称轴经典问题

高中数学二次函数对称轴典型问题练习题 二次函数在闭区间上一定存在最大值和最小值,此类问题与区间和对称轴有关,一般分为三类: ①定区间,定轴; ②定区间,动轴, ③动区间,动轴.要认真分析对称轴与区间的关系,合理地进行分类讨论,特别要注意二次项系数是否为0. 第一类问题 二次函数中的动轴定区间 例一已知函数2 142+-+-=a ax x y 在区间[0,1]上的最大值是2,求实数a 的值。 〖解答〗.3 106,310,2)1(,]1,0[,2,12/;,20,32,2)2 (,20,120;6,2)0(,]1,0[,0,02 ,2,42)2(max max max 22或综上上单调递增函数在即时当故舍去矛盾与或得有即时当得有上单调递减函数在即时当对称轴为-==∴==∴>>≤≤-===≤≤≤≤-===<<=+-+--=a a f y a a a a a f y a a a f y a a a x a a a x y 第二类问题 二次函数中的定轴动区间 例二 函数f (x )=142-+-x x 在区间[t ,t +1](t ∈R)上的最大值记为g (t ). (1)求g (t )的解析式;(2)求g (t )的最大值 (1)对区间[t ,t +1](t ∈R)与对称轴x =2的位置关系进行讨论: ①当t +1<2,即t <1时,函数f (x )在区间[t ,t +1]上递增,

此时g (t )=f (t +1)=-t 2+2t +2; ②当t ≤2≤t +1,即1≤t ≤2时,函数f (x )在区间[t ,t +1]上先增后减, 此时g (t )=f (2)=3; 例三 已知f (x )=)(2)34(2R a a x x a ∈+--a ∈R),求f (x )在[0,1]上的最大 值 ()()()()()()2222[1]4122(1)3(12)241(2) 3. t f x t t g t f t t t t t t g t t t t t g t >?-++? ③当时,函数在区间,+上递减,此时==-+-,综上,=利用图象解得的最大值是()()()[]()()()()[]()()max max 4430342.30,140.34430341()43003430,10.12a a f x x f x f x f a a a a x a f x f x f a ????≠≠ <><-????若-=,则=,所以=-+由于在上是减函数,所以==若-,即,分两种情况讨论:ⅰ若-,即,因为对称轴=,所以在上是减函数,所以=【】=解析()()()()()[]max max 41()4300343112043231221124<<<0.243330,12a a x a a a f x f a a f x f a a f x ><>-<≤≤-????????-?ⅱ若-,即,因为对称轴= ,故又分两种情况讨论: ①当,即时,==-;②当,即时,==综上所述,在上的最大值是关

二次函数典型例题解析

二次函数典型例题解析 关于二次函数的概念 例1 如果函数1)3(232++-=+-mx x m y m m 是二次函数,那么m 的值为 。 例2 抛物线422-+=x x y 的开口方向是 ;对称轴是 ;顶点为 。 关于二次函数的性质及图象 例3 函数)0(2≠++=a c bx ax y 的图象如图所示, 则a 、b 、c ,?,c b a ++,c b a +-的符号 为 , 例4 (镇江2001中考题)老师给出一个函数y=f (x ),甲,乙,丙,丁四位同学各指出这个函数的一个性质:甲:函数的图像不经过第三象限。乙:函数的图像经过第一象限。丙:当x <2时,y 随x 的增大而减小。丁:当x <2时,y >0,已知这四位同学叙述都正确,请构造出满足上述所有性质的一个函数—————————————————。 例5 (荆州2001)已知二次函数y=x 2+bx +c 的图像过点A (c ,0),且关于直线x=2对称,则这个二次函数的解析式可能是 (只要写出一个可能的解析式) 例6 已知a -b +c=0 9a +3b +c=0,则二次函数y=ax 2+bx +c 的图像的顶点可能在( ) (A ) 第一或第二象限 (B )第三或第四象限 (C )第一或第四象限 (D )第二或第三象限 例7 双曲线x k y = )0(≠k 的两分支多在第二、四象限内,则抛物线222k x kx y +-=的大致图 象是( ) 例8 在同一坐标系中,直线b ax y +=和抛物线c bx ax y ++=2 确定二次函数的解析式 例9 已知:函数c bx ax y ++=2的图象如图:那么函数解析式为((A )322++-=x x y (B )322--=x x y (C )322+--=x x y (D )322---=x x y

