1且〃GN"),1)当“为奇数时,"的“次方根记作亦:2)当〃为偶数时,负数d没有”次方根,而正数d有两个〃次方根且互为相反数,记作土畅d>0).②性质:1)丽"=a;2)当n为奇数时,0=0:3)当"为偶数时,^=4a\=\(l(a~Q)一d(a幕的有关概念:①规曲1)a1" />

指数对数概念及运算公式

指数对数概念及运算公式
指数对数概念及运算公式

指数函数及对数函数重难点

根式的概念:

①泄义:若一个数的〃次方等于a{n > 1,且则这个数称d的”次方根?即,若

x" =G,则兀称d的刃次方根〃 > 1且〃G N"),

1)当“为奇数时,"的“次方根记作亦:

2)当〃为偶数时,负数d没有”次方根,而正数d有两个〃次方根且互为相反数,记作

土畅d>0).

②性质:1)丽"=a ;2)当n为奇数时,0 = 0:

3)当"为偶数时,^=4a\=\(l(a~Q)

一 d(a < 0)

幕的有关概念:

①规曲1) a11 = a- a ........... a{n eN\ 2) a°=l(aHO),

n个

1 巴_____

3) a~p = — (/? eQ? 4) a n = (a > 0,m . n G N*且n > 1)

②性质:1) ci r a s =a r^(a > O.r . s eQ),

2){a Y = a s {a > 0,r . s e Q),

3)(a-by = a -b r(a > 0,Z? > 0,r e Q)

(注)上述性质对c 5€R均适用.

例求值

(1) 83 (2) 25 3⑶(?)5⑷(I?)4

例?用分数指数幕表示下列分式(其中各式字母均为正数)

⑴需奶(2 ) ( 3 )

(4 ) #(d + b)3 ( 5 ) ^Jab2 +a2b(6)寸(宀必

例.化简求值

77 £ _丄

(违)J°.002)JM3+(d?

2V3xVL5xV12 =

指数函数的定义^

①泄义:函数y = a x (a>0,且"工1)称指数函数,

1) 函数的左义域为R ,

2) 函数的值域为(0,+s),

3) 当01时函数为增函数.

提问:在下列的关系式中,哪些不是指数函数,为什么 (1) y = 2心 (2) y = (-2)‘ (3) y = -2r

(4) y = 7t x

(5) y = x 2

(6) y = 4x 2 (7)

(8) y = (a_l )x (a>l.且。工 2) 例:比较下列各题中的个值的大小

(1) 与 (2 ) 0.8-°1 与 O.8-02 (3 ) 与例:已知指数函数f(x) = a x (a>0且dHl)的图象过点(3,兀),

/(0), /(I), /(-3)的值.

思考:已知? = O.8o \Z; = O.8O9.c = L2o \按大小顺序排列小c.

(3)

(4)

(O.O275)'25 -2560,254-(-32)?+0.1-1

质?歸?畅= 2 1 2历沪 -6a 2/? -3a 6b 6 二

(A) a

(C) \

例如图为指数函数(\)y = a u,b 、

c 、

d 与1的大小关系为

L、函数尸片是(

A、奇函数 B.偶函数C、既奇又偶函数D、非奇非偶函数

2、函数—的值域是( )

-2V-1

A、(-oo,l)

B、(Y,O)U(O,T

C、(-1,+OO)

D、Y,_1)U(0,*O)

3、已知Ovdviev—l,则函数y = a x+b的图像必泄不经过( )

A、第一象限

B、第二象限

C、第三象限

D、第四象限

/ [、工S

例.求函数y=- 的值域和单调区间

k 2 >

例若不等式3宀加>(丄)?“对一切实数*恒成立,则实数&的取值范围为_________ ?

3

.f3屮:1-2[I,则f3值域为_________ .

3^-2 xe(t+x)

考查分段函数值域.

【解析】曲(一8,1]时,LlWOWWl,

?: — 2〈fCv) W —1

(1, +°°)时,1—JV<0,0<3X \1, —2

f (x)值域为(一2, — 1 ]

【答案】(一2, — 1]

例、已知f(e x +e~x) = e2x +e~2x -2,贝9函数/⑴的值域是____________________

例点(2, 1)与(1, 2)在函数子(兀)=2心初的图象上,求/(x)的解析式

例.设函数/(x) = 2|A",H V_11,求使f(x) > 2^2的X取值范围.

-2r+b

例已知左义域为R的函数/(x)= —是奇函数。

2 +a

(I)求的值;

(II)若对任意的re/?,不等式f(t2-2t) + f(2t2-k)<0恒成立,求R的取值范围;

对数的概念:

① 定义:如果a(a > 0,且“Hl)的b 次幕等于N,就是J = N ,那么数b 称以a 为底N 的 对数,记作log°N = b,其中a 称对数的底,N 称真数.

1) 以10为底的对数称常用对数,log^N 记作IgN,

2) 以无理数^ = 2.71828 --)为底的对数称自然对数,log 「N 记作InN

② 基本性质:

1) 真数N 为正数(负数和零无对数),

2) log fl 1=0,

3) log fl “ = 1,

4) 对数恒等式:a^nN =N

例将下列指数式化为对数式,对数式化为指数式.

(1) 5*645

(2) 2"=丄 64 分析:将对数式化为指数式,再利用指数幕的运算性质求岀儿

练习:将下列指数式与对数式互化,有兀的求出X 的值.

-1 1 . 1

(1) 5 2= (2) log J=x (3) 3X = — y/5

农 27 (4) (-)1 = 64 (5) lg0.0001 = x (6) In

4 例利用对数恒等式輕求下列各式的值:

⑴(丄严3+(丄严4 一(丄)曲

4 5 3

k>g| 4 >og I 2 (2) 3 亍 +10叱晌 2一7 1

(3) 25logi2 +49log?3 -10018'^

(3) 4)m=5-73

(4) log 】16 =-4

2 例:求下列各式中X 的值

2 (1) log M x = -- (5) log 100.01 =-2 (6) log f 10 = 2.30

3 (2) log 18 = 6

(3) lgl00 = x (4) -\ne 2 =x

(4)2畑山_3呱27+5叫亍

③运算性质:如果d>0,dH0,M>0,N>0,则

1)loga(MN) = k>g“M+logaN;

… M

2)叽亍\og a M - \og a N :

3) \og a M n = z?log fl M(n eR)?

log N

⑷换底公式:log fl N =————(a > 0卫 H 0" > 0, m W \、N > 0), logM

1) log'?log, = l, 2) log = —log^z?.

m

对数函数的运算规律

例?用log fl x, log fl y , log n z表示下列各式:

解:(1) log.—

z

iogdUy)-bgaZ

= logaX + logdy-log“z;

例.求下列各式的值:

(1)log2(47 x25):(2) lgVlOO .

⑵吨¥

iOg.XV?) i0g“返

=log “ 疋 + log “ “ - log “ 返=

21og fl x + hog fl y-hog fl z

解:(1)原式=log247 +log225=71og24 + 51og22 = 7x2+5x1 = 19:

i? ?

(2)原式二-lgl0‘= —lgl0 =二

例.计算:(1) Igl4-21g^ + lg7-lgl8:

12 243

(2)-——: lg9

(3)2log 5 25+31og2 64- 8log 101 (4)lg2 ? lg50+(l g5)3

(5)Ig25+lg2 - l g50+(lg2)s

7

log 891og 27 32.

⑶9?

求值

(1) log 89 ? log 苗32

畑 6432 1og 2^-log 3l-log 5i

⑵ 25 8 9

3

畑 2(1 啤2 32 + log 1 玄 +log4 36) ⑶ 2 4

⑷(log :125+log|25+log s 5) (log 1:58+log254+log 52) 对数函数性质典型例题

例?比较下列各组数中两个值的大小:

(1) log 23.4t log 2 8.5 : (2) log 031.8, log 032.7; 解:(1)对数函数y = log 2 x 在(O,_FS )上是增函数,

于是 log, 3.4 < log, 8.5;

(2)对数函数y = log (”兀在(0,+eo)上是减函数,

于是 log 031.8>log 03 2.7 ;

解:(1) Igl4-21g- + lg7-lgl8=lg(2x7)-2(lg7-lg3) + lg7-lg(32x2)

= lg2 + lg7 — 21g7 + 21g3 + lg7 — 21g3 — lg2=0: Ig243_lg35 _51g3_5

2 (2) lg9

lg32 21g3

(2) log 43-log 92 + log 2 ^32 ? 丄=15?

3

⑵ 原式=ilog 23-ik>g 324-|log 22 = l + | = |.

求值:(1) Qog 4 3 + log 8 3)Qog 3 2 + log 9 2); 例?计算:(1)

解:(1)原式二 例.

5,",0So.23 ■ ⑶ 例.

高中数学《对数的概念与运算性质》精品公开课教案设计

《对数与对数运算》(第一课时) 一、教学内容解析 《对数与对数运算》选自人教A版高中数学必修一第二章,共分两小节,第一小节主要内容是对数的概念、对数式与指数式的互化,第二小节内容是对数的运算性质,本课时为第一小节内容. 16、17世纪之交,随着天文、航海、工程、贸易以及军事的发展,改进数字计算方法成为当务之急.苏格兰数学家纳皮尔正是在研究天文学的过程中,为了简化其中的计算而发明了对数. 与传统教科书相比,教材从具体问题引进对数概念,加强了对数的实际应用与数学文化背景,强调“对数源于指数”以及指数运算与对数运算的互逆关系,将对数安排在指数运算及指数函数之后进行学习,实现对数与原有知识体系的对接,有利于学生学习时发现与论证对数的运算性质. 基于以上分析,本课时的教学重点是:对数概念的理解以及指数式与对数式的互化. 二、教学目标设置 1.感受引入对数的必要性,理解对数的概念; 2.能够说出对数与指数的关系,能根据定义进行互化和求值; 3.感受数学符号的抽象美、简洁美. 本课时落实以上三个教学目标: 通过“推断化石年代”和“解指数方程”两个实例,认识到引入对数,研究对数是基于实际需求的。根据底数、指数与幂之间的关系,通过“知二求一”的分析,引导学生借助指数函数图象,分析问题中幂指数的存在性,以及为了表示指数的准确值,引入了对数符号,从而引出对数概念. 通过图示连线,对指数式和对数式中各字母进行对比分析,来认识对数与指数的相互联系;利用指数式与对数式的互化,来帮助学生理解对数概念,体会转化思想在对数计算中的作用.对数源于指数,本课时中,对数问题往往回归本源,转化为指数问题来解决,因而要在理解对数概念的基础上学会互化和求值. 恰当的数学符号,对数学发展起着巨大的推动作用,对数符号抽象而简洁,学生需要在不断的学习中逐渐体验对数符号的重要性. 三、学生学情分析