反比例函数知识点及典型例题解析

反比例函数 知识点及考点: (一)反比例函数的概念: 知识要点: 1、一般地,形如 y = x k ( k 是常数, k = 0 ) 的函数叫做反比例函数。 注意:(1)常数 k 称为比例系数,k 是非零常数; (2)解析式有三种常见的表达形式: (A )y = x k (k ≠ 0) , (B )xy = k (k ≠ 0) (C )y=kx -1 (k ≠0) 例题讲解:有关反比例函数的解析式 (1)下列函数,① 1)2(=+y x ②. 11 += x y ③21x y = ④.x y 21-=⑤2x y =-⑥13y x = ;其中是y 关于 x 的反比例函数的有:_________________。 (2)函数2 2 )2(--=a x a y 是反比例函数,则a 的值是( ) A .-1 B .-2 C .2 D .2或-2 (3)若函数1 1-= m x y (m 是常数)是反比例函数,则m =________,解析式为________. (4)如果y 是m 的反比例函数,m 是x 的反比例函数,那么y 是x 的( ) A .反比例函数 B .正比例函数 C .一次函数 D .反比例或正比例函数 练习:(1)如果y 是m 的正比例函数,m 是x 的反比例函数,那么y 是x 的( ) (2)如果y 是m 的正比例函数,m 是x 的正比例函数,那么y 是x 的( ) (5)反比例函数(0k y k x = ≠) 的图象经过(—2,5, n ), 求1)n 的值; 2)判断点B (24,)是否在这个函数图象上,并说明理由 (6)已知y 与2x -3成反比例,且4 1 =x 时,y =-2,求y 与x 的函数关系式.

二次函数最值知识点总结典型例题及习题

必修一二次函数在闭区间上的最值 一、 知识要点: 一元二次函数的区间最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论。一般分为:对称轴在区间的左边,中间,右边三种情况. 设f x ax bx c a ()()=++≠2 0,求f x ()在x m n ∈[],上的最大值与最小值。 分析:将f x ()配方,得顶点为--?? ???b a ac b a 2442,、对称轴为x b a =-2 当a >0时,它的图象是开口向上的抛物线,数形结合可得在[m ,n]上f x ()的最值: (1)当[] -∈b a m n 2,时,f x ()的最小值是f b a ac b a f x -?? ???=-2442,()的最大值是f m f n ()()、中的较大者。 (2)当[]-?b a m n 2,时 若-

二次函数经典测试题及答案解析

二次函数经典测试题及答案解析 一、选择题 1.如图,ABC ?为等边三角形,点P 从A 出发,沿A B C A →→→作匀速运动,则线段AP 的长度y 与运动时间x 之间的函数关系大致是( ) A . B . C . D . 【答案】B 【解析】 【分析】 根据题意可知点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故可排除选项C 与D ;点P 从点B 运动到点C 时,y 是x 的二次函数,并且有最小值,故选项B 符合题意,选项A 不合题意. 【详解】 根据题意得,点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故选项C 与选项D 不合题意; 点P 从点B 运动到点C 时,y 是x 的二次函数,并且有最小值, ∴选项B 符合题意,选项A 不合题意. 故选B . 【点睛】 本题考查了动点问题的函数图象:通过分类讨论,利用三角形面积公式得到y 与x 的函数关系,然后根据二次函数和一次函数图象与性质解决问题. 2.二次函数y =x 2+bx 的对称轴为直线x =2,若关于x 的一元二次方程x 2+bx ﹣t =0(t 为实数)在﹣1<x <4的范围内有解,则t 的取值范围是( ) A .0<t <5 B .﹣4≤t <5 C .﹣4≤t <0 D .t ≥﹣4 【答案】B 【解析】 【分析】 先求出b ,确定二次函数解析式,关于x 的一元二次方程x 2+bx ﹣t =0的解可以看成二次函

数y =x 2﹣4x 与直线y =t 的交点,﹣1<x <4时﹣4≤y <5,进而求解; 【详解】 解:∵对称轴为直线x =2, ∴b =﹣4, ∴y =x 2﹣4x , 关于x 的一元二次方程x 2+bx ﹣t =0的解可以看成二次函数y =x 2﹣4x 与直线y =t 的交点, ∵﹣1<x <4, ∴二次函数y 的取值为﹣4≤y <5, ∴﹣4≤t <5; 故选:B . 【点睛】 本题考查二次函数图象的性质,一元二次方程的解;将一元二次方程的解转换为二次函数与直线交点问题,数形结合的解决问题是解题的关键. 3.一列自然数0,1,2,3,…,100.依次将该列数中的每一个数平方后除以100,得到一列新数.则下列结论正确的是( ) A .原数与对应新数的差不可能等于零 B .原数与对应新数的差,随着原数的增大而增大 C .当原数与对应新数的差等于21时,原数等于30 D .当原数取50时,原数与对应新数的差最大 【答案】D 【解析】 【分析】 设出原数,表示出新数,利用解方程和函数性质即可求解. 【详解】 解:设原数为m ,则新数为2 1100 m , 设新数与原数的差为y 则22 11100100 y m m m m =-=-+, 易得,当m =0时,y =0,则A 错误 ∵1 0100 - < 当1m 50 122100b a ﹣﹣﹣===??? ??? 时,y 有最大值.则B 错误,D 正确. 当y =21时,2 1100 m m - +=21 解得1m =30,2m =70,则C 错误.