指数对数概念及运算公式

指数函数及对数函数重难点 根式的概念: ①定义:若一个数的n 次方等于),1(* ∈>N n n a 且,则这个数称a 的n 次方根.即,若 a x n =,则x 称a 的n 次方根)1*∈>N n n 且, 1)当n 为奇数时,n a 的次方根记作n a ; 2)当n 为偶数时,负数a 没有n 次方根,而正数a 有两个n 次方根且互为相反数,记作 )0(>±a a n . ②性质:1)a a n n =)(; 2)当n 为奇数时,a a n n =; 3)当n 为偶数时,???<-≥==) 0() 0(||a a a a a a n 幂的有关概念: ①规定:1)∈???=n a a a a n (ΛN * , 2))0(10 ≠=a a , n 个 3)∈=-p a a p p (1 Q ,4)m a a a n m n m ,0(>=、∈n N * 且)1>n ②性质:1)r a a a a s r s r ,0(>=?+、∈s Q ), 2)r a a a s r s r ,0()(>=?、∈s Q ), 3)∈>>?=?r b a b a b a r r r ,0,0()( Q ) (注)上述性质对r 、∈s R 均适用. 例 求值 (1) 3 28 (2)2 125 - (3)()5 21- (4)() 43 8116- 例.用分数指数幂表示下列分式(其中各式字母均为正数) (1)43a a ? (2)a a a (3)32 )(b a - (4)43 )(b a + (5)32 2b a ab + (6)42 33 )(b a + 例.化简求值

(1)0 121 32322510002.08 27)()()()(-+--+---- (2)2 11 5 3125.05 25 .231 1.0)32(256) 027.0(?? ????+-+-????? ?-- (3)=?÷ ?--3133 73 32 9a a a a (4)21 1511336622263a b a b a b ??????-÷- ??? ??????? = (5 )= 指数函数的定义: ①定义:函数)1,0(≠>=a a a y x 且称指数函数, 1)函数的定义域为R , 2)函数的值域为),0(+∞, 3)当10<a 时函数为增函数. 提问:在下列的关系式中,哪些不是指数函数,为什么? (1)2 2 x y += (2)(2)x y =- (3)2x y =- (4)x y π= (5)2y x = (6)2 4y x = (7)x y x = (8)(1)x y a =- (a >1,且2a ≠) 例:比较下列各题中的个值的大小 (1)1.72.5 与 1.7 3 ( 2 )0.1 0.8 -与0.2 0.8 - ( 3 ) 1.70.3 与 0.93.1 例:已知指数函数()x f x a =(a >0且a ≠1)的图象过点(3,π),求 (0),(1),(3)f f f -的值. 思考:已知0.7 0.9 0.8 0.8,0.8, 1.2,a b c ===按大小顺序排列,,a b c . 例 如图为指数函数x x x x d y c y b y a y ====)4(,)3(,)2(,)1(,则 d c b a ,,,与1的大小关系为

【高中数学专项突破】专题25 对数的概念及运算(含答案)

【高中数学专项突破】 专题25 对数的概念及运算 题组1 对数的概念 1.在b =log (a -2)(5-a )中,实数a 的取值范围是( ) A.a >5或a <2 B.2 且1a ≠ B.102 a << C.0a >且1a ≠ D.12 a < 3.使对数()log 21a a -+有意义的a 的取值范围为( ) A.()1,11,2??+∞ ??? B.10,2?? ??? C.()()0,11,+∞ D.1,2? ?-∞ ?? ? 题组2 对数式与指数式的互化 4.下列指数式与对数式互化不正确的一组是( ) A.0 1e =与ln10= B.1 3 1 8 2 - = 与811log 23=- C.3log 92=与12 93= D.7log 71=与177= 5.若1 log 2 m n =,则下列各式正确的是( ) A.1 2 n m = B.2m n = C.2n m = D.2n m = 6.将指数式bc a N =转化为对数式,其中正确的是( ) A.log c a b N = B.log ab c N = C.log c a b N = D.log b a c N = 7.若7 log x y z =,则( ) A.7z y x = B.7z y x = C.7z y x = D.7x y z = 8.若实数a ,b 满足3412a b ==,则11 a b +=( ) A.1 2 B.15 C.16 D.1

100道指数和对数运算

指数和对数运算 一、选择题 1.log ( ). A .-12 D .12 2.已知 3log 2 a =,那么 33log 82log 6 -用a 表示是( ) A .52a - B .2a - C .2 3(1)a a -+ D . 2 31a a -- 3.1 2lg 2lg 25 -的值为 A .1 B .2 C .3 D .4 4.已知4213 5 3 2,4,25a b c ===,则( ) A. c a b << B. a b c << C.b a c << D. b c a << 5.设3 .02.03.03.0,3.0,2.0===z y x ,则z y x ,,的大小关系为( ) A.x z y << B. y x z << C. y z x << D. z y x << 6.设0.2 1.6 0.2 2,2,0.4a b c ===,则,,a b c 的大小关系是() A c a b <<. B .c b a << C .a b c << D .b a c << 二、填空题 7.7 33log 8lg 125lg ++= . 8.2 log 510+log 50.25=_________. 9.22log 12log 3-= . 10.若lg2 = a ,lg3 = b ,则lg 54=_____________. 11.若2log 31x =,则3x 的值为 。 12.化简2 log 2 lg5lg2lg2+-的结果为__________. 13.计算=÷--21 100)25lg 41 (lg _______. 三、解答题 14.(本小题满分12分)计算 (Ⅰ)2 221 log log 6log 282 -; (Ⅱ)213 4 270.00818-?? -+ ? ?? 15. lg(x 2 +1)-2lg(x+3)+lg2=0

《对数与对数运算》教学设计

2.2.1 对数与对数运算(一) 教学目标 (一) 教学知识点 1. 对数的概念; 2.对数式与指数式的互化. (二) 能力训练要求 1.理解对数的概念;2.能够进行对数式与指数式的互化;3.培养学生数学应用意识. (三)德育渗透目标 1.认识事物之间的普遍联系与相互转化;2.用联系的观点看问题; 3.了解对数在生产、生活实际中的应用. 教学重点 对数的定义. 教学难点 对数概念的理解. 教学过程 一、复习引入: 假设 20XX 年我国国民生产总值为 a 亿元,如果每年平均增长 8%,那么经过多少年国民生产总值是 20XX 年的 2 倍? 1 8% = 2 x=? 也是已知底数和幂的值,求指数.你能看得出来吗?怎样求呢? 二、新授内容: aa 0,a 1 的b 次幂等于 N ,就是a b N ,那么数 b 叫做以 a 为底 N 的对 ⑴ 负数与零没有对数(∵在指数式中 ⑵ log a 1 0 , log a a 1 ; ∵对任意 a 0且 a 1, 都有 a 0 1 ∴log a 1 0 同样易知: log a a 1 ⑶对数恒等式 如果把 a b N 中的 b 写成 log a N , 则有 a logaN N . 定义:一般地,如果 数,记作 log a N b , a 叫做对数的底数, N 叫做真数. a b log a Nb 例如: 42 16 log 4 16 2 2 102 100 log 10 100 2 ; 探究: 1。 1 42 2 log 42 12 ; 是不是所有的实数都有对数? 10 2 0.01 log 10 0.01 2. log a N b 中的 N 可以取哪些值? 2. 根据对数的定义以及对数与指数的关系, log a 1 ? log a a ?

对数函数运算公式

对数函数运算公式集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

1 、b a b a =log 2、 b b a a =log 3、N a M a MN a log log log += 4、N a M a N M a log log log -= 5、M a M a n n log log = 6、M a M a n n log 1log = 1、a^(log(a)(b))=b 2、log(a)(a^b)=b 3、log(a)(MN)=log(a)(M)+log(a)(N); 4、log(a)(M÷N)=log(a)(M)-log(a)(N); 5、log(a)(M^n)=nlog(a)(M) 6、log(a^n)M=1/nlog(a)(M) 推导 1、因为n=log(a)(b),代入则a^n=b ,即a^(log(a)(b))=b 。 2、因为a^b=a^b 令t=a^b 所以a^b=t ,b=log(a)(t)=log(a)(a^b) 3、MN=M×N 由基本性质1(换掉M 和N) a^[log(a)(MN)] = a^[log(a)(M)]×a^[log(a)(N)] =(M)*(N) 由指数的性质 a^[log(a)(MN)] = a^{[log(a)(M)] + [log(a)(N)]}

两种方法只是性质不同,采用方法依实际情况而定 又因为指数函数是单调函数,所以 log(a)(MN) = log(a)(M) + log(a)(N) 4、与(3)类似处理 MN=M÷N 由基本性质1(换掉M和N) a^[log(a)(M÷N)] = a^[log(a)(M)]÷a^[log(a)(N)] 由指数的性质 a^[log(a)(M÷N)] = a^{[log(a)(M)] - [log(a)(N)]} 又因为指数函数是单调函数,所以 log(a)(M÷N) = log(a)(M) - log(a)(N) 5、与(3)类似处理 M^n=M^n 由基本性质1(换掉M) a^[log(a)(M^n)] = {a^[log(a)(M)]}^n 由指数的性质 a^[log(a)(M^n)] = a^{[log(a)(M)]*n} 又因为指数函数是单调函数,所以 log(a)(M^n)=nlog(a)(M) 基本性质4推广 log(a^n)(b^m)=m/n*[log(a)(b)] 推导如下: 由换底公式(换底公式见下面)[lnx是log(e)(x),e称作自然对数的底]

第4讲 对数概念及其运算 [讲义]

432211log (4443)x x x x x =++++例.当时,求的值. 912162()q p q R log p log q log p q p +∈==+=例.设,且有,则. 23()(2)(1)2()2f x x lga x lgb f f x x x R a b =+++-=-≥∈+=例.已知,且,又对一切都成立,则. 124()(2)()(01)()2(18)x f x f x f x x f x f log +=-∈=例.已知奇函数满足,且当,时,,则的值为 . 21234541515()lgx lgx lgx lgx lgx lgx lgx lgx x

111211(2)[()(]4 lg log --+.化简: . 7.已知函数()( )1(4)21(4)x x f x f x x ???≥? ?=????+,1y >,且2log 2log 30x y y x -+=,求224T x y =-的最小值。

方根、指数、幂、对数基本运算公式及全部推导公式

方根、指数、幂、对数基本运算公式及全部推导公式 1.根式运算法则: (1) , , ; (2) , , (m a =≥0) a =≥0,P ≠0) (5) , 0),,a m n N =≥∈其中 2.指数运算法则: , , , , , , (7)1 (0)m m a a a -=≠, (8)1 n a = (9)m n a =(10) d b d b a c a c =?= 3.对数运算法则: i 性质:若a >0且a≠1,则 , , (3)零与负数没有对数, (4)log log 1a b b a ?= ⑥, (7)log log log 1a b c b c a ??= ii 运算法则: 若a >0且a≠1,M >0,N >0,b >0且b≠1,n ∈R 则 , ,

, log log (,01)m n a a n b b a b m =>≠且 (4) , log log n n a a m m =, 1log log n a a m m n = (5)换底公式 , a>0 a ≠1, b>0 b ≠1, N>0, (6)倒数公式 1 log ,0,1log a b b a a a = >≠, b>0 b ≠1 (7) 十进制对数 10log lg N N = , l g 10x N x N =?= (8)自然对数 log e N InN = , x InN x e N =?= , 1lim(1) 2.71828...n n e n →∞ =+≈ 4.指数与对数式的恒等变形: ; 。 5、指数方程和对数方程解题: ()(1)()log ,log ()()(f x b a a a b f x b f x b f x a =?==?=定义法) ()()(2)()(),log ()log ()()()0(f x g x a a a a f x g x f x g x f x g x =?==?=>转化法) ()()(3)b ()log ()log ,f x g x m m a f x a g x b =?=(取对数法) ()(4)log log ()log ()log ()/log ,f x a b a a a g x f x g x b =?=(换底法) 6、理解对数 ①两种log a b 理解方法 1、表示a 的“指数”,这个指数能让a 变成b 。 2、表示a 的多少次方等于b 。 ② log log (...)n a a m M M M =??? n 个 log log ...log a a a M M M =+++ n 个 log a n M =