反比例函数的典型例题集

反比例函数的典型例题一 例 下面函数中,哪些是反比例函数? (1)3x y - =;(2)x y 8-=;(3)54-=x y ;(4)15-=x y ;(5).8 1=xy 解:其中反比例函数有(2),(4),(5). 说明:判断函数是反比例函数,依据反比例函数定义,x k y =)0(≠k ,它也可变形为1-=kx y 及k xy =的形式, (4),(5)就是这两种形式. 反比例函数的典型例题二 例 在以下各小题后面的括号里填写正确的记号.若这个小题成正比例关系,填(正);若成反比例关系,填(反);若既不成正比例关系又不成反比例关系,填(非). (1)周长为定值的长方形的长与宽的关系 ( ); (2)面积为定值时长方形的长与宽的关系 ( ); (3)圆面积与半径的关系 ( ); (4)圆面积与半径平方的关系 ( ); (5)三角形底边一定时,面积与高的关系 ( ); (6)三角形面积一定时,底边与高的关系 ( ); (7)三角形面积一定且一条边长一定,另两边的关系 ( ); (8)在圆中弦长与弦心距的关系 ( ); (9)x 越来越大时,y 越来越小,y 与x 的关系 ( ); (10)在圆中弧长与此弧所对的圆心角的关系 ( ). 答: 说明:本题考查了 正比例函数和反比例函数的定义,关键是一定要弄清出二者的定义. 反比例函数的典型例题三 例 已知反比例函数6 2)2(--=a x a y ,y 随x 增大而减小,求a 的值及解析式. 分析 根据反比例函数的定义及性质来解此题. 解 因为6 2)2(--=a x a y 是反比例函数,且y 随x 的增大而减小, 所以???>--=-.02,162a a 解得???>±=. 2,5a a

二次函数典型例题——最大值问题

二次函数典型例题——最大面积 1、如图所示,在平面直角坐标系中,Rt△OBC 的两条直角边分别落在x 轴、y 轴上,且 OB=1,OC=3,将△OBC 绕原点O 顺时针旋转90°得到△OAE ,将△OBC 沿y 轴翻折得到△ODC ,AE 与CD 交于点 F. (1)若抛物线过点 A 、B、C, 求此抛物线的解析式; (2)求△OAE 与△ODC 重叠的部分四边形ODFE 的面积; (3)点M 是第三象限内抛物线上的一动点,点M 在何处时△AMC 的面积最大?最大面积 是多少?求出此时点M 的坐标. 解:(1)∵OB=1 ,OC=3 ∴C(0,-3),B(1,0) ∵△OBC 绕原点顺时针旋转90°得到△ OAE ∴A(-3,0) 所以抛物线过点A(-3 ,0),C(0,-3),B(1,0) 设抛物线的解析式 为 y 2 ax bx c(a 0) ,可得 a+b+c 0a1 c -3解得b2 9a-3b c 0c-3 ∴过点A,B,C 的抛物线的解析式为y x2 2x-3 (2)∵△OBC 绕原点顺时针旋转90°得到△ OAE ,△OBC 沿y 轴翻折得到△COD ∴ E(0,-1),D(-1,0) 1 可求出直线AE 的解析式为y 1x 1 3直线DC 的解析式为y 3x 3 ∵点F为AE、DC 交点 ∴F(-3,-3) 44