对数公式的运算

对数公式的运用 1.对数的概念 如果a(a>0,且a≠1)的b次幂等于N,即a b=N,那么数b叫做以a为底N的对数,记作:log a N=b,其中a叫做对数的底数,N叫做真数. 由定义知: ①负数和零没有对数; ②a>0且a≠1,N>0; ③log a1=0,log a a=1,a logaN=N(对数恒等式),log a a b=b。 特别地,以10为底的对数叫常用对数,记作log10N,简记为lgN; 以无理数e(e=2.718 28…)为底的对数叫做自然对数,记作log e N,简记为lnN. 2.对数式与指数式的互化 式子名称a b=N 指数式a b=N(底数)(指数)(幂值) 对数式log a N=b(底数) (真数) (对数) 3.对数的运算性质 如果a>0,a≠1,M>0,N>0,那么 (1)log a(MN)=log a M+log a N. (2)log a(M/N)=log a M-log a N. (3)log a M n=nlog a M(n∈R). 问:①公式中为什么要加条件a>0,a≠1,M>0,N>0? ②log a a n=? (n∈R) ③对数式与指数式的比较.(学生填表) 式子a b=N,log a N=b名称:a—幂的底数b—N— a—对数的底数b—N— 运算性质: a m·a n=a m+n a m÷a n= a m-n (a>0且a≠1,n∈R) log a MN=log a M+log a N log a MN= log a M n= (n∈R) (a>0,a≠1,M>0,N>0) 难点疑点突破 对数定义中,为什么要规定a>0,,且a≠1? 理由如下: ①a<0,则N的某些值不存在,例如log-28=? ②若a=0,则N≠0时b不存在;N=0时b不惟一,可以为任何正数? ③若a=1时,则N≠1时b不存在;N=1时b也不惟一,可以为任何正数? 为了避免上述各种情况,所以规定对数式的底是一个不等于1的正数?

对数的概念与运算性质

《对数与对数运算》(第一课时) (人教A版普通高中课程标准实验教科书数学必修1第二章第二节) 一、教学内容解析 《对数与对数运算》选自人教A版高中数学必修一第二章,共分两小节,第一小节主要内容是对数的概念、对数式与指数式的互化,第二小节内容是对数的运算性质,本课时为第一小节内容. 16、17世纪之交,随着天文、航海、工程、贸易以及军事的发展,改进数字计算方法成为当务之急.苏格兰数学家纳皮尔正是在研究天文学的过程中,为了简化其中的计算而发明了对数. 与传统教科书相比,教材从具体问题引进对数概念,加强了对数的实际应用与数学文化背景,强调“对数源于指数”以及指数运算与对数运算的互逆关系,将对数安排在指数运算及指数函数之后进行学习,实现对数与原有知识体系的对接,有利于学生学习时发现与论证对数的运算性质. 基于以上分析,本课时的教学重点是:对数概念的理解以及指数式与对数式的互化. 二、教学目标设置 1.感受引入对数的必要性,理解对数的概念; 2.能够说出对数与指数的关系,能根据定义进行互化和求值; 3.感受数学符号的抽象美、简洁美. 本课时落实以上三个教学目标: 通过“推断化石年代”和“解指数方程”两个实例,认识到引入对数,研究对数是基于实际需求的。根据底数、指数与幂之间的关系,通过“知二求一”的分析,引导学生借助指数函数图象,分析问题中幂指数的存在性,以及为了表示指数的准确值,引入了对数符号,从而引出对数概念. 通过图示连线,对指数式和对数式中各字母进行对比分析,来认识对数与指数的相互联系;利用指数式与对数式的互化,来帮助学生理解对数概念,体会转化思想在对数计算中的作用.对数源于指数,本课时中,对数问题往往回归本源,转化为指数问题来解决,因而要在理解对数概念的基础上学会互化和求值. 恰当的数学符号,对数学发展起着巨大的推动作用,对数符号抽象而简洁,学生需要在不断的学习中逐渐体验对数符号的重要性.

对数的基本概念及运算

第十讲 对数的基本概念及运算 一:问题思考 问题1:一尺之棰,日取其半,万世不竭。 (1)取5次,还有多长? (2)取多少次,还有0.125尺? (1)为同学们熟悉的指数函数的模型,易得 (2)可设取x 次,则有 二:新知引入 1. 对数的概念:一般地,如果,那么数叫做以为底的对 数,记作: ,其中叫做对数的底数, 叫做真数。 注意:①是否是所有的实数都有对数呢? 负数和零没有对数 ②底数的限制:a>0且a ≠1。 思考:为什么对数的定义中要求底数a>0且a ≠1? 对数的书写格式 2、对数式与指数式的互化 N x N a a x log =?= 幂底数 ← a → 对数底数 指数(指数函数的自变量) ← b → 对数 幂(指数函数的函数值) ← N → 真数

3、对数的形式 ①常用对数:以10为底的对数 ,简记为: lgN ②自然对数:以无理数e=2.71828…为底的对数的对数 简记为: lnN . (在科学技术中,常常使用以e 为底的对数) ③一般对数:(含有常用对数和自然对数) 注意:对数的书写 课堂练习 1 将下列指数式写成对数式: (1) (2) (3) (4) 2 将下列对数式写成指数式: (1) (2) (3) 3 求下列各式的值: (1) (2) 2. 对数运算 (1) 基本性质 ①0和负数没有对数,即N>0 ②1的对数是0,即01log =a ③底数的对数等于1,即1log =a a ④对数恒等式:N a N a =log (2) 运算法则 如果,0,0,0,0>>≠>N M a a 则 1)N M MN a a a log log )(log +=; 2)N M N M a a a log log log -=; 3 ) ∈=n M n M a n a (log log R )。(例题 p111,例 4 ,计

指数对数基本运算

2016-2017学年度???学校9月月考卷 1.计算:________. 2.已知666log log log 6a b c ++=,其中*,,a b c N ∈,若,,a b c 是递增的等比数列,又b a -为一完全平方数,则a b c ++=___________. 3.已知3log 21x =,则42x x -=________. 4.lg83lg5+的值是 . 5.lg0.01+log 216=_____________. 6= . 7.已知,53m b a ==且,则m 的值为 . 8.已知y x y x y x lg lg 2lg )2lg()lg(++=++-,则 9,0a b c <<<,0)()()(;③c d <;④c d >.其中可能成立的是 (填序号) 10. 11 12.如果22log log 4,那么m n m n +=+的最小值是 . 13.若log 21a <,则a 的取值范围是 14的定义域为 . 15.32-,三个数中最大数的是 . 16.若log 4(3a +4b)=log a +b 的最小值是 .

参考答案 1.1 【解析】=lg10=1. 2.111 【解析】 试题分析:66666log log log log 6,6a b c abc abc ++===, 2b ac =,所以366,36b b ==.46ac =,因为b a -为一完全平方数,所以27,48,111a c a b c ==++=. 考点:1.对数运算;2.数列. 【思路点晴】本题涉及很多知识点,一个是对数加法运算,用的是公式 log log log a a a b c bc +=.然后,,a b c 是递增的等比数列,可得2b ac =,接下来因为b a -为一完全平方数,比36小的完全平方数只有25,16,9,故可以猜想27a =,通过计算可得27,48,111a c a b c ==++=.有关几个知识点结合起来的题目,只需要对每个知识点逐个击破即可. 3.6 【解析】 试题分析:由条件可知2log 3x =,故222log 3log 34222936x x -=-=-=. 考点:对数运算的基本性质. 4.3 【解析】 试题分析:3lg83lg5lg8lg5lg10003+=+==。 考点:对数运算法则的应用。 5.2 【解析】lg0.01+log 216=-2+4=2 考点:本题考查对数的概念、对数运算的基础知识,考查基本运算能力. 6【解析】 考点:指数和对数的运算法则。 7【解析】略 8.2 【解析】略

对数公式总结

1对数的概念 如果a(a>0,且a≠1)的b次幂等于N,即ab=N,那么数b叫做以a为底N的对数,记作:logaN=b,其中a叫做对数的底数,N叫做真数. 由定义知: ①负数和零没有对数; ②a>0且a≠1,N>0; ③loga1=0,logaa=1,alogaN=N,logaab=b. 特别地,以10为底的对数叫常用对数,记作log10N,简记为lgN;以无理数e(e=2.718 28…)为底的对数叫做自然对数,记作logeN,简记为lnN. 2对数式与指数式的互化 式子名称abN指数式ab=N(底数)(指数)(幂值)对数式logaN=b(底数)(对数)(真数) 3对数的运算性质 如果a>0,a≠1,M>0,N>0,那么 (1)loga(MN)=logaM+logaN. (2)logaMN=logaM-logaN. (3)logaMn=nlogaM (n∈R). 问:①公式中为什么要加条件a>0,a≠1,M>0,N>0? ②logaan=? (n∈R) ③对数式与指数式的比较.(学生填表) 式子ab=NlogaN=b名称a—幂的底数 b— N—a—对数的底数 b— N—运 算 性 质am?an=am+n am÷an= (am)n= (a>0且a≠1,n∈R)logaMN=logaM+logaN logaMN= logaMn=(n∈R) (a>0,a≠1,M>0,N>0) 难点疑点突破 对数定义中,为什么要规定a>0,,且a≠1? 理由如下: ①若a<0,则N的某些值不存在,例如log-28 ②若a=0,则N≠0时b不存在;N=0时b不惟一,可以为任何正数 ③若a=1时,则N≠1时b不存在;N=1时b也不惟一,可以为任何正数 为了避免上述各种情况,所以规定对数式的底是一个不等于1的正数 解题方法技巧 1

指数、对数函数公式

指数函数和对数函数 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数 y a y x x a ==,log 在a >1及01<≠01且叫指数函数。 定义域为R ,底数是常数,指数是自变量。 为什么要求函数y a x =中的a 必须a a >≠01且。 因为若a <0时,()y x =-4,当x =1 4 时,函数值不存在。 a =0,y x =0,当x ≤0,函数值不存在。 a =1时,y x =1对一切x 虽有意义,函数值恒为1, 但y x =1的反函数不存在,因为要求函数y a x =中的a a >≠01且。 1、对三个指数函数y y y x x x ==?? ? ? ?=21210,,的图 象的认识。 对图象的进一步认识,(通过三个函数相互关系的比较): ①所有指数函数的图象交叉相交于点(0,1),如y x =2和y x =10相交于()01,,当x >0 时,y x =10的图象在y x =2的图象的上方,当x <0,刚好相反,故有10222>及 10222--<。

②y x =2与y x =?? ?? ?12的图象关于y 轴对称。 ③通过y x =2,y x =10,y x =?? ?? ?12三个函数图象,可以画出任意一个函数y a x =(a a >≠01且)的示意图,如y x =3的图象,一定位于y x =2和y x =10两个图象的中 间,且过点()01,,从而y x =?? ???13也由关于y 轴的对称性,可得y x =?? ? ? ?13的示意图,即 通过有限个函数的图象进一步认识无限个函数的图象。 2、对数: 定义:如果a N a a b =>≠()01且,那么数b 就叫做以a 为底的对数,记作b N a =log (a 是底数,N 是真数,log a N 是对数式。) 由于N a b =>0故log a N 中N 必须大于0。 当N 为零的负数时对数不存在。 (1)对数式与指数式的互化。 (2)对数恒等式: 由a N b N b a ==()log ()12 将(2)代入(1)得a N a N log = 运用对数恒等式时要注意此式的特点,不能乱用,特别是注意转化时必须幂的底数和对数的底数相同。 计算: () 313 2 -log 解:原式==?? ?? ?-=3 131 2 222 13 1 3 log log 。 (3)对数的性质: ①负数和零没有对数; ②1的对数是零; ③底数的对数等于1。 (4)对数的运算法则: ①()()log log log a a a MN M N M N R =+∈+ , ②()log log log a a a M N M N M N R =-∈+ , ③()()log log a n a N n N N R =∈+ ④()log log a n a N n N N R =∈+ 1