3 S 四边形 ODFE =S △AOE -S △ADF = 4 3)连接 OM ,设 M 点的坐标为 (m ,n ) 2 2、在平面直角坐标系 xOy 中,抛物线 y mx 2 (m 2)x 2 过点 (2, 4) ,且与 x 轴交于 A 、 B 两点(点 A 在点 B 左侧),与 y 轴交于点 C.点 D 的坐标为 (2,0) ,连接 CA ,CB ,CD. (1)求证: ACO BCD ; (2) P 是第一象限内抛物线上的一个动点,连接 DP 交 BC 于点 E. ①当 △BDE 是等腰三角形时,直接写出点 E 的坐标; ②连接 CP ,当△ CDP 的面积最大时,求点 E 的坐标. ∵点 M 在抛物线上,∴ n 2 m 2m ∴ S AMC S AMO S OMC S AOC = 12OA m = 32(m 2 11 OC n OA OC 2 2 3m) 3(m 因为 0 m 3 ,所以当 m 所以当点 M 3 的坐标为 ( , 2 3 9 3 (m n) (m n 3) 2 2 2 3 2 27 2) 8 3 时, 2 15 - ) 时, 4 n 15 ,△AMA ' 的面积有最大值 4 △ AMA '的面积有最大值

二次函数各知识点、考点、典型例题及对应练习(超全)

二次函数 专题一:二次函数的图象与性质 考点1.二次函数图象的对称轴和顶点坐标 二次函数的图象是一条抛物线,它的对称轴是直线x=-2b a ,顶点坐标是(-2b a ,244ac b a -). 例 1 已知,在同一直角坐标系中,反比例函数5 y x =与二次函数22y x x c =-++的图像交于点(1)A m -,. (1)求m 、c 的值; (2)求二次函数图像的对称轴和顶点坐标. 考点2.抛物线与a 、b 、c 的关系 抛物线y=ax 2 +bx+c 中,当a>0时,开口向上,在对称轴x=-2b a 的左侧y 随x 的增大而减小,在对称轴的右侧,y 随x 的增大而增大;当a<0时,开口向下,在对称轴的右侧,y 随x 的增大而增大,在对称轴的右侧,y 随x 的增大而减小. 例2 已知2 y ax bx =+的图象如图1所示,则y ax b =-的图象一定过( ) A .第一、二、三象限 B .第一、二、四象限 C .第二、三、四象限 D .第一、三、四象限 考点3.二次函数的平移 当k>0(k<0)时,抛物线y=ax 2+k (a ≠0)的图象可由抛物线y=ax 2向上(或向下)平移|k|个单位得到;当h>0(h<0)时,抛物线y=a (x-h )2(a ≠0)的图象可由抛物线y=ax 2向右(或向左)平移|h|个单位得到. 例3 把抛物线y=3x 2向上平移2个单位,得到的抛物线是( ) A.y=3(x+2)2 B.y=3(x-2)2 C.y=3x 2+2 D.y=3x 2 -2 图1

专题练习一 1.对于抛物线y=13-x 2+ 103x 163 -,下列说法正确的是( ) A.开口向下,顶点坐标为(5,3) B.开口向上,顶点坐标为(5,3) C.开口向下,顶点坐标为(-5,3) D.开口向上,顶点坐标为(-5,3) 2.若抛物线y=x 2-2x+c 与y 轴的交点为(0,-3),则下列说法不正确的是( ) A.抛物线开口向上 B.抛物线的对称轴是x=1 C.当x=1时,y 的最大值为-4 D.抛物线与x 轴交点为(-1,0),(3,0) 3.将二次函数y=x 2的图象向左平移1个单位长度,再向下平移2个单位长度后,所得图象的函数表达式是________. 4.小明从图2所示的二次函数2 y ax bx c =++的图象中,观察得出了下面五条信息:①0c <;②0abc >;③0a b c -+>;④230a b -=;⑤40c b ->,你认为其中正确信息的个数有_______.(填序号) 专题复习二:二次函数表达式的确定 考点1.根据实际问题模型确定二次函数表达式 例1 如图1,用一段长为30米的篱笆围成一个一边靠墙(墙 的长度不限)的矩形菜园ABCD ,设AB 边长为x 米,则菜园的面积y (单位:米2 )与x (单位:米)的函数关系式为 (不要求写出自变量x 的取值范围). 考点2.根据抛物线上点的坐标确定二次函数表达式 1.若已知抛物线上三点的坐标,则可用一般式:y=ax 2+bx+c (a ≠0); 2.若已知抛物线的顶点坐标或最大(小)值及抛物线上另一个点的坐标,则可用顶点式:y=a (x-h )2+k (a ≠0); 3.若已知抛物线与x 轴的两个交点坐标及另一个点,则可用交点式:y=a (x-x 1)(x-x 2)(a ≠0). 例2 已知抛物线的图象以A (-1,4)为顶点,且过点B (2,-5),求该抛物线的表达式. 图2 A B C D 图1 菜园 墙

相关文档
最新文档