指数函数 和 对数函数公式 (全)

指数函数和对数函数 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数y a y x x a ==,l o g 在a >1及01<≠01且叫指数函数。 定义域为R ,底数是常数,指数是自变量。 为什么要求函数y a x =中的a 必须a a >≠01 且。 因为若a <0时,()y x =-4,当x = 1 4 时,函数值不存在。 a =0 ,y x =0,当x ≤0,函数值不存在。 a =1 时,y x =1对一切x 虽有意义,函数值恒为1,但y x =1的反函数不存在, 因为要求函数y a x =中的 a a >≠01且。 1、对三个指数函数y y y x x x ==?? ???=212 10,, 的图象的认识。 图象特征与函数性质: 图象特征 函数性质 (1)图象都位于x 轴上方; (1)x 取任何实数值时,都有a x >0; (2)图象都经过点(0,1); (2)无论a 取任何正数,x =0时,y =1; (3)y y x x ==210,在第一象限内的纵坐标都大于1,在第二象限内的纵坐标都小于1,y x =?? ? ? ?12的图象正好相反; (3)当a >1时,x a x a x x >><<<>?????0101, 则, 则 (4)y y x x ==210,的图象自左到右逐渐(4)当a >1时,y a x =是增函数,

对数概念及其运算

对数概念及其运算 知识点1 对数 1.对数的定义 如果()1,0≠>a a a 的b 次幂等于N ,那么数b 叫做以a 为底N 的对数,记作,log b N a =其中a 叫做对数的底数,N 叫做真数。在对数函数b N a =log 中,a 的取值范围是 ()1,0≠>a a 且,N 的取值范围是0>N ,b 的取值范围是R b ∈。 【注意】根据对数的定义可知 (1)零和负数没有对数,真数为正数,即0>N (2)在对数中必须强调底数0>a 且1≠a 2.常用对数 (1)定义:以10为底的对数叫做常用对数,N 10log 记做N lg 。 (2)常用对数的性质 10的整数指数幂的对数就是幂的指数,即() 是整数n n n =10lg 3.自然对数 (1)定义:以Λ71828.2=e 为底的对数叫做自然对数,N e log 通常记为InN 。 (2)自然对数与常用对数之间的关系:依据对数换底公式,可以得到自然对数与常用对数之间的关系:4343 .0lg lg lg N e N InN == ,即N InN lg 303.2=。 4.指数式与对数式的互化 (1)符号N a log 既是一个数值,也是一个算式,即已知底数和在某一个指数下的幂,求其 指数的算式。对数式b N a =log 的a 、N 、b 在指数式N a b =中分别是底数、指数和幂。 (2)充分利用指数式和对数式的互换,讲述四条规则: ①在b N a =log 中,必须0>N ,这是由于在实数范围内,正数任何次幂都是正数,因而 N a b =中的N 总是正数,须强调零和负数没有对数。 ②因为10 =a ,所以01log =a 。 ③因为,1 a a =所以1log =a a 。 ④因为N a b =,所以b N a =log ,所以N a N g l a =0。 【例1】下列说法错误的是() (A)负数和零没有对数 (B )任何一个指数式都可以化为对数式 (C )以10为底的对数叫做常用对数 (D )以e 为底的对数叫做自然对数

指数式与对数式的运算

指数式与对数式的运算 指数与指数幂的运算 教学目标:理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握根式与分数指数幂的互化,掌握有理数指数幂的运算. 知识点回顾: 1. 若n x a =,则x 叫做a 的n 次方根,记为n a ,其中n >1,且n N *∈.(n 叫做根指数,a 叫做被开方数)n 次方根具有如下性质: (1)在实数范围内,正数的奇次方根是一个正数,负数的奇次方根是一个负数;正数的偶次方根是两个绝对值相等、符号相反的数,负数的偶次方根没有意义;零的任何次方根都是零. (2)n 次方根(*1,n n N >∈且)有如下恒等式: ()n n a a =;,||,n n a n a a n ?=?? 为奇数为偶数;np n mp m a a =,(a ≥0). 2.规定正数的分数指数幂:m n m n a a = (0,,,1a m n N n *>∈>且); 注意口诀:(根指 数化为分母,幂指数化为分子), 11 ()()(0,,,m m m n n n a a m n N a a -+==>∈且1)n >. 注意口诀:底数取倒数,指数取相反数.0的负分数指数幂没有意义。 3.指数幂的运算性质 ①(0,,)r s r s a a a a r s R +?=>∈ ②()(0,,)r s rs a a a r s R =>∈ ③()(0,0,)r r r ab a b a b r R =>>∈ 范例解析 例1求下列各式的值: (1)3n n π-()(*1,n n N >∈且); (2)2()x y -. 解:(1)当n 为奇数时,33n n ππ-=-(); 当n 为偶数时,3|3|3n n πππ-=-=-(). (2)2()||x y x y -=-. 当x y ≥时,2()x y x y -=-;当x y <时,2()x y y x -=-. 例2已知221n a =+,求33n n n n a a a a --++的值. 解:332222()(1)1121122121 n n n n n n n n n n n n a a a a a a a a a a a a ------++-+==-+=+-+=-+++. 例3化简:(1)2 115113366 22(2)(6)(3)a b a b a b -÷-; (2)3322 114 4 23 ()a b ab b a b a ?(a >0,b >0); (3)24 3 819?.

对数的概念及运算--对数的概念

课题4.4 对数的概念及运算(1)——对数的概念 一、教学内容分析 为了解决“已知底数和幂的值,求指数的问题”,我们引入了新的知识——对数。本节课是对数问题的第一课时,考虑到学生在接受新知识时可能存在的疑惑,因此要在对数概念的形成上重点讲解,和学生共同经历由指数式提出对数概念的过程。由于指对数之间存在着互相转化的关系,所以我们可以结合指数的性质特点考察对数中对于底数、真数以及对数的取值范围的要求。 二、教学目标设计 1.理解对数的意义,掌握底数、真数、对数的允许值范围; 2.掌握对数式与指数式的互化,理解对数式中的底数、真数、对数与指数式中底数、幂、指数之间的对应关系; 3.知道特殊对数的表示方法,会利用计算器计算常用对数值; 4. 经历由指数式提出对数概念的过程; 5. 养成类比、转化的思维习惯; 三、教学重点及难点 对数式与指数式的互化 四、教学用具准备 多媒体课件 六、教学过程设计 一、情景引入 假设2002年我国国民生产总值为a亿元,如果每年平均增长% 8,那么经过多少年国民生产总值是2002年时的2倍? 解:设经过x年国民生产总值为2002年时的2倍, 根据题意有a x. +,即2 1(= a x2 %) 8 .1= 08 问题:已知底数和幂的值,求指数?该如何描述? 二、学习新课 1.概念辨析:一般地,如果)1 a b=, a的b次幂等于N,就是N a ,0 (≠ >a

那么数b 叫做以a 为底N 的对数,记作b N a =log ,其中a 叫做底数,N 叫做真数。 [说明]结合指数的性质特点,以及指对数之间的互化关系发现: N a b = ? b N a =log (R b N a a ∈>≠>,0,1,0) (1)对数的底数必须大于0且不等于1; (2)对数的真数必须大于0,也即负数与0没有对数; (3)对数的值可以为一切实数,也即对数值可正、可负、可为零; (4)通常以10为底的对数,叫做常用对数。为了简便,N 的常用对数N 10log ,简记作N lg ; (5)将以无理数Λ7182.2=e 为底的对数叫做自然对数。为了简便,N 的自然对数N e log 简记作N ln 2.例题分析 例1、将下列指数式化为对数式 ① 62554=; ② 32125= -; ③813=a ; ④73.5)31(=m 例2、将下列对数式化为指数式: ① 416log 21-=; ② 7128 1log 2 -=; ③ 201.0log 10-=; ④ 303.210ln =; 例3、求下列各式的值: ① 49log 7; ② 21log 8; ③ 1log a (1,0≠>a a );

指数、对数函数公式及练习

高加索教育指数函数和对数函数总结练习典藏版 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数y a y x x a ==,log 在a >1及 01<≠01且叫指数函数。 定义域为R ,底数是常数,指数是自变量。 为什么要求函数y a x =中的a 必须a a >≠01且。 因为若a <0时,()y x =-4,当x = 1 4 时,函数值不存在。 a =0,y x =0,当x ≤0,函数值不存在。 a =1时,y x =1对一切x 虽有意义,函数值恒为1,但y x =1的 反函数不存在,因为要求函数y a x =中的a a >≠01且。 1、对三个指数函数y y y x x x ==?? ?? ?=21210,,的图象的认识。 图象特征与函数性质: 对图象的进一步认识,(通过三个函数相互关系的比较): ①所有指数函数的图象交叉相交于点(0,1),如y x =2和y x =10相交于()01,,当x >0时,y x =10的图象在y x =2的图象的上方,当x <0,刚好相反,故有10222>及10 22 2--<。 ②y x =2与y x =?? ? ? ?12的图象关于y 轴对称。 ③通过y x =2,y x =10,y x =?? ?? ?12三个函数图象,可以画出任意一个函数y a x =(a a >≠01且)的示意图,

如y x =3的图象,一定位于y x =2和y x =10两个图象的中间,且过点()01,,从而y x =?? ? ? ?13也由关于y 轴的对 称性,可得y x =?? ? ? ?13的示意图,即通过有限个函数的图象进一步认识无限个函数的图象。 2、对数: 定义:如果a N a a b =>≠()01且,那么数b 就叫做以 a 为底N 的对数,记作 b N a =log (a 是底数,N 是真 数,log a N 是对数式。) 由于N a b =>0故log a N 中N 必须大于0。 当N 为零或负数时对数不存在。 (1)对数式与指数式的互化。 (2)对数恒等式: 由a N b N b a ==()log ()12 将(2)代入(1)得a N a N log = 运用对数恒等式时要注意此式的特点,不能乱用,特别是注意转化时必须幂的底数和对数的底数相同。 计算:() 3 13 2 -log 解:原式==?? ?? ?-=3 131 2 222 13 1 3 log log 。 (3)对数的性质: ①负数和零没有对数; ②1的对数是零; ③底数的对数等于1。 (4)对数的运算法则: ①()()log log log a a a MN M N M N R =+∈+, ②()log log log a a a M N M N M N R =-∈+ , ③()()log log a n a N n N N R =∈+ ④()log log a n a N n N N R =∈+ 1 3、对数函数: 定义:指数函数y a a a x =>≠()01且的反函数 y x a =log x ∈+∞(,)0叫做对数函数。 1、对三个对数函数y x y x ==log log 212 ,, y x =lg 的图象的认识。 图象特征与函数性质: (1)所有对数函数的图象都过点(1,0),但是y x =log 2与y x =lg 在点(1,0)曲线是交叉的,即当x >0时, y x =log 2的图象在y x =lg 的图象上方;而01<;log .lg .20101<。 (2)y x =log 2的图象与y x =log 12 的图象关于x 轴对称。